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Summary. We present the syntax and semantics of a family of modular ontology languages,
Package-based Description Logics (P-DL), to support context- specific reuse of knowledge
from multiple ontology modules. In particular, we describe a P-DL SHOIQP that allows
the importing of concept, role and nominal names between multiple ontology modules (each
of which can be viewed as a SHOIQ ontology). SHOIQP supports contextualized inter-
pretation, i.e., interpretation from the point of view of a specific package. We establish the
necessary and sufficient conditions on domain relations (i.e., the relations between individuals
in different local domains) that need to hold in order to preserve the unsatisfiability of concept
formulae, monotonicity of inference, transitive reuse of knowledge across modules.

13.1 Introduction

The success of the world wide web can be partially attributed to the network effect:
The absence of central control on the content and the organization of the web al-
lows thousands of independent actors to contribute resources (web pages) that are
interlinked to form the web. Ongoing efforts to extend the current web into a se-
mantic web are aimed at enriching the web with machine interpretable content and
interoperable resources and services [7]. Realizing the full potential of the semantic
web requires the large-scale adoption and use of ontology-based approaches to shar-
ing of information and resources. Constructing large ontologies typically requires
collaboration among multiple individuals or groups with expertise in specific areas,
with each participant contributing only a part of the ontology. Therefore, instead of
a single, centralized ontology, in most application domains it is natural to have mul-
tiple distributed ontologies covering parts of the domain. Such ontologies represent
the local knowledge of the ontology designers, i.e., knowledge that is applicable in
a context. Because no single ontology can meet the needs of all users under every
conceivable scenario, there is an urgent need for theoretically sound, yet practical,
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approaches that allow knowledge from multiple autonomously developed ontologies
to be adapted and reused in user, context, or application-specific scenarios.

Ontologies on the semantic web need to satisfy two apparently conflicting objec-
tives [9]:

• Sharing and reuse of knowledge across autonomously developed ontologies. An
ontology may reuse another ontology by direct importing of selected terms in the
other ontology (e.g., by referring to their URLs), or by using mappings between
ontologies.

• The contextuality of knowledge or accommodation of the local points of view.
For example, an assertion of the form “everything has the property that...” is
usually made within an implicit local context which is often omitted from the
statement. In fact, such a statement should be understood as “everything in this
domain has the property that...”. However, when reusing an existing ontology,
the contextual nature of assertions is often neglected, leading to unintended in-
ferences.

OWL adopts an importing mechanism to support integration of ontology modules.
However, the importing mechanism in OWL, implemented by the owl:imports
construct, in its current form, suffers from several serious drawbacks: (a) It directly
introduces both terms and axioms of the imported ontologies into the importing onto-
logy, and thus fails to support contextual reuse; (b) It provides no support for partial
reuse of an ontology module.

Consequently, there have been several efforts aimed at developing formalisms
that allow reuse of knowledge from multiple ontologies via contextualized inter-
pretations in multiple local domains instead of a single shared global interpretation
domain. Contextualized reuse of knowledge requires the interactions between local
interpretations to be controlled. Examples of such modular ontology languages in-
clude: Distributed Description Logics (DDL) [8], E-Connections [16] and Semantic
Importing [20].

An alternative approach to knowledge reuse is based on the notion of conser-
vative extension [12, 13, 14, 15], which allows ontology modules to be interpreted
using standard semantics by requiring that they share the same global interpretation
domain. To avoid undesired effects from combining ontology modules, this approach
requires that such a combination be a conservative extension of component modules.
More precisely, if O is the union of a set of ontology modules {O1, ..., On}, then
we say O is a conservative extension of Oi if O |= α ⇔ Oi |= α, for any α in the
language of Oi. This guarantees that combining knowledge from several ontology
modules does not alter the consequences of knowledge contained in any component
module. Thus, a combination of ontology modules cannot induce a new concept in-
clusion relation between concepts expressible in any of the component modules.

Current approaches to knowledge reuse have several limitations. To preserve con-
textuality, existing modular ontology languages offer only limited ways to connect
ontology modules and, hence, limited ability to reuse knowledge across modules.
For instance, DDL does not allow concept construction using foreign roles or con-
cepts. E-Connections, on the other hand, does not allow concept subsumptions across
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ontology modules or the use of foreign roles. Finally, Semantic Importing, in its cur-
rent form, only allows each component module to be in ALC. None of the existing
approaches supports knowledge reuse in a setting where each ontology module uses
a representation language that is as expressive as OWL-DL, i.e., SHOIN (D).

Furthermore, some of the existing modular ontology languages suffer from rea-
soning difficulties that can be traced back to the absence of natural ways to restrict
the relations between individuals in different local domains. For example, DDL
does not support the transitivity of inter-module concept subsumptions (known as
bridge rules) in general. Moreover, in DDL a concept that is declared as being more
specific than two disjoint concepts in another module may still be satisfiable (the
inter-module satisfiability problem) [3, 16]. Undisciplined use of generalized links in
E-Connections has also been shown to lead to reasoning difficulties [2].

Conservative extensions [13, 14, 15], in their current form, require a single global
interpretation domain and, consequently, prevent different modules from interpreting
axioms within their own local contexts. Hence, the designers of different ontology
modules have to anticipate all possible contexts in which knowledge from a spe-
cific module might be reused. As a result, several modeling scenarios that would,
otherwise, be quite useful in practice, such as the refinement of relations between
existing concepts in an ontology module and the general reuse of nominals [19], are
precluded.

Against this background, this chapter, building on previous work of a majority
of the authors [3], develops a formalism that can support contextual reuse of know-
ledge from multiple ontology modules. The resulting modular ontology language,
Package-based Description Logic (P-DL) SHOIQP :

• Allows each ontology module to use a subset of SHOIQ [17], i.e., ALC
augmented with transitive roles, role inclusion, role inversion, qualified num-
ber restriction and nominal concepts and, hence, covers a significant fragment of
OWL-DL.

• Supports more flexible modeling scenarios than those supported by existing ap-
proaches through a mechanism of semantic importing of names (including con-
cept, role and nominal names) across ontology modules1.

• Contextualizes the interpretation of reused knowledge. Locality of axioms in on-
tology modules is obtained “for free” by its contextualized semantics, thereby
freeing ontology engineers from the burden of ensuring the reusability of an on-
tology module in contexts that are hard to foresee when constructing the module.
A natural consequence of contextualized interpretation is that inferences are al-
ways drawn from the point of view of a witness module. Thus, different modules
might infer different consequences, based on the knowledge that they import
from other modules.

