
ARTICLE

Pacific subduction control on Asian continental
deformation including Tibetan extension and
eastward extrusion tectonics
W.P. Schellart 1,2*, Z. Chen2,3, V. Strak 1,2, J.C. Duarte 2,4,5 & F.M. Rosas 4,5

The India-Asia collision has formed the highest mountains on Earth and is thought to account

for extensive intraplate deformation in Asia. The prevailing explanation considers the role of

the Pacific and Sunda subduction zones as passive during deformation. Here we test the

hypothesis that subduction played an active role and present geodynamic experiments of

continental deformation that model Indian indentation and active subduction rollback. We

show that the synchronous activity and interaction of the collision zone and subduction zones

explain Asian deformation, and demonstrate that east-west extension in Tibet, eastward

continental extrusion and Asian backarc basin formation are controlled by large-scale Pacific

and Sunda slab rollback. The models require 1740 ± 300 km of Indian indentation such that

backarc basins form and central East Asian extension conforms estimates. Indentation and

rollback produce ~260–360 km of eastward extrusion and large-scale clockwise upper mantle

circulation from Tibet towards East Asia and back to India.
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T
he Eurasian plate has accommodated significant short-
ening due to India–Asia convergence since the Early
Cenozoic onset of collision, with estimates in the range

1000–2000 km1–3. Such estimates, however, fall significantly short
to explain the total amount of convergence of ~2400–3600 km4–7.
This could be because convergence is partly accommodated
through continental subduction8, because of uncertainty in east-
ward extrusion estimates, ranging from ~250 to 1250 km5,9,10,
because proposed shortening values underestimate actual short-
ening in the intraplate deformation zone or a combination of the
above. In the current paradigm for the Cenozoic evolution of this
intraplate zone, all deformation, including shortening, strike-slip
and extensional deformation (Fig. 1a), is ascribed to the collision
and progressive indentation of the Indian subcontinent into the
Eurasian plate1,9,11,12. Moreover, backarc basin formation in the
Japan Sea, Kuril Basin and the Sea of Okhotsk (Fig. 1a) has been
interpreted as a far-field effect of the India–Eurasia collision13–15.

Although India–Eurasia convergence has driven Himalayan
mountain building and Tibetan Plateau formation, its role in
extensional faulting along north–south striking grabens in Tibet
and in widespread deformation outside the zones of mountain
building remains speculative and has been questioned. Early
works have argued in favour of a role for the Pacific margin in
driving extension in East China specifically16,17, and East Asia
more generally18. In the past two decades, conceptual models
have been proposed that argue for an active role of the Pacific
subduction margin in driving East Asian extension through slab
rollback10,19,20. Extension along the East and Southeast Asian
margins suggests an active role for the Pacific and Sunda sub-
duction zones, in particular considering the continuity of
extension in space and time (Fig. 1a). Indeed, extensional
deformation and strike-slip faulting are observed over an enor-
mous area covering some 30 million square kilometres, from
Indonesia to Kamchatka. This deformation took place across the
entire region during the Eocene–Oligocene. In several locations,
extension was also active in the latest Cretaceous/Paleocene (e.g.
Beibuwan basin, Pearl River Mouth basin, Taiwan Strait basins,
East China Sea basins, Yellow Sea basins, Bohai basin, Hei-
longjiang basin), thus preceding collision18, and/or during part
of the Miocene–Present (e.g. Mergui basin, Banda Sea, southern
South China Sea, Okinawa Trough, Japan Sea and margins,
Kuril Basin).

Previous geodynamic models simulating Asian deformation
used an active rigid indenter to simulate India progressively
moving into and colliding with the Asian lithosphere, thereby
applying compressive deviatoric normal stresses9,12,19. Another
model focused on gravitational spreading of the East Asian
lithosphere and did not include an active Indian indenter20. All
these earlier models used passive lateral boundaries in East and
Southeast Asia with zero stress or lithostatic stress boundaries,
simulating passive subduction zone rollback (i.e. subduction zone
migration that resulted only from the Indian indenter and/or
gravitational spreading and not from forces originating from the
subduction zone itself). However, geodynamic models show that
subduction zones actively deform overriding plates during slab
rollback by applying deviatoric stresses at the subduction zone
interface and flow-induced shear tractions at the base of the
overriding plate21–23.

Recent studies have investigated the formation of the Himalaya
and the Tibetan Plateau through modelling subduction and
continental subduction24,25. Such models involved a relatively
limited spatial domain of Asian continental lithosphere and
excluded the Western Pacific subduction margin and most of the
Sunda subduction margin. Our current study focusses on a much
larger domain of Asian continental lithosphere (about an order of
magnitude larger), stretching from the Himalaya and Tibet in the

west, Indonesia in the southeast and Kamchatka in the northeast
(Fig. 1). Here we investigate the role of the Western Pacific
subduction margin and the entire Sunda subduction margin in
Asian deformation and their interaction with Indian indenter
tectonics and large-scale mantle flow. Our models reveal that the
synchronous activity and interaction of the collision zone and
subduction zones are crucial for explaining the entire deforma-
tion field in Central, East and Southeast Asia and demonstrate
that enigmatic east–west extension in Tibet, eastward continental
extrusion and backarc basin formation along the East and
Southeast Asian margins are controlled by large-scale Pacific and
Sunda slab rollback. The experiments constrain the amount of
Indian indentation, thereby predicting the amount of eastward
continental extrusion. Our quantification of Indian indentation
and Western Pacific rollback also makes predictions on the large-
scale mantle flow in the region and implies large-scale clockwise
upper mantle circulation from the Tibetan region towards East
Asia and from the Philippine Sea region along a path south of the
Sunda–Banda slab wall into the Indian Ocean domain. As such,
our experiments demonstrate the crucial role that the Western
Pacific and Sunda subduction zones have played in actively
deforming the continental lithosphere and underlying mantle in
Central, East and Southeast Asia.

