
Pacifier: High-Throughput, Reliable Multicast without

“Crying Babies” in Wireless Mesh Networks

Dimitrios Koutsonikolas, Y. Charlie Hu, Chih-Chun Wang
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

{dkoutson, ychu, chihw}@purdue.edu

Abstract—In contrast to unicast routing, high-throughput re-
liable multicast routing in wireless mesh networks (WMNs) has
received little attention. There are two primary challenges to
supporting high-throughput, reliable multicast in WMNs. T he
first is no different from unicast: wireless links are inherently
lossy due to varying channel conditions and interference. The
second, known as the “crying baby” problem, is unique to
multicast: the multicast source may have varying throughput
to different multicast receivers, and hence trying to satisfy
the reliability requirement for poorly connected receivers can
potentially result in performance degradation for the rest of the
receivers.

In this paper, we propose Pacifier, a new high-throughput
reliable multicast protocol for WMNs. Pacifier seamlessly in-
tegrates four building blocks, namely, tree-based opportunistic
routing, intra-flow network coding, source rate limiting, and round-
robin batching, to support high-throughput, reliable multicast
routing in WMNs, while at the same time effectively addresses
the “crying baby” problem. Our evaluations show that Pacifier
increases the average throughput over a practical, state-of-the-art
reliable network coding-based protocol MORE by 171%, while
improving the throughput of well-connected receivers by upto
a factor of 20.

I. I NTRODUCTION

Wireless mesh networks (WMNs) are increasingly being
deployed for providing cheap, low maintenance Internet access
(e.g. [1], [2], [3]). These networks have statically deployed
mesh routers that are not energy constrained, and hence the
main design challenge is to improve applications’ perfor-
mance, in particular, to provide high throughput and reliability
in network access. Indeed, recent years have witnessed nu-
merous “exotic” protocols that aim to improve the throughput
and reliability of unicast routing. These include opportunistic
routing (OR) protocols (e.g., [4]), protocols that exploitinter-
flow (e.g., [5]) or intra-flow (e.g., [6]) network coding, as well
as lower layer protocols (e.g., [7]).

In contrast to unicast routing, high-throughput, reliablemul-
ticast routing has received relatively little attention. Reliable
multicast routing has many important applications in WMNs,
such as software updates and video/audio file downloads.
These applications have a strict requirement of100% Packet
Delivery Ratio (PDR), since every byte of the downloaded
file has to be received byall the receivers. This requirement
makes many of the reliable multicast protocols proposed in
the past (e.g., [8], [9], [25]) inappropriate, since they cannot
guarantee 100% PDR. In addition, reliability for this classof
applications cannot come at the cost of significantly reduced

throughput, unlike in military applications [8], since Internet
users always desire fast downloads.

The fundamental challenge in achieving reliable multicast
in WMNs is no different from that of reliable unicast – that
wireless links are lossy. To overcome this, researchers have
applied classic techniques such as Automatic Repeat reQuest
(ARQ), Forward Error Correction (FEC), or combinations of
the two. The majority of the works on reliable multicast in
multihop wireless networks either are solely based on ARQ
(e.g., [10], [11]) which suffer the feedback implosion problem,
or combine ARQ with congestion control (e.g., [8], [12], [13]).
A recent work [14] studied the applicability of FEC and hybrid
ARQ-FEC techniques, borrowed from the wired Internet, to
WMNs, and showed that RMDP [15], a hybrid ARQ-FEC
protocol, can achieve both reliability and high throughput.

More recently, researchers have applied network coding
(NC), a technique originally developed for the wireline In-
ternet, to overcome the above challenge. [16] showed that
the operation of mixing packets resembles the operation of
rateless FEC codes. Actually, NC can be viewed as a technique
equivalent to performing hop-by-hop FEC, without the delay
penalty incurred by the decoding operations at each hop, that
would be required by hop-by-hop FEC. In [17], the authors
went one step further and showed that the reliability gain
(expressed as the expected number of transmissions) of NC
over end-to-end FEC for a wireless multicast tree of heighth

with link loss ratep is in the order ofΘ((1
1−p

)h).
Practical work that exploits the idea of utilizing NC for

reliable multicast is still at a preliminary stage. MORE [6]
is the only practical NC-based protocol that supports high-
throughput, reliable multicast. It combines NC with oppor-
tunistic routing, with the primary goal of removing the need
for coordination required in opportunistic routing. However,
the design of MORE also guarantees reliability, i.e., MORE
is a routing protocol forreliable file transfer, for both unicast
and multicast.

A second fundamental challenge in reliable multicast, which
is unique to multicast, is the “crying baby” problem as first
pointed out in [18] in the context of multicast in the Inter-
net. If one receiver has a particularly poor connection, then
trying to satisfy the reliability requirement for that receiver
may result in performance degradation for the rest of the
receivers. This problem also raises the interesting question of
what is a suitable definition of overall performance metric if
multiple receivers are allowed to achieve uneven throughput.

IEEE INFOCOM 2009

2

Regardless, a major challenge in the design of high throughput,
reliable multicast protocols is whether it is possible to develop
a protocol that improves the throughput of well-connected
receivers without worsening the already low throughput of
poorly-connected receivers.

In this paper, we proposePacifier, a high-throughput, reli-
able multicast protocol that systematically addresses theabove
two challenges.Pacifier seamlessly integrates four building
blocks, namely,tree-based opportunistic routing, intra-flow
NC, source rate limiting, and round-robin batching,to support
high-throughput, reliable multicast routing and at the same
time solve the “crying baby” problem. First,Pacifierbuilds an
efficient multicast tree traditionally used by multicast protocols
and naturally leverages it for opportunistic overhearing.Sec-
ond,Pacifierapplies intra-flow, random linear NC to overcome
packet loss over lossy links which avoids hop-by-hop feedback
and the coordination of multicast tree forwarders in packet
forwarding. Third,Pacifier applies rate limiting at the source,
reducing the congestion level in the network. Fourth,Pacifier
solves the “crying baby” problem by having the source send
batches of packets in a round-robin fashion. This functionality
allows Pacifier to improve the throughput of well-connected
nodes drastically and often times of poorly-connected nodes.
The reason for the later is that as more and more receivers
complete decoding, the source can prune the tree branches
towards them, reducing the number of FNs and the amount of
contention in the network.

