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Packaging and delivering enzymes by amorphous
metal-organic frameworks
Xiaoling Wu1,2,12, Hua Yue3,12, Yuanyu Zhang1,12, Xiaoyong Gao 3, Xiaoyang Li1, Licheng Wang1, Yufei Cao1,

Miao Hou1, Haixia An3, Lin Zhang4*, Sai Li 5,6,7*, Jingyuan Ma8, He Lin8, Yanan Fu8, Hongkai Gu9,

Wenyong Lou 2, Wei Wei 3*, Richard N. Zare 10 & Jun Ge 1,11*

Enzymatic catalysis in living cells enables the in-situ detection of cellular metabolites in single

cells, which could contribute to early diagnosis of diseases. In this study, enzyme is packaged

in amorphous metal-organic frameworks (MOFs) via a one-pot co-precipitation process

under ambient conditions, exhibiting 5–20 times higher apparent activity than when the

enzyme is encapsulated in corresponding crystalline MOFs. Molecular simulation and cryo-

electron tomography (Cryo-ET) combined with other techniques demonstrate that the

mesopores generated in this disordered and fuzzy structure endow the packaged enzyme

with high enzyme activity. The highly active glucose oxidase delivered by the amorphous

MOF nanoparticles allows the noninvasive and facile measurement of glucose in single living

cells, which can be used to distinguish between cancerous and normal cells.
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D
etection of intracellular metabolites is important for bio-
medical applications, for example, the diagnosis of cancers
as well as many other diseases1,2. Enzymes, as the catalysts

in cells, in principle, can accelerate specific reactions to covert
intracellular metabolites to detectable products. This biocatalysis in
cells could provide a new method for the precise detection of
metabolites in living cells. However, the delivery of enzymes and the
retention of enzyme activity in cells remain challenging.

Enzymes usually lose their three-dimensional structure under
harsh conditions such as high temperatures, polar organic sol-
vents, pH extremes, and protease interactions, resulting in the
serious deactivation of enzymes. Previous efforts have been made
to increase enzyme stability for the wide applications in biocata-
lysis, biosensing, and biomedicine. Recently, as a promising can-
didate, crystalline metal-organic frameworks (MOFs) have been
utilized to protect the encapsulated enzymes inside MOFs under
harsh conditions3. To date, there are two approaches to incor-
porate enzymes in MOFs. The most frequently used strategy is the
adsorption of enzymes in as-synthesized crystalline MOFs4–7,
which involves the pre-synthesis of mesoporous MOFs followed
by the loading of enzyme molecules in the well-designed meso-
pores in MOFs that have sizes slightly larger than protein mole-
cules. The other approach proposed by our group and others is a
one-step process, in which the enzyme molecules, metal ions, and
organic ligands are mixed in solution to readily form the enzyme-
crystalline MOF composites8–13. However, the possibility of
hosting molecules by amorphous MOFs (aMOFs) with disordered
and fuzzy structures has not been explored.

Here, we report the in situ packaging of enzymes in aMOFs at
ambient conditions. The enzyme-aMOF composites are prepared
by a one-step process, simply by mixing enzyme, metal ions, and
organic ligands in an aqueous solution. The extended X-ray
absorption fine structure (EXAFS) analysis and molecular dynamic
(MD) simulations suggest that the formation of amorphous struc-
tures is mainly caused by coordination defects between metal ions
and organic ligands. The mesopores in aMOFs as observed by cryo-
electron tomography (Cryo-ET) allow the encapsulated glucose
oxidase (GOx) to display 20 times higher activity than that in
crystalline MOFs. The aMOFs provide a reasonable protecting
effect for the encapsulated enzyme, displaying higher stability
compared with the native counterpart. This high activity and sta-
bility of enzyme-aMOF composites allows its application in intra-
cellular biosensing. The delivery of GOx by aMOFs enables
noninvasive measurement of glucose in a single living cell, which
identifies cancer cells from normal cells. This capability shows great
promise in cancer diagnosis and understanding tumor metabolism.