Results
Experimental approach. Here we present the first geodynamic
models of widespread continental deformation in Central, East
and Southeast Asia combining two separate approaches that
simultaneously simulate active Indian indentation12 and active
rollback26 of the Western Pacific and Sunda subduction zones
(Fig. 2). The active rollback boundaries apply deviatoric tensile
stress conditions (trench suction) and slab rollback-induced basal
mantle flow tractions to the overriding continental Eurasian
lithosphere. The analogue experiments use glass microspheres
with a frictional plastic rheology to simulate the brittle upper
continental lithosphere and high-viscosity silicone to simulate the
viscous continental lower lithosphere of Eurasia. Low-viscosity
glucose syrup is used to simulate the low-viscosity sub-litho-
spheric mantle for isostatic compensation and mantle flow. The
models are scaled for gravity, including gravitational body forces
and potential energy differences between the continental and
oceanic domains. Furthermore, we implement length scaling and
geometrical aspect ratios such that, for the first time, the model
components accurately represent the size of the Indian indenter
(~2400 km), the western Pacific subduction margin (~8000 km),
the Sunda subduction zone (~4000 km) and the Asian litho-
spheric thickness (~104 km) at the onset of collision (see
“Methods”).

We test the role of the advance rate (indentation rate) of the
India–Eurasia convergent boundary, i.e. the Indian continental
subduction zone hinge and slab (vI), relative to the rollback rate
of the Western Pacific (vWP) and Sunda (vSu) subduction zones
on the style and extent of continental deformation in Asia. In
three experiments, we test different rates for vI (keeping vWP and
vSu constant). We test minimum and intermediate rates of 2.0 cm
year−1 (experiment IMIN-R) and 3.6 cm year−1 (experiment IINT-
R) based on minimum and maximum Asian shortening estimates
of ~1000 and 1800–2000 km, respectively2,3, averaged over the
past ~52Myr. And we test a maximum rate of 5.2 cm year−1

(experiment IMAX-R) assuming that the India–Eurasia conver-
gence rate averaged over ~52Myr6 is accommodated entirely by
shortening in Eurasia (“Methods”). In two additional experi-
ments, we test Indian indentation without Pacific–Sunda rollback
(vWP= vSu= 0) (experiment IINT-NR) and Pacific–Sunda roll-
back without Indian indentation (vI= 0) (experiment NI-R).
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Below we show that the style and distribution of Asian
deformation depends critically on the relative velocities of vI
and vWP, expressed as ratio R= (vI− vWP)/(vI+ vWP), and on the
amount of Indian indentation (II).

Experimental results of Asian deformation. The experiments all
show the development of a fold-and-thrust belt north of the
Indian indenter, comparable to nature and earlier models12,19,
which becomes increasingly asymmetric with decreasing R
(Figs. 3–5, Supplementary Figs. 1–4). By increasing Indian finite
indentation from IMIN-R to IINT-R to IMAX-R, extension in East
Asia is progressively suppressed, in particular in the central East
Asian region located west of the Japan, Ryukyu and Manila
subduction zones, but strike-slip faulting and eastward extrusion
are enhanced (Figs. 3a–c, 4a–c, 6a, b). Strike-slip faulting is
mostly confined to the regions east and west of the indenter and
to a zone extending from the northeast corner of the indenter to
the Kuril–Kamchatka region, which accommodates sinistral
shear. The deformed grid and displacement field show eastward

and southeastward extrusion of continental material but only
with active Pacific and Sunda rollback (Figs. 3, 5 and 6b, Sup-
plementary Fig. 3). The infinitesimal displacement fields for the
last stage of the experiments (Fig. 5a–c), which represent the
present-day displacement field, are generally consistent with and
comparable to the Global Positioning System (GPS) velocity field
observed in Central and East Asia27. Indeed, both experimental
and observational fields show approximately radially divergent
vectors north of the Indian indenter that decrease in length with
increasing distance from the indenter, east-directed vectors in
central and northern East Asia and a clockwise rotating vector
pattern near the northeast corner of the indenter and in Southeast
Asia. For models IMIN-R and IINT-R, the east-directed vectors in
central and northern East Asia increase in length towards the east
(Fig. 5a, b) but they decrease for model IMAX-R (Fig. 5c).

With low II= ~1049 km and R= 0.25, strike-slip faulting is
limited but extensional deformation in East and Southeast Asia is
penetrative, with normal faulting and rifting distributed over a
wide area (Figs. 3a and 4a). With intermediate indentation (II=
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Fig. 1 Structural-tectonic maps showing widespread Cenozoic continental deformation in Central, East and Southeast Asia. a Structural-tectonic map

showing structures and ages of extensional basins (see Supplementary Note 1). Arrows indicate present-day plate velocities (in cm year−1) in the Indo-

Atlantic hotspot reference frame81. Numbers next to extensional structures/basins indicate timing of extensional activity (in Ma). Light blue areas

represent extended continental crust, dark blue areas represent backarc/marginal basin oceanic crust. b, c Present-day tectonic setting and simplified

tectonic reconstruction at ~50Ma of Central, East and Southeast Asian convergent plate boundaries showing oceanic/continental subduction zone

migration (blue arrows) and proposed large-scale upper mantle flow patterns (orange arrows) that accommodate lateral slab migration (Indian continental

slab advance and predominant retreat for oceanic slabs). Red bars in b indicate regional pattern of upper mantle anisotropy based on seismic shear wave

splitting measurements derived from various sources45,46,49,82. Dashed lines with numbers 1–4 in b indicate sections along which Cenozoic finite

extension has been estimated (see “Methods”). Blue dashed lines in c indicate present-day position of main Asian convergent boundaries to illustrate finite

plate boundary migration since ~50 Ma. Green areas in c illustrate surface areas of upper mantle volumes displaced since ~50 Ma by lateral slab migration.

