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Abstract

Under current worst-case design practices, manufactur-
ers specify conservative values for processor frequencies
in order to guarantee correctness. To recover some of the
lost performance and improve single-thread performance,
this paper presents the Paceline leader-checker microar-
chitecture. In Paceline, a leader core runs the thread at
higher-than-rated frequency, while passing execution hints
and prefetches to a safely-clocked checker core in the same
chip multiprocessor. The checker redundantly executes the
thread faster than without the leader, while checking the re-
sults to guarantee correctness. Leader and checker cores
periodically swap functionality. The result is that the thread
improves performance substantially without significantly
increasing the power density or the hardware design com-
plexity of the chip. By overclocking the leader by 30%,
we estimate that Paceline improves SPECint and SPECfp
performance by a geometric mean of 21% and 9%, respec-
tively. Moreover, Paceline also provides tolerance to tran-
sient faults such as soft errors.

1 Introduction

Increased transistor integration together with constraints
on power dissipation and design complexity are motivating
processor designers to build Chip Multiprocessors (CMP).
While these platforms will work well for parallel applica-
tions, it is unclear to what extent they will be able to speed
up legacy sequential applications. This is because many of
these applications have proven to be hard to parallelize with
current compiler technology.
An alternative approach is to keep the sequential soft-

ware unmodified, and leverage multiple cores to speed up
the application transparently using hardware mechanisms
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only. This approach often relies on running the applica-
tion on two coupled cores, where one of them is used to
speed up the execution on the other. Examples of this ap-
proach include Slipstream [26], Dual-Core Execution [34],
and Future Execution [9]. In Slipstream [26], the Advanced
stream speculatively skips predictable instructions from the
application, while passing execution hints such as data val-
ues and branch outcomes to the Redundant stream which,
as a result, runs the application faster. In Dual-Core Ex-
ecution [34], the Front core fetches and preprocesses the
instruction stream, without stalling for long-latency cache
misses, while the Back core benefits from these prefetches
and from the correct dynamic stream of instructions from
the Front core. Finally, in Future Execution [9], a Prefetch-
ing core uses value prediction to execute future non-control
instructions, prefetching data that will be needed by the Pri-
mary core.
To further improve the potential of this general approach,

we propose to overclock the leader core — i.e., clock it at a
frequency higher than its rating — so that it can run faster
and provide hints and prefetched data earlier to the follower
core. There are two reasons why a modest degree of over-
clocking is viable. First, current processors are rated with
a non-negligible safety margin for frequency. This is a re-
sult of several factors, including the way processor chips are
marketed in frequency bins, process variation within a CMP,
and protection against aging effects, temperature peaks, and
voltage variations. Second, even if the leader core is over-
clocked beyond what is safe, occasional timing errors can
be tolerated, given than the follower core checks the results
and guarantees correct execution.
In this paper, we present an architecture called Paceline

that supports this approach. Paceline improves the perfor-
mance of a single thread by running it redundantly on two
cores of a CMP, called Leader and Checker. The leader is
clocked at a frequency higher than nominal, exploiting the
safety margin for frequency and even causing occasional
timing errors. Meanwhile, the checker core runs at the
rated, safe frequency. The leader prefetches data into the L2
cache that it shares with the checker, and also passes branch
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outcomes to the checker. This improves the checker’s IPC
and allows it to keep up with the accelerated leader. The re-
sult is that the thread executes faster than on a single base-
line core.
The hardware periodically compares the architectural

state of the leader and the checker, and is able to detect and
recover from different types of errors. These errors include
timing errors due to overclocking, incoherence caused by
the same load from the leader and the checker returning dif-
ferent values and, importantly, transient faults such as soft
errors.
As it executes, the overclocked leader dissipates higher

power than a baseline core. Meanwhile, the checker, by
leveraging the prefetched data and branch outcomes from
the leader, expends less power than a baseline core. To be
able to sustain higher than baseline speed without overheat-
ing, the two cores periodically alternate the leader position.
The operation is analogous to a paceline of two bicycle rid-
ers where riders take turns to lead. The leader expends more
effort while sheltering the other rider.
We envision a Paceline CMP as containing multiple of

these leader–checker core pairs. Each core pair shares an
L2 and includes simple hardware to periodically compare
state and to pass branch outcomes. This hardware requires
only small design modifications — mostly confined to the
interface between the L1 and L2 caches — and can be eas-
ily disabled, returning the core pair to the standard CMP
working mode.
Our simulation-based results show that Paceline substan-

tially improves the performance of a thread without signifi-
cantly increasing the power density or the hardware design
complexity of the chip. By overclocking the leader by 30%,
we roughly estimate that Paceline improves SPECint and
SPECfp performance by a geometric mean of 21% and 9%,
respectively.
This paper is organized as follows. Section 2 examines

the potential for overclocking; Section 3 presents the Pace-
line architecture; Sections 4 and 5 evaluate Paceline; and
Section 6 discusses related work.

2 Characterizing Overclockability

Paceline exploits three sources of overclockability in the
leader core: grading artifacts arising from the way pro-
cessors are binned and marked for sale; process and envi-
ronmental safety margins; and error tolerance at frequen-
cies beyond the safe one. This section characterizes these
sources. Unless otherwise indicated, the discussion refers
to a 16-core CMP in 32nm technology.