Results and discussion
Synthesis of enzyme-incorporated amorphous composites.
Enzyme encapsulation in aMOFs was discovered by accident when
decreasing the concentration of 2-methylimidazole (2-MeIM)
compared to the previous report11 of the in situ incorporation of
enzyme in a crystalline zeolitic imidazolate framework-8 (ZIF-8).
After mixing 2-MeIM (40mM), zinc acetate (10mM), and GOx
(0.25mgmL−1) in aqueous solution at room temperature under
stirring for 30min, the product was collected via centrifugation and
washed with deionized water. Scanning electron microscopy (SEM)
(Fig. 1a, b) and transmission electron microscopy (TEM) images
(Supplementary Fig. 1a, b) showed that the composites (with and
without enzyme) exhibited the form of nanospheres (~100 nm in
diameter). High-angle annular dark field scanning TEM images and
energy-dispersive spectrum (EDS) mapping (Fig. 1c) confirmed the
distribution of Zn and N (from both 2-MeIM and protein) in
nanospheres. The stochastic optical reconstruction microscopy
image (Fig. 1d, Supplementary Fig. 2) showed a uniform

distribution of GOx in nanocomposites. The characteristic
absorption bands at 1640 to 1660 cm−1 and 1510 to 1560 cm−1 in
Fourier transform infrared spectroscopy (FT-IR) (Supplementary
Fig. 3, Supplementary Note 1) confirmed again the presence of
GOx. Determined by thermogravimetry analysis, the weight per-
centage of protein in the composites was ~10% (Supplementary
Fig. 4, Supplementary Note 2). The selected area electron diffraction
(SAED) pattern of the enzyme-MOF nanocomposites (Fig. 1e)
suggested a possible amorphous structure, which was markedly
different from the SAED pattern of enzyme-ZIF-8 composites
(Fig. 1f), which show a clear crystalline structure.

Thus, we examined the crystallinity of enzyme-MOF nano-
composites by X-ray diffraction analysis. Different from pure
ZIF-8 and enzyme-ZIF-8 composites, XRD patterns of nano-
composites with/without enzyme (Fig. 1g) implied the existence
of amorphous structures. Previously, aMOFs were mostly
synthesized via amorphization of crystalline MOFs by high
pressure14,15, ball milling16,17, or heating18,19. Here, we highly
suspected that, we have prepared aMOFs and their composites
with protein in aqueous solution under ambient conditions by
just modulating the concentration of organic ligands.

The loss of long-distance order as indicated by XRD patterns
makes it difficult to characterize the amorphous composite. We
therefore investigated the chemical environment of Zn to determine
whether the amorphous structure was still based on the coordina-
tion between Zn2+ and 2-MeIM. The X-ray photon spectroscopy
(Supplementary Figs. 5 and 6) and FT-IR spectra (Supplementary
Fig. 7) suggested that a similar coordination between Zn and N was
present in amorphous structure as in ZIF-8. Data extracted through
Fourier transformation of the X-ray absorption spectra from
EXAFS of the amorphous composite was also similar to ZIF-8
(Fig. 1h), exhibiting one strong peak at ca. 1.6 Å for Zn-N
coordination20, but the number of N coordinated with Zn was
decreased in the amorphous structure compared with that in ZIF-8
(Supplementary Fig. 8, Supplementary Table 1). By elemental
analysis and inductively coupled plasma optical emission spectro-
meter (ICP-OES), the molar ratio of N to Zn in ZIF-8 was
determined to be 4.0, whereas in the amorphous composites, the
ratio of N to Zn dropped to 3.4 (Supplementary Table 2). This
result indicates that one zinc ion in the amorphous composites was
coordinated with 3.4 nitrogen atoms on average.