The simplified reconstruction in c is based on earlier reconstructions for the Himalaya–Tibet region and Southeast Asia74,75, for the East China region17, for

the Japan region76,77 and for the Kuril-Kamchatka-Sea of Okhotsk region26
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~1888 km) and R= 0.50, normal faults, rifts and grabens are still
widely distributed but smaller in number and size, while strike-
slip faults are more pronounced (Figs. 3b and 4b), a number of
which form conjugate pairs. Interestingly, model IINT-R shows an
asymmetry of strike-slip faulting east and west of the Indian
indenter with significant strike-slip faulting along its eastern

boundary, dominated by dextral north–south to NNE–SSW
striking faults and lesser conjugate ENE–WSW striking sinistral
faults but limited strike-slip faulting along its western boundary
(Fig. 4b). This is in agreement with the first-order strike-slip
faulting patterns observed east and west of the Indian indenter,
showing limited strike-slip faulting west of India and significant
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strike-slip faulting east of India with north–south striking dextral
faults (e.g. Sagin fault) and lesser conjugate ENE–WSW striking
sinistral faults (Fig. 1a).

The widespread extensional structures as observed in IMIN-R
and IINT-R are absent in earlier experimental models that lack
active Pacific and Sunda rollback9,12,19. The extensional
structures in IMIN-R and IINT-R occur up to ~5000 km (for

II= ~1049 km) and ~4000 km (for II= ~1888 km) from the
Pacific subduction boundary (Fig. 4a, b), comparable in distance
to the far-field extension in the Baikal rift zone.

Along the Pacific subduction boundary, the nearest rift and
graben structures form some 400–600 km west of this boundary
(Fig. 4a, b), which is comparable to the distance between the
Pacific trench and the Okinawa, Japan, Okhotsk and Kuril
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backarc basins. The extensional structures mostly run sub-parallel
to the Pacific and Sunda subduction boundaries, both in the
experiments (Fig. 4a, b) and in nature (Fig. 1a). However, they
also strike obliquely to perpendicularly to the boundaries in
some regions (both in the experiments and in nature), such as in
the northeastern region (Sea of Okhotsk), which results from the
asymmetric rotational rollback of the Pacific slab26, and in the
southeast, which results from the interference pattern of
deformation produced by the two retreating subduction zones,
in combination with asymmetric rollback. The occurrence of
obliquely oriented extensional structures, postulated oblique
backarc spreading ridges, and their spatial association with
strike-slip faults in the Japan–Kuril–Okhotsk domain has been
used as an argument against slab rollback as their driving agent.
The current model results and an earlier regional study26 indicate
that such obliquely oriented extensional structures and strike-slip
faults can in fact result directly from subduction zone processes
along the Sunda and Western Pacific plate boundaries.

In case of a high II= ~2728 km and R= 0.62 (experiment
IMAX-R), folds, thrusts and strike-slip faults, the latter often in
conjugate pairs, are very pronounced, while normal faulting is
limited to the southeast and northeast (Figs. 3c and 4c). Notably,
normal faulting and rifting are absent in central East Asia (west of

Japan, Ryukyu and Manila), resulting in a ~3000 × 3000 km2 area
that lacks east–west extension but instead shows east–west
shortening with approximately north–south striking zones of
dextral transpression in the western part of the area (Fig. 4c).
Also, no extensional structures form along the Western Pacific
subduction boundary, in disagreement with observations of
Cenozoic backarc extension along the Pacific margin and
extension in East China (Fig. 1a). In addition, model IMAX-R
shows a symmetrical pattern of strike-slip faulting east and west
of India (Fig. 4c), which is not in agreement with nature with
significant strike-slip faulting along the eastern boundary but
limited strike-slip faulting along the western boundary (Fig. 1a).

In the experiment that lacks Western Pacific and Sunda
rollback (IINT-NR, R= 1), eastward extrusion is negligible
(Figs. 3d, 5d and 6b, Supplementary Fig. 3d) and the regions
east and northeast of the collision zone show minor east–west
shortening (Figs. 3d and 6c), in disagreement with observations.
Furthermore, no deformation structures are observed in East and
Southeast Asia (Fig. 4d), which is also in disagreement with
observations (Fig. 1a).

Four evolutionary stages of models IINT-R and IMIN-R are
shown in Supplementary Figs. 5 and 6, respectively, illustrating
that shortening north of the Indian indenter and extension north
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and west of the Sunda and Western Pacific subduction margins,
respectively, are active from the earliest stages. Such early
extension is consistent with extension observed in East and
Southeast Asia that starts already in the Early Cenozoic, such as
the Sumatra, Java and East Borneo Basins, the margins of the
South China Sea, the basins in East and Northeast China, the
Baikal Rift zone and the basins in the Sea of Okhotsk region
(Fig. 1a).