1 Note that importing in OWL, implemented by the owl:imports is essentially syn-
tactic in nature. The difference between syntactic importing and semantic importing is
best illustrated by an analogy with the writing of scientific articles: Knowledge reuse via
owl:imports analogous to cut and paste from a source article; In contrast, semantic
importing is akin to knowledge reuse by means of citation of source article.
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• Ensures that the results of reasoning are always the same as those obtained by
a standard reasoner over an integrated ontology resulting from combining the
relevant knowledge in a context-specific manner. Thus, unlike in the case of DDL
and Semantic Importing of Pan et al., P-DL ensures the monotonicity of inference
in the distributed setting.

• Avoids several of the known reasoning difficulties of the existing approaches,
e.g., lack of support for transitive reusability and nonpreservation of concept un-
satisfiability.

13.2 Semantic Importing

This section introduces the syntax and semantics of the proposed language
SHOIQP . We will use a simple example shown in Figure 13.1 to illustrate some
of the basic features of the P-DL syntax.

Fig. 13.1. Semantic Importing

13.2.1 Syntax

Packages

Informally, a package in SHOIQP can be viewed as a SHOIQ TBox and RBox.
For example, in Figure 13.1 there are two packages, packageP1 describes the domain
of People and P2 describes the domain of Work.

We define the signature Sig(Pi) of a package Pi as the set of names used in Pi.
Sig(Pi) is the disjoint union of the set of concept names NCi, the set of role names
NRi and the set of nominal names NIi used in package Pi. The set of roles in Pi is
defined as NRi = NRi∪{R−|R ∈ NRi}whereR− is the inverse of the role nameR.

The signature Sig(Pi) of package Pi is divided into two disjoint parts: its lo-
cal signature Loc(Pi) and its external signature Ext(Pi). Thus, in the example
shown in Figure 13.1, Sig(P2) = {Employee,Adult,Employer, hires}; Loc(P2) =
{Employee,Employer, hires}; and Ext(P2) = {Adult}.

For all t ∈ Loc(Pi), Pi (and only Pi) is the home package of t, denoted by Pi =
Home(t), and t is called an i-name (more specifically, an i-concept name, an i-role
name, or an i-nominal name). We will use “i : X” to denote an i-name X and may
drop the prefix when it is clear from the context. We use i-role to refer to an i-role
name or its inverse. In the example shown in Figure 13.1, the home package of the
terms Child and Adult is P1 (People); and that of Employee,Employer and hires is
P2 (Work).

A role name R ∈ NRi may be declared to be transitive in Pi using an axiom
Transi(R). IfR is declared transitive,R− is also said to be transitive. We use Tri(R)
to denote a role R being transitive in Pi.
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A role inclusion axiom in Pi is an expression of the form R � S, where R and
S are i-roles. The role hierarchy for Pi is the set of all role inclusion axioms in Pi.
The RBox Ri consists of the role hierarchy Ri for Pi and the set of role transitivity
declarations Transi(R). For a role hierarchy Ri, if R � S ∈ Ri, then R is called a
sub-role of S and S is called a super-role of R w.r.t. Ri. An i-role is called locally
simple if it neither transitive nor has any transitive sub-role in Pi.

The set of SHOIQP concepts in Pi is defined inductively by the following gram-
mar:

C := A|o|¬kC|C �C|C � C|∀R.C|∃R.C|(≤ nS.C)|(≥ nS.C)

where A ∈ NCi, o ∈ NIi, n is a non-negative integer, R ∈ NRi, and S ∈ NRi is a
locally simple role; ¬kC denotes the contextualized negation of concept C w.r.t. Pk.
For any k and k-concept name C, �k = ¬kC � C, and ⊥ = ¬kC � C. Thus, there
is no universal top (�) concept or global negation (¬). Instead, we have for each
package Pk, a contextualized top �k and a contextualized negation ¬k. This allows
a logical formula in P-DL (includingSHOIQP) to be interpreted within the context
of a specific package. Thus, in the example shown in Figure 13.1, ¬11 : Child in P1

describes only the individuals in the domain of People that are not not children (that
is, not 1 : Child).

A general concept inclusion (GCI) axiom in Pi is an expression of the form C �
D, where C,D are concepts in Pi. The TBox Ti of Pi is the set of GCIs in Pi. Thus,
formally, a package Pi is a pair Pi := 〈Ti,Ri〉. A SHOIQP ontologyΣ is a set of
packages {Pi}. We assume that every name used in a SHOIQP ontology Σ has a
home package in Σ.

Semantic Importing between Packages

If a concept, role or nominal name t ∈ Loc(Pj) ∩ Ext(Pi), i �= j, we say that Pi

imports t and denote it as Pj
t−→ Pi. We require that transitivity of roles be preserved

under importing. Thus, if Pj
R−→ Pi where R is a j-role name, then Transi(R) iff

Transj(R). If any local name of Pj is imported into Pi, we say that Pi imports Pj

and denote it by Pj &→ Pi. In the example shown in Figure 13.1, P2 imports P1.
The importing transitive closure of a package Pi, denoted by P+

i , is the set of all
packages that are directly or indirectly imported by Pi. That is, P+

i is the smallest
subset of {Pi}, such that

• ∀j �= i, Pj &→ Pi ⇒ Pj ∈ P+
i

• ∀k �= j �= i, (Pk &→ Pj) ∧ (Pj ∈ P+
i ) ⇒ Pk ∈ P+

i

Let P ∗
i = {Pi}∪P+

i . A SHOIQP ontologyΣ = {Pi} has an acyclic importing
relation if, for all i, Pi �∈ P+

i ; otherwise, it has a cyclic importing relation. The
importing relation in the example in Figure 13.1 is acyclic.

We denote a Package-based Description Logic (P-DL) by adding the letter P to
the notation for the corresponding DL. For example, ALCP is the package exten-
sion of the DL ALC. We denote by PC a restricted type of P-DL that only allows
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importing of concept names. P− denotes a P-DL with acyclic importing. In partic-
ular, ALCP−

C was studied in [1], ALCPC was studied in [4] and SHOIQP was
studied in [5]. The example in Figure 13.1 is in ALCP−

C .

Syntax Restrictions on Semantic Importing

Restrictions on Negations. We require that ¬kC (hence also �k) can appear in Pi,
i �= k, only if Pk &→ Pi. Intuitively, this means that k-negation can appear only in
Pk or any package that directly imports Pk.

Restrictions on Imported Role Names. We require that an imported role should not
be used in role inclusion axioms. This restriction is imposed because of two reasons.
First, decidability requires that a role that is used in number restrictions be “globally”
simple, i.e., that it has no transitive sub-role across any importing chain2 [18]. In
practice, it is useful to restrict the use of imported roles in such a way that a role
is globally simple iff it is locally simple. Second, a reduction of SHOIQP without
such a restriction to an integrated ontology may require some features that are beyond
the expressivity of SHOIQ, such as role intersection.

SHOIQP Examples

The semantic importing approach described here can model a broad range of scenar-
ios that can also be modeled using existing approaches.

