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A B S T R A C T

Deep brain stimulation (DBS) is a neurosurgical intervention where electrodes are permanently implanted into
the brain in order to modulate pathologic neural activity. The post-operative reconstruction of the DBS elec-
trodes is important for an efficient stimulation parameter tuning. A major limitation of existing approaches for
electrode reconstruction from post-operative imaging that prevents the clinical routine use is that they are
manual or semi-automatic, and thus both time-consuming and subjective. Moreover, the existing methods rely
on a simplified model of a straight line electrode trajectory, rather than the more realistic curved trajectory. The
main contribution of this paper is that for the first time we present a highly accurate and fully automated method
for electrode reconstruction that considers curved trajectories. The robustness of our proposed method is de-
monstrated using a multi-center clinical dataset consisting of N=44 electrodes. In all cases the electrode tra-
jectories were successfully identified and reconstructed. In addition, the accuracy is demonstrated quantitatively
using a high-accuracy phantom with known ground truth. In the phantom experiment, the method could detect
individual electrode contacts with high accuracy and the trajectory reconstruction reached an error level below
100 μm (0.046± 0.025 mm). An implementation of the method is made publicly available such that it can
directly be used by researchers or clinicians. This constitutes an important step towards future integration of lead
reconstruction into standard clinical care.

1. Introduction

Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is an
effective and widely-implemented treatment option for patients with
advanced stage Parkinson's Disease (Deuschl et al., 2006b; Schuepbach
et al., 2013). Treatment outcome is directly related to precise electrode
placement within the STN (Wodarg et al., 2012; Welter et al., 2014). In
addition, both short- and long-term neuropsychiatric side effects have
been linked to sub-optimal electrode placement and unwanted spread
of stimulation to neighboring structures (Castrioto et al., 2014; Witt
et al., 2013). DBS is a long-established and effective treatment for re-
lated movement disorders such as Dystonia (Vidailhet et al., 2005) and
Essential Tremor (Hubble et al., 1996; Schuurman et al., 2000). More
recently it has been explored as a treatment option for a number of
neuropsychiatric disorders such as OCD and severe depression (Hariz
et al., 2013).

After DBS surgery and electrode fixation, clinicians will attempt to
optimize treatment effects by altering stimulation parameters and

consequently the electrical field generated (McIntyre et al., 2004). This
optimization process relies on time-consuming and, for the patients,
tiring clinical testing of individual electrode contacts to establish
thresholds for treatment benefit and stimulation-induced side effects
(Deuschl et al., 2006a; Krack et al., 2002; Volkmann et al., 2002). In-
formation on final electrode position in relation to the target structures
is routinely acquired as part of standard clinical protocols using pre-
operative MRI and post-operative CT or MRI. However, despite the
availability of these pre- and post-operative measures, they are rarely
considered in combination. Combining these could be used to system-
atically inform post-operative stimulation programming (see for ex-
ample, Paek et al., 2011). This would require tools that are clinically
accessible to analyze precise electrode localization with patient-specific
anatomy.

Previous studies have demonstrated that electrode artifacts seen in
post-operative CT scans can in principle be used to accurately localize
the electrode contact zone. This has been shown in both phantom
(Hemm et al., 2009) and clinical data (Hebb and Miller, 2010; Hebb
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and Poliakov, 2009). Several studies examining the impact of intra-
operative brain shift have introduced lead extraction algorithms to fa-
cilitate automated reconstruction of electrode trajectories (Lalys et al.,
2014; Chen et al., 2014; Husch et al., 2015) or estimation of contact
coordinates using CT scans (D’Haese et al., 2010). Another study (Hebb
and Miller, 2010) demonstrated that algorithm-driven estimation pro-
vided more reliable electrode contact localization than manual expert
(surgeon) estimation.

1.1. Motivation

Recently, several toolboxes have been described to facilitate DBS
lead localization (DBSmapping (da Silva et al., 2015), PyDBS (D’Albis
et al., 2015), DBSproc (Lauro et al., 2016), LeadDBS (Horn and Kühn,
2015)). Only DBSproc and LeadDBS are currently publicly available.
While both provide researchers with a range of supplementary tools for
image registration, stimulation modeling, structural connectivity-ana-
lysis and more, they also require a high level of technical expertise to
setup and use. Both require image registration steps to align post-op-
erative electrode imaging with other modalities. This limits their broad
implementation and potential clinical use.

The MATLAB™-based LeadDBS is arguably the most established
toolbox providing a semi-automatic framework for electrode localiza-
tion based on automatic pre-processing and a manual refinement step.
LeadDBS is employing a pure linear trajectory model, which is well
suited to model the contact region of an electrode, but unavoidably
induces large off-trajectory errors for the proximal electrode parts. The
linear model is not suited for analysis of electrode bending, which
might be interesting for further improvement of neurosurgical proce-
dures with respect to brain shift. No quantitative accuracy analysis is
available with any tool.