Pacific subduction drives east–west extension in Tibet. Tibet is
characterized by extensional structures, which are best developed
in southern and central Tibet at 200–800 km from the
India–Eurasia plate boundary. The extensional structures consist
of north to north–northeast striking normal faults, grabens and
dikes28 active since at least ~19Ma7,29, with some dikes with
reported activity at 47–38Ma30. The extensional structures
have been ascribed to various driving mechanisms that have
been simulated in geodynamic models focussing on the
Himalaya–Tibet region, including gravitational collapse of the
plateau that is triggered by convective removal of the lithospheric
root11, underthrusting of India and related basal shear tractions31

and lower crustal flow32. Our geodynamic models focus on a
much larger spatial domain, about an order of magnitude larger,
than these earlier models and do not incorporate convective
removal of the lithospheric root, nor Indian underthrusting nor
lower crustal flow. Yet, our models reproduce east–west extension
in the Tibetan Plateau region (Figs. 3 and 6), indicating that the
earlier proposed mechanisms are not essential for reproducing
the east–west extension. As such, our models provide an alter-
native driving mechanism in which east-directed rollback of the

Western Pacific subduction boundary and associated mantle flow
(Fig. 7) induce east–west extension north of the Indian indenter.
Several tens of kilometres of east–west extension in southern and
central Tibet are reproduced in our experiments but only for
those experiments that have eastward Pacific slab rollback (IMIN-
R, IINT-R and IMAX-R, Figs. 3 and 6d). These experiments can also
account for a possible Eocene onset of east–west extension30, as
Pacific rollback was already active during this time. There is no
east–west extension in southern Tibet without Pacific rollback
(IINT-NR with R= 1; Fig. 6d), suggesting that such rollback is
indeed required for extension to take place. Estimates of total
east–west extension in Tibet range from 20 to 70 km2,28,33,
comparable to our experiments with R= 0.25–0.62 showing
16–54 km of east–west extension.

Our general finding that the Pacific subduction zones can affect
the continental deep interior of Asia, including Tibet and
the Baikal region located many thousands of kilometres
(~3000–4000 km) from the subduction margin, has implications
for the extension recorded in ancient orogens. Examples include
the Paleozoic Variscan, Caledonian and Appelachian orogens,
which experienced syn-orogenic, late-orogenic and/or post-
orogenic extension that could have resulted from far field
subduction forces in a manner alike that for East Asia. Indeed,
subduction zones were located far from these mountain belts at
the time of extension.

Constraining Indian indentation. The least-squares best-fit
trend lines for experimental data showing central East Asian
extension as a function of Indian indentation II (Fig. 6a) can be
used to constrain II in nature through comparison with observed
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extension. The best-fit lines imply that II ≤ ~2040 km, because
otherwise the trend lines predict too little extension (<75 km) or
east–west shortening in central East Asia, which is in disagree-
ment with geological observations of 75–165 km of extension.
Additionally, II ≥ ~1440 km, because otherwise the trend lines
predict extension in central East Asia that is larger than observed.
The above leads us to conclude that 1740 ± 300 km of
India–Eurasia convergence since the start of collision has been
accommodated by indentation (Indian subduction hinge
advance) causing Central, East and Southeast Asian deformation,
in agreement with recent data3. Such indentation predicts
~260–360 km of average eastward extrusion (Fig. 6b), comparable
to estimates of ~250 km based on tectonic reconstructions5 but
significantly less than high values (800–1250 km) proposed
earlier9,10. Indian indentation amounts to about one-half to two-
thirds of the total estimated convergence, the remainder of which
has to have been accommodated by Indian continental subduc-
tion, for which there is evidence8,34.

Discussion
The first-order agreement between nature and our best fitting
model IINT-R (and to a lesser extent model IMIN-R) is striking and
relates to the spatial distribution and orientation of thrust faults,
strike-slip faults and normal faults, to the morphology of the
mountain ranges, to the amount of extension in East Asia,
Southeast Asia and Tibet and to geodetic observations. Regarding
shortening and mountain building, the main agreements include
shortening structures north of the Indian indenter with
approximately east–west to NNE–SSW striking folds and thrust
faults (Figs. 1a, 3a, b and 4a, b), a mountainous region north of
the Indian indenter that is narrower in the west and widens
eastward, similar to the Himalaya–Tibet mountains (Supple-
mentary Fig. 4), and topographic elevations of the experimental
mountain ranges in the Himalaya–Tibet region with respect to
the undeformed foreland that scale to 5.3–9.2 km (IINT-R) and
3.5–6.7 km (IMIN-R) in nature (Supplementary Fig. 4). As for
strike-slip faulting, the main similarities are dextral, approxi-
mately north-south striking, strike-slip faults east of the indenter
and associated conjugate sinistral faults, similar to the Sagin fault
and conjugates east of India, and less developed sinistral,
approximately north-south striking strike slip faults west of the
indenter (Figs. 1a, 3a, b and 4a, b), as well as sinistral, NE–SW
striking strike-slip faults that run from the northern edge of the
mountainous region to the northeast (Sea of Okhotsk region),
similar to sinistral shear zones such as the Altyn Tagh fault,
Bolnai fault and Stanovoy sinistral shear zone (Figs. 1a, 3b and
4b). The agreement relating to normal faulting and extension
includes normal faults, rifts and grabens in East Asia that strike
predominantly sub-parallel to the strike of the Western Pacific
subduction margin and occur up to several thousand km from the
margin (Figs. 1a and 4a, b), normal faults, rifts and grabens near
the Sunda margin that strike predominantly sub-parallel to the
strike of this subduction margin (Figs. 1a and 4a, b) and a sub-
ordinate number of normal faults, rifts and grabens in East and
Southeast Asia that strike at an oblique angle or sub-
perpendicularly to the Western Pacific and Sunda subduction
margins (Figs. 1a and 4a, b). We note that there is also agreement
in terms of extension magnitude, with major extension in
northern East Asia, moderate extension in central East Asia and
minor east–west extension in the Tibetan region (Fig. 6a–d).
Finally, there is also agreement between the best-fitting models
and nature in terms of displacements, with east- and southeast-
directed displacement fields in East and Southeast Asia, respec-
tively, that are reproduced in the experiments (Fig. 5a, b).