Example 1. Inter-module concept and role inclusions. Suppose we have a people
ontology P1:

¬11 : Man � 1 : Woman

1 : Man � 1 : People

1 : Woman � 1 : People

1 : Boy � 1 : Girl � 1 : Child

1 : Husband � 1 : Man � ∃1 : marriedTo.1 : Woman

Suppose the Work ontology P2 imports some of the knowledge from the people
ontology:

2 : Employee � 1 : People (13.1)

2 : Employer ≡ ∃2 : hires.1 : People (13.2)

1 : Child � ¬22 : Employee (13.3)

2 : EqualOpportunityEmployer � ∃2 : hires.1 : Man � ∃2 : hires.1 : Woman (13.4)

Axioms (13.1) models inter-module concept inclusion. This example also illus-
trates that the semantic importing approach can realize concept specialization (Ax-
iom (13.2)) and generalization (Axiom (13.3)).

2 This follows from the reduction from SHOIQP to SHOIQ given in Section 13.3.
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Example 2. Use of foreign roles or foreign concepts to construct local concepts.
Suppose a marriage ontology P3 reuses the people ontology:

(= 1 (1 : marriedTo).(1 : Woman)) � 3 : Monogamist (13.5)

3 : MarriedPerson � ∀(1 : marriedTo).(3 : MarriedPerson) (13.6)

3 : NuclearFamily � ∃(3 : hasMember).(1 : Child) (13.7)

A complex concept in P3 may be constructed using an imported role (13.6), an
imported concept (13.7), or both an imported role and an imported concept (13.5).

Example 3. The use of nominals. Suppose the work ontology P2, defined above, is
augmented with additional knowledge from a calendar ontology P4, to obtain an
augmented work ontology. Suppose P4 contains the following axiom:

4:WeekDay = {4:Mon, 4:Tue, 4:Wed, 4:Thu, 4:Fri},

where the nominals are shown in italic font. Suppose the new version of P2 contains
the following additional axioms:

4 : Fri � ∃(2 : hasDressingCode).(2 : CasualDress)
�2 � ∃(2 : hasDressingCode−).(4 : WeekDay)

13.2.2 Semantics

A SHOIQP ontology has localized semantics in the sense that each package has
its own local interpretation domain. Formally, for a SHOIQP ontologyΣ = {Pi},
a distributed interpretation is a tuple I = 〈{Ii}, {rij}Pi∈P+

j
〉, where Ii is a local

interpretation of package Pi, with (a not necessarily non-empty) domain ΔIi , rij ⊆
ΔIi × ΔIj is the (image) domain relation for the interpretation of the direct or
indirect importing relation from Pi to Pj . For convenience, we use rii = idΔIi :=
{(x, x)|x ∈ ΔIi} to denote the identity mapping in the local domain ΔIi . Taking
this convention into account, the distributed interpretation I = 〈{Ii}, {rij}Pi∈P+

j
〉

may also be denoted by I = 〈{Ii}, {rij}Pi∈P∗
j
〉.

To facilitate our further discussion of interpretations, the following notational con-
ventions will be used throughout. Given i, j, such that Pi ∈ P ∗

j , for every x ∈ ΔIi ,
A ⊆ ΔIi and S ⊆ ΔIi ×ΔIi , define3 (please see Figure 13.2 and 13.3 for illustra-
tion):

rij(A) = {y ∈ ΔIj |∃x ∈ A, (x, y) ∈ rij}, (concept image)

rij(S) = rij ◦ S ◦ r−ij (role image)

= {(z, w) ∈ ΔIj ×ΔIj |∃(x, y) ∈ S, (x, z) ∈ rij ∧ (y, w) ∈ rij},
S(x) = {y ∈ ΔIi |(x, y) ∈ S} (successor set)

3 In this chapter, f1 ◦ ... ◦ fn denotes the composition of n relations f1, ..., fn, i.e., (f1 ◦ ... ◦
fn)(x) = f1(...fn(x)).
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Fig. 13.2. Concept Image

Fig. 13.3. Successor Set and Role Image

Moreover, let ρ be the equivalence relation on
⋃

iΔ
Ii generated by the collection

of ordered pairs
⋃

Pi∈P∗
j
rij . This is the symmetric and transitive closure of the set

⋃
Pi∈P∗

j
rij . Define, for every i, j, ρij = ρ ∩ (ΔIi ×ΔIj ).

Each of the local interpretations Ii = 〈ΔIi , ·Ii〉 consists of a domain ΔIi and an
interpretation function ·Ii , which maps every concept name to a subset ofΔIi , every
role name to a subset of ΔIi ×ΔIi and every nominal name to an element in ΔIi .
We require that the interpretation function ·I satisfies the following equations, where
R is a j-role, S is a locally simple j-role, C,D are concepts:

RIi = (RIi)+, if Transi(R) ∈ Ri

(R−)Ii = {(x, y)|(y, x) ∈ RIi}
(C �D)Ii = CIi ∩DIi

(C �D)Ii = CIi ∪DIi

(¬jC)Ii = rji(ΔIj )\CIi

(∃R.C)Ii = {x ∈ rji(ΔIj )|∃y ∈ ΔIi , (x, y) ∈ RIi ∧ y ∈ CIi}
(∀R.C)Ii = {x ∈ rji(ΔIj )|∀y ∈ ΔIi , (x, y) ∈ RIi → y ∈ CIi}

(� nS.C)Ii = {x ∈ rji(ΔIj )| |{y ∈ ΔIi |(x, y) ∈ SIi ∧ y ∈ CIi}| � n}
(� nS.C)Ii = {x ∈ rji(ΔIj )| |{y ∈ ΔIi |(x, y) ∈ SIi ∧ y ∈ CIi}| � n}
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Note that, when i = j, since rii = idΔIi , (¬jC)Ii reduces to the usual negation
(¬iC)Ii = ΔIi\CIi . Similarly, the other semantic definitions also reduce to the
usual DL semantic definitions.

For an example of contextualized negation, suppose A = CIi in the Figure 13.2,
then (¬iC)Ij will only contain y2 but not y3. On the other hand, (¬jC)Ij is will
contain both y2 and y3.

A local interpretation Ii satisfies a role inclusion axiom R1 � R2 iff RIi
1 ⊆ RIi

2

and a GCI C � D iff CIi ⊆ DIi . Ii is a model of Pi, denoted by Ii � Pi, if it
satisfies all axioms in Pi.

The proposed semantics of SHOIQP is motivated by the need to overcome some
of the limitations of existing approaches that can be traced back to the arbitrary con-
struction of domain relations and the lack of support for contextualized interpreta-
tion. Specifically, we seek a semantics that satisfies the following desiderata:

• Preservation of concept unsatisfiability. The intuition is that an unsatisfiable
concept expression should never be reused so as to be interpreted as a satisfiable
concept. Formally, we say that a domain relation rij preserves the unsatisfiability
of a concept C, that appears in both Pi and Pj , if whenever CIi = ∅, it is
necessarily the case that CIj = ∅.