1.2. PaCER

The aim of this work was to introduce a fully automatic algorithm
addressing the drawbacks of currently available software. Thus the
focus was to accurately reconstruct the full electrode trajectory (in-
cluding potential non-linear bending) as well as single contact positions
from post-operative CT scans. Key aims were robustness and convenient
application using standard clinical CT scans without a need for manual
intervention. The system should be fully self-contained and require no
secondary co-registered imaging modalities or atlases. However, the
results of the electrode reconstruction should be easy to integrate with
such modalities, enabling visualization with atlas structures as well as
with segmentations of a patient's individual brain structures. To facil-
itate further analysis, an easy integration with existing toolboxes should
be a focus point.

Given these goals, the method is referred to as Precise and Convenient

Electrode Reconstruction for Deep Brain Stimulation (PaCER) throughout
this paper. A MATLAB based reference implementation of PaCER is
provided as free download. For standalone use, the reference im-
plementation includes essential visualization aids (multi-planar image
view, segmentation and atlas structure visualization) and a simplified
volume of tissue activated model. The reconstruction results outputted
by PaCER are implemented using object orientated programming. The
electrode objects encapsulate appropriate visualization methods, ac-
cordingly, PaCER results could be immediately and easily integrated in
any MATLAB based software. The method is evaluated on clinical da-
tasets from two different DBS centers. This evaluation uses three dif-
ferent electrode types from two vendors. Accuracy is quantitatively
validated using a high-accuracy 3D phantom with electrodes implanted
at precisely known locations.

2. Methods

Fig. 1 provides an overview of PaCER's workflow. It is organized

into tasks that follow a repetitive scheme of three model fitting itera-
tions.

2.1. Pre-processing pipeline

The first step of the workflow is the application of an automatic
image pre-processing stage. In summary, this pre-processing is based on
detecting metal components within the image dataset. All operations
are constrained to the brain area using a brain mask derived directly
from the CT data. To yield robust results, the brain mask is relaxed to a
convex hull of the brain, which is sufficient for the intended task of
restricting the search area. Thus, the algorithm is self contained and can
operate on individual CT datasets, requiring no other co-registered
image modalities. The output of this pre-processing is a point cloud that
models the center-line of each lead within the image. In this initial stage
the lead skeletons are determined following an axial slice processing
flow. Additionally, location and intensity values of the neighborhood
voxels of the center-line can be extracted. A more detailed description
of the pre-processing pipeline can be found in Husch et al. (2015).

2.2. 1st pass model fitting

A parameterized polynomial is fitted to skeleton points of leads
detected in the pre-processing stage. The concept of polynomial fitting
is similar to the algorithm presented in Lalys et al. (2014). The result is
a parameterized polynomial electrode model

→F F:[0, 1] where is a polynomial.3
� (1)

This electrode model is referred to as first pass model, as it serves as
an initial estimate for the subsequent processing steps. The polynomial
F is efficiently represented by its coefficient matrix.

2.3. Enabling precise length measurements

By representing the electrode trajectory as a parameterized poly-
nomial it enables a precise analytic treatment and allows exact length
measurements along the trajectory. The arc length, i.e. the length (in
millimeters, as the world coordinate system is defined in millimeters)
travelled along the curve between two parameter points a and b is given
as a mapping arclengthF : [0,1]×[0,1] →ℝ with

∫= ′a b F τ dτarclength ( , ) ( ) ,F a

b

2 (2)

where F′ : [0,1] →ℝ
3 is the derivative of the model polynomial F. The

inverse of this integral, i.e. finding the integration bound b for a given
arc length l is difficult to compute in the general case potentially in-
volving polynomials F of very high order. However, as arclengthF is
always monotonic in b for a given a, |l −arclengthF(a,b)| is quasi-
convex and features a single minimum. Thus b can reliably be computed
by finding arg minb|l −arclengthF(a,b)| using numerical methods with
arbitrary precision and very low computational cost. Consequently

→−arclength : [0, 1]
F

1 3
� is defined as

= −− l l barclength ( ) arg min | arclength (0, )|
F

b
F

1

(3)

for the inverse arc length measured from the origin. Eq. (3) enables the
convenient re-parameterization of any polynomial model F in the sense
of FR : ℝ →ℝ

3 where

= −F l F l( ) (arclength ( )).R F
1

(4)

