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H
umans utilize their lower and upper extremities 
in completely different manners. Although the 
human motor control networks for the feet and 

hands share multiple brain areas, such as the primary and 
supplementary motor areas, premotor cortex, and subtha-
lamic nucleus (STN),29 physiological network differences 
have been described at the subregion level, such as the so-
matotopic organization of the STN,17,20,25 with active move-
ments of the wrist, arm, shoulder, leg, and foot, where the 
arm is represented more laterally than the leg. Our study 
examines differences between lower- and upper-extremity 
representations in the STN.

In the intact monkey, the activity of over half the cells 
examined in the STN was modulated in response to pas-
sive movements of individual contralateral body parts,30 

mostly to passive joint rotation produced by muscle pal-
pation, but in some cases also in response to light touch. 
Within the rostrodorsal zone, a lateral region was found to 
contain neurons that responded to arm movements; a more 
medial region, to leg movement; and more dorsally and 
rostrally, to orofacial movements. In humans with Parkin-
son’s disease (PD), a motor area related to passive move-
ments was found in the dorsolateral part of the STN, with 
leg-related cells located medially and centrally and arm-
related cells found more diffusely.27 Responses to active 
and passive movements (e.g., clenching the fist, pointing, 
foot tapping, horizontal and vertical saccades, jaw move-
ment, and tongue protrusion) were also demonstrated in 
the STN of patients with PD.10

Subthalamic neuronal activity has been related to mul-
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OBJECTIVE The ability to modulate the pace of movement is a critical factor in the smooth operation of the motor sys-
tem. The authors recently described distinct and overlapping representations of movement kinematics in the subthalamic 
nucleus (STN), but it is still unclear how movement pace is modulated according to the demands of the task at the neuro-
nal level in this area. The goal of this study was to clarify how different movement paces are being controlled by neurons 
in the STN.

METHODS The authors performed direct recording of the electrical activity of single neurons in the STN of neurosurgi-
cal patients with Parkinson’s disease undergoing implantation of a deep brain stimulator under local anesthesia while the 
patients performed repetitive foot and hand movements intraoperatively at multiple paces.

RESULTS A change was observed in the neuronal population controlling the movement for each pace. The mechanism 
for switching between these controlling populations differs for hand and foot movements.

CONCLUSIONS These findings suggest that disparate schemes are utilized in the STN for neuronal recruitment for mo-
tor control of the upper and lower extremities. The results indicate a distributed model of motor control within the STN, 
where the active neuronal population changes when modifying the task condition and pace.
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tiple motor parameters of both upper and lower extremi-
ties. Upper-extremity motor execution, motor inhibition, 
and error monitoring have been found to activate 3 sub-
populations of subthalamic neurons,2,3 as has Parkinso-
nian tremor.1,20 Upper-extremity parameters include grip 
force,18 movement onset, and movement direction.7 Partici-
pation of the STN in lower-extremity control was shown 
by stimulation studies in which stimulation improved gait 
and postural symptoms of PD, sometimes to an almost 
normal level4,11,13 (see Piper et al.19 for a review). STN stim-
ulation, combined with levodopa, improved gait speed, 
reduced gait variability (enhanced stability), and yielded 
lower (better) Unified Parkinson’s Disease Rating Scale 
(UPDRS) scores.8 We have recently shown that the STN 
encodes the kinematic parameters of movement—orienta-
tion, angular velocity, and acceleration—and is involved in 
motor coordination.25 These findings demonstrate that the 
STN is a key region in the regulation of both upper- and 
lower-extremity movement control.

Despite the aforementioned literature, the question of 
how subthalamic neurons are recruited for motor control 
of the hand and feet is still unclear. In particular, it is not 
yet clear whether different paces of movement involve the 
same population of controlling neurons or require recruit-
ment of additional units or whether firing modulation by 
itself can explain the change in movement pace. We hy-
pothesize that a drastic change in movement pace is usual-
ly not a reflection of mere performance of the same move-
ment slower or faster, but commonly reflects a change to 
the “nature” of movement, for example, from gross to fine 
motor skills. We therefore expect different neuronal popu-
lations to control the different paces. Here, we extend our 
previous study25 by exploring this issue at the single cell 
level of the STN.

As deep brain stimulation (DBS) is a surgical treat-
ment for the motor signs of PD, we believe that character-
izing the physiology of the various motor-related neuronal 
populations is a first step that will, in the future, inform 
better fitting of the treatment to the signs of the disease of 
the individual patient and avoid side effects to neighboring 
populations in more focused DBS procedures.