• Transitive reusability of knowledge. The intention is that the consequences of
some of the axioms in one module can be propagated in a transitive fashion to
other ontology modules. For example, if a package Pi asserts that C � D, and
Pj directly or indirectly imports that axiom from Pi, then it should be the case
that C � D is also valid from the point of view of Pj .

• Contextualized interpretation of knowledge. The idea is that the interpreta-
tion of assertions in each ontology module is constrained by their context. When
knowledge, e.g., axioms, in that module is reused by other modules, the interpre-
tation of the reused knowledge should be constrained by the context in which the
knowledge is being reused.

• Improved expressivity. Ideally, the language should support
1. both inter-module concept inclusion and concept construction using foreign

concepts, roles and nominals;
2. more general reuse of roles and of nominals than allowed by existing ap-

proaches.

A major goal of this chapter is to explore the constraints that need to be imposed
on local interpretations so that the resulting semantics for SHOIQP satisfies the
desiderata enumerated above. These constraints are presented in the following:

Definition 1. An interpretation I = 〈{Ii}, {rij}Pi∈P∗
j
〉 is a model of a SHOIQP

KB Σ = {Pi}, denoted as I � Σ, if
⋃

i Δ
Ii �= ∅, i.e., at least one of the local

interpretation domains is non-empty4, and the following conditions are satisfied:

4 This agrees with conventional model-theoretic semantics, where an ordinary model (of a
single package) is assumed to have a non-empty domain.
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1. For all i, j, rij is one-to-one, i.e., it is an injective partial function.
2. Compositional Consistency: For all i, j, k s.t. Pi ∈ P ∗

k and Pk ∈ P ∗
j , we have

ρij = rij = rkj ◦ rik .
3. For every i-concept name C that appears in Pj , we have rij(CIi) = CIj .
4. For every i-role R that appears in Pj , we have RIj = rij(RIi).
5. Cardinality Preservation for Roles: For every i-role R that appears in Pj and

every (x, x′) ∈ rij , y ∈ RIi(x) iff rij(y) ∈ RIj(x′).
6. For every i-nominal o that appears in Pj , (oIi , oIj ) ∈ rij .
7. Ii � Pi, for every i.

The proposed semantics for SHOIQP is an extension of the semantics forALCPC
[4], which uses Conditions 1,2,3 and 7 above, and borrows Condition 5 from the
semantics of Semantic Importing [20].

Intuitively, one-to-oneness (Condition 1, see Figure 13.4) and compositional con-
sistency (Condition 2, Figure 13.5) ensure that the parts of local domains connected
by domain relations match perfectly. Conditions 3 and 4 ensure consistency between
the interpretations of concepts and of roles in their home package and the interpre-
tations in the packages that import them. Condition 5 (Figure 13.6) ensures that rij
is a total bijection from RIi(x) to RIj (rij(x)). In particular, the sizes |RIi(x)| and
|RIj(rij(x))| are always equal in different local domains. Condition 6 ensures the
uniqueness of nominals. In Section 4, we will show that Conditions 1-7 are mini-
mally sufficient to guarantee that the desiderata for the semantics of SHOIQP as
outlined above are indeed satisfied.

Note that Condition 2 implies that if Pi and Pj mutually (possibly indirectly)
import one another, then rij = ρij = ρ−ji = r−ji and rij is a total function from ΔIi

to ΔIj . However, if Pj �∈ P ∗
i , rji does not necessarily exist even if rij exists. In that

case, rij is not necessarily a total function.

Definition 2. An ontology Σ is consistent as witnessed by a package Pw of Σ if P ∗
w

has a model I = 〈{Ii}, {rij}Pi∈P+
j
〉, such that ΔIw �= ∅. A concept C is satisfiable

as witnessed by Pw if there is a model I of P ∗
w, such that CIw �= ∅. A concept

An image domain relation in P-DL is one-to-one, i.e., it is a partial injective function.
It is not necessarily total, i.e., some individuals of CIi may not be mapped to ΔIj .

Fig. 13.4. One-to-One Domain Relation
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Fig. 13.5. Compositionally Consistent Domain Relation

If an i-role p is imported by Pj , then every pair of p instances must have a “preimage”
pair in Δi. The cardinality preservation condition for roles, illustrated in this figure,
requires that, if an individual x in ΔIi has an image individual x′ in ΔIj , then each
of its p-neighbors must have an image in ΔIj which is a p-neighbor of x′.

Fig. 13.6. Cardinality Preservation for Roles

subsumption C � D is valid as witnessed by Pw, denoted by C �w D, if, for every
model I of P ∗

w, CIw ⊆ DIw .

Hence, in SHOIQP , the questions of consistency, satisfiability and subsumption
are always answered from the local point of view of a witness package and it is
possible that different packages draw different conclusions from their own points of
view.

The following examples show some inference problems that a P-DL ontology can
tackle. Precise proofs for general cases will be given in Section 13.4.
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Example 4. Transitive subsumption propagation. Given three packages: P1 : {1 :
A � 1 : B}, P2 : {1 : B � 2 : C}, P3 : {2 : C � 3 : D}, the subsumption query
1 : A � 3 : D is answered in the affirmative as witnessed by P3.

Example 5. Detection of inter-module unsatisfiability. Given two packages P1 : {1 :
B � 1 : F}, P2 : {1 : P � 1 : B, 2 : P � ¬1 : F}, 2 : P is unsatisfiable as
witnessed by P2.

Example 6. Reasoning from a local point of view. Given two packages P1 : {1 :
A � 1 : C}, P2 : {1 : A � ∃2 : R.(2 : B), 2 : B � 1 : A � (¬1 : C)}, consider
the satisfiability of 1 : A as witnessed by P1 and P2, respectively. It is easy to see
A is satisfiable when witnessed by P1, but unsatisfiable when witnessed by P2. Thus,
inferences in P-DL are always drawn from the point of view of a witness package.
Different witnesses, because they operate on different domains, and have access to
different pieces of knowledge, can draw dramatically different conclusions.

Discussion: Relation between the Semantics of P-DL and
Partially-Overlapping Local Domain Semantics

In [10] a semantics based on partially overlapping domains was proposed for termi-
nology mappings between ontology modules. In that framework, a global interpreta-
tion I = 〈ΔI , ·I〉 is given together with local domains ΔIi , that are subsets of ΔI .
Any two local domains may be partially overlapping. Moreover, inclusions between
concepts are of the following two forms:

• i : C �ext j : D (extensional inclusion), with semantics CI ⊆ DI , and
• i : C �int j : D (intentional inclusion), with semantics CI ∩ ΔIi ∩ ΔIj ⊆

DI ∩ΔIi ∩ΔIj .