2.4. Optimal oblique re-sampling and 2nd pass model fitting

Using the previously determined first pass polynomial and the re-
parameterization with respect to arc length FR, the lead neighborhood
can be reassessed using oblique slices re-sampled perpendicular to the
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local electrode trajectory. This procedure is referred to as optimal ob-

lique re-sampling (OOR), as it defines oblique slices optimally tilted with
respect to the initial trajectory guess. By using OOR an even higher
precision can be achieved for trajectory center-line reconstruction. In
addition, it facilitates detailed analysis of signal intensities at each lo-
cation along the electrode path, enabling automatic contact localiza-
tion. A 2D-sketch1 of the concept is shown in Fig. 2. The re-sampling
could technically be carried out using arbitrary slice thicknesses, but
given common electrode geometries an in plane resolution of 0.1 mm
and a slice thickness of 0.025 mm was chosen for the reference im-
plementation. Data generated by OOR re-sampling of a Medtronic 3387
electrode from a clinical dataset is shown using three planes in Fig. 3.
The contact region of the quadripolar electrode shows four clearly
distinct areas in the OOR data, reflecting the contact regions.

Finally, the parameterized polynomial is refitted to the re-sampled
data, establishing the 2nd pass model. The center-line pointcloud of the
OOR data is detected using the intensity weighted mean position of the

artifact in each slice as skeleton point, i.e. =
∑

∑
p

Pv

v
where ⊂P 3

� is the

set of in plane points and ⊂v � the corresponding set of intensity va-
lues. The accuracy of the lead skeleton is expected to be below the voxel
size as partial volume effects are taken into account by the intensity
weighting. The efficacy of applying the intensity weighted mean for
sub-voxel accuracy detection of symmetrical structures in CT data was
previously demonstrated (Grunert et al., 1999). This result was found
applicable to any type of electrode featuring a symmetric contact re-
gion, including those with segmented contacts arranged symmetrically
(e.g. Boston Scientific Vercise Directional Lead). However, for these
electrodes the challenge remains of accurately identifying the rotation
of individual segments.

2.5. 1D intensity profiles and contact detection

An intensity profile of the electrode trajectory is generated by in-
tegrating the intensity values in the individual OOR planes in the form
of a projection of the plane values to a scalar quantity.

Fig. 4 shows an example of intensity profiles for a Medtronic 3387
electrode comparing different operators to project the OOR data to 1D
(average, median, median after threshold).

The transformation of the 3D trajectory into the 1D intensity profile
allows a straightforward and precise discrimination of contact loca-
tions. Furthermore, this provides very good signal-to-noise-ratio (SNR)
due to the projection of information which leads to a noise cancellation.
A mapping between points on the 1D profile and 3D points on the
trajectory is established by using the polynomial electrode model and
Eq. (3). Thus all operations carried out on the generated 1D signal can
immediately be transformed into 3D positions. Due to the excellent SNR
the median intensity was selected as projection operator to be used in
PaCER. It is combined with a subsequent zero-phase shift filtering in 1D
to further stabilize the signal.

For the contact detection it was hypothesized that each of the signal
peaks corresponds to the center-of-gravity of one of the electrode
contacts. This hypothesis is widespread in the literature, e.g. it is ap-
plied to the semi-automatic cross-correlation based contact detection
method with manual refinement suggested before (e.g. Horn and Kühn,
2015). However, the 1D transformation introduced in this section has
the potential for much easier, more robust and efficient implementa-
tion. Furthermore, it allows straightforward manual verification.

2.5.1. Zero-point calibration

The definition of the zero-point of the parameter space, as the base
of all length measurements along a trajectory, is in principle arbitrary.
Given the different electrode designs of various vendors, i.e. some with
a non-metal tip and others where the first contact2 forms the tip, the

point-of-origin is defined as the distal edge of the first electrode contact,
see Fig. 5. A final refitting is performed after detection of the contacts.
This step generates the 3rd pass model, which is calibrated to the defined
zero-point. This calibration enables us to establish precise 3D point to
point correspondences between longitudinal scans of electrodes. Thus it
facilitates accurate analysis of electrode drift over time (e.g. by brain
shift).

(a) 1st pass (b) 2nd pass

Fig. 2. Principle of optimal oblique re-sampling: (a): Axial CT slices (red) are evaluated
in the pre-processing yielding a first electrode skeleton model (blue) of the underlying
trajectory (gray) for the 1st pass, (b): using the analytic model from the 1st pass, oblique
slices parallel to the normals of the model (green) are evaluated in the 2nd pass (Slice
spacing and selected electrode part only for illustrative purposes).

Fig. 3. Optimal oblique re-sampled (OOR) data stacked and displayed as a three plane
MPR view cutting through the volume.
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Fig. 4. 1D intensity profiles of a Medtronic 3387 Electrode scanned post-operatively at
0.7 mm slice thickness created using different operators (average, median, and median
after thresholding). Note the four prominent signal peaks indicating the locations of the
electrode contacts and compare with Fig. 3.