Methods
Patients and Electrophysiology

Participants in this study were 10 patients with PD who 
were undergoing implantation of DBS electrodes for clini-
cal reasons. The patients’ mean age was 59.2 years (SD 
11.7 years), and their mean duration of PD was 11.1 years 
(SD 4.2 years). All were right-handed, and 8 were male. 
The clinical procedure and microelectrode recordings 
were previously described25 and so was spike sorting.26 All 
studies were approved by the institutional review board of 
Tel Aviv Medical Center and conformed to its guidelines. 
All patients provided written informed consent.

Experimental Paradigms

Intraoperatively, patients performed unipedal and bi-
pedal (alternating) tapping against a surface, and simi-
larly, unimanual and bimanual (alternating) tapping, also 
against a surface. Although tapping, even if alternating, 

does not necessarily reflect gait, the intraoperative supine 
position constrains the task, and this setup was used as a 
rough approximation.

Each type of tapping was repeated at 3 internally gen-
erated paces: patient self-selected (“normal”), slow, and 
fast paces. Patients were first instructed to perform the 
tapping task. By intention, the instructions did not refer 
to any pace. The patients selected the pace by themselves, 
and none of them asked about it. Next, patients were in-
structed to perform the task faster than before. Finally, 
they were asked to perform the task slower than in the first 
part. During the tasks, patients wore small, light, wire-
less measurement devices on both wrists and the dorsal 
surfaces of both feet (Opal monitors; APDM Inc.). These 
devices recorded kinematics (acceleration, angular veloc-
ity, and orientation) in synchrony with the neuronal re-
cording.

Data Analysis

The modeling of the firing rate function as a linear 
combination of each triaxial kinematic parameter—orien-
tation, angular velocity, and acceleration (cross-validated 
linear regression)—and the evaluation of the nonlinear re-
lations between firing and kinematics based on entropy 
correlation coefficients28 were described in our previous 
study.25 The entropy correlation coefficient is independent 
of the length of the time series, thus “normalizing” the 
longer duration of slower movements. Hence, the entropy 
correlation coefficient of long time series can be directly 
compared with those obtained from shorter series. Be-
cause the distribution of entropy correlation coefficients is 
not normal, the Mack-Skillings test14 served for nonpara-
metric 2-way unbalanced analysis of variance (ANOVA).

For large samples, the sampling distribution of the me-
dian is approximately normal. Therefore, when compar-
ing the median entropy correlation coefficients between 2 
conditions (e.g., normal-pace movements and slow move-
ments), we employed the parametric paired-sample t-test. 
The same statistical test served to compare the average 
percentage of task-related units (over all patients) between 
conditions.

Results
We recorded the activity of 89 single units in the STN 

of 10 PD patients who were undergoing implantation of a 
deep brain stimulator for treatment of their motor symp-
toms. Figure 1 compares the average cycle times of the 
repetitive movements at the different paces. The figure 
demonstrates that the cycle time of the repetitive move-
ments was indeed significantly different during the slow, 
normal, and fast tapping paces (Fig. 1A and B). This was 
the case independent of the limb or limbs participating in 
the movement. Moreover, it appears that for each tapping 
pace, patients selected similar cycle times for tapping with 
the hands as with their feet (Fig. 1C).

In our earlier work,25 we found that in 43% (38/89) of 
the recorded units, the correlation between the firing rate 
and its kinematics-based linear estimator was significant, 
explaining a considerable percentage of the variance (r2 > 
0.30). In addition, we found significant relations between 
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kinematics and spiking activity in 93% (83/89) of record-
ed STN units based on the entropy correlation coefficient 
(see Methods).

In the present study, we found that the entropy cor-
relation coefficient was significantly affected by both 
the tapping pace (i.e., slow, normal, or fast) and the limb 
(ipsi- vs contralateral) during both foot movements (pace: 
p < 0.0001; limb: p < 0.0001; the Mack-Skillings test for 
nonparametric 2-way unbalanced ANOVA) and hand 
movements (pace: p < 0.0001; limb: p < 0.0001; Fig. 2A 
and B). Notice, however, that independent of the limb, the 
entropy correlation coefficient was larger during normal-
pace movements than during slow movements (see also 
Fig. 2C), both for hands (p = 0.017; paired-sample t-test) 
and for feet (p = 0.043). Thus, the recorded neurons appar-
ently encode less information in slow movements than in 
normal-pace ones.