We evaluatePacifier and compare its performance against
MORE, using extensive realistic simulations. Our simulation
results show thatPacifier increases the average throughput of
multicast receivers over MORE by 171%, while it solves the
“crying baby” problem, by increasing the maximum through-
put gain for well-connected receivers by up to 20x. Interest-
ingly and importantly,Pacifier also improves the throughput
of the “crying babies”, i.e., the poorly connected receivers, by
up to 4.5x.

To our best knowledge,Pacifier is the first practical mul-
ticast protocol that simultaneously satisfies both requirements
posed by protocols designed for commercial WMNs: it guar-
antees 100% PDR, while simultaneously offering significant
throughput improvements forall receivers over state-of-the-
art protocols. While the design ofPacifier is based on the
numerous principles developed over the past fifteen years in
the field of reliable multicast, the use of NC makes the inte-
gration of these techniques much simpler and more efficient.
Finally, Pacifieruses the same type of NC as MORE, and has
the same memory requirements at the routers, and hence, like
MORE, it can be easily implemented on commodity hardware.

II. RELATED WORK

In spite of the extensive research on reliable multicast
in the wired Internet, which went through the development
of ARQ-based schemes (e.g., [19], [18]), to FEC schemes
(e.g., [20]), to hybrid ARQ-FEC schemes (e.g., [21], [15],
[22]), to rateless codes (e.g., [23]), the majority of the work
on reliable multicast in multihop wireless networks have used

the traditional ARQ techniques. A survey on reliable multi-
cast protocols for ad hoc networks [24] classifies them into
deterministic and probabilistic ones, depending on whether
data delivery is fully reliable or not. Deterministic protocols
(e.g., [10], [8], [12], [11]) provide deterministic guarantees
for packet delivery ratio, but they can incur excessive high
overhead and drastically reduced throughput. On the other
hand, probabilistic protocols (e.g., [9], [25]) incur muchless
overhead compared to the former, but they do not offer hard
delivery guarantees. Using rateless codes requires the source to
continuously send packets, which can cause congestion in the
bandwidth-limited wireless networks. Recently, [14] studied
the applicability of FEC and hybrid ARQ-FEC techniques,
borrowed from the wired Internet, to WMNs, and showed that
RMDP [15], a hybrid ARQ-FEC protocol, can provide both
reliability and high throughput.

Most recently, intra-flow network coding (NC) has been
proposed as a whole new approach to reliable routing. NC
in theory is equivalent to hop-by-hop FEC [16], [17], and
hence the maximum amount of redundancy injected from
any node in the network is determined by the lossiest link
of the tree, and not by the lossiest path from the source
to any receiver, unlike in end-to-end FEC. However, hop-
by-hop FEC/NC also has its practical drawbacks; it requires
buffering packets at each node for decoding/re-encoding (in
case of FEC) or only re-encoding (in case of NC). Due to the
constraints on the buffer size and on packet delay, NC needs
to send packets in batches, i.e., the source needs to wait till a
batch is received by all receivers before proceeding to the next
batch. This introduces the “crying baby” problem, where the
poorly connected receivers slow down the completion time of
well-connected receivers.

To our best knowledge, MORE is the only NC-based
protocol for high-throughput, reliable multicast (thoughit is
also for unicast). Due to its significance, and since we will
comparePacifieragainst it in our evaluation, we present a brief
overview of MORE below. To our knowledge, the only other
practical NC-based multicast protocol is CodeCast [26], which
exploits NC for improvingbut notguaranteeingreliability in
multimedia multicast applications in mobile ad hoc networks.

A. Overview of MORE

MORE [6] is an opportunistic routing protocol for reliable
file transfer. MORE is implemented as a shim between the IP
and the 802.11 MAC layer. We briefly review its two major
features: forwarding node (FN) selection and packet batching.

FN selection. MORE uses the ETX metric [27], based on
loss rate measurements, to select the possible FNs. For each
destination the source includes in the FN list the nodes whose
ETX distance to that destination is shorter than the source’s
distance. Also, for each FN the source includes aTX credit
in the FN list. TheTX credit is the expected number of
transmissions a node should make for every packet it receives
from a node farther from a destination in the ETX metric, in
order to ensure that at least one node closer to the destination
will receive the packet.

3

The algorithm for FN selection and TXcredit calculation
is run at the source. The algorithm starts by assuming that
every node is a candidate FN for a source-destination pair
and calculates the expected number of transmissions this
node would make. It then prunes nodes that are expected to
perform less than 10% of the total transmissions and assigns
TX credits to the remaining ones, which form a belt of FNs
that connect the source to the destination. The algorithm is
repeated for each destination; in the end the belts formed for
each destination are merged into the final FN set. If an FN
belongs to more than one belts, the algorithm calculates a
different expected number of transmissions for each of the
belts it belongs to. Its final TXcredit is then calculated using
the maximum number of transmissions among these belts.

Batching and Coded Packet Forwarding. In MORE, the
source breaks a file into batches ofk packets. Whenever the
MAC is ready to send a packet, the source creates a random
linear combination of thek packets of the current batch and
broadcasts the encoded packet. Each packet is augmented with
its code vector, the batch ID, the source and destination IP
addresses and the list of FNs for that multicast, with their
TX credits.

Packets are broadcast at the MAC layer, and hence they
can be received by all nodes in the neighborhood. When
a node hears a packet, it checks if it is in the packet’s
FN list. If so, the node checks if the packet islinearly
independentwith all the packets belonging to the same batch
that it has already received. Such packets are calledinnovative
packetsand are stored in a buffer. Non-innovative packets
are discarded. Every time a node receives a packet from an
upstream node, it increments itscredit counterby its assigned
TX credit included in the packet header. If its creditcounter
is positive, whenever the MAC is ready to send a packet, the
node creates a linear combination of the innovative packetsit
has received so far1 and broadcasts it. Broadcasting a packet
decrements the creditcounter by one unit.