1 Refer to supplementary video demonstrating the procedure in 3D 2 Contacts counted from the distal end of the electrode.
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2.5.2. Automatic electrode type classification

The 1D intensity profiles provide a straightforward approach to
determine the electrode type using a comparison with template in-
tensity profiles. However, an even simpler approach relying on only the
modal values, i.e. the location of the peaks of the intensity profiles,
proved very robust and correctly classified the electrode type in 100%
of the tested datasets, consisting of N=44 electrodes including
Medtronic 3389, Medtronic 3387 and Boston Scientific Vercise
Directional Leads. The set of ring-contact distances (plus additional
intensity peaks expected by the X-Ray opaque marker in case of the
Boston Scientific electrode) for the three electrode types was used as
template for this approach. The most probable electrode type was de-
termined by calculating the Euclidian distance d=∥p −si∥2 between
the vector of the detected peak distances p and the vector of distances
given by the electrode specification si. Subsequently, the type with the
lowest norm was selected as the most probable.

2.6. Reference implementation

A reference implementation of the described methods has been
created using MATLAB. The input CT data is expected in NiFti-file
format (http://nifti.nimh.nih.gov). Object oriented programming was
used to model entities representing outputs. Thus, the resulting elec-
trode reconstructions are capsuled in self contained electrode objects
including appropriate visualization methods.

Based on this design it is possible to rapidly integrate the PaCER
algorithm into other MATLAB toolboxes, as the provided electrode
objects encapsulate all necessary functionality for instant use.

To facilitate convenient stand-alone evaluation of PaCER results, an
interactive MPR view, visualizing underlying image data in orthogonal
planes is included. Furthermore, a simple monopolar volume of tissue
activated model based on work by Madler and Coenen (2012) as well as
a software class to visualize segmented brain structures is provided with
PaCER. All objects support automatic plot updating on the change of
parameters. The PaCER toolbox is released as a free download.

2.7. Phantom validation

An imaging phantom was fabricated to evaluate the accuracy of the
trajectory reconstruction as well as the contact detection. Initially a
pilot phantom was produced using 3D printing, subsequently a very
high accuracy version was created by turning of an acrylic glass cube
using computer-aided-manufacturing (CAM), see Fig. 6. The translucent
acrylic glass version allows visual inspection of the electrode while
implanted in the phantom. Both phantoms were equipped with seven
titanium balls (diameter 6~mm) that define a reference coordinate
frame and act as fiducial markers. Ball shaped fiducials can be detected
with sub-voxel accuracy, i.e. an accuracy much higher than the slice
thickness of a CT scan (Grunert et al., 1999). Thus, the reference co-
ordinate frame of the phantom could be detected with very high pre-
cision (mean fiducial registration error 0.0806±0.041 mm) and the
electrode trajectories reconstructed from CT data using PaCER could
thus be compared to the known ground truth of the phantom blueprint
with very small measurement errors. Two electrodes segments of

approximately 8 cm length were implanted into the phantom, one fol-
lowing a straight line trajectory, the other following a well defined
curve. The electrodes were placed from the side using notches of 8 cm
length turned into the phantom, thus ruling out any compressing stress
to the tip area due to the insertion. Furthermore, this design ensures
that the electrodes are placed within a well defined plane (at the bottom
of the notch) within the phantom.

3. Results

3.1. Phantom experiment

The high accuracy phantom was CT scanned using a high resolution
CT sequence (0.5 mm slice thickness, J30s kernel, Siemens Somatom
Definition Flash) as typically used for post-operative electrode assess-
ment. The results for trajectory reconstruction and contact detection are
discussed in the following.

3.1.1. Trajectory reconstruction

For the trajectory reconstruction, a mean error between detected
trajectory and model ground truth of 0.039±0.015 mm was found for
the curved 3387 electrode.

For the 3389 electrode following a linear trajectory, the off-trajec-
tory detection error was 0.052±0.030 mm. There was no statistical
difference between the straight or curved electrode trajectory.
Therefore, the results could be combined and the overall detection error
for the phantom experiment computed to 0.046±0.025 mm.

3.1.2. Individual contact detection

Surprisingly ‘large’ errors (above 200 μm) were found when com-
paring the detected contact positions to those expected based on the
lead specifications from the electrode vendor. The results indicated that
the contact spacing of the electrodes was slightly but significantly di-
verging from the specification, i.e. the detection accuracy of PaCER is
good enough to detect such slight changes on high-resolution data. To
verify this hypothesis we took photogrammetry pictures of the two
electrodes implanted in the glass phantom. A camera was set up with
the camera plane parallel to the planes where the electrodes were
placed within the phantom. The electrode contacts were arranged in the
center of the image plane to limit optical distortion (see Fig. 7a and b).