Coordination defects and mesopores in amorphous compo-
sites. Based on the measured ratio of 2-MeIM and Zn2+ in the
aZIF, MD simulations were utilized to investigate the formation
of aZIF. When the ratio between 2-MeIM and Zn2+ was 2:1, a
perfect structure of ZIF-8 was obtained and stabilized (Fig. 2a),
giving an average pore diameter of 1.2 nm (Fig. 2c). When low-
ering the ratio between 2-MeIM and Zn2+ to 1.69:1, the rear-
rangement of framework occurred (Fig. 2b). Some ordered
structure similar to ZIF-8 was preserved. At the same time, the
disordered structure emerged in the framework caused by the
irregular coordination between 2-MeIM and Zn2+ and con-
sequent molecular collapse (Supplementary Fig. 9), leading to the
generation of larger pores (Fig. 2b). The appearance of larger
pores was further demonstrated by the statistics of the pore size
distribution, showing the existence of pores with diameters ran-
ging from 1.5 to 3.5 nm (Fig. 2c), while only micropores of
0.3–1.2 nm can be found in the crystalline ZIF-8. In addition, the
result of simulated radial distribution function (Supplementary
Fig. 10) also indicated the disappearance of long-distance order in
aZIF. A synchrotron radiation X-ray pair distribution function
(PDF) experiment was carried out to obtain the total scattering
factor, S(Q) and PDF, G(r) of both ZIF-8 and aZIF. The experi-
mental results agreed well with the main peaks obtained from
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simulation (Fig. 2e, f, Supplementary Fig. 11), demonstrating the
accuracy of the simulation model. In addition, the XRD spectrum
obtained from simulation (Supplementary Fig. 12, Supplementary
Note 3) and the simulated atom pair distance distribution (Sup-
plementary Fig. 13) also agreed well with crystallographic struc-
ture of ZIF-8, which again proved the model.

The existence of mesopores in aZIF was experimentally proven
by Cryo-ET, which provides a three-dimensional landscape of
protein-incorporated aZIF nanostructure in the form of thin
vitreous hydrated specimens. Imaged by Cryo-ET, the cross-section
of GOx-aZIF nanocomposites exhibited the form of spherical
particles (~100 nm in diameter) (Fig. 2g, Supplementary Fig. 14)
with mesopores plainly distributed inside the particle. Mesopores
ranging from ~1 to ~10 nm were clearly observed (Fig. 2g) and
measured (Fig. 2h, i). A series of cross-sections of a single GOx-
aZIF nanocomposite (Supplementary Fig. 15, Supplementary
Movies 1 and 2) suggested that the generated mesopores were
interconnected and extended to the surface of the nanocomposite.
MD simulations of aZIF without enzyme showed the existence of
pores with sizes from 1.5 to 3.5 nm (Fig. 2c). Here, under Cryo-ET,
the linear density profile along the dashed line in Fig. 2g
demonstrated that the pore size of GOx-aZIF was ~1 to 10 nm
by measuring the distance of two neighboring peaks (Fig. 2h) or by
its Fourier transformation (Fig. 2i). Interestingly, tiny peaks
(arrowheads in Fig. 2h) were often seen in larger mesopores
(diameter >8 nm). Because the size of the GOx molecule21 is 5.5
nm × 7 nm× 8 nm, it is highly suspected that such tiny peaks
represent enzyme molecules located in the mesopores of the GOx-
aZIF nanocomposite with a size >8 nm. Other mesopores <8 nm
were not occupied by enzyme molecules and were generated mainly
during the formation of aZIF, as indicated by MD simulations. A
zoomed image of the cross-section of a crystalline ZIF-8 particle