2.1 Grading Artifacts

After fabrication, each die is tested for functionality and
speed. The latter process is called speed binning, where the

objective is to assign one of several pre-determined speed
grades to each part. For example, a manufacturer might
offer 4, 4.5, and 5 GHz speed grades, and will label each
part with the highest speed grade at which it can safely and
reliably operate under worst case conditions.
The binning process introduces overclockability in two

ways. The first arises from the fact that bin frequencies are
discrete. For example, under the scheme described above,
a part that passes all tests at 4.8 GHz will be placed in the
4.5 GHz bin. As of early 2007, the Intel E6000 series and
the AMD Athlon 64 X2 series space their bin frequencies
by 7-14% [3, 15]. If we assume a spacing of 10% as an
example, a processor can safely run on average 5% faster
than its binned frequency specification.
Secondly, binning contributes to overclockability be-

cause within-die process variation causes some cores on a
given CMP to be faster than others. In current practice, the
slowest core dictates the bin for the entire die. While it is
possible to bin each core on the die individually, this may
not be cost-effective. If CMPs continue to be binned ac-
cording to the slowest core, each die will contain many un-
derrated cores.
To get a feel for this effect, using the variation model of

Teodorescu et al. [28] with σ/μ = 9% for the threshold
voltage, we find that the σ/μ of on-die core frequency is
4%. Monte Carlo simulations show that this corresponds to
an average 16% difference in frequency between the fastest
and the slowest cores on a 16-core die. As another example,
Humenay et al. [13] estimate a 17% difference in frequency
between the fastest and slowest core on a 9-core 45nm die.

2.2 Safety Margins

Process and environmental margins for device aging, op-
erating temperature, and supply voltage can also be ex-
ploited for overclocking. For example, device aging due
to Negative Bias Temperature Instability (NBTI) [20] and
Hot Carrier Injection (HCI) [27] causes critical path delays
to increase over the lifetime of the processor — and this
is especially severe in near-future technologies. A typical
high-performance processor’s operational lifetime is seven
to ten years [2]. According to [20], the delay increase due to
NBTI alone over that period is 8% in 70nm technology, and
HCI adds additional slowdown on top of that. Since proces-
sors are guaranteed to operate at the rated frequency for the
entire design lifetime, significant overclockability exists in
fresh processors where aging has not yet run full course.
Processors are typically rated for maximum device junc-

tion temperatures in the 85–100◦C range (e.g., [14]) even
though operating temperatures are often lower. At lower
temperatures, transistors are faster, so overclocking is pos-
sible. For example, consider a chip where the hottest unit
is at 65◦C, about 20◦C below the maximum temperature.
In this case, the analysis in [12] and data from [16] show
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that the safe frequency increases by approximately 5% for
180nm technology.
Finally, while a processor’s off-chip voltage regulator

typically has a tight tolerance, on-chip logic is subject to
sizable local voltage drops. These drops are due to rapid
current changes that cause L dI/dt supply noise and sus-
tained periods of high activity that cause IR drops. Since
these drops are difficult to predict at design time, designers
assume conservative margins to guarantee safe operation.
For example, the IBM POWER4 processor is designed to
provide voltages within ±10% of nominal at all points in
the worst case [32]. The logic must therefore be designed
to operate correctly under a 10% supply voltage droop even
though this is not the common case. This fact can offer
some limited room to overclock the processor.

2.3 Error Tolerance

We can further increase overclocking and push the pro-
cessor into a regime where it will experience occasional
timing errors. This mode is called Timing Speculation (TS),
and has been well studied [8, 29, 31, 33]. Empirical data
demonstrates that error onset is only gradual [8]. This is
because a processor has a variety of path delays, and not all
paths are exercised with a given input. For modest clock
rate increases, only the longest paths fail.
The Razor project fabricated 180nm in-order Alpha mi-

croprocessors and measured the error rates under different
frequencies and voltages. In [6], they show the error rate
versus voltage for two specimens at 120MHz and 140MHz.
If the supply voltage is reduced so that the chip begins to ex-
perience timing errors at 120 MHz (i.e., all safety margins
have been removed), increasing the frequency to 140 MHz
yields less than one error per million instructions. This cor-
responds to a 17% frequency improvement in exchange for
an error rate of 10−6 per instruction, which Paceline can
easily correct.

2.4 Exploiting Overclockability

Exploiting the above factors for overclocking requires
various levels of microarchitecture support. Removing
the Grading Artifacts requires the fewest microarchitec-
ture changes: The manufacturer must speed test each
core individually and populate a one-time-programmable,
architecturally-visible table with the core frequencies. The
OS can then use this table to set operating conditions. We
call this solution Fine Grain Binning (FGB).
At the next level of microarchitecture complexity, Timing

Error Avoidance (TEA) schemes (e.g., [2, 4, 16, 30]) can es-
timate the maximum safe frequency dynamically as the pro-
cessor runs. These techniques either embed additional “ca-
nary” critical paths [30], which have delays slightly longer
than the actual critical paths, or they directly monitor the de-

lay of the existing critical paths [2, 4, 16]. Either way, they
are able to determine when the clock period is too close
to the actual critical path delay. Although in theory TEA
can push the clock frequency arbitrarily close to the zero-
error point, practice requires that some safety margins be
maintained to avoid errors. Consequently, TEA schemes
can remove the Grading Artifacts and some but not all of
the Safety Margins.
With an additional increase in microarchitecture com-

plexity, we can exploit all three factors for overclocking,
including timing speculation, where the processor experi-
ences occasional errors. The required support is an error
detection and correction mechanism. Some examples are
Razor [8], Diva [33], TIMERRTOL [29], and X-Pipe [31].
In practice, all of these schemes require fairly invasive mi-
croarchitectural changes, either by modifying all proces-
sor pipeline latches and the corresponding control logic, or
by adding a specialized checker backend for the processor
core. In the next section, we describe the proposed Pace-
line microarchitecture, which exploits the three factors for
overclocking while requiring minimal modifications to the
processor cores and caches.
Figure 1 compares the factors for overclocking exploited

by each approach. The figure shows only qualitative data
because the factors described above are hard to quantify and
not fully orthogonal. In the remainder of the paper, we con-
sider a range of overclocking factors (10% to 40%) that we
feel could be accessible to Paceline.

FGB

TS

TEA

Grading Artifacts Safety Margins Error
Tolerance

Figure 1. Qualitative comparison of the potential of the
three architectural approaches to exploit overclocking.