The orthographic photos produced in this way allow precise dis-
tance measurements using standard image processing software.
Reference measurements were made of a distance known with very
high precision (the width of the CAM produced holding notches) fa-
cilitating the conversion between image pixels and millimeters. After
this calibration precise measurements within the images could be made
and act as ground truth reference for further analysis (Fig. 8).

For the curved electrode of type Medtronic 3387 we found ground

Fig. 5. Definition of zero-point/origin of electrode space visualized for different elec-
trode types. The origin is defined as the distal edge of the most distal electrode contact.

Fig. 6. Acrylic glass phantom holding two electrodes (one curved, one straight-line)
equipped with titanium reference balls for accurate registration.
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truth contact spacings of 1.396 mm, 1.615 mm and 1.656 mm in con-
trast to the specified value of 1.5 mm. PaCER's contact detection ap-
plied on 0.5 mm slice thickness CT imaging reported contact spacings of
1.350 mm, 1.6836 mm and 1.631 mm. The mean absolute error for the
3387 electrode contacts was 0.047±0.022 mm. For the 3389 electrode
the ground truth contact spacing was 0.574 mm, 0.530 mm and
0.433 mm. The contact spacings reported by the algorithm were
0.817 mm, 0.539 mm and 0.360 mm. The mean absolute error com-
puted to 0.108±0.121 mm.

3.2. Evaluation on clinical data

Clinical data is challenged by unknown ground-truth and does not
allow quantitative evaluations. A fully automated reconstruction algo-
rithm needs to be robust across clinical datasets with varying image
quality and resolution. Therefore, PaCER was qualitatively evaluated
using post-operative CT scans from DBS procedures with a total of
N = 44 implanted electrodes. The datasets involved CT scans generated
using three different CT machines and included three different elec-
trode types (Medtronic 3387 and 3389, Boston Scientific Vercise di-
rectional lead). Across all datasets, the automatic trajectory re-
construction was successful. Detection of individual electrode contacts
was possible in all scans with a slice thickness lower than 1 mm (25
cases). In all cases the correct electrode type was classified auto-
matically. In the remaining 19 cases, only low resolution CT scans with
a slice thickness between 1 mm and 3 mm were available. For such
lower resolution data PaCER implements an automatic fallback to a
‘contact area’-based detection strategy. In this, the algorithm detects the
entire contact area in the intensity profiles and places the electrode
contacts within that area based on the electrode specifications. With
this strategy, a reliable contact placement was possible in all cases.

3.3. Influence of imaging resolution

In order to quantitatively assess the influence of different imaging
resolutions, which is in CT imaging mostly governed by the slice
thickness, a re-sampling study was carried out.

For 20 electrodes (Medtronic 3389) electrode trajectories and single
contact locations where reconstructed from high quality data acquired
with 0.5 mm slice thickness. This dataset served as gold-standard.
Subsequently the CT images were linearly re-sampled to 1 mm, 2 mm
and 3 mm slice thickness. The PaCER reconstruction was repeated for
each slice thickness level. Even at the 1 mm level, the SNR was found to
be too poor to facilitate individual contact detection in several cases,
which is in-line with the results on low resolution clinical data. As a
fallback, the method in this cases detects the entire contact area and
places the electrode contacts within that area based on the electrode's
specification. The root mean squared distance between the gold-stan-
dard electrode contact locations and the respective resolution levels
locations was calculated for each electrode.

Fig. 9 summarizes the results. The average RMS error between gold-
standard and the 1 mm resampling was 0.142 mm, for 2 mm thickness
it was 0.203 mm and for 3 mm it was 0.405 mm. All differences are
statistically significant (paired Wilcoxon-Signed-Rank Test). The results
indicate that contact reconstruction for electrodes with 0.5 mm contact
spacing is already significantly worse at a scan resolution of 1.0 mm
compared to 0.5 mm. At the 3 mm level, the detection error exceeds the
size of the spacing between two consecutive contacts (0.5 mm) in a
large number of cases.

3.4. Application potentials and use-cases

In this section, use-cases enabled by PaCER are discussed using il-
lustrative example datasets. All examples and visualizations can be
easily reproduced using the reference implementation available for
download.

3.4.1. Use-Case A: Curved and longitudinal trajectory analysis

The reconstruction of the curved shape of an electrode enables
longitudinal analysis of trajectory behavior, e.g. in the context of brain
shift. This is a field of study that is not possible with algorithms im-
posing a straight line model. An example is demonstrated in Fig. 10.

Using contact detection based zero-point calibration and Eqs. (2)

(a) 3387 electrode. (b) 3389 electrode.