Since P-DL semantics does not envision a global point of view, extensional inclu-
sion has no corresponding notion in P-DL semantics. In addition, P-DL semantics
differs significantly from this approach in that, while both intentional and exten-
sional inclusions are not directional, the semantic importing in P-DL is. To make
this distinction clearer, consider two packages Pi and Pj , such that Pi &→ Pj . Let
C,D be two i-concept names that are imported by Pj and consider the interpre-
tation where ΔIi = {x, y, z}, ΔIj = {y, z}, CIi = {x, y}, DIi = {y, z} and
rij = {〈y, y〉, 〈z, z〉}. Then, in P-DL, from the point of view of package Pi, we have
CIi = {x, y} �⊆ {y, z} = DIi . Therefore, I �|=i C � D. Similarly, from the point
of view of package Pj , we have CIj = rij(CIi) = rij({x, y}) = {y} ⊆ {y, z} =
rij({y, z}) = rij(DIi) = DIj . Therefore, I |=j C � D. However, in the partially
overlapping domain semantics of [10], C =int D holds from both Pi’s and Pj’s
point of view.

Thus, in spite of the fact that the intersection of two sets is “seen equally” from
both sets’ points of view, the example that was presented above illustrates that the
way concept names are interpreted in these models still preserves some form of di-
rectionality in the subsumption reasoning.
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Despite this subtle semantic difference between the partially overlapping domain
semantics of [10] and the semantics of P-DL presented here, it is still possible to pro-
vide P-DL with a different kind of overlapping-domain-style semantics. More pre-
cisely, in the proof of Lemma 3, it is shown how one may combine the various local
domains of a P-DL interpretation into one global domain. The P-DL model satisfies a
given subsumptionC � D from a witness Pi’s point of view if and only if the global
model satisfies an appropriately constructed subjective translation #i(C) � #i(D)
of the given subsumption (see Section 3). Moreover, in the proof of Lemma 2, it is
shown how, conversely, starting from a global domain, one may construct a P-DL
model with various local domains; if the aforementioned subjective translation of a
subsumption is satisfied in the global domain, then the original subsumption is sat-
isfied from Pi’s point of view. If the two constructions are composed, starting from
the original P-DL model one obtains another equivalent model that is based on a
partially-overlapping-style domain semantics. However, due to the interpretations of
the translations of the concept names in this model, directionality is still preserved,
unlike the situation in the ordinary partially overlapping domain semantics of [10].

Since any ordinary P-DL model gives rise to an equivalent model with partially-
overlapping-style semantics, the question arises as to why the latter is not chosen as
the fundamental notion of semantics for P-DL. The main reason is that, in many ap-
plications, local models are supposed to be populated independently of one another
before semantic relations between their individuals are physically established. More-
over, the whole point of introducing modular description logics is to give temporally
and spatially unrelated designers the chance to develop modules of a complex know-
ledge base independently.Additionally, the semantics of P-DL is derived from the Lo-
cal Model Semantics [11], of which the directionality of domain relations, which will
be lost in the partially-overlapping-style semantics, are crucial as domain relations
also subjective. By keeping the directionality of domain relations, it also opens the
possibility for various future extensions of P-DL when it is infeasible to use partially-
overlapping-style semantics, e.g., when transitive knowledge propagation should be
controlled among only trusted entities. � (End of Discussion)

As immediate consequences of the proposed semantics for the P-DL SHOIQP ,
extensions of various versions of the De Morgan’s Law may be proven. Those deal
with both the ordinary propositional logical connectives, including local negations,
and with the quantifiers. For instance, it may be shown that, from the point of view of
a package Pj which directly imports packages Pi and Pk, we have that ¬i(C�D) =
¬iC � ¬iD and also, ¬i(∀R.C) = ¬i�k � ∃R.¬jC, where R is a k-role name.
Similar semantic equivalences hold for various other connectives and quantifiers.
Via these relations, proofs involving existential restriction and value restriction may
be reduced to those involving the corresponding number restrictions.

In the next lemma, it is asserted that Condition 3 of Definition 1 holds not only
for concept names, but, in fact, for arbitrary concepts. Beyond its own intrinsic in-
terest, it becomes handy in Section 4 in showing that the package description logic
SHOIQP supports monotonicity of reasoning and transitive reusability of modules.
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Lemma 1. Let Σ be a SHOIQP ontology, Pi, Pj two packages in Σ such that
Pi ∈ P+

j , C a concept such that Sig(C) ⊆ Sig(Pi) ∩ Sig(Pj), and R a role name
such that R ∈ Sig(Pi) ∩ Sig(Pj). If I = 〈{Iu}, {ruv}Pu∈P+

v
〉 is a model of Σ, then

rij(CIi) = CIj and rij(RIi) = RIj .

The proof of Lemma 1 involves a structural induction on the concept formula C,
that, by hypothesis, appears both in Pi and in Pj . The induction step employs the
fact that, if x′ = rij(x), then

• rij : RIi(x) → RIj (x′) is a total bijection and
• rij : RIi(x) ∩DIi → RIj (x′) ∩DIj is also a total bijection, for every concept

D, that appears in both Pi and Pj , and is such that rij(DIi) = DIj .

13.3 Reduction to Ordinary DL

In this section, we present a translation from concept formulas that appear in a given
package of a SHOIQP KB Σ to concept formulas of a SHOIQ KB Σ�. The
SHOIQ KB Σ� is constructed in such a way that the top concept �w, associated
with a specific package Pw ofΣ, is satisfiable byΣ� in the ordinary DL sense if and
only ifΣ itself is consistent from the point of view of Pw (see Theorem 1). (Note that
the SHOIQ KB Σ� is dependent on the importing relations present in SHOIQP
Σ). This shows that the consistency problem in SHOIQP is reducible to the satis-
fiability problem in SHOIQ, which is known to be NEXPTIME-complete [23, 24].
This has the consequence that the problems of concept satisfiability, concept sub-
sumption and consistency in SHOIQP are also NEXPTIME-complete (see The-
orem 2). Moreover, as will be seen in Section 4, this result also plays a central
role in showing that some of the desiderata presented in Section 2.2 are satisfied by
SHOIQP . For instance, Reasoning Exactness, Monotonicity of Reasoning, Transi-
tive Reusability of Knowledge and Preservation of Unsatisfiability are all features of
SHOIQP , which are shown to hold by employing the translation from SHOIQP
to SHOIQ, that will be presented in this section.