was given in Supplementary Fig. 16a, which displayed more regular
structure than amorphous ZIFs (aZIF) (Fig. 2g–i). Parallel patterns
were observed (red dashed lines), measuring ca. 1.2 nm in distance
between the two neighboring dashed lines. This may correspond to
the crystallographic planes (1 1 0) of ZIF-8 (Supplementary
Fig. 16b), whose interplanar spacing (d1 1 0) is ca 1.19 nm22.
Similarly, a linear electron density scan and its fast Fourier
transformation were performed along the red dashed line in
Supplementary Fig. 16c, d and Supplementary Note 4. Compared
with aZIF (Fig. 2g–i), the electron density scan curve of the ZIF-8
sample (Supplementary Fig. 16c, d) showed a more frequent
electron density variation, which, in other words, indicate that the
pore sizes of crystalline ZIF-8 are generally smaller. Simultaneously,
the N2 adsorption analysis (Fig. 2d, Supplementary Fig. 17, and
Table 3) experimentally supported the existence of mesopores
in aZIF and GOx-aZIF. Collapse of micropores to mesopores leads
to lower specific surface and thus low nitrogen sorption capacity.
Different from ZIF-8, which only has micropores, mesopores
from 1 to 4 nm and from 1 to 10 nm were generated in aZIF and
GOx-aZIF, respectively, which agrees with the results of MD
simulations and Cryo-ET (Fig. 2i). Please note that the different
approach utilized in MD simulations (see Supplementary Method
section of Molecular simulations for simulation details) resulted in
slight difference in pore size distributions of ZIF-8 and aZIF
compared with experimental results. From the above investigation,
we concluded that although the composites synthesized in this
study kept similar coordination and chemical composition as
crystalline ZIFs, the low concentration of 2-MeIM in the synthesis
resulted in coordination defects in frameworks. The coordination
defects led to the loss of long-distance ordering and crystallinity,
producing aZIFs and enzyme-aZIF nanocomposites with extra
mesopores.
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Fig. 1 Structural characterizations of enzyme-incorporated composites. Scanning electron microscopy (SEM) images of nanocomposites without (a) and

with (b) GOx enzyme. c High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) image of the GOx-incorporated

nanocomposite and energy-dispersive spectrum (EDS) analysis, showing the distribution of Zn and N. Scale bar is 10 nm. d Stochastic optical

reconstruction microscopy (STORM) image of GOx-incorporated nanocomposites. GOx is labeled with switchable fluorescent dye, Cy5. Inset is a high-

resolution image showing the distribution of GOx-Cy5 in a single nanocomposite. e, f Transmission electron microscopy (TEM) image and selected area

electron diffraction (SAED) patterns of GOx-incorporated amorphous nanocomposite (e, scale bar in inset is 10 nm) and GOx-incorporated ZIF-8 (f, scale

bar in inset is 20 nm). g X-ray diffraction (XRD) patterns of simulated ZIF-8, amorphous nanocomposite (am), GOx-incorporated amorphous

nanocomposite (GOx-am), GOx-incorporated ZIF-8 (GOx-ZIF-8). h Pseudoradial distribution functions for ZIF-8, amorphous ZIF from experiment and

corresponding fitting data. Data were extracted through Fourier transformation of the X-ray adsorption spectra (inset) obtained at the K edge of zinc.

Source data are provided as a Source Data file
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The generation of mesopores facilitated the entering of the
substrate glucose into GOx-aZIF nanocomposites. The high affinity
of substrate toward enzyme-aZIF composite was proven by using
the fluorescent glucose analog 2-deoxy-2-[(7-nitro-2,1,3-benzoxa-
diazol-4-yl) amino]-D-glucose (2-NBDG). 2-NBDG was incubated
with GOx-ZIF-8 or GOx-aZIF nanocomposites under the same
conditions. The fluorescence intensity of GOx-aZIF nanocompo-
sites augmented quickly and reached a plateau after 6 min
(Supplementary Fig. 18), while the fluorescence intensity of GOx-
ZIF-8 was much weaker due to the strong diffusion barrier of
micropores in ZIF-8. After incubation for 10min, the GOx-aZIF
nanocomposite captured more fluorescent molecules than GOx-
ZIF-8 (Fig. 2j).