Finally, a multicast receiver decodes a batch once it collects
k innovative packets from that batch. It then sends an ACK
back to the source along the shortest ETX path in a reliable
manner.

III. Pacifier DESIGN

The design ofPacifier addresses several weaknesses of
MORE. In particular, the belt-based forwarding in MORE can
be inefficient for multiple receivers, MORE lacks source rate
limiting which can lead to congestion in data dissemination,
and MORE suffers the “crying baby” problem.

For clarity, we present the design ofPacifier in several
steps. We first present a basic version ofPacifier, which
consists of several building blocks: tree-based opportunistic
multicast routing, batching and network coding-based forward-
ing, credit calculation. The basic version guarantees reliability
and already increases throughput compared to MORE. We

1Linear combinations of encoded packets are also linear combinations of
the original packets.

then present two more optimizations: source rate limiting
which avoids congestion and further improves the throughput,
and round-robin batching, which solves the “crying baby”
problem.

A. Tree-based Opportunistic Routing

We argue that the use of opportunistic routing in the form
used in MORE is an overkill for multicast and it can lead to
congestion, for two reasons. First, even for a single destination,
congestion can occur if too many nodes act as FNs, or if
the FNs are far from each other and they cannot overhear
each other’s transmissions [28]. The situation is worsened
when the number of flows increases, since almost all nodes
in the network may end up acting as FNs. Such performance
degradation was observed in the evaluation of MORE in [6] for
many unicast flows; the situation is not very different for many
hypothetical unicast flows from a source to many multicast
receivers. Second, the benefit of overhearing of broadcast
transmissions, which is explored by opportunistic routingin
MORE, is naturally explored in a fixed multicast tree, where
the use of broadcast allows nodes to receive packets not only
from their parent in the multicast tree, but also from ancestors
or siblings, essentially transforming the tree into a mesh.
We note this property of opportunistic reception of broadcast
transmissions has been previously exploited in the design of
some of the first multicast protocols for multihop wireless
networks (e.g., ODMRP [29]), for improving the PDR.

The above observation motivates a simple multicast-tree
based opportunistic routing design. Specifically,Pacifierstarts
by building a multicast tree to connect the source to all multi-
cast receivers. The tree is a shortest-ETX tree, constructed at
the source by taking the union of all the shortest-ETX paths
from the source to the receivers, which in turn are based
on periodic loss rate measurements.2 The multicast tree is
reconstructed at the source every time some receiver completes
a batch (Section III-A1) and notifies the source.

1) Batching and Coded Forwarding:As in MORE, the
source and the intermediate FNs inPacifier use intra-flow
random linear NC. The hop-by-hop nature of NC requires the
source to break a file into small batches of packets so that the
packet header overhead, encoding/decoding time, and memory
requirements at the intermediate FNs remain low. We selected
a batch size ofk = 32 packets inPacifier, same as in [6], [30].
For each batch, the source sends random linear combinations
of the packets belonging to that batch. The random coefficients
for each linear combination are selected from a Galois Field
of size28, again same as in [6]. Intermediate FNs store all the
innovative packets of the batch and also send random linear
combinations of them. Every transmitted encoded packet is
augmented with its coding vector, i.e., the vector of the random
coefficients used to generate that packet. When a receiver
receives anyk linearly independent coded packets of a batch,
it decodes the batch to obtain thek original packets. It then

2As [6] argues, periodic link loss rate measurements and their distribution
to all nodes in the network is required in all state-of-the-art routing protocols,
and the overhead this process incurs is not consideredPacifier-specific.

4

sends an ACK back to the source along the shortest ETX path
in a reliable manner.

To achieve reliability, this basic version ofPacifieruses the
following batch termination scheme: the source keeps trans-
mitting packets from the same batch, untilall the receivers
acknowledge decoding of this batch. Such a transmission
scheme however introduces the “crying baby” problem as the
completion time of each batch is limited by that of the worst
receiver.

2) How many packets does an FN send?:Despite the use
of a multicast tree for data forwarding, the use of 802.11
broadcast effectively enables opportunistic routing, i.e., a node
can opportunistically receive packets from nodes other than
its parent in the multicast tree. If a node forwards every
packet it receives, a receiver could potentially receive each
packet originated from the source multiple times. To avoid
unnecessary transmissions, we need to carefully analyzehow
many (coded) packets an FN should send upon receiving a
data packet.

Since, in practice, an FN should be triggered to transmit
only when it receives a packet, we derive the number of
transmissions each FN needs to make for every packet it
receives. We define this number as the TXcredit for that
FN. Thus, inPacifier, an FN nodej keeps a credit counter.
When it receives a packet from anupstreamnode (defined
below), it increments the counter by its TXcredit. When the
802.11 MAC allows the node to transmit, the node checks
whether the counter is positive. If yes, the node creates a
coded packet, broadcasts it, then decrements the counter. If
the counter is negative, the node does not transmit. We note
that opportunistic reception of data packets is always allowed,
even from downstream nodes. The credit calculation is on how
many packets to be transmitted by the FN upon receiving a
data packet from an upstream node.

In the analysis, we focus on disseminating one data packet
from the root down the multicast tree. Our analysis is based
on the simple principle that in disseminating a packet from
the root, each FN in the multicast tree should ensure that
each of its child nodes receives the packetat least once. Note
this principle slows down a parent node to wait for the worst
child and creates the “crying baby” problem at each FN, but
is consistent with the batch termination scheme of this basic
version ofPacifier.

We assume an FNj sends packets after receiving from
any nodes with lower ETX distance from the root to them,
i.e., j’s upstream nodes. These nodes are likely to receive
packets from the root beforej.3 We also assume that wireless
receptions at different nodes are independent, an assumption
that is supported by prior measurements [31].