Some discrepancies between observations and models are also
evident, such as the occurrence in nature of local zones of com-
pressive tectonics along the Pacific and Sunda margins during the
latest Cenozoic. For example, a local segment of the Sunda con-
vergent margin in the southeasternmost part of Southeast Asia
(Timor–Banda segment) has experienced shortening tectonics
due to continental subduction of Australian continental passive
margin, which initiated ~3.5 Ma35, while backarc spreading and
extensional tectonics in the Banda Sea took place until as recently
as 3 Ma36 (Fig. 1a). Along the Pacific margin, Taiwan and
northern Honshu Island in Japan have also experienced short-
ening, but again, these are relatively local phenomena compared
to the scale of East and Southeast Asia and they have only been
active since 3–2Ma for Taiwan37 and ~3.5 Ma for northern
Honshu38. There are also reports of short-lived (~1–2Myr)
inversion and compression for older times along the East and
Southeast Asian margins, such as during the late Oligocene in the
southern Sumatra basin39 and the Chezhen basin, a sub-basin of
the Bohai basin in Northeast China40. Such local, short-lived
phases of overriding plate compression and shortening can be
explained, for example, by subduction of a short aseismic ridge or
small oceanic plateau41. These phases of compression, shortening
and inversion are thus local and lasted only for a short duration,
while the overall, large-scale, tectonics of East and Southeast Asia
during most of the Cenozoic has been dominated by extension, as
is evident from Fig. 1a.

Another discrepancy between our models and observations
relates to large dextral strike-slip faults located near, and running
sub-parallel to, or striking obliquely to, the East Asian margin,
such as the Tan–Lu fault and the Sakhalin–Hokkaido dextral
shear zone (Fig. 1a). The latter, bordering the Sea of
Okhotsk–Kuril basin backarc domain, has up to several hundred
kilometres of dextral offset and has been explained by local
asymmetrical slab rollback of the Kuril–Kamchatka subduction
segment26. The Tan–Lu fault, although hundreds of kilometres
long, has a Cenozoic dextral offset of only ~21 km42. Further-
more, this fault and the Bohai Bay basin immediately west of it
have accommodated dextral transtension, of which the dextral
component has been interpreted as resulting from the oblique
convergence between the Pacific and Eurasian plates42,43. We
note, however, that model IINT-R also shows signs of dextral
transtension near the Western Pacific subduction boundary along
the Ryukyu–Japan–Kuril–Kamchatka segment.

The conclusion that the Asian tectonic evolution is best char-
acterized by II= 1740 ± 300 km (R= ~0.40–0.52) has important
implications for domain boundary migrations and upper mantle
volume fluxes in the eastern hemisphere. With II= 1740 km, the
total upper mantle volume flux induced by the advancing Indian
slab is roughly 3.5 × 109 km3 over 52Myr, while those of the
retreating Western Pacific slabs and Sunda slab are roughly 2.0 ×
109 km3 and 1.7 × 109 km3 over ~52Myr, respectively (Fig. 1c). It
implies that, since ~52Ma the upper mantle domain beneath East
Asia has been growing at an average rate of ~100 m3 s−1, the
Indian upper mantle domain has been growing at ~1100 m3 s−1,
while the Pacific upper mantle domain has been shrinking at
~1200 m3 s−1. We propose that, to accommodate the expansion
in easternmost Asia, mantle material north of the Indian slab has
moved eastward, consistent with East Asian geochemistry of
Cenozoic magmatic rocks showing a Dupal signature44 and
shear-wave splitting observations showing an overall approxi-
mately east–west trend below East China45,46 (Fig. 1b, c) and in
agreement with the general mantle flow pattern observed in our
models (Fig. 7). Locally, Pacific mantle material has likely infil-
trated the Asian domain through slab windows below northern-
most Kamchatka and the Taiwan–Philippines region (Fig. 1b, c).
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The hole left by Indian indentation and slab advance has been
partly filled by Burma–Sunda slab-rollback-induced mantle flow
and by toroidal mantle return flow around the eastern and wes-
tern Himalayan syntaxes, as suggested by shear-wave splitting
observations45.

We note that shear-wave splitting observations imply a tighter
toroidal flow around the eastern syntaxis than observed in the
models. This could be because of two reasons. First of all, it is
likely that there is a small slab window just south of the eastern
syntaxis, because the Arakan slab only continues to ~26.5°
north47, while the northern edge of the eastern syntaxis is at ~28°
north. In addition, there is likely a slab window between the
Arakan slab and the Andaman slab (between ~15° and ~20°
north) and the Arakan slab is likely also segmented and torn47.
Such slab windows/gaps/tears would allow mantle material to
flow from the Tibetan side (higher dynamic pressure), around
the eastern syntaxis and towards the Indian side south of the
Himalayan slab (lower dynamic pressure), as illustrated by the
orange arrow in Fig. 1b. The orientation of flow is consistent with
shear-wave splitting results47. In the analogue models, there is no
slab window present in the Indian indenter near the eastern
syntaxis, so inflow into the region south of the Indian indenter
front is not possible and so toroidal return flow is more limited. A
second reason could be that the analogue models use a linear
viscous (Newtonian) rheology for the sub-lithospheric mantle,
while the sub-lithospheric mantle in nature is possibly dominated
by a non-linear power law rheology48. Such a power law rheology
enhances strain localization thereby promoting tighter, more
localized, toroidal return flow patterns around lateral slab edges.

To return to the topic of mantle flow in the Indian domain, we
propose that inflow into the Indian domain is also partly
accommodated by southwest to west-directed Pacific mantle flow
from the Philippine Sea domain towards New Guinea and
northern Australia south of and sub-parallel to the Java–Banda
slab wall (Fig. 1b, c). This is consistent with shear-wave splitting
observations49. Our models thus imply large-scale exchange and
mixing of mantle material between the Indian, Asian and Pacific
domains along a clockwise circulation pattern, leaving an imprint
on the structure, dynamics and chemistry of crust and mantle.