Fig. 7. Photogrammetry picture of the 3387 and 3389 electrode within the phantom.
Note the slightly non-uniform contact spacings.

(a) (b)

Fig. 8. (a) Photogrammetry picture of the 3387 electrode within the phantom; (b)
overlayed with the CT based 3D reconstruction using the presented algorithm. Note the
visually perfect accuracy of trajectory as well as contact detection.
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Fig. 9. Influence of different slice thicknesses on contact localization in clinical data for
Medtronic 3389 electrodes. RMS errors between the four contacts of 20 electrodes for
three different resolution levels compared to a 0.5 mm scan used as gold-standard, *
indicates p<0.05, ** indicates p<0.01, *** indicate p<0.001 (paired Wilcoxon-
Signed-Rank Test).
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and (3), a point correspondence between distinct points on trajectories
at different time points can be established. This enables precise 3D drift
measurements of points on the electrode over time. This might create a
novel source of information for brain tissue mechanics models and help
improve future neurosurgical procedures.

3.4.2. Use-Case B: Analysis of plan deviations

Detailed analysis of the (non-linear) electrode trajectory relative to
the original plan is useful for post-operative assessment and potential
improvement of future electrode implantation procedures. Ideally,
planning data is imported in digital format from the planning station
using the untouched reference coordinate system of the planning
system (Husch et al., 2015). This avoids bias introduced when using
manually defined coordinate systems (like the AC/PC-System).

An example is shown in Fig. 11 where the PaCER reconstructed
electrodes are displayed together with the pre-planned targeting and
micro electrode recording tracks. The electrode reconstructions are
based on post-operative CT one day after surgery at which point brain
shift had not yet resolved.

The example demonstrates a good accuracy in the target area with
significant (brain shift induced) deviations in upper brain areas.
Gaining more knowledge about plan outcome relations might facilitate
improved surgical methods e.g. to safely avoid potential risk inducing
structures adjacent to the surgical plan.

3.4.3. Use-Case C: Streamlining clinical DBS programming

A potential avenue for streamlining DBS programming is to use a
reliable electrode reconstruction together with a co-registered 3D

model of the target structure, a goal that is shared by most publications
in the field. As PaCER is independent of any sort of atlas or other co-
registered modalities, it seems promising to use individual segmenta-
tions of target structures of a particular patient, e.g. by co-registration
of T2 or SWI and post-operative CT Data instead of only relying on atlas
data. Using such a strategy only intra-subject registrations are used,
avoiding potentially error prone inter-subject registrations when ap-
plying atlases. However, the use of atlas data is easily achieved with
PaCER if desired. To further aid efficient programming the Madler and
Coenen VTA approximation might prove helpful. Fig. 12 shows an ex-
ample of a case where electrode reconstruction together with manual
segmentation from T2 data could help in optimizing the programming.

Note the apparent difference in the STN part covered by VTA
models (both: impedance=800Ω, voltage=3.6 V) of the electrode im-
mediately post surgery vs. one year later.

3.4.4. Use-Case D: Reconstruction in different spaces

As already pointed out, PaCER is independent of a specific co-
ordinate system. Thus it is easily possible to apply PaCER for electrode
reconstruction in native (subject) space, as well as in any image space
where the CT data have been transformed too. Fig. 13 shows an ex-
ample of a PaCER reconstruction after registration of the CT image to
the high-resolution 7T deep-brain atlas by Wang et al. (2016).

The displayed electrodes were reconstructed after transforming the
post-operative CT data to atlas space, as this is a standard method.

Fig. 10. Electrode reconstruction from co-registered CT data one day after surgery (red)
and one year later (blue). Co-registered T1 MRI displayed in background. Note the non-
linear bending of the trajectories due to brain shift respectively inverse brain shift.

Fig. 11. Planned micro electrode recording trajectories (light blue) and final electrode
outcome revealed by PaCER (red) one day after surgery with brain shift still present.

Fig. 12. Co-registered electrode reconstruction one day after surgery (red) and one year
later (blue) together with manually segmented STN structures from T2 imaging (green).
Electrode reconstruction reveals that DBS programming of the left electrode should assess
the most proximal contact. Mädler/Coenen VTA estimates are indicated as blue repeti-
tively red spheres. Note the upwards displacement of the later reconstruction.

Fig. 13. Electrode reconstructions carried out in atlas space (high-resolution deep-brain
atlas). The electrodes are displayed with the subcortical structures from the atlas. STNs
highlighted in green.
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However, due to the re-sampling of the original image to the atlas
template the signal to noise ratio declines. A technically more reason-
able approach enabled by PaCER is to carry out all electrode re-
constructions in native post-op image space and subsequently apply
transformations to the reconstructed electrode objects. This is easily
possible due to the representation of the electrode trajectory by a
polynomial coefficient matrix. With this method no re-sampling of
images is involved and the original SNR is fully preserved.