The reduction ' from a SHOIQP KB Σ = {Pi} to a SHOIQ KB Σ� can be
obtained as follows: the signature of Σ� is the union of the local signatures of the
component packages together with a global top �, a global bottom ⊥ and local top
concepts�i, for all i, i.e., Sig(Σ�) =

⋃
i(Loc(Pi) ∪ {�i}) ∪ {�,⊥}, and

a) For all i, j, k such that Pi ∈ P ∗
k , Pk ∈ P ∗

j , �i � �j � �k is added to Σ�.
b) For each GCI X � Y in Pj , #j(X) � #j(Y ) is added toΣ. The mapping #j()

is defined below.
c) For each role inclusion X � Y in Pj , X � Y is added to Σ�.
d) For each i-concept name or i-nominal name C in Pi, i : C � �i is added to Σ�.
e) For each i-role name R in Pi, �i is stipulated to be its domain and range, i.e.,
� � ∀R−.�i and � � ∀R.�i are added to Σ.
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f) For each i-role name R in Pj , the following axioms are added to Σ�:
− ∃R.�j � �j (local domain);
− ∃R−.�j � �j (local range).

g) For each i-role name, add Trans(R) to Σ� if Transi(R).

The mapping #j() is adapted from a similar one for DDL [8] with modifications
to facilitate context preservation whenever name importing occurs. For a formula X
used in Pj , #j(X) is:

• X , for a j-concept name or a j-nominal name.
• X � �j , for an i-concept name or an i-nominal name X .
• ¬#j(Y ) ��i � �j , for X = ¬iY , where Y is a concept.
• (#j(X1)⊕#j(X2))��j , for a conceptX = X1⊕X2, where⊕ = � or⊕ = �.
• (⊗R.#j(X ′)) � �i � �j , for a concept X = (⊗R.X ′), where ⊗ ∈ {∃, ∀,≤

n,≥ n} and R is an i-role.

For example, if C,D are concept names and R a role name,

#j(¬i i : C) = ¬(C � �j) � �i � �j

#j(j : D � i : C) = (D � (C � �j)) � �j

#j(∀(j : R).(i : C)) = ∀R.(C � �j) � �j

#j(∃(i : R).(i : C)) = ∃R.(C � �j) � �i � �j

It should be noted that #j() is contextualized so as to allow a given formula
to have different interpretations when it appears in different packages. See also the
Discussion subsection in Section 2.2.

13.4 Properties of Semantic Importing

In this section, we further justify the proposed semantics for SHOIQP . More
specifically, we present the main results showing that SHOIQP satisfies the
desiderata listed in Section 2.

The first main theorem shows that the consistency problem of a SHOIQP onto-
logy w.r.t. a witness package can be reduced to a satisfiability problem of a SHOIQ
concept w.r.t. an integrated ontology from the point of view of that witness pack-
age, namely, '(P ∗

w). Note that there is no single universal integrated ontology for
all packages. Each package, sees an integrated ontology (depending on the witness
package and all the packages that are directly or indirectly imported by the witness
package), and hence different packages can witness different consequences.

Theorem 1. A SHOIQP KB Σ is consistent as witnessed by a package Pw if and
only if �w is satisfiable with respect to '(P ∗

w).

Proof: Sufficiency is proven in Lemma 2 and necessity in Lemma 3. We present
these two lemmas below, but give only outlines of their proofs. Detailed proofs are
provided in [6].
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Lemma 2. Let Σ be a SHOIQP KB and Pw a package of Σ. If �w is satisfiable
with respect to '(P ∗

w), then Σ is consistent as witnessed by Pw.

Proof: Assume that �w is satisfiable with respect to '(P ∗
w) and let I = 〈ΔI , ·I〉 be

a model of '(P ∗
w), such that �I

w �= ∅. We construct a model 〈{Ii}, {rij}i∈P∗
j
〉 of

P ∗
w, such that ΔIw �= ∅. For each package Pi ∈ P ∗

w, the local interpretation Ii is
constructed as a projection of I in the following way:

• ΔIi = �I
i ;

• For every concept name C that appears in Pi, CIi = CI ∩ �I
i ;

• For every role name R that appears in Pi, RIi = RI ∩ (�I
i ×�I

i );
• For every nominal name o that appears in Pi, oIi = oI ;

and for every pair i, j, such that Pi ∈ P ∗
j ⊆ P ∗

w, we define

rij = {(x, x)|x ∈ ΔIi ∩ΔIj}.

Clearly, we have ΔIw = �I
w �= ∅, by the hypothesis. Moreover, it may be shown

that 〈{Ii}, {rij}Pi∈P∗
j
〉 is a model of the modular ontology P ∗

w, i.e., that it satisfies
the seven conditions postulated in Definition 1. The most challenging part is to
show that, for every concept inclusion C � D in Pj , we must have CIj ⊆ DIj .
Since, by the hypothesis, #j(C)I ⊆ #j(D)I holds in I, it suffices to show that, for
every concept formula X that appears in Pj , we have #j(X)I = XIj . This may be
accomplished by structural induction on X . The details are omitted. Q.E.D.

Next, we proceed to show the reverse implication.

Lemma 3. Let Σ be a SHOIQP KB. If Σ is consistent as witnessed by a package
Pw, then �w is satisfiable with respect to '(P ∗

w).

Proof: Suppose that Σ is consistent as witnessed by Pw. Thus, it has a distributed
model 〈{Ii}, {rij}Pi∈P∗

j
〉, such that ΔIw �= ∅. We proceed to construct a model

I of '(P ∗
w) by merging individuals that are related via chains of image domain

relations or their inverses. More precisely, for every element x in the distributed
model, we define its equivalence class x = {y|(x, y) ∈ ρ} where ρ is the symmetric
and transitive closure of the set

⋃
Pi∈P∗

j
rij . Moreover, for a set S, we define S =

{x̄|x ∈ S} and for a binary relation R, we define R = {(x, y)|(x, y) ∈ R}.
A model I = 〈ΔI , ·I〉 of Σ is now defined as follows:

• �I = ΔI =
⋃

iΔ
Ii , and ⊥I = ∅.

• For every i-name X , XI := XIi .
• For every i, �I

i = ΔIi .

Next, it is shown that I is a model of '(P ∗
w), such that �I

w �= ∅. As in the proof
of Lemma 2, the most challenging part is to show that, if C � D appears in Pj ,
then #j(C)I ⊆ #j(D)I holds in I. Since, by hypothesis, CIj ⊆ DIj and this
implies that CIj ⊆ DIj , it suffices to show that #j(C)I = CIj , for every concept
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formula C that appears in Pj . This is accomplished by induction on the structure of
the concept C. The details can be found in [6]. Q.E.D.

Using Theorem 1 and the fact that concept satisfiability in SHOIQ is NEXPTIME-
complete [23, 24], we obtain

Theorem 2. The concept satisfiability, concept subsumption and consistency pro-
blems in SHOIQP are NEXPTIME-complete.