Methods
Experimental set-up. We use four-dimensional analogue laboratory experiments
of Asian deformation, as they allow us for the first time to integrate several geo-
dynamic processes including continental indentation, subduction rollback, mantle
flow and continental gravitational spreading on a very large spatial scale. The
experiments provide us a means to quantify and reproduce the surface strain field,
displacement field, mantle flow patterns and topography at an unprecedented large
scale (representing thousands of kilometres) and at the same time allow us to
simulate small-scale (representing kilometre scale) strain localization through
faulting and shearing.

The experiments consist of a layered rheological system, with a brittle top layer
and underlying high-viscosity layer representing the continental lithosphere and a
low-viscosity bottom layer representing the sub-lithospheric mantle, following
earlier experimental work on continental lithospheric deformation and backarc
extension26,50. The lithosphere is confined within an internal rectangular
compartment, 100 cm × 110 cm horizontally, that is located within a larger
rectangular box, 130 × 150 cm, that is filled with the sub-lithospheric mantle
(Fig. 2). At sub-lithospheric mantle depth, the internal compartment (representing
the Eurasian domain) and the outer domain (representing the oceanic domains)
are connected through a window in the southeastern corner (representing a slab
window zone in Southeast Asia) such that the continental lithosphere inside the
internal compartment is isostatically supported by the sub-lithospheric mantle and
is in isostatic equilibrium with the oceanic domains.

Continental deformation in the Central, East and Southeast Asian lithosphere is
enforced through three externally driven boundaries to simulate approximately
northward Indian indentation, approximately southward rotational rollback of the
Sunda subduction zone and approximately eastward translational–rotational
rollback of the Western Pacific subduction zones (Fig. 2). Considering that we
impose velocities, our models are not fully dynamic (exclusively buoyancy-driven)
but include both kinematically imposed forces and internal buoyancy forces. The
velocities of the three boundaries can be set individually by three individual step-

motors. The northern (leading) boundary of the Indian intender block represents
the Indian subduction hinge and slab, and so the advance velocity of this block,
which is determined by step-motor 1, is exactly the advance velocity of the
subduction hinge and slab. The retreating boundaries that are connected to step-
motors 2 and 3 represent the retreating slabs and subduction hinges of the Sunda
and Western Pacific subduction margins, respectively, and their velocities represent
the retreat velocities of the subduction hinges and slabs. The boundary velocity
values for the different experiments discussed in the text are listed in Table 1.

Our models do not include subduction zone plate boundary-induced simple
shear, as is also the case for earlier models of India–Asia indentation and Asian
deformation9,11,12,19. We note that the simple shear at the continental and oceanic
subduction boundaries impose a local deformation on the overriding plate, as the
length-scale of the deformation induced by the simple shear scales with the down-
dip length of the subduction zone interface (e.g. see ref. 51), which is of the order
100–200 km. As such, the simple shear at the subduction boundaries is not
significant for the large-scale (thousands of km), widespread deformation of
Central, East and Southeast Asia that is the focus of this study.

For the current study, we have chosen analogue experiments as our geodynamic
modelling method, as they have a number of advantages for the purpose of this
study compared to other geodynamic modelling methods, namely: (1) The
analogue models are inherently four-dimensional (three-dimensional space+time).
(2) The analogue models can be conducted at a massive scale (e.g. continental
lithosphere of 8000 km × 8800 km), while still retaining enough resolution at small
scale to simulate shear localization and brittle faulting in the upper part of the
continental lithosphere. (3) The models have a free top surface such that they can
produce mountain topography and morphology that are comparable to that in the
Tibet–Himalaya region, as well as basin bathymetry and morphology that are
comparable to the marginal basins in East and Southeast Asia.

Scaling of experiments and experimental materials. The experiments are scaled
for gravity such that they fulfil the requirements of geometrical, kinematic and
dynamic similarity with respect to the natural prototype52–57. The scaling para-
meters are listed in Table 2. Previous models simulating Asian deformation that
were scaled for gravity and were isostatically supported by an asthenosphere12,19,20

used smaller scaled lengths than the current study. In the current experiments, a
length-scale factor of 1.25 × 10−7 is applied (1 cm represents 80 km) such that the
Indian indenter width (east–west) of 30 cm represents 2400 km in nature
(approximate width of Indian indenter), a 50 cm retreating Sunda subduction
boundary represents 4000 km, a 100 cm Western Pacific retreating subduction
boundary represents 8000 km and a continental lithosphere thickness of 1.3 cm
represents 104 km. These scaled model dimensions are of comparable magnitude as
those in nature at the onset of collision at ~50Ma (Fig. 1c). The sub-lithospheric
mantle layer is 7.7 cm thick, representing 616 km in nature. Each experiment lasts
40 h, which represents ~52 million years in nature, giving a model/nature timescale
factor of 8.781 × 10−11. We note that, in our models, the thickness of the Asian
continental lithosphere and the thickness of its individual layers are constant at the
start of each model run. It is therefore evident that we did not consider any
potential lateral variations in lithospheric thickness caused by earlier phases of
deformation of the Asian lithosphere.

In the experiments, we scale for density contrasts56 and we adopt a constant
density for the continental lithosphere of 1232 ± 7 kg m−3 and a constant density
for the sub-lithospheric mantle of ρSLM= 1426 ± 2 kg m−3, giving a density
contrast Δρ(model)= 194 ± 9 kg m−3. This is equivalent to the density contrast in
nature of Δρ(nature)= 194 kg m−3 assuming a sub-lithospheric mantle density of
3250 kg m−3, a 40-km-thick crust with density 2745 kg m−3 and 64-km-thick
lithospheric mantle with density 3250 kg m−3. Scaling for density contrasts
requires that for the scaling of surface topography we need to apply a correction
factor CTopo as discussed in ref. 56, with CTopo= ρSLM(model)/ρSLM(nature) ≈ 0.44.