High activity of enzyme packaged in aZIF. The facilitated
substrate transportation encouraged us to measure the activity of
GOx-aZIF nanocomposites. Surprisingly, the GOx-aZIF nano-
composites exhibited almost ~100% relative activity compared to
native GOx at the same protein concentration (Supplementary
Fig. 19). This result represents 20 times higher activity than that
of GOx-ZIF-8 composites (~5%) (Fig. 2k). Further exploration
into the enzymatic kinetics of the GOx-aZIF nanocomposites
showed that the Michaelis–Menten (MM) constant, Km, of the
encapsulated GOx was 2.0 mM (Supplementary Fig. 20), whereas
for free GOx, Km was 2.2 mM (Supplementary Fig. 21), indicating
the similar affinity toward substrate glucose (please see Supple-
mentary Table 4 and Supplementary Note 5 for analysis of var-
iance of Km values). In contrast, for GOx encapsulated in ZIF-8,
Km was increased to 12mM, suggesting a severe limitation for
substrate transportation (Supplementary Fig. 22). It is known that
ZIF-8 has cavities with windows of ~3.4 Å, which seriously
restricted the transport of substrate and therefore significantly
reduced enzyme activity after encapsulation10,11.

To prove the generality, different enzymes including Candida
Antartic lipase B (CALB) and catalase (CAT) were encapsulated in
aZIFs by the same procedure, producing similar nanospheres with
diameters ranging from 80 to 100 nm (Supplementary Figs. 23 and
24). The amorphous structures were proven by the XRD patterns
(Supplementary Fig. 25). Similarly, CAT and CALB in aZIF
composites exhibited ~5 times higher activity than in corresponding
ZIF-8 composites (Fig. 2l). A diffusion-reaction model was
established to possibly explain the different activity enhancement
factors for GOx, CAT, and CALB in aZIF (Supplementary Table 5,
Supplementary Fig. 26, and Supplementary Note 6). A time-
dependent evolution of amorphous structures to crystalline
structures (Supplementary Figs. 27, 28, Supplementary Table 6,
and Supplementary Notes 7, 8) were observed, and the types of
enzymes might affect the evolution time. The feeding concentration
of ligand also affected the activity of encapsulated enzyme and the
structure of obtained composite (Supplementary Figs. 29-31,
Supplementary Note 9). This result indicated that the well control
of organic ligand concentration and reaction time resulted in the
formation of amorphous structures.

The activities of GOx, CAT, and CALB in aZIFs, to the best of
our knowledge, showed the highest record of enzymatic activity of
enzyme-MOF composites prepared by the one-step co-precipitation
process. Previous studies9,23 reported <10% activity for enzyme-
MOF composites prepared by co-precipitation in solution. The
stability of GOx-aZIF composite under mechanic shaking, sonicat-
ing, freeze-thawing cycles, reuse, and at high temperature, in
solution with different pH was systematically evaluated. Results
showed that stability of GOx-aZIF was greatly enhanced compared
with free GOx, although slightly lower than that of GOx-ZIF-8
(Supplementary Figs. 32–39 and Supplementary Note 10). Only a
small amount of enzyme (6.7–8.0%) was released from aZIF during

the activity test (Supplementary Fig. 40 and Supplementary
Note 11). Many crystalline MOFs have been used to load enzymes
with sufficient protein protection and substrate diffusivity4–7.
Different from using the pre-synthesized MOFs with mesopores
to load enzymes, our research group among others previously
developed the one-pot synthesis of enzyme-MOF composites by
directly mixing metal ions, organic ligands, and enzymes in
solution8–11. The advantage of the one-pot synthesis is the
simplicity of preparation and the high enzyme loading. However,
up to date, most of previous studies of one-pot synthesis focused on
using crystalline ZIFs having small pores, which restricted the
diffusion of substrates towards the encapsulated enzyme. In this
study, following the previous research of one-pot synthesis, we
developed the aZIFs to encapsulate enzyme and the larger pores of
aZIFs allowed the facilitated substrate diffusion. Compared with the
crystalline ZIF-8, the coordination defects in aZIF decreased its
stability at harsh conditions, for example, thermal stability and
reusability. At the same time, the mesopores inside aZIF, which are
also created by the coordination defects endowed the packaged
enzyme with a remarkably higher apparent activity compared with
enzyme in crystalline ZIF-8.