Let N be the number of FNs in the multicast tree rooted
at s. Let ǫij denote the loss probability in sending a packet
from nodei to nodej. Let zj denote the expected number

3In contrast, MORE’s credit calculation was based on the ordering of FNs
according to their ETX distance to the destination node. It is unclear that
nodes with larger ETX distance to the destination will receive the packet
from the root sooner.

of transmissions that FNj must make in disseminating one
packet (from the root) down the multicast tree. LetC(j)
denote the set of child nodes ofj in the multicast tree, and
A(j) denote the set ofj’s upstream nodes.

The expected number of packets thatj receives from
ancestor nodes is

∑
i∈A(j) zi(1 − ǫij). Recall j’s objective

is to make sure each of its child nodes receives at leastone
packet. Since each child nodek ∈ C(j) has already overheard∑

i∈A(j) zi(1 − ǫik) from nodej’s ancestors, the amount of
packets nodej actually needs to forward for childk is:

Ljk = min(
∑

i∈A(j)

zi(1 − ǫij), 1) −
∑

i∈A(j)

zi(1 − ǫik) (1)

The min operation ensures thatj does not forward the same
packet more than once, in case it receives it from more than
one FNs. Note for the source nodes, Lsk = 1 for all k ∈ C(s).

Since the expected number of times nodej has to transmit
a packet to ensure that its childk will receive one packet is

1
1−ǫjk

, the expected number of transmissions ofj for child k

to receiveLjk is:

zjk =
Ljk

1 − ǫjk

(2)

Since packets are broadcast, they can be received by more
than one child nodes at a time. Hence, the expected number
of transmissions nodej has to make to ensure that each child
node hasonepacket is:

zj = maxk∈C(j)zjk (3)

zj and Ljk are inter-dependent, and can be calculated
recursively inO(N2) operations, i.e., by traversing the FNs
in the increasing order of their ETX values from the source.
Since the order of FNs is well-defined, there are no loops in
the credit calculation.

For each data packet the source sends down the multicast
tree (which may require multiple transmissions), FNj receives∑

i∈A(j) zi(1 − ǫij). Thus, the TXcredit of nodej is:

TX creditj =
zj∑

i∈A(j) zi(1 − ǫij)
(4)

B. Source Rate Limiting

Recent studies have shown the importance of adding rate
control to NC-based unicast routing protocols, which exploit
MAC layer broadcast [30], [32]. However, end-to-end rate
control in multicast is much more complex than in unicast,
and there is no widely accepted solution so far. InPacifier,
the use of TXcredits implements a form of rate control at
which each intermediate FN injects packets into the network.
However, the source can potentially send out all the packets
in a batch unpaced.

To add rate control to the source, we exploit the broadcast
nature of the wireless medium and apply a simple form of
backpressure-based rate limiting, inspired by BMCC [13]. The
basic idea is to have the source wait until it overhears its child
nodes forward the previous packet it sent before it transmits the
next packet. Since the number of transmissions by the source

5

k

B−1
B

3
2
1

.

..

(a) Sequential batch transmis-
sion in MORE. Each batch is
acknowledged byall the re-
ceivers before the source moves
to the next one.

k

B
B−1

3
2
1

...

(b) Round-robin batch trans-
mission inPacifier. The source
moves to the next batch every
time onereceiver acknowledges
the current batch.

Fig. 1. 2 different ways of transmittingB batches ofk original packets
each: sequential (as in MORE), and round-robin (as inPacifier). For better
visualization, we assume here (but not in our actual implementation) that the
same total amount of redundancy is required to be sent for each batch.

zs has already factored in packet losses to its child nodes,
the source does not need to worry about losses of individual
transmissions, i.e., it does not need to wait until all its child
nodes forward each packet it sends out. In fact, it is not even
sure that every of its transmissions will trigger a transmission
at each of its child nodes, as some nodes may have negative
credit counters. Instead, the source waits until it overhears a
transmission fromany of its child nodes or until a timeout.

In [33], the authors suggested a heuristic timeout of3×Tp

for the backpressure-based unicast protocol, whereTp is the
transmission time of one data packet, which depends on the
packet size and the MAC data rate. The factor of 3 is to
account for the contention time preceding each transmission.
Following the same reasoning, inPacifier, we set the timeout
to

∑
j∈C(s) TX creditj × 8 × Tp. This choice for the timeout

reflects the fact that inPacifiera transmission from the source
will trigger on average

∑
j∈C(s) TX creditj transmissions

from its child nodes, which in the worst case can be serial,
and also the fact that in multicast contention near the source
is in general higher.

C. Solving the “Crying Baby” Problem

In MORE, the source keeps transmitting packets from the
same batch until all the receivers acknowledge that batch, as
shown in Figure 1(a). This policy makes the protocol suscep-
tible to the “crying baby” problem, since if the connection
to one receiver is poor, it can slow down the rest of the
receivers. The basic version ofPacifier we have described so
far suffers from the same problem.4 Note the problem would
not exist if the intermediate routers had unlimited memory
and hence the whole file were coded into one batch, and
there were no constraints on the delay. In the following, we
describe a practical solution to the problem, which requires
no more memory than MORE or our basic version, i.e., FNs
still maintain only one batch at a time in their memory.

4BMCC drops the packets on the path towards the worse receiver, in order
to prevent that receiver from holding back the rest of the receivers. However,
this solution is unacceptable inPacifier, which is designed for applications
that require 100% PDR.