The rheological layering of the continental lithosphere and underlying sub-
lithospheric mantle in the experiments is achieved using different materials with
different rheological behaviour, following earlier work12,19,26,50,52. The 1.3-cm-
thick-layered model lithosphere (0.3 cm brittle top and 1.0 cm viscous bottom)
represents a simplified layered Asian continental lithosphere with a 24-km-thick
brittle top and an 80-km-thick viscous bottom.

The brittle top layer of the continental lithosphere consists of fine-grained glass
microspheres (grain size= 90–180 μm) mixed with hollow glass microspheres to
attain the correct density. Granular materials such as sand and glass microspheres
have a frictional-plastic (brittle) rheology that follows the Mohr–Coulomb failure
criterion58–60, show strain localization61 and display strain weakening58. The
microspheres used here have a coefficient of internal friction μ= 0.65 at peak
strength59, which falls in the natural range (0.49–1.00)59, are well rounded, have a
high sphericity and have a very low cohesion of 0–15 Pa, which scales to values of
0–120MPa in nature, in accordance with reported values for the natural prototype
(15–110MPa)59.

The viscous lower layer of the continental lithosphere consists of a high-
viscosity silicone oil mixed with fine-grained iron powder to attain the right
density. The silicone is a polydimethylsiloxane that has been used frequently in
lithospheric and mantle scale laboratory experiments12,19,26,50,52,62–64 and has a
Newtonian viscosity at experimental strain rates (<10–2 s−1)65,66. The mix has a
dynamic shear viscosity of 5.8 ± 0.2 × 104 Pa s.
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The bottom layer representing the sub-lithospheric mantle consists of glucose
syrup, which is a Newtonian viscous material67, with a dynamic shear viscosity of
254 ± 7 Pa s at 20 ± 0.5 °C, which is the temperature at which the experiments are
conducted. With a viscosity scaling factor of 1.1 × 10−17, the experimental sub-
lithospheric upper mantle viscosity represents 2.3 × 1019 Pa s in nature, which is in
general accordance with values estimated previously68–70, which are of the order
1019–1020 Pa s.

Dynamic scaling requires that the experiments are conducted in the same flow
regime as in nature56 (laminar flow regime with dihedral symmetry across two
orthogonal planes), which demands that the Reynolds number Re << 1, with Re=
ρvd/η. Here ρ is the density of the ambient fluid (1426 kg m−3 for the sub-
lithospheric mantle), v is the characteristic velocity (we take the velocity of the
Indian indenter for experiment IINT-R, vI= 1.6 × 10−6m s−1), d is the
characteristic length scale (we take the width of the Indian indenter, d= 0.30 m)
and η is the dynamic shear viscosity of the ambient fluid (254 Pa s for the sub-
lithospheric mantle). This gives an experimental Re= 2.7 × 10−6 << 1.

Considering that the experiments are scaled for gravity, that the Asian
continental lithosphere is isostatically supported and that there are lateral density
differences between the continental and oceanic domains, there are elevation
differences and gravitational potential energy differences in the experiments. The
average density of the continental Asian lithosphere is lower than that of the
oceanic domains, and therefore its elevation and potential energy are higher than
that of the surrounding oceanic domains. With a length scaling factor of 1.25 ×
10−7 in our models and a CTopo= 0.44, we calculate that the elevation of the
undeformed continental lithosphere with respect to the oceanic domains scales to

6.2 km. This is effectively the same as the elevation difference in nature (~6 km)
with an average ocean basin depth in the Western Pacific and Northeast Indian
Ocean of ~5–6 km below sea level and an average continental elevation of ~0–1 km
above sea level.

Recording of experiments. The experiments have been recorded with a particle
image velocimetry (PIV) system using four digital cameras. Camera one provided a
top view overview of the entire experiment in order to record the progressive
evolution of the surface structures and to extract the evolution of the surface strain
field and displacement field. Cameras two and three were set up in stereoscopic
arrangement (sPIV) in order to extract the progressive evolution of the surface
topography of part of the experimental surface area. Camera four provided an
oblique view to record the progressive evolution of the surface structures. Details
on PIV and sPIV recordings for flow, surface strain and surface topography can be
found in earlier works63,71–73.

Rates of advance and retreat. We test the role of the advance rate (indentation
rate) of the India–Eurasia collisional boundary, i.e. the rate of migration of the
Indian continental subduction zone hinge and slab towards the overriding Eurasian
plate, on the style and extent of widespread continental deformation in Central,
East and Southeast Asia. This advance rate is varied with respect to the rollback
(retreat) rates of the Western Pacific and Sunda subduction zones, which are kept
constant except for experiment IINT-NR where the rollback rates are zero. We keep
these Western Pacific and Sunda rollback rates constant because they are better

Table 1 Experimental and scaled displacements and displacement rates of the three plate boundaries

Experiment Plate boundary Advance/

retreat [cm]

Advance/retreat

rate [cm h−1]

Scaled advance/

retreat [km]

Scaled advance/retreat

ratea [cm year−1]

R (vI− vWP)/

(vI+ vWP)

IMIN-R (minimum

indentation, with rollback)

India

Western Pacific

Sunda

13.12

7.95

11.00

0.328

0.199

0.275

1050

636

880

2.02

1.22

1.69

0.25

IINT-R (intermediate

indentation, with rollback)