3 Paceline Architecture

Paceline is a leader–checker architecture that improves
the performance of a single thread by running it redundantly
on two cores of a CMP. The leader core is clocked at a
frequency higher than nominal, exploiting the three factors
for overclocking described in Section 2. Meanwhile, the
checker core runs at the rated, safe frequency. The leader
prefetches data into the L2 cache that it shares with the
checker, and also passes branch outcomes to the checker.
This improves the checker’s IPC and allows it to keep up
with the accelerated leader. The hardware periodically com-
pares the architectural state of the leader and the checker,
and is able to detect and recover from errors due to over-
clocking or other effects. The result is that the thread exe-
cutes faster than on a single baseline core.
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As it executes, the overclocked leader dissipates higher
power than a baseline core. Meanwhile, the checker, by
leveraging the prefetched data and branch outcomes from
the leader, spends less power than a baseline core. To be
able to sustain higher than baseline speed without overheat-
ing, the two cores periodically alternate the leader position.
The result is that the chip’s power density and maximum
temperature are not expected to increase substantially over
a baseline system. Intuitively, the operation is analogous to
a paceline of two bicycle riders where riders take turns to
lead. The leader expends more effort while sheltering the
other rider.
A Paceline CMP contains multiple of these leader–

checker cores as shown in Figure 2. Each core pair shares
an L2 cache and includes simple hardware to periodically
compare state and to pass branch outcomes. This hardware
requires only very small core modifications and can be eas-
ily disabled, returning the core pair to the standard CMP
working mode.

P3

P1

P2

...

Interconnect

P16

CMP Die

L
1

L
1

L
2

L
2

= Hardware modifications

Figure 2. Paceline CMP with 16 cores.

Overall, Paceline speeds up a single thread (of a serial or
a parallel program) without significantly increasing CMP
power density or hardware design complexity. In the fol-
lowing, we first give an overview of the microarchitecture
and characterize the types of errors it can encounter. Then,
we present two different Paceline variations, each special-
ized for handling different types of errors.

3.1 Overview of the Microarchitecture

In Paceline, the leader and the checker cores operate at
different frequencies, with the checker lagging behind and
receiving branch outcomes and memory prefetches into the
shared L2 from the leader. Figure 3 shows the microarchi-
tecture. The region in the dashed boundary is overclocked,
while everything else runs at the rated, safe frequency.
The shaded components are the new hardware modules

added in Paceline. Specifically, the outcomes of the leader’s
branches are passed to the checker through the Branch
Queue (BQ). Moreover, the hardware in both leader and
checker takes register checkpoints every n instructions and
saves them locally in ECC-protected safe storage. In addi-

tion, the hardware hashes the checkpoints into signatures
and sends them to the ECC-protected Validation Queue
(VQ). As execution continues, the VQ checks for agree-
ment between the hashed register checkpoints of the leader
and the checker. The VQ sits in the cache hierarchy be-
tween the L1 and L2 caches. Since the L1 caches operate
in write-through mode as in the Pentium 4 [24], the VQ can
potentially see all the memory writes in order. Such capa-
bility allows it to provide extra functionality that depends
on the types of errors handled. We will see the details in
Section 3.3.
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Figure 3. The Paceline microarchitecture.

Although the leader and checker cores redundantly exe-
cute the same thread, they do not execute in lock-step. Since
they are out-of-order processors, they execute instructions
in different orders and even execute different instructions
— due to branch misprediction. However, in the absence of
errors, their retirement streams are identical.
Given a dynamic write instruction in a program, the

leader and the checker will issue the store to the L1 at dif-
ferent times, when each retires the write instruction. The
VQ will only allow one of the two stores to propagate to the
L2, possibly after performing some validation.
For reads, however, there is no such filtering. A load is-

sued by the leader that misses in the L1 is immediately sent
to the L2. If and when the checker issues the corresponding
load, it may also send a read request to L2. The advantage
of this approach is that it does not require any read buffer-
ing at all and, therefore, it is easy to support in hardware.
However, it may result in the two loads returning different
values — if the location being read is modified in between
the reads by, for example, a write from another thread, a
DMA action, or a fault. Smolens et al. [25] call this prob-
lem the Input Incoherence Problem. This approach is also
used in Slipstream [22] and Reunion [25].

3.2 Types of Errors

To design Paceline, we consider the three potential
sources of error shown in Table 1: timing errors due to over-
clocking, errors due to the input incoherence problem, and
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soft errors. Table 1 characterizes them based on (1) whether
they re-appear as the code section with the error is rolled
back and re-executed, and (2) what part of the Paceline ar-
chitecture they can affect.

Type of Repeats in Can It Affect...
Error Re-Execution? Leader? Checker?

Timing Yes:
Error Register state
Due to Likely Data read into L1 No
Overclock Data written to L1

Yes:
Input Register state
Incoherence Possibly Data read into L1 No

Data written to L1
Yes: Yes:

Soft Error No Register state Same as
Data written to L1 Leader

Table 1. Types of errors considered.

These errors behave differently. Timing errors are likely
to repeat after rollback because the same critical paths are
likely to be exercised during re-execution. Input incoher-
ence errors may re-occur when other threads repeatedly up-
date the location that the leader and checker are trying to
read [25]. Indeed, one can construct a pathological scenario
where, in each re-execution, a third processor updates the
location between the leader and checker reads. On the other
hand, soft errors do not re-occur.
From the last two columns, we see that both timing and

incoherence errors can affect the same parts of Paceline.
Specifically, they can affect the state in the leader’s regis-
ters, and the state in the leader’s L1 that has been read from
memory or been written by the processor. However, they
cannot affect the checker. On the other hand, soft errors can
affect both the leader and the checker — both the register
state and the data written by the processor into the L1.
A final key difference not shown in the table is that soft

errors are much less frequent that the other two types. For
example, based on data in [28], this paper will estimate in
Section 5 that the expected timing error rate at optimal per-
formance is approximately one per 105 instructions. A sim-
ilar incidence of incoherence errors is shown in the envi-
ronment considered by Reunion [25]. On the other hand,
the soft error rate may be in the range of one per 1015–1020

instructions.