In the proposed scheme, the source inPacifier iteratively
sends the batches of a file in around-robinfashion, for as many
rounds as required, until it has received acknowledgments
of receiving all batches from all the receivers, as shown in
Figure 1(b). In detail, the source maintains a counterCsi

for
each batchi which is equal to the number of remaining packets
the source has to transmit for that batch. The counter for batch
i is initialized asCsi

= zs × k, wherek is the batch size,
and it is decremented every time a packet from batchi is
transmitted. Each intermediate FN forwards according to its
TX credit, and only buffers packets belonging to the current
batch; when it receives the first packet from a new batch, it
flushes its buffer and starts buffering packets from the new
batch. The source determines when to switch to work on the
next batch as follows. The source sends packets from batch
i until either Csi

reaches 0 or it receives fromone receiver
acknowledging completion of this batch;5 it then moves to the
next batch for which there are still receivers that have not
acknowledged it. When it finishes with the last batchB, the
source starts the next round by going back to the first batch for
which it has not received acknowledgments from all receivers.
For each such batch it revisits, it recalculates the multicast
tree (forwarding nodes) and the TXcredit values for the FNs
based on the receivers that have not sent acknowledgments and
resetsCsi

= zs×k using the newly calculatedzs. Effectively,
this round-robin batching scheme allows receivers with good
connections to the source to quickly obtain the necessary
number of packets to decode each batch and complete the
file downloading, without waiting for the rest of the receivers.

We note the above round-robin batching scheme is similar
to the data carousel first introduced in [22] for an FEC-
based protocol. However, the use of NC inPacifier makes
this operation much more efficient, since every packet sent is
a new linear combination, i.e., there are no duplicates.

1) Adjusting TXcredit Calculation: In the basic version
of Pacifier (Section III-A2), we defined the TXcredit of an
FN as the expected number of packets it has to transmit for
every packet it receives from its upstream nodes, in order to
ensure thatall of its child nodes will receive one packet. This
definition is consistent with the batch termination scheme of
the basic scheme, i.e., the source completes a batch when
it receives acknowledgments from all receivers. However, it
is inconsistent with the round-robin batching scheme, which
aims to prevent poorly-connected receivers from slowing down
well-connected receivers. Hence under the round-robin batch-
ing, we adjust the definition of TXcredit of an FN to be the
expected number of packets it has to transmit for every packet
it receives from its upstream nodes, in order to ensure thatat
least oneof its child nodes will receive one packet. To realize
this change, we simply change themax operator tomin in
Equation (3). We note this new definition is also consistent
with the policy of moving to the next batch whenever any
receiver acknowledges the current batch.

5Allowing the source to move to the next batch only when it receives an
ACK from one receiver is not always efficient, as under heavy congestion,
ACKs may delay to reach the source.

6

2) Intricacies in TXcredit Calculation: There is a subtlety
in the above adjustment to the TXcredit calculation under the
round-robin batching scheme, i.e., changing themax operator
to min in Equation (3). The derivation of Equation (3) is based
on the expected number of opportunistic packet receptions
(based on the ETX measurements). However, in the actual
dissemination of any given batchi, it is possible that the actual
packet reception is below or above the expected value. In the
later case, the best receiver will successfully receive allpackets
for that batch, and it is the correct thing to do for the source
to move on to the next batch. However, in the former case,
the best receiver could be a few packets short of receiving the
whole batchi, and hence if the source moves on to the next
batch, even the best receiver has to wait for a whole round
before the source transmits again packets from batchi. On
the other hand, if we had let the source send some additional
packets to those predicted by Equation (3), there is a good
chance that the best receiver would have also finished in the
current round; this would increase the throughput of the best
receiver. The challenge here is that it is unknown beforehand
whether the opportunistic reception in any particular batch is
above or below the expectation, and hence those extra packets
sent by the source for a batch can potentially elongate each
batch and reduce the throughput of the best receiver.

To facilitate studying the above subtlety in the TXcredit
calculation under the round-robin batching scheme, we intro-
duce a tunable knob in Equation (3). Essentially, we define
the expected number of transmissions nodej makes to its
child nodes aszj = mink∈C(j)zjk +knob∗ (maxk∈C(j)zjk −
mink∈C(j)zjk). Setting knob to 1 changes the objective to
ensuring all child nodes receive a packet at least once, while
settingknob to 0 changes the objective to ensuring at least one
child node receives a packet at least once. In Section IV-B5,we
evaluate the impact of this knob by comparing the performance
of Pacifier for different values ofknob.

IV. EVALUATION

A. Evaluation Methodology

We evaluated the performance ofPacifier and compared
it against MORE using extensive simulations. The use of a
simulator allowed us to evaluate the performance of the two
protocols in large networks, using a diverse set of topologies,
which are difficult to create in a testbed. We notePacifieruses
the same type of NC and has the same memory requirements
and the same fields in the packet header as MORE,6 and hence
it can be easily implemented in practice.

Simulation Setup. We used the Glomosim simulator [34],
a widely used wireless network simulator with a detailed
and accurate physical signal propagation model. Glomosim
simulations take into account the packet header overhead
introduced by each layer of the networking stack, and also

6Pacifier only includes the list of FN nodes in the header, sorted in
increasing ETX distance from the source. It does not requireinformation
about the edges of the tree.

TABLE I
VERSIONS OFMORE AND Pacifier EVALUATED IN OUR

STUDY. ALL VERSIONS INCLUDE INTRA-FLOW NC.
Name Description
MORE MORE [6] optimized with

scenario-specific pruning threshold
TREE Tree-based OR

TREE+RL Tree-based OR, source rate limiting
TREE+RL+RRB Tree-based OR, source rate limiting,

(Pacifier) and round-robin batching

the additional overhead introduced by MORE orPacifier. For
the implementation of MORE, we followed the details in [6].

We simulated a network of 50 static nodes placed randomly
in a 1000m × 1000m area. The average radio propagation
range was 250m, the average sensing range was 460m, and
the channel capacity was 2Mbps. TheTwoRaypropagation
model was used. To make the simulations realistic, we added
fading in our experiments. The Rayleigh model was used,
as it is appropriate for WMN environments with many large
reflectors, e.g., walls, trees, and buildings, where the sender
and the receiver are not in Line-of-Sight of each other. Because
of fading, transmission and sensing range are not fixed; they
actually vary significantly around their average values.

We simulated each protocol on 10 different randomly gen-
erated topologies (scenarios), i.e., placement of the 50 nodes.
For each scenario, we randomly generated a multicast group
consisting of 1 source and 9 receivers. The source sent a 12MB
file, consisting of 1500-byte packets. We present the results for
each scenario and the average over all 10 scenarios.