India

Western Pacific

Sunda

23.60

7.95

11.00

0.590

0.199

0.275

1888

636

880

3.63

1.22

1.69

0.50

IMAX-R (maximum

indentation, with rollback)

India

Western Pacific

Sunda

34.10

7.95

11.00

0.852

0.199

0.275

2728

636

880

5.25

1.22

1.69

0.62

IINT-NR (intermediate

indentation, no rollback)

India

Western Pacific

Sunda

23.60

0

0

0.590

0

0

1888

0

0

3.63

0

0

1.00

NI-R (no indentation, with

rollback)

India

Western Pacific

Sunda

0

7.95

11.00

0

0.199

0.275

0

636

880

0

1.22

1.69

−1.00

I-RMO (maximum

indentation, with rollback)

(no brittle top)

India

Western Pacific

Sunda

0.852

0.199

0.275

5.25

1.22

1.69

0.62

aThis is calculated from the scaled advance/retreat and the timing of onset of India–Eurasia collision, which we take as 52Ma3

Table 2 Experimental scaling parameters

Parameter Notation Dimensions Experiment Nature Scaling factor (experiment/nature)

Gravity g [m s−2] 9.8 9.8 1

Thickness 1.25 × 10−7

Continental lithosphere TCL [m] 0.013 1.04 × 105

Sub-lithospheric mantle TSLM [m] 0.08 6.40 × 105

Density

Continental lithosphere ρCL [kg m−3] 1232 ± 7 3056

Sub-lithospheric mantle ρSLM [kg m−3] 1426 ± 2 3250

Density contrast (ρSLM – ρCL) Δρ [kg m−3] 194 194 1

Time t [s] 3600 4.100 × 1013 8.781 × 10−11

Coefficient of internal friction (brittle lithosphere) μ 0.65 0.65 1

Cohesion (brittle lithosphere) C [Pa] 0–15 0–1.2 × 108 1.25 × 10−7

Viscosity 1.1 × 10−17

Viscous lithosphere ηCL [Pa s] 5.8 ± 0.2 × 104 5.3 × 1021

Sub-lithospheric mantle ηSLM [Pa s] 254 ± 7 2.31 × 1019

Topography h [m] 0.001 3520 1.25 × 10−7/CTopo= 2.84 × 10−7
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constrained from reconstructions, total extension estimates and seismic
tomography26,74–78 than the Indian hinge advance rate, which is less constrained
due to uncertainty in the total amount of Asian shortening. With this analogue
modelling approach, we can, for the first time, provide insight into the possible
dynamic interaction between the Pacific and Sunda subduction zones and the
collision zone and how this has shaped the Asian landscape and interior. The
advance rate can be derived from the amount of shortening that has been
accommodated in the overriding plate since the start of collision between India and
Eurasia, which we assume to have occurred at 52 Ma and is within the range of
52–55Ma proposed recently3. Total shortening estimates range from a minimum
of ~1000 km to a maximum of 1800–2000 km2,3. These estimates provide geolo-
gically constrained lower and upper bounds for the advance rate of 2.0 and 3.6 cm
year−1, respectively. We also test Asian deformation with an absolute maximum
advance rate of 5.2 cm year−1 assuming that the India–Eurasia convergence rate
(some 5–6 cm year−1 averaged over the past 52Myr6) is accommodated entirely by
indentation of Eurasia. Finally, we have run several other experiments (not shown),
one of which tested Asian deformation without India–Asia indentation (Indian
advance rate= 0 cm year−1). This experiment is dominated by rift and graben
structures, most of them striking (sub)parallel to the Pacific subduction boundary
in the east and northeast and sub-parallel to the Sunda subduction boundary in the
south, as well as a significant number of extensional structures that have an oblique
or perpendicular strike with respect to the subduction boundaries.

East–west extension in Asia. The approximate range of values for the total
amount of WNW–ESE extension in northern East Asia along profile 1 in Fig. 1b
due to Cenozoic extensional faulting and backarc basin opening is presented in
Fig. 6a, c. This range is based on 31–56 km of extension in the Japan arc38 (we
choose 40 km ± 15 km), 500 km (±100 km) of Japan Sea opening based on tectonic
reconstructions for the region76,77, an estimated 10 km (±5 km) for the narrow
Yilan Yitong graben and 30 km (±10 km) of extension in the Baikal rift zone79.
This gives a total extension of 580 km (±130 km).

The approximate range of values for the total amount of WNW–ESE extension in
central East Asia along profile 2 in Fig. 1b due to Cenozoic extensional faulting and
backarc basin opening is presented in Fig. 6a, c. This range is based on estimates of
relatively minor extension of 5 km (±5 km) for each of the following rifts/basins:
Hetao–Yinchuan rift, Shanxi rift, Southwest Bohai basin, and the region between the
Southwest Bohai Basin and East China Sea (giving a sub-total of 20 km ± 20 km);
40 km (±10 km) for the East China Sea margin; and 60 km (±15 km) for the
Okinawa Trough. These last two estimates are based on the present-day average
crustal thickness in the East China Sea margin (27 km) and Okinawa Trough
(18 km) and the average crustal thickness of the undeformed margins (30 km) as
derived from a regional crustal thickness map80 and the extension implied by this
crustal thickness difference. This gives a total extension of 120 km (±45 km).

The approximate range of values for the total amount of east–west extension in
Tibet due to Cenozoic normal faulting along approximately north–south to
NNE–SSW trending grabens and rifts is presented in Fig. 6d. This range is based
on earlier published estimates, which are of the order 20 km28, ≤40 km2 and
50–70 km33.

Data availability
All the data generated by the laboratory experiments that are necessary to evaluate this

work are included in this published article. All the data and information that are required

to reproduce the laboratory experimental results are presented in this published article.
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