The GOx-aZIF nanocomposites can be well dispersed in
aqueous solution with an average size around 150 nm (Supple-
mentary Figs. 41 and 42) and zeta potential of −23 mV
(Supplementary Fig. 43) as determined by dynamic light
scattering analysis. Compared with the positive zeta potential of
GOx-ZIF-8 (+25 mV), GOx-aZIF with a negative zeta potential
could be more biocompatible when incubated with cells. The
GOx-aZIF nanocomposites have slight agglomeration in aqueous
solution, resulting in sizes larger than that obtained from SEM
images (Supplementary Fig. 44). The protective framework
prevented the encapsulated enzyme from being attacked by
protease. Similar to GOx-ZIF-8, when GOx-aZIF nanocomposites
were immersed in trypsin solution, it retained almost 100% of its
original activity (Fig. 2m). Further experiment also demonstrated
that the GOx was encapsulated inside the particle rather than
adsorbed on the surface of aZIF (Supplementary Fig. 45 and
Supplementary Note 12). In contrast, under the same condition,
free GOx was digested by trypsin, leading to 80% loss of activity.
In general, enzymes encapsulated in aZIF outperform those
incorporated in other mesoporous materials, such as hydrogels
and mesoporous silica, in terms of activity recovery, stability,
water dispersibility, and accessibility24,25.

Intracellular glucose detection by enzyme-aZIF. The high
activity, dispersibility, and stability of enzyme-aZIF nano-
composites in physiological conditions enabled us to investigate
the detection of intracellular metabolites, concentrations of which
usually served as important indicators for biochemical processes.
For example, glucose metabolism is pivotal to numerous bio-
chemical processes in natural living matters, including energy
production, hormonal regulation, and human diseases. The
Warburg effect26, transition of cell metabolism from oxidative
phosphorylation to anaerobic glycolysis resulting in high uptake
of glucose, is usually considered as a sign of cancer progression.
Several technologies such as Förster resonance energy transfer27,
nanopipette-based electrochemical sensors28, positron emission
tomography29, and desorption electrospray ionization mass
spectrometry imaging30 have shown much promise for in situ
analysis of glucose in tissues or cells, but still with some limita-
tions (Supplementary Table 7).

Enzymes as natural catalysts that responsible for driving
metabolic reactions without cell damage, in principle, can be
designed as probes for in situ analysis in living cells. For example,
GOx catalyzes the oxidation of glucose to D-glucono-1,5-lactone

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13153-x ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5165 | https://doi.org/10.1038/s41467-019-13153-x | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


and hydrogen peroxide (H2O2), which can be identified by the
elevated fluorescence of a •OH-sensitive fluorescent dye (2′,7′-
dichlorodihydrofluorescein diacetate, DCFH-DA). Considering
the acid degradation pathway for free GOx (Supplementary
Figs. 46 and 47 and Supplementary Note 13), we concentrated on

the comparison of the intracellular activity of the two composites,
GOx-aZIF and GOx-ZIF-8. From the kinetic results of fluores-
cence of DCF (Fig. 3a), a higher enzyme dosage resulted in a
faster catalytic speed (represented by a bigger initial slope of the
FI–time curve) and a considerable step forward for the maximum
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peak value of FI. Meanwhile, with the same enzyme dosage, GOx-
aZIF displayed a significantly higher activity than GOx-ZIF-8, as
indicated by the higher initial slope and the higher peak value of
FI. This superiority existed under different enzyme concentra-
tions, especially at a moderate dosage (ca. 15 µg mL−1 of
nanocomposites), while the peak FI for the GOx-aZIF was four
times higher of that for GOx-ZIF-8. At low dosage (4.5 μg mL−1