Evaluation Metrics. We used the following metrics:

Average Throughput:The file size (in bytes) divided by the
total time required for a receiver to collect the necessary
number of packets for decoding, averaged over all receivers.

Total number of data packet transmissions:7 The total number
of data packets broadcast by the source and the FNs.

Source Redundancy:The total number of encoded data packets
sent by the source divided by the file size. It gives an estimate
of the redundancy injected in the network by the source.

Note that we did not use the PDR as a metric, since all the
protocolsguarantee100% PDR.

B. Simulation Results

We start by optimizing MORE’s pruning strategy as the
default strategy appears to cause frequent network partition.
We then proceed to evaluate the incremental performance
benefit ofPacifier’s major components, i.e., the basic version,
adding source rate limiting, and adding round-robin batching.
Table I summarizes the different versions of MORE and
Pacifier evaluated.

1) Fixing MORE’s pruning threshold:Recall from Sec-
tion II-A that MORE prunes FNs that are expected to perform
less than 10% of the total number of transmissions. We found
using such a pruning threshold results in some receivers getting

7The number of control packets (ACKs) is the same for both MOREand
Pacifier.

7

(a) Throughput (b) Number of FNs

(c) Total # of Transmissions (d) Source Redundancy

Fig. 2. Throughput, number of FNs, total number of transmissions, and
source redundancy with MORE and TREE for 10 different scenarios.

disconnected from the source in 8 out of 10 scenarios. Recall
also that in MORE, the source proceeds to the next batch
only when all receivers acknowledge decoding of the current
batch. When a receiver is disconnected, the source will never
leave the first batch, and all the receivers will receive zero
throughput.

One solution to the problem is to use a much lower pruning
threshold than 0.1. However, using a very low threshold (or
in the worst case not pruning any FNs at all) can lead to too
many FNs. Instead, we used the following approach, which
favors MORE: for each scenario, we repeated the simulation
for different values of the pruning thresholdα, starting with the
default value of 0.1, and lowering it by 0.01 until no receiver
was disconnected. This last value was the one we used as the
pruning threshold in the comparison againstPacifier. For the
10 scenarios studied, the largest pruning threshold that does
not cause any disconnection varies from 0.1 to 0.03.

2) Impact of tree-based opportunistic routing:We start the
evaluation ofPacifier by examining the impact of its tree-
based opportunistic routing, by comparing the basic version of
Pacifier(TREE), with MORE. The only difference between the
protocols is the algorithm used for selecting FNs and assigning
TX credits to them. The results for 10 different scenarios are
shown in Figure 2.

Figure 2(a) shows TREE achieves higher throughput than
MORE in 8 out of 10 scenarios. The gain ranges from
20% (Scenario 7) up to 199% (Scenario 4), with an average
throughput gain over all 10 scenarios equal to 42%. Only in
two scenarios (2 and 3), there is a small throughput reduction
with TREE, about 16%.

The higher throughput achieved by TREE compared to
MORE can be explained by the fewer FNs and lower total
number of transmissions in the former compared to the latter.
In particular, Figure 2(b) shows that the use of a tree instead
of a union of belts reduces the number of FNs in TREE

(a) Throughput (b) Total # of Transmissions

(c) Source Redundancy

Fig. 3. Throughput, total number of transmissions, and source redundancy
with MORE and TREE+RL for 10 different scenarios.

by 36% on average, compared to MORE. Figure 2(c) shows
the use of a tree combined with the new algorithm for
TX credit calculation results in on average 44% reduction
in the total number of transmissions in TREE, compared to
MORE. Finally, Figure 2(d) shows MORE has a high source
redundancy; the source sends on average 17 times the file
size. TREE reduces the average source redundancy to 12.
The difference in source redundancy suggests TREE is more
efficient in selecting FNs and more accurate in calculating the
TX credit values for the FNs.

3) Impact of source rate limiting:We next evaluate the
impact of backpressure-based rate limiting at the source, as
implemented in the TREE+RL version ofPacifier. Figure 3(a)
shows that the use of rate limiting at the source improves the
throughput by 5% (Scenario 6) to 94% (Scenario 1), with an
average of 20%, compared to TREE. Figure 3(c) shows that
TREE+RL on averages reduces the source redundancy to 5.84,
a 52% reduction compared to the value of 12.15 for TREE.
The reduction in the source redundancy in turn reduces the
total number of transmissions by 28% on average, as shown in
Figure 3(b). We found that this reduction comes not only from
the contribution of the source but also from the majority of the
FNs. This confirms that, by pacing the source’s transmissions,
the source’s children and grandchildren get better chancesto
successfully transmit packets and make progress down the tree.

4) Solving the “crying baby” problem: The above re-
sults have shown that TREE and TREE+RL already offer
significant throughput improvement over MORE. However,
these two versions ofPacifier still suffer from the “crying
baby” problem. We next evaluate the effectiveness of round-
robin batching on solving the “crying baby” problem, by
comparing TREE+RL+RRB (the completePacifier protocol)
with TREE+RL.

Figure 4 shows the average throughput achieved with
TREE+RL+RRB and TREE+RL in each of the 10 scenar-

8

Fig. 4. Throughput with TREE+RL and TREE+RL+RRB (Pacifier) for 10
different scenarios. The error bars show throughput of the best and the worst
receiver.

ios, as well as the throughput of the best and the worst
receiver (top and bottom of error bars) in each scenario
under TREE+RL+RRB. We make three observations. First,
with TREE+RL, which uses sequential batch transmission,
all 9 receivers in each scenario achieve the same throughput,
which is determined by the worst receiver. In contrast, with
TREE+RL+RRB, well-connected receivers get much higher
throughput than the average, as shown by the large gap
between the top of the error bars and the average in most sce-
narios. Averaging over 10 scenarios, the best receiver achieves
58% higher throughput than the average throughput by all
receivers. Second, allowing receivers to proceed independently
in TREE+RL+RRB also increases the average throughput by
47% on average over all 10 scenarios, compared to TREE+RL.
Third, importantly, the throughput improvement for the best
receivers comes at almost no penalty to the worst receivers.
In particular, compared to with TREE+RL, the throughput of
the worst receiver with TREE+RL+RRB gets slightly worse
in 3 scenarios (Scenario 7, 8, and 9 by 10%, 7%, and 3%,
respectively), remains unaffected in 2 scenarios (Scenarios
2 and 3), and increases by 26%-146% for the remaining 5
scenarios.