3.3 Detailed Microarchitecture

Based on the previous discussion, we propose two dif-
ferent levels of microarchitecture support for Paceline. The
first one is a simple design that targets only the frequent
types of errors — namely the timing and input incoherence
errors. The second level is a high-reliability design that tar-
gets all three types of errors. We call these designs Simple
and High-Reliability, respectively. They can both be sup-

ported by a single microarchitecture, with some of the fea-
tures being disabled for the Simple design.
There is a key difference between the two designs.

Specifically, since timing and incoherence errors can only
affect the leader, Simple can recover without rollback —
it recovers simply by copying the checker’s state to the
leader’s. On the other hand, since soft errors can affect both
cores, High-Reliability must recover by rolling back. Un-
fortunately, the timing and incoherence errors will likely or
possibly repeat during re-execution. To avoid this, the re-
execution has to be performed under different conditions.
As we will see, this complicates the High-Reliability design
over the Simple one. Overall, these two designs correspond
to different cost-functionality tradeoffs.
In this section, we describe the two designs. In both

cases, the Paceline microarchitecture must provide two
mechanisms: one to periodically compare the state of the
leader and the checker, and another to repair the state of the
leader-checker pair when the comparison mismatches.

3.3.1 The Simple Design

In this design, the checker is assumed to be always correct.
Ensuring that the leader is also correct is a performance is-
sue, not a correctness one. If the leader diverges from cor-
rect execution, it will not help speed up the checker: the
leader will prefetch useless data into the L2 and pass useless
branch outcomes to the checker, whose branch outcomes
will not match the leader’s predictions.
Since correctness is not at stake, the checkpoint signa-

ture can be short — e.g., four bits. The VQ has a Signa-
ture Queue that contains signatures that cores deposit when
they take checkpoints and hash them. The VQ hardware
compares signatures from the two cores corresponding to
the same point in the program. Moreover, writes from the
checker’s L1 are immediately routed to the L2, while those
coming from the leader’s L1 are discarded. If the leader
and checker checkpoints are different but hash into the same
signature due to aliasing, correctness does not suffer. More-
over, since the divergence is likely to be detected in sub-
sequent signature comparisons, the leader will not continue
on a wrong path for long.
When a mismatch is detected, we know that a timing or

incoherence error has happened and that its effect is con-
fined to the leader’s processor and L1 cache. At this point,
the VQ state is invalidated and we need to repair the register
and L1 cache states of the leader. To repair the register state,
the checker’s checkpoint is copied to the leader’s registers,
effectively rolling the leader forward past the error. To re-
pair the L1 state, we have two options. The simplest is to
invalidate the leader’s L1 contents. As execution resumes,
the leader will re-fetch the correct data from the L2 on de-
mand. This approach does not involve a large performance
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overhead because all the lines invalidated from the L1 are
in the L2.
A more advanced option is to have the VQ record the

read miss and write addresses emanating from the leader
L1 during each checkpoint interval and to selectively inval-
idate only those lines when a signature mismatches. This
approach is not guaranteed to repair the L1 state, so an in-
coherence may resurface in future signature comparisons.
If a certain number of signature comparisons in a row are
found to mismatch, Paceline reverts to flushing the leader’s
L1, which eliminates all the lingering incoherence.

3.3.2 The High-Reliability Design

In this design, the leader or the checker may suffer an er-
ror. We need to make sure that any divergence between the
leader and the checker states is detected. Missing a diver-
gence leads to a correctness problem, since erroneous data
can then propagate to the L2.
Paceline compares the register and L1 state of leader and

checker. The register state is checked by comparing the
checkpoint signatures of the cores, which are stored in the
VQ’s Signature Queue. In the High-Reliability design, the
signature has more bits (e.g., sixteen) than in the Simple de-
sign in order to minimize aliasing. In addition, the L1 state
is checked by buffering the leader writes in an in-order cir-
cularWrite Queue in the VQ. Each Write Queue entry con-
tains the address and data of a leader write, together with a
Validated bit. When a checker write arrives, the hardware
compares its address and data to the next non-validated en-
try in the Write Queue and, if they match, the Validated bit
for the entry is set. Note that writes issued by each core ar-
rive at the VQ in program order. For a checkpoint interval
to check successfully, the leader and checker register signa-
tures at the end of the interval must match, and the VQ must
have successfully validated all writes in the interval. When
this is the case, the Validated writes are removed from the
VQ and released to the L2 cache.
If, instead, the signatures mismatch or the writes are not

all validated, Paceline rolls the checkpoint interval back and
re-executes it. Rolling back the interval involves invalidat-
ing the VQ’s state, restoring the register state of the last
successfully-compared checkpoint in both cores, and repair-
ing the L1 state in both cores. To repair the L1 state, there
are two alternatives. The simplest is to invalidate both L1
caches as in Simple. In this case, as the leader and checker
re-execute, they will naturally re-populate their L1 caches
with lines from the L2. A more advanced alternative is to
re-fetch only those lines accessed during the failing check-
point interval (i.e., those which could have contributed to
the failure). This can be done by operating the two L1
caches in a special mode during the re-execution that ex-
plicitly forces all accesses to miss and re-fetch from the L2.