So far, we examined the change in entropy correlation 
coefficient for each neuron by itself. Does this mean that 
for both foot and hand movements the population as a 
whole encodes less information for slow movements than 
for normal-pace movements? To address this question, we 
examined the percentage of units recruited for the tapping 
task under each condition. This percentage changed as a 
function of movement pace, as can be seen by the stair-
like structure in Fig. 2D and E. Even though this type of 
structure is common to hands and feet, the order of the 
“stairs” is different (note the different labeling of the y-
axes in Fig. 2D and E). For foot movements, normal-pace 
movements yielded the maximum percentage of recruited 
units, slow movements yielded significantly less (normal 
> slow: p = 0.035, paired-sample t-test; see Methods), and 
fast movements yielded the least (slow > fast: p = 0.0065). 
In contrast, for hand movements, slow movements were 
the ones recruiting the maximum percentage of units; nor-
mal-pace movements, significantly less (slow > normal: p 
= 0.0037); and fast movements, the least (normal > fast: p 
= 0.0064). Thus, for foot movements, the change of pace 
from normal to slow results in fewer units recruited for 
the task (Fig. 2F, blue), each unit carrying less informa-
tion on the slow movement task (Fig. 2C, blue). For hand 

movements, however, each unit carried less information 
on the slow movements (Fig. 2C, red), but more units were 
recruited for the task (Fig. 2F, red).

Direct comparison of the percentage of units recruited 
to control hand and foot movements in each pace reveals 
that for the slow (p = 0.22) and fast (p = 0.51) paces there 
was no significant difference between the upper and lower 
limbs. However, as Fig. 2F shows, during normal pace, 
the difference between feet and hands was significant (p 
= 0.001; feet > hands, paired-sample t-test). Similarly, feet 
and hands did not differ significantly in their entropy cor-
relation coefficient during slow (p = 0.17) and fast (p = 
0.12) paces, but they did during normal pace (p = 0.039; 
feet > hands, paired-sample t-test).

Discussion
In this study, we report disparate pace-dependent re-

cruitment schemes for subthalamic neurons controlling 
hand movements compared with those controlling the 
feet. The information encoded by the activity of each con-
trolling neuron decreased when moving from a normal, 
self-selected pace to a slow tapping pace, in both lower- 
and upper-extremity movements (see Fig. 2A–C). For foot 
movements, this decrease was accompanied by a reduc-
tion in the percentage of recorded neurons recruited for 
the task (see Fig. 2D–F), leading to an overall reduction in 
the task-related information represented by the population 
as a whole. In contrast, for hand movements, the percent-
age of recruited neurons we recorded increased, in what 
might be a compensatory mechanism that uses more neu-
rons, each carrying less information. Thus, the population 
as a whole may avoid significant reduction in the amount 
of information about slow movements in comparison with 
normal-pace ones. Slow hand movements may serve, for 
example, in fine motor skills, and may thus require finer 
control, that is, increased neuronal activity or a shift in 
neuronal activity between cell populations. Slow move-
ments also result from deficits shown by the patients, in-
cluding bradykinesia.

Our finding of different neuronal populations each spe-

FIG. 1. Limb movement behavior in each experimental condition. The average tapping cycle time was significantly longer in the 
slow tapping pace than in the normal pace and significantly longer in the normal pace than in the fast condition, independent of the 
limb(s) involved, as expected (2 paired-sample t-tests, p < 0.05 in all tests). A: Foot tapping. B: Hand tapping. C: Average cycle 
time for the slow, normal, and fast tapping paces, for foot (red) and hand (green) movements. The pace of feet and hand move-
ments was similar. Bi = bipedal or bimanual; ms = milliseconds. Error bars indicate standard errors (SEs).
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cifically involved in a certain pace of movement extends 
existing evidence in the mouse spinal cord, where ablation 
of inhibitory V0 neurons leads to a quadrupedal hopping 
at all frequencies of locomotion, but with a differential ef-
fect at different locomotor frequencies: lack of left-right 
pattern at low frequencies, mixed coordination at medium 
frequencies, and left-right alternation at high locomotor 
frequencies.22 Similarly, switches in spinal circuits during 
increases in locomotor speed were provided by studies of 
swimming in larval zebrafish.12