The next theorem shows that concept subsumption problems in a SHOIQP on-
tology Σ, from the point of view of a specific witness package, can be reduced to
concept subsumption problems in a corresponding SHOIQ ontology.

Theorem 3 (Reasoning Exactness). For a SHOIQP KB Σ = {Pi}, C �j D iff
'(P ∗

j ) |= #j(C) � #j(D).

Proof: As usual, we reduce subsumption to (un)satisfiability. It follows directly from
Theorem 1 that P ∗

j and C � ¬jD have a common model if and only if '(P ∗
j ) and

#j(C) � ¬#j(D) � �j have a common model. Since #j(C) � �j , this holds if
and only if '(P ∗

j ) and #j(C) � ¬#j(D) have a common model. Thus, '(P ∗
j ) |=

#j(C) � #j(D). Q.E.D.

Discussion of Desiderata

To show that the package description logic SHOIQP supports transitive reusabil-
ity and preservation of unsatisfiability, we prove the monotonicity of reasoning in
SHOIQP .

Theorem 4 (Monotonicity and Transitive Reusability). Suppose Σ = {Pi} is a
SHOIQP KB, Pi ∈ P+

j and C,D are concepts, such that Sig(C) ∪ Sig(D) ⊆
Sig(Pi) ∩ Sig(Pj). If C �i D, then C �j D.

Proof: Suppose that C �i D. Thus, for every model I of P ∗
i , CIi ⊆ DIi . Now

consider a model J of P ∗
j . Since Pi ∈ P ∗

j , J is also an interpretation of P ∗
i . If⋃

Pk∈P∗
i
ΔJk = ∅, then the conclusion holds trivially. Otherwise, J is a model of

P ∗
i and, therefore, CJi ⊆ DJi . Hence, rij(CJi ) ⊆ rij(DJi), whence, by Lemma

1, CJj ⊆ DJj . This proves that C �j D. Q.E.D.

Theorem 4 ensures that when some part of an ontology module is reused, the restric-
tions asserted by it, e.g., domain restrictions on roles, will not be relaxed in a way
that prohibits the reuse of imported knowledge. Theorem 4 also ensures that con-
sequences of imported knowledge can be transitively propagated across importing
chains.

In the special case where D = ⊥, we obtain the following corollary:

Corollary 1 (Preservation of Unsatisfiability). For a SHOIQP knowledge base
Σ = {Pi} and Pi ∈ P+

j , if C �i ⊥ then C �j ⊥.
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Finally, the semantics of SHOIQP ensures that the interpretation of an axiom in
an ontology module is constrained by its context, as seen from the reduction to a
corresponding integrated ontology: C � D in Pj is mapped to #j(C) � #j(D),
where #j(C) and #j(D) are now relativized to the corresponding local domain
of Pj .

When a package Pi is directly or indirectly reused by another package Pj , some
axioms in Pi may be effectively “propagated” to module Pj (i.e., may influence
inference from the point of view of Pj). P-DL semantics ensures that such axiom
propagation will affect only the “overlapping” domain rij(ΔIi) ∩ΔIj and not the
entire domain ΔIj .

Example 7. For instance, in Figure 13.1, package P1 contains an axiom ¬1Child �
Adult and package P2 imports P1. The assertion ¬1Child � Adult is made within
the implicit context of people, i.e. every individual that is not a child is an adult.
Thus, every individual within the domain of people are either a Child or an Adult
(�1 � Child�Adult). However, it is not necessarily the case in P2 that�2 � Child�
Adult. For example, an Empolyer in the domain of Work may be an organization
which is not a member of the domain of People. In fact, since r12(ΔI1) ⊆ ΔI2 ,
ΔI1\ChildI1 ⊆ AdultI1 , i.e., ΔI1 = ChildI1 ∪ AdultI1 , does not necessarily imply
ΔI2 = ChildI2 ∪ AdultI2 .

Hence, the effect of an axiom is always limited to its original designated context.
Consequently, it is not necessary to explicitly restrict the use of the ontology lan-
guage to ensure locality of axioms, as is required, for instance, by conservative ex-
tensions [13]. Instead, the locality of axioms follows directly from the semantics of
SHOIQP .

13.5 Discussion of the P-DL Semantics

13.5.1 Necessity of P-DL Constraints on Domain Relations

The constraints on domain relations in the semantics of SHOIQP , as given in Def-
inition 1, are minimal in the sense that if we drop any of them, we can no longer
satisfy the desiderata summarized in Section 13.2.2.

Dropping Condition 1 of Definition 1 (one-to-one domain relations) leads to dif-
ficulties in preservation of concept unsatisfiability. For example, if the domain re-
lations are not injective, then C1 �i ¬iC2, i.e., C1 � C2 �i ⊥, does not ensure
C1 �C2 �j ⊥ when Pj imports Pi. If the domain relations are not partial functions,
multiple individuals in ΔIj may be images of the same individual in ΔIi via rij ,
whence unsatisfiability of a complex concept can no longer be preserved when both
number restriction and role importing are allowed. Thus, if R is an i-role name and
C is an i-concept name, ≥ 2R.C �i ⊥ does not imply ≥ 2R.C �j ⊥.

Dropping Condition 2 of Definition 1 (compositional consistency of domain rela-
tions) would result in violation of the transitive reusability requirement, in particular,
and of the monotonicity of inference based on imported knowledge, in general. In the
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absence of compositional consistency of domain relations, the importing relations
would be like bridge rules in DDL, in that they are localized w.r.t. the connected
pairs of modules without supporting compositionality [25].

In the absence of Conditions 3 and 4 of Definition 1, the reuse of concept and
role names would be purely syntactical, i.e., the local interpretations of imported
concepts and role names would be unconstrained by their interpretations in their
home package.

Condition 5 (cardinality preservation of role instances) is needed to ensure the
consistency of local interpretations of complex concepts that use number restrictions.

Condition 6 is needed to ensure that concepts that are nominals can only have
one instance. Multiple “copies” of such an instance are effectively identified with a
single instance via domain relations.

Finally, Condition 7, i.e., that Ii � Pi, for every i, is self-explanatory.

13.5.2 Contextualized Negation

Contextualized negation has been studied in logic programming [21, 22]. Existing
modular ontology languages DDL and E-Connections do not explicitly support con-
textualized negation in their respective syntax. In fact, in those formalisms, a nega-
tion is always interpreted with respect to the local domain of the module in which
the negation occurs, not the union of all local domains. Thus, in fact, both DDL and
E-Connections implicitly support contextualized negation.

The P-DL syntax and semantics, proposed in this work, support a more general
use of contextualized negation so that a package can use, besides its own negation,
the negations of its imported packages5.