At the next successful checkpoint comparison, re-execution
is complete, and the L1s may return to normal mode.
Regardless of which L1 cleanup method is chosen, the

VQ operation during re-execution is no different than its
normal-mode operation; it buffers leader writes and sends
load requests to the L2 as usual. However, some ad-
ditional precautions are needed to handle timing errors
and persistent input incoherence errors. Specifically, re-
call from Table 1 that a timing error will reappear in a
normal re-execution. To avoid this, in a re-execution,
the leader is clocked at a lower, safe frequency until the
next checkpoint. We envision the high-frequency clock
and the safe-frequency clock to be always available to the
leader. When the leader enters re-execution mode, the high-
frequency clock is disconnected from the leader and the
safe-frequency one is fed to it.
A persistent input incoherence error is one that repeat-

edly occurs every time that the interval is re-executed [25].
Since this event is expected to be rare, the High-Reliability
design uses a simple approach to handle it. Specifically,
when the hardware detects that an interval has been re-
executed more than a few times in a row, an interrupt is
sent to the other cores to stall them until the local core pair
successfully proceeds past the next checkpoint.
Overall, we see that the increased fault coverage of the

High-Reliability design comes at a hardware cost relative to
the Simple design.

3.4 Additional Issues

3.4.1 Special Accesses

There are a few types of memory accesses, including atomic
Read-Modify-Write (RMW) operations such as atomic in-
crement, and non-idempotent reads such as I/O reads, that
require special support in a paired architecture such as
Paceline. These accesses are called serializing operations
in [25]. In this section, we briefly describe the basic sup-
port required.
At the simplest level, serializing operations can be im-

plemented by checkpointing the leader before issuing the
operation and then stalling the leader until the checker
reaches the same point. Once this happens, the checker also
checkpoints. Then, the checkpoint interval is validated, by
comparing the checkpoint signatures and, in the High Re-
liability design, also comparing all the writes in the inter-
val. After that, both cores issue the serializing operation,
which is merged in the VQ and issued as a single access to
memory. Let us call r the data that this operation returns,
such as the data read in the RMW operation or in the non-
idempotent read. The value r is provided to both cores and
also temporarily buffered in the VQ. After that, both cores
take a new checkpoint and the checkpoint interval is vali-
dated. In case of a match, the cores continue.
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If, instead, a mismatch occurs, an error has happened
since the previous checkpoint — for example a soft error
has affected one of the register files. In this case, the hard-
ware uses the same recovery procedures as before except
that the serializing operation cannot be redone. Instead, the
buffered r value is provided to the processors.
As a simple performance optimization in the case of

atomic RMW operations, the leader can issue an exclusive
prefetch for the RMW variable into the L2 before stalling
to wait for the checker. With this support, by the time the
leader and checker together issue the RMW operation, the
data is likely to be in the desired state in the L2. Note
that this optimization cannot be applied for non-idempotent
reads.
It is possible to design higher performance implemen-

tations where leader and checker do not need to wait for
one another. For example, in an RMW operation, the leader
could issue the read and buffer the write in the VQ, rather
than waiting for the checker. The checker will later perform
its RMW operation and, if both operations agree, a single
operation is made visible to the memory. Otherwise, the
recovery procedure is followed. Since this paper’s evalua-
tion focuses on compute-intensive sequential applications,
we do not discuss these issues in depth, and leave them for
future work.

3.4.2 Interrupts and Exceptions

Delaying interrupt delivery is correct and allowable as long
as the delay is bounded. When an interrupt arrives, Pace-
line must find some point in the future when the leader and
checker have identical architectural state and then deliver
the interrupt simultaneously to both. Checkpoint bound-
aries provide ideal points at which to deliver interrupts.
Consequently, when an interrupt signal arrives at the pro-
cessor pair, it goes first to the VQ. The VQ marks a pending
interrupt bit and waits until the next checkpoint is released.
It then initiates a rollback to the just-released checkpoint
and asserts the interrupt line on both cores before restarting
them. Both cores then wake up in the same architectural
state and see the interrupt simultaneously. The VQ remem-
bers the interrupt that was just delivered so that it can re-
deliver the same interrupt in the event of a future rollback
recovery.
We assume that synchronous, program-initiated excep-

tions have precise state semantics in the processor, as is the
case in most current designs. Intuitively, an instruction with
an exception of this type behaves like a conditional jump
with the additional effect of setting one or more status regis-
ters. This does not demand any special handling from Pace-
line; exceptions are handled just as any other instruction.
Barring an error, the exception code will execute identically
in both cores just as all other instructions do. In the case

of an error causing the execution of the exception code in
one core only, the next checkpoint comparison will fail and
initiate recovery.

4 Performance Analysis

In order to enjoy speedup under Paceline, an application
must have two properties: (i) overclocking the leader must
increase its performance; and (ii) the improved behavior of
the branch predictor and cache subsystems in the checker
must increase its IPC. A program that is totally memory-
bound or limited by the L2 cache latency will not satisfy (i),
while a program that fits completely within the L2 cache
and already achieves high branch prediction accuracy with-
out Paceline will not meet requirement (ii).
Here we present a fairly accurate method of using a stan-

dard (not Paceline-enabled) microarchitecture simulator to
estimate the Paceline speedup for a given overclocking fac-
tor and application. To get the required data, we instrument
the simulator to output an IPC trace that records the average
IPC for each chunk of ten thousand dynamic instructions.
We then run the application on the simulator under two con-
figurations. The first represents an overclocked leader with
a perfect (infinite performance) checker, while the second
represents a checker in the presence of a perfect (infinite
performance) leader.
To obtain these leader and checker configurations, we

start with the baseline core configuration. The leader con-
figuration differs from the baseline only in being over-
clocked, so that the latencies of all memory components
beyond the L1 cache increase by the overclocking fac-
tor. The checker configuration differs from the baseline
only in having a perfect branch predictor and a perfect L2
cache (thanks to the BQ and prefetching effects). Running
the simulator with each configuration produces IPC traces.
From these, we obtain performance traces by multiplying
the entries in the leader IPC trace by the leader frequency
and those of the checker trace by the checker frequency.
Finally, we normalize these numbers to the performance
of a baseline core. The two resulting speedup traces give
the leader’s speedup (Li) and the checker’s speedup (Ci)
relative to a baseline core during the ith dynamic instruc-
tion chunk. For example, the leftmost two columns of Fig-
ure 4(a) show the Li and Ci traces for the SPECint applica-
tion parser. The overclocking factor used for the leader
is 1.3.
We can use Li and Ci to estimate the speedup of Pace-