In summary,Pacifier not only solves the “crying baby”
problem, by allowing well-connected receivers to proceed fast,
but at the same moment it also makes the “crying baby”
itself (i.e., the worst receiver) “happier” in the majorityof the
cases. This is because as more and more receivers complete
decoding, the source can prune the tree branches towards them,
reducing the number of FNs and the amount of contention in
the network.

5) Tuning the knob in TXcredit Calculation: Finally, we
study the intricacies in calculating TXcredit values by varying
theknob value introduced in Section III-C2. We vary the value
of knob from 0 (the version evaluated in Section IV-B4) to
2. Intuitively, asknob increases, the throughput of the best
receiver is expected to decrease and the throughput of the
worst receiver is expected to increase, since we spend more
time on each batch in every round.

Figure 5 shows the average, max, and min throughput with
Pacifier, as knob varies from 0 to 2. Every point is the
average over 10 scenarios. Somewhat surprisingly, higherknob

values improve the max throughput andknob = 1 appears to
maximize the average and the min throughput.knob = 0,
which is expected to optimize the performance of the best
receiver, achieves on average the lowest max, average, and
min throughput, compared to all the otherknob values. This

Fig. 5. Average throughput withPacifier as a function ofknob, over 10
scenarios. The error bars show average max and min values over the 10
scenarios.

(a) FN TX credits - Scenario 3. (b) FN TX credits - Scenario
10.

Fig. 6. FN TX credits with 3 differentknob values in 2 scenarios. FNs are
sorted in increasing ETX distance from the source.

confirms our speculation in Section III-C that settingknob = 0
may not give the best result as the TXcredit calculation is
fundamentally based on the expected opportunistic receptions,
and a lower than expected number of receptions in any given
batch can cause the best receiver to be a few packets short of
decoding a batch and wait for a whole round.

An additional counter-intuitive observation from Figure 5
is that the throughput does not change monotonically as
the knob increases. The reason for this behavior is that
the the TX credits assigned to FNs actually interfere in a
very complex way. In a nutshell, increasing the TXcredit
of an FN j can potentially decrease the TXcredit of its
child nodes, as the grandchild nodes ofj now have more
chance of overhearingj’s transmissions. Consequently, the
chance of packet reception atj’s grand-grandchild nodes from
their upstream nodes is affected in complicated ways.8 As an
example, Figures 6(a)- 6(b) plot the TXcredit values of the
source and FNs in the sorted order (based on ETX values from
the source) for Scenarios 3 and 10 forknob values of 0, 1.0,
and 1.4. We observe changing theknob value almost always
increases the TXcredit for some FNs while decreasing the
TX credit for some other FNs.

In summary, the discussion above shows that there is no
optimal value forknob. We find settingknob = 1 in Pacifier
appears to improve the max throughput while maximizing the
average and the min throughput.

6) Overall Comparison:Figure 7(a) summarizes the aver-
age, maximum and minimum throughput comparison between
MORE, TREE, TREE+RL, and TREE+RL+RRB (Pacifier),
where TREE+RL+RRB used aknob value of 1. We observe
that on average,Pacifier outperforms TREE+RL, TREE, and
MORE by 60%, 90%, and 171%, respectively. In addition,

8Recall our TX credit calculation is a polynomial heuristic; optimal
TX credit assignment to all FNs is an NP-hard problem.

9

(a) Average, max, and min
throughput with each protocol
for each of the 10 scenarios.

(b) CDF of the 90 throughput
measurements obtained with
each protocol for 10 scenarios
with 9 receivers each.

Fig. 7. Overall throughput comparison of MORE, TREE, TREE+RL, and
TREE+RL+RRB (Pacifier).

Pacifier allows well-connected receivers to achieve much
higher throughput, which can be up to 20x higher than with
MORE (for scenario 1), and also improves throughput of the
worst receiver in all 10 scenarios, compared to the other 3
protocols.

Figure 7(b) depicts the same results in a different way. It
plots the CDF of the 90 throughput values obtained from
10 scenarios with 9 receivers each, for the four protocols.
In this figure, the CDFs for MORE, TREE, and TREE+RL
have a staircase form, since for each scenario, all 9 receivers
get roughly the same throughput (equal to that of the worst
receiver) due to the “crying baby” problem. In contrast, with
Pacifier, receivers finish independently of each other and the
CDF has a continuous form. In the median case,Pacifier
outperforms TREE+RL, TREE, and MORE by 20%, 49%,
and 178%, respectively.

The benefit ofPacifierbecomes more prominent if we look
at the two ends of the CDF.Pacifiersolves the “crying baby”
problem by allowing good receivers to achieve very high
throughput. The 90th percentile is 223Kbps forPacifier, 70%,
higher than with TREE+RL, 77% higher than with TREE,
and 159% higher than with MORE. If we look at the 10th
percentile, i.e., the worst receivers, we observe thatPacifier
outperforms TREE+RL, TREE, and MORE by 80%, 300%,
and 450%, respectively. This shows again thatPacifiernot only
solves the “crying baby” problem, it also simultaneously offers
a significant improvement to the performance of the “crying
baby” itself.

V. CONCLUSION

In this paper, we presentedPacifier, the first practical NC-
based high-throughput, reliable multicast protocol for WMNs.
Pacifierseamlessly integrates tree-based opportunistic routing,
intra-flow NC, source rate limiting, and round-robin batching,
to support high-throughput, reliable multicast routing, while at
the same time it offers a simple yet very efficient solution to
the “crying baby” problem. Extensive simulations showed that
Pacifier increases the average throughput gain over the state-
of-the-art MORE by 171%, while the maximum throughput
gain for well-connected receivers can as high as 20x.