13.5.3 Directionality of Importing

There appears to be some apparent confusion in the literature regarding whether the
constraints imposed by P-DL allow the importing relations in P-DL to be indeed
directional [15]. As noted by Grau [15], if it is indeed the case that a P-DL model I
satisfies rij(sIi) = sIj if only if it satisfies rji(sIj ) = sIi , for any symbol s such
that Pi

s−→ Pj (Definition 18 and Proposition 19 in [15]) it must follow that a P-
DL ontology can be reduced to an equivalent imports-free ontology. Then, a shared
symbol s of Pi and Pj must have the same interpretation from the point of view
of both Pi and Pj , i.e., sIi = sIj . However, according to our definition of model
(Definition 1), it is not the case that a P-DL model I satisfies rij(sIi) = sIj if only
if it satisfies rji(sIj ) = sIi , for any symbol s such that Pi

s−→ Pj . As noted by Bao
et al. [2, 3]:

• P-DL semantics does not require the existence of both rij and rji. Their joint
existence is only required when Pi and Pj mutually import one another. Hence,
even if rij(sIi) = sIj , it is possible that the corresponding rji may not exist in
which case rji(sIj ) is undefined.

5 We thank Jeff Pan for discussions on this issue.
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• Domain relations are not necessarily total functions. Hence, it need not be the
case that every individual of ΔIi is mapped (by the one-to-one domain relation
rij) to an individual of ΔIj .

• Satisfiability and consistency have only contextualized meaning in P-DL. If Pj

is not in P ∗
i , then models of P ∗

i need not be models of P ∗
j . This is made clear in

Definition 2 where satisfiability and consistency are always considered from the
point of view of a witness package.

In the following subsection, we will present an additional example (Example 8)
that illustrates the directionality of importing in P-DL.

13.5.4 P-DL Consistency and TBox Consistency

In Section 13.3 we have shown how to reduce a SHOIQP P-DL ontology to a
corresponding DL (SHOIQ) ontology. We have further shown (Theorem 1) that
determining the consistency of a SHOIQP ontology from the point of view of a
package Pw can be reduced to the satisfiability of a SHOIQ concept with respect to
a SHOIQ ontology obtained by integrating the packages imported by Pw. However,
it is important to note that this reduction of SHOIQP is different from a reduction
based on S-compatibility as defined in [15].

Definition 3 (Expansion). [15] Let A-interpretation denote an interpretation over
a signature A. An S-interpretation J = (ΔJ , ·J ) is an expansion of an S′-
interpretation J ′ = (ΔJ ′

, ·J ′
) if

(1) S′ ⊆ S,
(2) ΔJ ′ ⊆ ΔJ , and
(3) sJ = sJ

′
, for every s ∈ S′.

Definition 4 (S-compatibility). [15] Let T1 and T2 be TBoxes expressed in a de-
scription logic L, and let S be the shared part of their signatures. We say that T1 and
T2 are S-compatible if there exists an S-interpretation J , that can be expanded to a
model J1 of T1 and to a model J2 of T2.

As the following example illustrates, a P-DL ontology is not always reducible to the
imports-free ontology that is obtained by simply taking the union of the modules
(packages).

Example 8. Let T1 = {D � ¬D � C}, T2 = {C � ⊥}. The shared signature
S = {C} and T1 and T2 are not S-compatible. However, suppose we have a P-DL

ontology such that T1
C−→ T2 and negation in T1 becomes contextualized negation

¬1. Then we have a model:

Δ1 = CI1 = DI1 = {x}
Δ2 = {y}, CI2 = ∅
r12 = r21 = ∅
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On the other hand, all models of a P-DL ontology where T2
C−→ T1 have empty

Δ1. Thus, the whole ontology is consistent as witnessed by T2 but inconsistent as
witnessed by T1. This example demonstrates that P-DL importing is directional.

The next example shows that, in the presence of nominals, the P-DL consistency
problem is not reducible to the consistency of an imports-free ontology obtained by
simply combining the P-DL modules.

Example 9 (Use of Nominals). Consider the following TBoxes:

T1 = {� � i � j, i � j � ⊥}
T2 = {� � i},

with the shared signature S = {i}, where i, j are nominals. T1 and T2 are S-
compatible but T1 ∪ T2 is not consistent. Suppose we have a P-DL ontology with

T1
i−→ T2. Since “�” only has contextualized meaning in P-DL, these TBoxes in fact

should be represented as

T1 = {�1 � i � j, i � j � ⊥}
T2 = {�2 � i}

Now, there exists a model for this P-DL ontology:

Δ1 = {x, y}, iI1 = {x}, jI1 = {y}
Δ2 = {x′}, iI2 = {x′}
r12 = {(x, x′)}

In general, the reduction from P-DL modules to imports-free TBoxes with shared
signatures based on S-compatibility, as suggested by [15], does not preserve the se-
mantics of P-DL. Thus, there is a fundamental difference between the two settings:
P-DL has no universal top concept and, as a result, P-DL axioms have only localized
effect. In the case of imports-free TBoxes, in the absence of contextualized seman-
tics, it is not possible to ensure that the effects of axioms are localized. Consequently,
it is not possible to reduce reasoning with a P-DL ontology with modules {Ti} to
standard DL reasoning over the union of all ontology modules T = T1 ∪ ... ∪ Tn.

In contrast, in the previous section we have shown that such a reduction from
reasoning in P-DL from the point of view of a witness package to reasoning with a
suitably constructed DL (as shown in Section 13.3) is possible. Nevertheless, relying
on such a reduction is not attractive in practice, because it requires the integration
of the ontology modules, which may be prohibitively expensive. More importantly,
in many scenarios encountered in practice, e.g., in peer-to-peer applications, cen-
tralized reasoning with an integrated ontology is simply infeasible. Hence, work in
progress is aimed at developing federated reasoners for P-DL that do not require the
integration of different ontology modules (see, e.g., [4]).
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13.6 Summary

In this chapter, we have introduced a modular ontology language, package-based de-
scription logic SHOIQP , that allows reuse of knowledge from multiple ontologies.
A SHOIQP ontology consists of multiple ontology modules each of which can be
viewed as a SHOIQ ontology. Concept, role and nominal names can be shared by
“importing” relations among modules.

The proposed language supports contextualized interpretation, i.e., interpretation
from the point of view of a specific package. We have established a minimal set
of constraints on domain relations, i.e., the relations between individuals in different
local domains, that allow the preservation of the satisfiability of concept expressions,
the monotonicity of inference, and the transitive reuse of knowledge.

Ongoing work is aimed at developing a distributed reasoning algorithm for
SHOIQP by extending the results of [4] and [20], as well as an OWL extension
capturing the syntax of SHOIQP . We are also exploring several variants of P-DL,
based on a more in-depth analysis of the properties of the domain relations and the
preservation of satisfiability of concept subsumptions across modules.
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