line by observing that, at any given time, the slowest of
the leader and checker cores determines the overall speed.
Since the chunk size that we have chosen (10K instructions)
is significantly larger than the typical lag between leader
and checker (< 1000 cycles), both leader and checker
will typically be executing the same chunk. Consequently,
Pi = min(Li, Ci), shown in the next column of Figure 4,
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Figure 4. Speedup traces for parser (first row) and ammp (second row) with a leader overclocking factor of 1.3.

is a good estimate of the instantaneous speedup under Pace-
line. The speedup Sj over the interval from program start to
chunk j is then given by the harmonic mean of all Pi in the
interval as shown in Equation 1. Referring to the last col-
umn of Figure 4, we see how Sj evolves as the application
executes.

Sj =
j

∑j
i=1

1
Pi

(1)

For an example of an application on which Paceline per-
forms well, see parser in Figure 4(a). Here, the Li

speedup trace is consistently near the maximum possible
value of 1.3 because the leader experiences few L1 cache
misses, so almost all of the execution takes place inside of
the overclocked domain. The Ci speedup in the checker
from perfect branch and cache subsystems is high most of
the time, allowing the checker to keep up with the leader
most of the time. Consequently, the speedup converges to
1.25 with an overclocking factor of 1.3.

In contrast, ammp in Figure 4(b) does not show much
potential for speedup. Early in the execution, the appli-
cation has good cache and branch behavior in a baseline
processor and, therefore, the Ci speedups are often modest.
The result is that the checker limits the Paceline speedup.
Later, the application enters a memory-bound phase, in
which Li speedups are low, and the leader limits the Pace-
line speedup.

We have predicted the Paceline speedups for our appli-
cations using this model. Table 2 compares the predicted
speedups for the SPECint applications to speedups mea-
sured on the cycle-accurate Paceline-enabled simulator of
Section 5. Given the strong agreement between the two sets
of numbers, we believe that our trace-based model provides
an attractive alternative to custom simulator implementation
when evaluating Paceline.

Appl. Estimated Actual Appl. Estimated Actual

bzip2 22% 21% mcf 6% 9%
crafty 26% 24% parser 25% 24%
gap 22% 21% twolf 29% 29%
gcc 28% 27% vortex 16% 12%
gzip 15% 17% vpr 29% 29%

Table 2. Estimated versus measured Paceline speedups.

5 Simulation-Based Evaluation

This section uses a modified version of the cycle-
accurate WATTCH-enabled [5] SESC [1] simulator to eval-
uate the performance and power impact of Paceline. Table 3
summarizes the architecture configuration used in all exper-
iments. The cores are chosen to be representative of current
and near-future high-performance microarchitectures like
the Intel Core 2. Each core has aggressive per-core clock
gating to reduce dynamic power consumption. The bottom
of the table shows the default parameters for the Paceline
features, not present in the baseline architecture.

General 16 OoO cores, 32nm, 5 GHz
Core width 6 fetch, 4 issue, 4 retire
ROB size 152
Scheduler size 40 fp, 80 int
LSQ size 54 LD, 46 ST
Branch pred 80Kb local/global tournament,

unbounded RAS
L1 I cache 16KB, 2 cyc, 2 port, 2 way
L1 D cache 16KB WT, 2 cyc, 2 port, 4 way
L2 cache 2MB WB, 10 cyc, 1 port, 8 way,

shared by two cores, has stride prefetcher
Cache line size 64 bytes
Memory 400 cyc round trip, 10GB/s max
Design evaluated High-Reliability
VQ write queue 64 entries, 2 ports per core, 8 cyc
Checkpoint interval 100 instructions
Thermal managmt Swap leader and checker every 200μs

Table 3. Architecture parameters.
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We evaluate performance and power consumption using
SPECint and SPECfp applications. Unless otherwise noted,
the experiments assume the High-Reliability design with a
leader overclocking factor of 1.3 and an error rate of zero.

5.1 Performance

For a given application and in the absence of errors,
Paceline performance relative to a single baseline core in-
creases monotonically toward an asymptote as the leader
overclocking factor grows. Figure 5 shows the result-
ing geometric mean speedups of Paceline for SPECfp and
SPECint applications with and without the BQ. The figure
shows that the SPECint applications require the BQ to ob-
tain any performance improvement. In fact, it can be shown
that only gap and mcf achieve any speedup at all without a
BQ; at an overclocking factor of 1.3, they reach speedups
of 1.03 and 1.07, respectively. The remaining SPECint
applications experience small (1–2%) slowdowns with all
overclocking factors. The reason is that almost all of the
SPECint working sets fit within the L2 cache. When there
are few L2 misses, there can be no prefetching benefit. Con-
sequently, the leader only wastes valuable L2 bandwidth.
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Figure 5. Paceline speedup versus leader overclocking
factor in the absence of errors.