3.4.5. Use-Case E: Integration with other software

The component oriented software architecture of PaCER enables the
convenient integration with other software toolboxes by providing
reusable objects. As such, PaCER could be integrated as electrode re-
construction algorithm within existing image-analysis software.
Another option is to integrate data generated with dedicated state-of-
the-art tools back into the PaCER MATLAB environment. One such
example is the processing of diffusion MRI data and streamline trac-
tography. Fig. 14 provides an example of combining streamlines gen-
erated using the MRtrix3 software package (http://www.mrtrix.org)
together with PaCER electrode reconstruction. The cortico-spinal-tract
fibers in this illustration are delineated using a probabilistic tracto-
graphy framework based on constrained spherical deconvolution
(Tournier et al., 2004) and high angular resolution diffusion imaging
data. Recent studies have demonstrated the clear potential for refining
and individualizing both pre-operative planning (Coenen et al., 2014;
Petersen et al., 2017) and post-operative stimulation management by
using tractography to delineate relevant white matter pathways
(Gunalan et al., 2017; Mahlknecht et al., 2017) or connectivity sweet
spots (Plantinga et al., 2016; Akram et al., 2017; Horn et al., 2017).

Within PaCER, the imported tractography data are coupled with the
existing VTA approximation, coloring parts of the tract overlapped by
the VTA. The automatic plot update feature of PaCER is fully retained
(cf. supplementary video).

4. Discussion

In this study, we have introduced a novel algorithm for high accu-
racy reconstruction of DBS leads using post-operative CT scans. The
method is fully automatic and retains curved trajectories. The algorithm
was validated using scans of a custom made high-accuracy phantom
and evaluated using multi-center clinical datasets with varying re-
solution.

4.1. Accuracy in phantom experiment

The average trajectory reconstruction error was found to be below
100 μm in high-accuracy phantom experiments, which is remarkable
compared to the typical electrode diameter of 1270 μm. The accuracy
found in the phantom experiment showed no significant difference in
reconstruction accuracy for curved vs linear trajectories. Thus PaCER is
expected to be fully able to accurately recover electrode bending. Only
a few studies have previously examined the impact of brain shift on
electrode trajectories inducing curved trajectories (cf. Lalys et al., 2014)
and none of these have made analysis-tools openly available.

Analysis of the contact detection accuracy demonstrates that elec-
trodes with wider contact spacing (e.g. Medronic 3387) provide better
SNR for individual contact detection. Conversely if electrodes with
narrow spacing are used (e.g. Medtronic 3389) then CT imaging with
thinnest possible slice thickness should be recommended for robust
contact detection. To accommodate different scanning protocols and
electrodes used in different centers the PaCER user can easily switch
between contact definition based on individual detection or a (poten-
tially less accurate but more robust) contact region based approach.

4.2. Robustness in clinical data

PaCER provided excellent results in all clinical CT scans with a slice
thickness lower or equal to 1 mm and successfully reconstructed full
trajectories including individual contacts in 100% of this cases.

To study the behavior on larger slice thickness, additional scans
with larger slice thickness were evaluated. The trajectory reconstruc-
tion was found to be reliable even in 3 mm slices. However, the in-
dividual contact detection is not robustly usable in this case and
therefore only a simplified method based on detection of the center of
the contact region in the intensity profile is available. This might limit
accuracy. Re-sampling experiments indicate that at 3 mm slices a con-
tact detection bias in the range of 0.5 mm along the trajectory should be
expected. However, this is still a remarkable accuracy given the ex-
treme slice thickness of 3 mm compared to the electrode diameter of
1.27 mm respectively the contact spacing of 0.5 mm or 1.5 mm.

4.3. Limitations

Limitations and future areas of work are discussed in the following.

4.3.1. CT data

The presented algorithm is until now limited to CT data. CT pro-
vides decent geometric accuracy, great electrode contrast, is widely
available at low cost and currently the standard in post-operative DBS
care in many centers. Furthermore, the CT intensity range is standar-
dized using Hounsfield Units, allowing easy translation to different
scanners and centers. However, some centers rely on MRI for post-op-
erative assessment primarily due to the advantage of avoiding X-ray
exposure. MRI also has significant drawbacks such as lower resolution
and weaker contrast despite higher acquisition times. This is further
complicated by the restrictions on usable scanning protocol when the
patient has electrodes implanted. The general concept of the PaCER
algorithm might be applicable to MRI data too, however measures
would have to be taken to deal with the inferior SNR. At this point it is
not clear if a reconstruction of electrode contacts would be possible
from MRI with high accuracy if contact spacings are small.