of GOx-aZIF and GOx-ZIF-8), after delivery of enzyme in cells,
the majority of GOx-aZIF and GOx-ZIF-8 was possibly
deactivated before they can catalyze enough glucose, resulting
in slight difference between GOx-aZIF and GOx-ZIF-8 (Fig. 3a,
left). At the moderate concentration (15 μg mL−1), the difference
of enzyme activity between GOx-aZIF and GOx-ZIF-8 was
evident and clearly observed (Fig. 3a, middle). This is because the
high activity of GOx-aZIF enables it to catalyze the intracellular
glucose. In contrast, the activity of GOx-ZIF-8 was still extremely
low at moderate dosage. Thus, a huge difference of fluorescent
kinetics could be observed between GOx-aZIF and GOx-ZIF-8.
At high concentration (45 μg mL−1), because both GOx-aZIF and
GOx-ZIF-8 were excessive, most of the glucose was consumed
very quickly at a similar rate (Fig. 3a, right) giving similar
performance. Corresponding images and movies (Fig. 3b, Sup-
plementary Movies 3 and 4) also showed distinguishable cells that
rapidly lightened by the GOx-aZIF at a moderate dosage during a
continuous detection period (2 h). These results together confirm
the feasibility of using GOx-aZIF in dynamic glucose detection.

We investigated further the analysis of glucose in single cells, in
mixed cells, and for the discrimination of different cell types to
demonstrate its practical application (Supplementary Fig. 48). As
shown in Fig. 3c, d, by using GOx-aZIF as the probe, based on the
high sensitivity of intracellular fluorescence signal from single-cell
level, the active cells (nos. 1–3), which uptake more glucose can
be readily distinguished from relatively resting cells (nos. 4–6).
Moreover, it can be used to discriminate carcinoma cells (HepG2)
from normal liver cells (L02) (Fig. 3e, f and Supplementary
Movie 5), because HepG2 cells uptake more glucose, resulting in
higher fluorescence intensity. For further investigation, the
intracellular glucose concentrations of four different cell types
were firstly measured by a standard chemical lysis method and
the glucose concentration increased from the normal tissue cell
(L02) to cancer cells (MGC803 <MCF-7 < 4T1). Subsequently,
the DCF fluorescence intensity of different cell types was
noninvasively detected after delivery of the GOx-aZIF in cells
(Fig. 3g, h). GOx-aZIF entering different cells was maintained at
the same amount (Supplementary Fig. 49); thus, the peak value of
DCF intensity reflects the amount of glucose catalyzed by the
GOx-aZIF. It appeared that the peak DCF intensity value
accordingly increased with the glucose concentration measured
by the standard chemical lysis method (Fig. 3g, Supplementary
Fig. 50, and Supplementary Note 14). The linear correlation
between the fluorescence intensity and the intracellular glucose
concentration can be utilized as a calibration curve. In this sense,
the GOx-aZIF not only ensured the absolute quantification of
glucose, but also opened up a gentle, non-damage on-live cell
detection method that surpassed the chemical lysis method. This
method showed good reproducibility (Supplementary Figs. 51–53
and Supplementary Note 15).

In conclusion, we propose that aMOFs can package enzymes
with highly retained activity. We studied the chemical structure of
aZIF and proved that mesopores (from 1 to 10 nm) were
generated in the aZIF during the formation of amorphous
structure and incorporation of protein molecules. These meso-
pores facilitated the substrate transportation and thus greatly
improved the activity of encapsulated enzyme, which was
demonstrated by different types of enzymes. The delivery of
GOx by aZIF allowed the dynamic detection of glucose in a single

living cell, which could be used for discriminating different
cell types and for distinguishing between normal and cancer
cells. This also sheds light on the application in detecting other
cellular metabolic processes in a mild and efficient way and
promotes the development of new drug delivery systems for
medical therapy.

Methods
Synthesis of aZIF. In a typical experiment, 1 mL of zinc acetate solution (20 mM)
was added into 1 mL of 2-MeIM (80mM), followed by stirring for 30 min in a 5 mL
glass bottle. The synthesized aZIF was then centrifugated (20,000 × g, 5 min,
ambient temperature), washed for three times with deionized water and lyophi-
lized. Due to the excess amount of 2-MeIM, the yield was calculated based on the
conversion of zinc. The product was weighed to be 1.8 ± 0.1 mg with a yield of ca.
41% according to ICP-OES results.

Synthesis of GOx-aZIF nanocomposites. The synthesis of GOx-aZIF was similar
as that of aZIF. After adding zinc acetate solution to 2-MeIM, 80 μL, 0.5–5 mgmL−1

GOx was immediately added to the reactor and stirred for 30 min, followed by the
same washing and drying procedure. The weight of the product was 2.0 ± 0.1 mg.
The yield was calculated to be ca. 45% according to ICP-OES results.