On the other hand, with a BQ, the SPECint applications
experience large speedups. In this situation, their low L2
miss rates are an advantage, since the leader is able to do
useful work when overclocked rather than stalling for main
memory accesses. Moreover, in these applications, the dy-
namic branch count is relatively high and the branch predic-
tion accuracy relatively low, meaning that the branch infor-
mation can vastly increase the checker IPC (sometimes by
a factor of two or more) — as was shown in the parser
example of Figure 4.
In contrast, the SPECfp applications present behavior

that is difficult for Paceline to exploit, whether a BQ is
present or not. Most of the time, one of the following two
conditions prevails: Either the program is memory-bound
so that overclocking the leader has little effect, or the pro-
gram is hitting the L2 cache and generating good branch

predictions so that branch and cache hints do not help the
checker keep up with the leader. This was the behavior seen
from ammp in Figure 4.
Figure 6 shows the speedups for the individual appli-

cations with BQ as the leader overclocking factor (oc)
varies from 1.1 to 1.4 in increments of 0.1. The figure
also includes bars for the geometric mean of the integer
and floating-point applications. The figure clearly shows
that the benefits of Paceline are application-dependent, with
speedups for the oc-1.3 case ranging from 1.02 (equake)
to 1.29 (vpr). Moreover, while some applications (e.g.,
vortex) top out at modest overclocking factors, others
could benefit from factors in excess of 1.4.
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Figure 6. Application speedups with overclocking factors
(oc) in the 1.1–1.4 range.

5.2 Dynamic Power

We compare the dynamic power consumed by a Paceline
pair to that consumed by two baseline CMP cores sharing
an L2 and independently executing the same program. Fig-
ure 7 shows the absolute dynamic power consumption for a
pair of cores under five different configurations. The left-
most bar (B) represents the baseline case of two cores in-
dependently executing the same application. Moving to the
right, the four P bars represent a Paceline system running
with an overclocking factor of 1.1, 1.2, 1.3, and 1.4, respec-
tively. The four segments within each bar show the power
consumed in the leader core (ldr), checker core (ckr), and
L2 cache (L2). The Paceline systems also include a paceline
segment, indicating the power expended in the added struc-
tures (BQ, VQ, and checkpoint generation and hash logic).
The core (ldr and ckr) powers include the L1 instruction and
data cache access power. Off-chip power is not considered.
The total power of a Paceline system is usually approx-

imately equal to that of a baseline core pair. Due to its
improved branch prediction, the checker fetches and exe-
cutes far fewer instructions in the Paceline system than it
would in the base system. This is consistent with results
from other work [19], which indicate that for the SPECint
applications, perfect branch prediction reduces the number
of fetched instructions by 53% on average. Using this infor-
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Figure 7. Dynamic power breakdown in Paceline (P) and
two base cores sharing an L2 (B).

mation, we can obtain an intuitive feel for the relationship
between baseline and Paceline power.
Consider gzip, which attains a speedup S1.3 = 1.17

with an overclocking factor of 1.3. Our simulations show
that the checker fetches 51% fewer instructions than a base-
line processor and executes 34% fewer. WATTCH shows
that in total, it consumes 47% less energy than the baseline
core. The leader core, meanwhile, is executing approxi-
mately the same number of total instructions as the base-
line core. However, the number of wrong-path instructions
increases slightly because the longer relative memory ac-
cess time leads to slower branch resolution. Additionally,
the lower IPC of the leader reduces its energy efficiency, as
parts of the chip (especially the clock network) remain ac-
tive even on idle cycles. The net result is that the leader
consumes 4% more energy than the baseline core.
Given the preceding, we can easily compute the total

dynamic core power for gzip under Paceline. When the
application runs on the baseline core, let EB be the dy-
namic energy consumed and TB the time taken. According
to the above, the energy of the checker is EC = 0.53 EB ,
and the energy of the leader is EL = 1.04 EB . However,
due to the Paceline speedup, the leader and checker en-
ergies are dissipated over a shorter interval than the base-
line execution. The total core power under Paceline is then
(EL + EC) S1.3/TB ≈ 1.84 PB , where PB is the power of
a baseline core. In this case, the total core dynamic power
is less than that of two baseline cores executing the same
application.

5.3 Power Density

Although total dynamic power may not increase under
Paceline, the leading core power clearly does (by 22%
in the case of gzip). This thermal imbalance is a con-
cern because it could worsen hot spots that erode over-
clockability and reduce device lifetime. Fortunately, pre-
vious work [11, 21] has shown that activity migration can
avoid these problems by periodically switching the core
on which the hot thread runs. According to [11], swap-

ping cores every 200μs is sufficient to equalize the leader
and checker core temperatures and minimize hotspot forma-
tion. In Paceline, core swapping allows both the leader and
checker core temperatures to roughly equal the temperature
of a baseline core. This is because each core is dissipating
approximately the same dynamic power as a baseline core
on average, and the package’s thermal RC network has an
averaging effect on temperature. Since static power is de-
pendent only on temperature, chip static power also does
not change after applying Paceline.
Swapping the leader and checker is trivial in Paceline,

and it has negligible effect on performance even if swaps
are performed every 1M instructions. To see why, consider
the simplest swapping mechanism: A swap starts with both
cores rolling back to the most recent checkpoint as though
an error had just been detected. Then, a mode bit change in
the VQ and in the BQ effectively switches the identities of
the two cores. Finally, switching the leader and core clock
frequencies completes the swap. In this simple scheme,
both cores begin with an empty L1 after the swap, but they
repopulate it quickly from the shared L2 [18, 21].