The first stage of PaCER is based on axial CT slices, where all sub-
sequent operations are independent of slice flow. Thus CT slices tilted
out of the axial plane by more than approximately 45 ° might require
manual intervention by correcting orientation or change the expected
slice flow of the first stage. No such extremely tilted case was present in
the test dataset.

Fig. 14. PaCER electrode reconstruction and VTA approximation. Instead of displaying
the VTA as a sphere (cf. Fig. 10), it is visualized as a colormap projected onto hyper-
direct-pathway and cortico-spinal-tract fibers imported from MRtrix. Manually seg-
mented STN is shown in yellow.
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4.3.2. Hyper-parameters

The only relevant hyper-parameter of PaCER is the degree of the
polynomial fitted to the electrode. A degree of d=1 corresponds to a
straight line model. It is clear that a straight line model is not appro-
priate to capture electrode bending (cf. Fig. 10). However, there is no
clear answer yet which degree is the most appropriate as the choice of
degree imposes a classical bias/variance trade off between fitting ac-
curacy and noise removal. Based on results in phantom measurements
and variance analysis of clinical data, the reference implementation of
PaCER is currently using a degree of d=8 in all stages until stage three.
This degree was suggested as an optimal theoretical bias/variance trade
off by evaluating the Akaike-Information-Criterion (AIC). In the final
(3rd) stage, the electrode is refitted using only degree d=3, which
induces a smoothing and noise canceling effect that provided superior
accuracy in the phantom study. It has to be taken into account that the
model polynomial is independent in its x,y,z components. Thus the
flexibility in 3D space, formed by superposition of all three components,
is relatively large even with such a low degree.

4.3.3. The signal peak to contact center relation hypothesis

The contact detection is based on the hypothesis that the peaks of
the 1D intensity profiles coincide with the center-of-gravity of the
electrode contacts. While the projection to 1D space is a new robust
method introduced in this paper, the hypothesis of a coincidence be-
tween location of strong signal and contact center location is common
in the literature (cf. D’Haese et al., 2010; Hebb and Miller, 2010; Horn
and Kühn, 2015; Lauro et al., 2016). However, it should be noted that
neighboring contacts might influence the signal of adjacent contacts.
This effect grows increasingly important for smaller contact spacings or
lower imaging resolution. Phantom experiments suggest a different
detection accuracy for Medtronic 3387 electrodes vs. Medtronic 3389
electrodes. These electrode types are technically identical except for the
larger contact spacings of the 3387 electrode. The results thus support
an extended hypothesis that contact location and peak intensity are
homologous if and only if the contact spacing is large enough with
respect to the imaging resolution. As a rule of thumb, a CT slice
thickness smaller than the contact spacings seems reasonable if a pre-
cise localization of individual contacts is desired. However, for clinical
practice a detection accuracy in the range of a contact spacing (e.g.
0.5 mm) might be acceptable. In this case, a pure detection of the ‘

contact region’ and a fitting of electrode contacts as specified by the
electrode type (neglecting tolerances) to this region might by sufficient.
The results presented in Section 3.3 indicate that a slice thickness as
large as two millimeters might be sufficient to reach this level of ac-
curacy in most cases.

4.4. Segmented contacts

The PaCER algorithm can identify contacts areas in DBS electrodes
with symmetric contact segments such as the Vercise Cartesia™ seg-
mented lead from Boston Scientific. However, it is not designed to
identify the rotation of the individual segments. Very recently, methods
for accurately identifying rotation of the lead segments using fluoro-
scopic techniques (Reinacher et al., 2017) have been proposed. Com-
bining such an approach with the presented algorithm for trajectory
and symmetric contact detection is straightforward.

5. Conclusion

To the best of our knowledge this is the first report of a DBS elec-
trode localization algorithm that is a) fully automatic b) retains the
(non-linearly curved) shape of an electrode across the whole in-brain
trajectory c) is applicable to native space data utilizing the optimal SNR
and d) enables precise length-measurements along the curved trajec-
tory, thus allowing longitudinal drift analysis of electrodes.

Given high-resolution data, the contact detection appears accurate

enough to even reveal slight tolerances of an actual electrode for certain
electrode types. Prior publications in the field have relied purely on
general vendor specifications. Furthermore, this is the only algorithm
that has been validated by rigorous phantom measurements to allow
ground truth comparisons. The phantom experiments indicate un-
precedented accuracy. The PaCER reference implementation (http://
adhusch.github.io/PaCER/) is self contained and enables stand-alone
use as well as easy integration in fully automated image processing
work-flows or existing MATLAB toolboxes by providing reusable ob-
jects. In summary, the presented work should constitute a crucial step
towards future integration of lead reconstruction into standard clinical
care.
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