ACKNOWLEDGMENT

This work was supported in part by NSF grant CNS-
0626703.

REFERENCES

[1] “MIT Roofnet,” http://www.pdos.lcs.mit.edu/roofnet.
[2] “Bay area wireless users group,” http://www.bawug.org.
[3] “Seattle wireless,” http://www.seattlewireless.net.
[4] S. Biswas and R. Morris, “ExOR: Opportunistic multi-hoprouting for

wireless networks”, inProc. of ACM SIGCOMM, 2005.
[5] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,

“XORs in the air: Practical wireless network coding”, inProc. of ACM
SIGCOMM, August 2006.

[6] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing”, inProc. of ACM
SIGCOMM, 2007.

[7] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference:
Analog network coding”, inProc. of ACM SIGCOMM, 2007.

[8] K. Tang, K. Obraczka, S.-J. Lee, and M. Gerla, “A reliable, congestion-
controlled multicast transport protocol in multimedia multi-hop net-
works”, in Proc. of WPMC, 2004.

[9] R. Chandra, V. Ramasubramaniam, and K. Birman, “Anonymous gossip:
Improving multicast reliability in mobile ad hoc networks”, in Proc. of
IEEE ICDCS, 2001.

[10] E. Pagani and G. Rossi, “Reliable broadcast in mobile multihop packet
networks”, inProc. of ACM MOBICOM, 1997.

[11] A. Sobeih, H. Baraka, and A. Fahmy, “ReMhoc: A reliable multicast
protocol for wireless mobile multihop ad hoc networks”, inProc. of
IEEE CCNC, 2004.

[12] V. Rajendran, Y. Yi, K. Obraczka, S.-J. Lee, K. Tang, andM. Gerla,
“Combining source- and localized recovery to achieve reliable multicast
in multi-hop ad hoc networks”, inProc. of IFIP Networking, 2004.

[13] B. Scheuermann, M. Transier, C. L. M. Mauve, and W. Effelsberg,
“Backpressure multicast congestion control in mobile ad-hoc networks”,
in Proc. of ACM CoNEXT, 2007.

[14] D. Koutsonikolas and Y. C. Hu, “The case for FEC-based reliable
multicast in wireless mesh networks,” inProc. of IEEE/IFIP DSN, 2007.

[15] L. Rizzo and L. Visicano, “RMDP: an FEC-based reliable multicast
protocol for wireless environments”,Mobile Computing and Communi-
cations Review, vol. 2, no. 2, 1998.

[16] D. Lun, M. Medard, and R. Koetter, “Efficient operation of wireless
packet networks using network coding”, inProc. of IWCT, 2005.

[17] M. Ghaderi, D. Towsley, and J. Kurose, “Reliability Gain of Network
Coding in Lossy Wireless Networks”, inProc. of IEEE INFOCOM,
2008.

[18] H. W. Holbrook, S. K. Singhal, and D. R. Cheriton, “Log-based receiver-
reliable multicast for distributed interactive simulation”, in Proc. of ACM
SIGCOMM, 1995.

[19] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and L. Zhang, “A reliable
framework for light-weight sessions and application levelframing”,
IEEE/ACM Transactions on Networking, 1997.

[20] L. Rizzo, “Effective erasure codes for reliable computer communication
protocols”, ACM Comp. Comm. Review, vol. 27, no. 2, 1997.

[21] J. Nonnenmacher, E. Biersack, and D. Towsley, “Parity-based loss re-
covery for reliable multicast transmission”, inProc. of ACM SIGCOMM,
1997.

[22] E. Schooler and J. Gemmel, “Using multicast FEC to solvethe midnight
madness problem”, Technical Report, MSR-TR-97-25, 1997.

[23] M. Luby, “LT codes,” in Proc. of 43rd FoCS, 2002.
[24] E. Vollset and P. Ezhilchelvan, “A survey of reliable broadcast protocols

for mobile ad-hoc networks”, University of Newcastle upon Tyne,
Technical Report, CS-TR-792, 2003.

[25] J. Luo, P. Eugster, and J.-P. Hubaux, “Route Driven Gossip: Probabilistic
reliable multicast in ad hoc networks”, inProc. of IEEE INFOCOM,
2003.

[26] J. Sang Park, M. Gerla, D. S. Lun, Y. Yi, and M. Medard, “Codecast:
a network-coding-based ad hoc multicast protocol”,IEEE Wireless
Communications, vol. 13, no. 5, 2006.

[27] D. S. J. D. Couto, D. Aguayo, J. C. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing”, inProc. of ACM
MOBICOM, 2003.

10

[28] E. Rozner, J. Seshadri, Y. Mehta, and L. Qiu, “Simple opportunistic
routing protocol for wireless mesh networks”, inProc. of IEEE WiMesh,
2006.

[29] S.-J. Lee, M. Gerla, and C.-C. Chiang, “On-Demand Multicast Routing
Protocol”, in Proc. of IEEE WCNC, September 1999.

[30] C. Gkantsidis, W. Hu, P. Key, B. Radunovic, S. Gheorghiu, and P. Ro-
driguez, “Multipath code casting for wireless mesh networks”, in Proc.
of ACM CoNEXT, 2007.

[31] C. Reis, R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan,
“Measurement-based models of delivery and interference instatic wire-
less networks”, inProc. of ACM SIGCOMM, 2006.

[32] X. Zhang and B. Li, “Optimized multipath network codingin lossy
wireless networks”, inProc. of IEEE ICDCS, 2008.

[33] B. Scheuermann, C. Lochert, and M. Mauve, “Implicit hop-by-hop
congestion control in wireless multihop networks”,Elsevier Ad Hoc
Networks, vol. 6, no. 2, pp. 260–286, Apr. 2008.

[34] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: A libraryfor parallel
simulation of large-scale wireless networks”, inProc. of PADS Work-
shop, May 1998.