5.4 Sensitivity to Errors

Until now, we have assumed a zero error rate. In this
section, we make some assumptions and use data and trends
from [28] to model timing errors; then, we estimate the re-
sulting Paceline speedups. To model the rate of timing er-
rors, we assume that the onset of timing errors occurs at
an overclocking factor of 1.3, where we set the error rate
to one per 1012 cycles. The data in [28] shows that a 9%
frequency increase pushes the error rate from one per 1012

to one per 104 instructions. It also shows that the increase
is approximately exponential. Consequently, using this in-
formation, we set the error rate at an overclocking factor
of 1.3 × 1.09 ≈ 1.42 to be one per 104 cycles, and use a
straight line in a logarithmic axis to join the 10−12 and 10−4

error rate points. The resulting error rate line is shown in
Figure 8.
To estimate the impact of these errors on Paceline

speedups, we test three different recovery penalties. These
penalties are modeled as a number of cycles that we force
the checker to stall after every timing error. The recovery
penalties modeled are 100, 1K, or 10K cycles. As a ref-
erence, we have measured in the simulator that a recovery
where we roll back the Paceline cores to the last match-
ing checkpoint and flush the L1 caches of both leader and
checker, would correspond to approximately stalling the
checker for ≈ 900 cycles due to the additional L1 misses
in the checker after the restart.
Figure 8 shows the resulting Paceline speedups over the

baseline processor for each of the three penalties. The
speedups correspond to the geometric mean of the SPECint
applications. From the figure, we see that at low overclock-
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speedup in SPECint applications as the overclocking factor
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ing factors, the speedups are roughly proportional to the fac-
tors. However, the exponential increase in error rates causes
the linear region to give way to a “cliff” where speedup
plummets if the overclocking factor is pushed even 1–2%
past the optimal point. We need, therefore, to be careful not
to increase overclocking past the optimal point.
The figure also demonstrates that the peak Paceline

speedup is only weakly dependent on the recovery penalty
— the topmost point of the curves is similar across different
recovery penalties. Consequently, we conclude that opti-
mizing recovery time need not be a design priority.

5.5 Implementation Feasibility

Minimizing changes to the processor cores and the cache
coherence system has been a key goal for Paceline, and
we believe that the resulting microarchitecture can integrate
easily in a commercial CMP. Note that the VQ, the principal
Paceline structure, falls outside the core boundary and occu-
pies the relatively non-critical path between the L1 and L2
caches. Moreover, cache coherence, which happens at the
L2 level, is completely oblivious to Paceline. Although the
core itself does require some modifications (shown shaded
in Figure 3), they affect only the fetch and retirement stages.
The renaming, scheduling, and execution logic of the core
is completely unaffected. Even some of the hardware billed
to Paceline may in fact already be present in the baseline
system: several proposals for future core features (e.g.,
thread-level speculation and transactional memory) rely on
the ability to perform frequent register checkpoints, using
hardware like the register checkpoint box in Figure 3.
Perhaps the most demanding feature of Paceline in terms

of implementation and verification effort is the requirement
that, at a given time, different cores be able to run at differ-
ent frequencies. Adding clock domains to a design com-
plicates verification, so currently available CMP designs
run all cores at the same frequency. However, pressure to
improve power efficiency is already forcing chip makers

to implement per-core frequency scaling. The upcoming
Barcelona microarchitecture from AMD, for example, sup-
ports it [7].

6 Related Work

Better than Worst-Case Design: The Razor project [6, 8]
examined a simple Alpha pipeline and found substantial
voltage safety margins. Other recent work has shown that
device aging [20, 27] and process variation [13, 28] dictate
large safety margins as technology scales to 32nm and be-
low. A large volume of prior work has focused on removing
these margins to improve performance or reduce power. For
example, CTV [23] and TIMERRTOL [29] showed how to
design logic with dual-phase clocking that is capable of de-
tecting and tolerating timing faults. Alternative proposals
such as TEAtime [30] and [2, 4, 16] avoid timing faults al-
together by dynamically monitoring path delays. Finally,
the Razor [6, 8] and X-Pipe [31] projects showed how to
apply timing error tolerance in microprocessor designs.
Core-Pairing Architectures: Paceline improves single-
thread performance and, with its High-Reliability design,
also provides fault tolerance to soft errors. There are several
proposed architectures that couple two cores in the same
CMP to either improve single-thread performance or to pro-
vide fault tolerance to soft errors.
Core-pairing for single-thread performance includes

Slipstream, Dual-Core Execution, and Future Execution.
In Slipstream [22, 26], one core speculatively skips pre-
dictable instructions from the application, while passing as
hints all data values and branch outcomes to the other core.
In Dual-Core Execution [34], one core fetches and executes
instructions, without stalling for long-latency cache misses,
passing the stream of dynamic intructions to the other core
and also prefetching data for it. In Future Execution [9],
one core performs value prediction to execute future non-
control instructions, prefetching data that will be needed by
the other core. Paceline differs from these designs in that it
provides single-thread performance through overclocking,
and in that it also provides fault tolerance to soft errors.
Core-pairing for soft-error tolerance includes several de-

signs. For example, in CRTR [10], one core provides
branch outcomes, load values and register results to the
other core, so that the latter can detect and recover from
faults. Madan and Balasubramonian [17] show how, by
running the checker core at a lower frequency than the
leader, they can provide energy savings. However, they do
not suggest leader overclocking. Reunion [25] provides a
loosely-coupled, single-frequency core-pair microarchitec-
ture. Paceline differs from these designs in its focus on im-
proving single-thread performance.
Paceline and Reunion have relatively similar microarchi-

tectures. However, they make different design tradeoffs.
First, to validate the correctness of instructions, the Reunion
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hardware checks the instructions’ results before the instruc-
tions retire from the ROB, while in Paceline, the hardware
checks the write streams after the L1 — making the hard-
ware modifications in Paceline less intrusive. Second, the
intervals between validations are shorter in Reunion (one
instruction long for the data in [25]) than in Paceline (100
instructions between checkpoints). Finally, the lag between
cores is smaller in Reunion than in Paceline.

7 Conclusion

We have shown that there is a substantial potential for
overclocking in near-future CMPs. The Paceline microar-
chitecture provides a safe means of exploiting this over-
clockability to improve the performance of a thread (of a se-
rial or a parallel application) without significantly increas-
ing (i) CMP power density or (ii) hardware design com-
plexity. With an overclocking factor of 1.3, we estimate
that Paceline improves SPECint and SPECfp performance
by a geometric mean of 21% and 9%, respectively. At the
same time, the High-Reliability design provides tolerance
to transient faults such as soft errors.
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