The aforementioned differences in the neuronal recruit-
ment scheme between foot and hand movements cannot be 
explained by differences in tapping paces, as the average 
pace of foot movements was similar to that of hand move-
ments (Fig. 1). The recruitment differences are, however, 
consistent with existing evidence for the role of the STN 
in the control of automatic behavior9 and task switching,15 
because automatic behavior most closely reflects move-
ments in the normal, patient-selected pace. As we have 
shown, for this type of movement the STN encodes more 
kinematic information than for slow movements, implying 
greater subthalamic involvement in the control of auto-
matic movements. Moreover, the reported differences also 
suggest that an external electrical stimulation to the STN 

will likely yield distinct effects at each movement pace. 
This may thus indirectly explain, at the single cell level, 
the differences in step length and velocity induced by DBS 
in normal-pace versus fast gait.4

The difference in percentage of recruited units for hand 
and foot movements is about 12% (Fig. 2F, normal pace). 
This percentage is similar to percentages reported in the 
literature on human neurophysiology to describe various 
phenomena—for example, units related to speech in the 
temporal and frontal lobes24 (8%, 49 units), visuomotor 
units in the parahippocampal gyrus23 (9%, 11 units), or 
pure bipedal units in the STN25 (11%, 10 units). We there-
fore conclude that disparate pace-dependent recruitment 
schemes exist for the STN neurons that control hand and 
foot movements.

Understanding the neuronal recruitment schemes for 
different types of movements (e.g., different paces) may, 
in the future, assist neurosurgeons in the optimal targeting 
of DBS electrodes to achieve multiple goals. First, it may 
help in targeting areas with neuronal activity related to 
specific symptoms, for example, slow gait. Second, it may 
assist in avoiding DBS side effects, such as the aforemen-
tioned difference in the influence of stimulation on fast 
versus normal paces. Third, more focused stimulation may 

FIG. 2. Median entropy correlation coefficient and average percentage of task-related units, over all patients, for each tapping 
pace and each limb. A–C: Entropy correlation coefficient. The median entropy correlation coefficient varied significantly with both 
pace and limb, for both foot (A) and hand (B) movements. Note in particular the reduction in information when moving from normal 
pace to slow pace, independently of the limb. This transition is summarized in C: the entropy correlation coefficient decreases for 
both foot (blue) and hand (red) movements. D–F: Percentage of task-related units. The average percentage of task-related units 
shows a stair-like structure. For foot tapping (D), more neurons are recruited during normal tapping, fewer during slow tapping, and 
even fewer during fast tapping. For hand tapping (E), slow tapping recruits the largest amount of units; normal tapping, fewer; and 
fast pace, the least, independent of the limb. (Note the different labeling of the pace axes in D and E.) The percentages of recruited 
neurons in normal and slow movements are summarized in F. Neuronal recruitment schemes differ between feet (blue) and hand 
(red) movements. For foot movements, the transition decreases the amount of participating neurons. Combined with the decrease 
in information encoded by each neuron (C), the overall result is reduced encoded information for slow foot movements. In contrast, 
for hand movements the decrease in encoded information (C) is compensated for by recruiting more neurons for the task (increase 
in percentage of recruited neurons). Bi = bipedal or bimanual; coeff = coefficient; contra = contralateral; corr = correlation; ipsi = 
ipsilateral.
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be developed that will combine the two benefits: it will 
target a specific group of neurons to treat a specific symp-
tom while avoiding other neurons that, when stimulated 
unnecessarily, produce side effects. Fourth, closed-loop 
DBS21 may be tailored for different types of movement 
based on the different neuronal populations identified.

Our results suggest that different movement paces may 
lead to distinct motor control schemes in the STN, as op-
posed to a single control scheme that takes velocity or 
pace into account, as is the case, for example, in the pri-
mary motor cortex.5,6,16 Nevertheless, as we recorded from 
a random sample of cells, and as the size of the sample is 
small relative to the whole neuronal population that con-
trols movement within the STN, we must bear in mind that 
the distinct schemes that we observed may in fact repre-
sent different aspects of a more complex unified scheme. 
Future research with a larger cohort may be necessary for 
a more complete understanding of the underlying mecha-
nisms.

Conclusions
Change of pace of movement is achieved by recruit-

ment of the corresponding subthalamic neuronal popula-
tion. The recruitment schemes for controlling hand move-
ments differ from those for controlling the feet. Our find-
ings are thus an important step on the way to deciphering 
the neuronal mechanisms involved in the recruitment of 
subthalamic neurons for the motor control task. In the 
future, these results may help to facilitate more focused 
implantation of DBS electrodes in patients with movement 
disorders, targeting specific symptoms related to move-
ment kinematics.
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