Enzymatic activity assay of GOx-aZIF nanocomposites. The activity of GOx in
aqueous solution was measured by using glucose as the substrate in phosphate-
buffered saline (PBS) (pH 7.4). In a typical measurement, 50 μL of GOx-aZIF
nanocomposites or free GOx with the same amount of protein was added in PBS
containing glucose (100 mM), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sul-
fonic acid), 0.28 mgmL−1) and horseradish peroxidase (0.05 mgmL−1). The
increase of absorbance at 415 nm was measured by using a ultraviolet/visible (UV/
Vis) spectrophotometer. The MM constant, Km, was obtained by the non-linear
fitting of initial reaction rate with substrate concentration according to the MM
equation.

Enzymatic activity assay of CALB-aZIF nanocomposites. The hydrolytic activity
of CALB-ZIF-8 was determined using p-nitrophenyl butyrate (p-NPB) as the
substrate. First, p-NPB was dissolved in acetone and then diluted with PBS (50
mM, pH 7.0) containing 1.25% (w/v) Triton X-100, with a final concentration of
0.5 mM. The reaction was initiated by adding 50 µL of enzyme solution (phosphate
buffer, 50 mM, pH 7.0) to 950 µL of the substrate solution. The absorbance at 348
nm was recorded using a UV/Vis spectrophotometer.

Cell culture. The human gastric cancer cell MGC803, human breast cancer cell
MCF-7, and hepatic cancer cell HepG2 were maintained in Dulbecco’s modified
Eagle’s medium medium containing 10% fetal bovine serum (FBS). Mouse breast
cancer cell 4T1 and human normal hepatocyte L02 were maintained in RPMI-1640
medium containing 10% FBS. All cells were incubated at 37 °C in an atmosphere of
5% CO2. MCF-7 and 4T1 were from the American Type Culture Collection.
MGC803 was from the China Infrastructure of Cell Line Resource. L02 was from
the Cell bank of Type Culture Collection of the Chinese Academy of Sciences.

Intracellular detection of glucose. The intracellular glucose was dynamically
monitored by using DCFH-DA dye, which could be de-esterified intracellularly to
form DCFH. DCFH could react with H2O2 (the product of glucose conversion
catalyzed by GOx) and produce highly fluorescent DCF. Cells were primarily
allowed to adhere for 24 h in 96-well plates and be washed for three times with
glucose-free PBS prior to the detection. Subsequently, the DCFH-DA dye (at a
work concentration of 10 µM) and the GOx-aZIF or GOx-ZIF-8 at certain con-
centrations were simultaneously added into the cells for dynamic detection (4.5, 15,
and 45 µg mL−1). The fluorescent images of the cells were recorded during 4-h
incubation period (37 °C and 5% CO2) via the “Operetta CLS” High Content
System (PerkinElmer). Alex Fluor 488 channel (LED power) was selected to
acquire the fluorescent signal from DCF, which was excited at 460–490 nm and
recorded at 500–550 nm emission wavelength via standard filter sets. Ten percent
power was set for the excitation, and 10 ms exposure time was controlled to avoid
saturated pixels. Particularly, the instrument was equipped with a 16-bit sCMOS
camera, which operated in a fast acquisition mode for exposure time ≤10 ms. The
pinhole size was 55 µm.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. The datasets generated and analyzed during the current
study are available from the corresponding author upon request. The source data for
Figs. 1g, h, 2c–f, h, i, k–m, 3a, c, e, g and Supplementary Figs. 2–8, 10, 11b, 12b, c, 13, 16c,
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d, 17, 18a, c, d, 19–22, 25–27, 29, 31, 34–35, 37–38, 40–43, 44b, d, 45, 46, 49, 50, and 52
are provided as a Source Data file.

Code availability
Codes for the analysis of simulation data are available from the corresponding authors
upon request.
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