2nd Workshop

International Oxy-Combustion Research Network

Hilton Garden Inn Windsor, CT, USA

25th and 26th January 2007

Hosted by: **Alstom Power Inc.**

PRESENTATION - 18

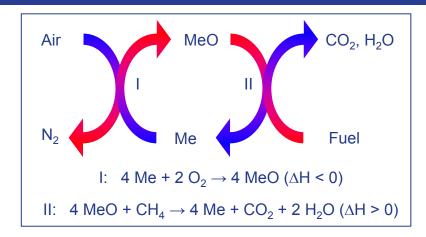
Packed Bed Reactor Technology for Chemical-Looping Combustion

by:

Sander Noorman

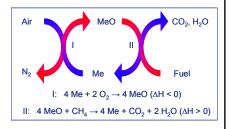
University of Twente, The Netherlands

Packed Bed Reactor Technology for Chemical-Looping Combustion


S. Noorman, M. van Sint Annaland, J.A.M. Kuipers (UT)
N.A.M. ten Asbroek, P.H.M. Feron (TNO)

2nd IEAGHG Oxyfuel Combustion Workshop 25th and 26th of January 2007, Windsor, USA

Chemical-looping Combustion

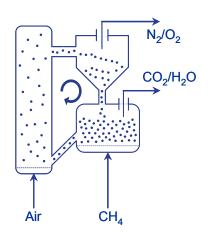


- Power production with inherent CO₂ separation
- · Direct contact between air and fuel is avoided

2

Introduction

- Chemical-looping Combustion:
 - Potential for very high CO₂ capture efficiency
 - ➤ No energy penalty for separation
 - ➤ No NO_x formation
 - Direct implementation in power plants is challenging

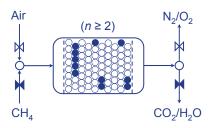

- Important research themes:
 - > Oxygen carrier (MeO = NiO, Fe₂O₃, Mn₃O₄, CuO)
 - > Implementation in power plant
 - Reactor concepts

Oxidizing and reducing conditions must be imposed alternately

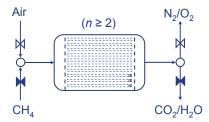
.

Reactor Concepts

Recirculation or stationary solids?



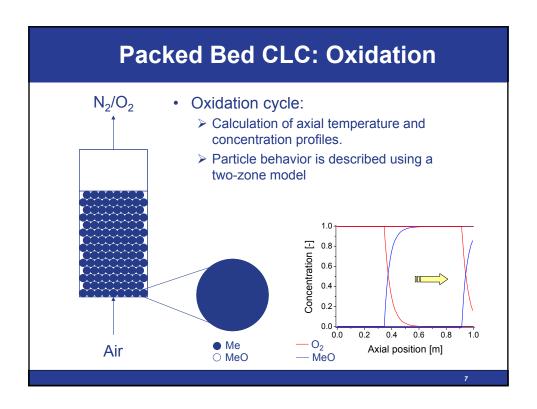
- Disadvantage of fluidization:
 - > Recirculation of particles
 - Difficult gas-solid separation (formation of fines)
- Packed bed (membraneassisted) CLC:
 - > Stationary solids
 - Periodic switching of gas streams
 - Dynamically operated parallel reactors (gas switching system)
 - ➤ Natural gas → combined cycle!

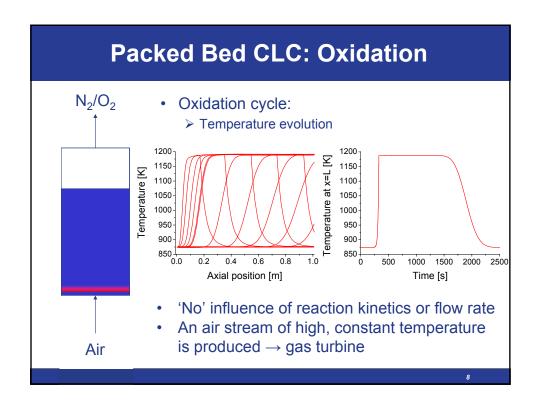

4

Packed Bed CLC

· Packed bed CLC (UT):

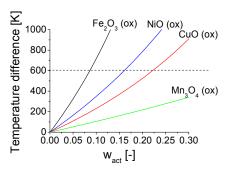
 Packed bed membraneassisted CLC (TNO):

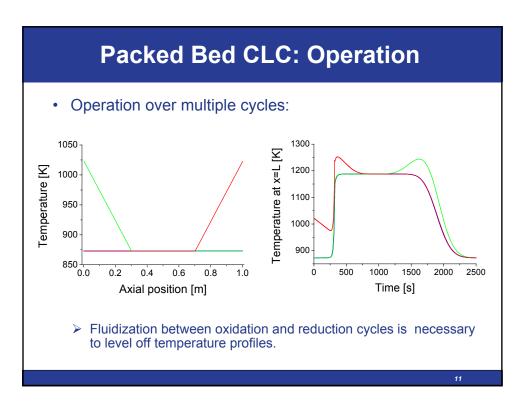

- Process demands:
 - ➤ Constant high-temperature air stream
 - ➤ High overall and CO₂ capture efficiency
 - > Continuous operation
 - > Extreme conditions (T_{out} = 1300-1500 K, p = 20-30 bar)

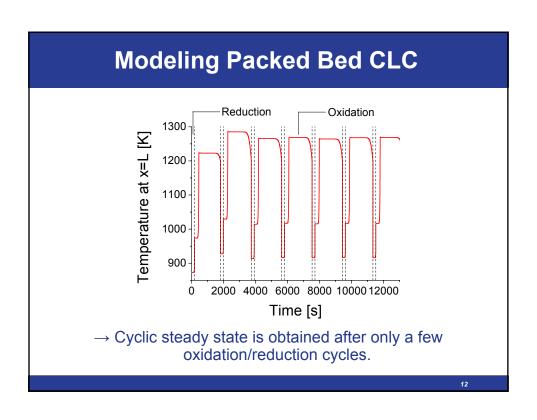

ŧ

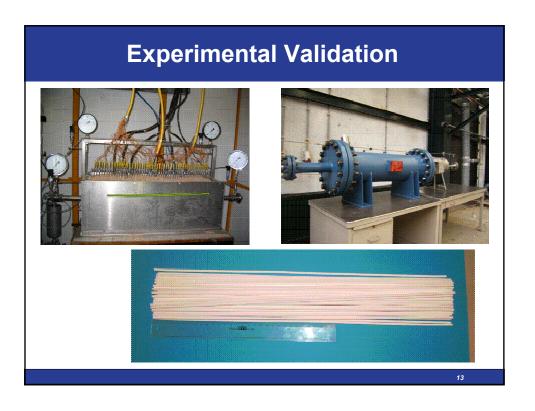
Project Goal

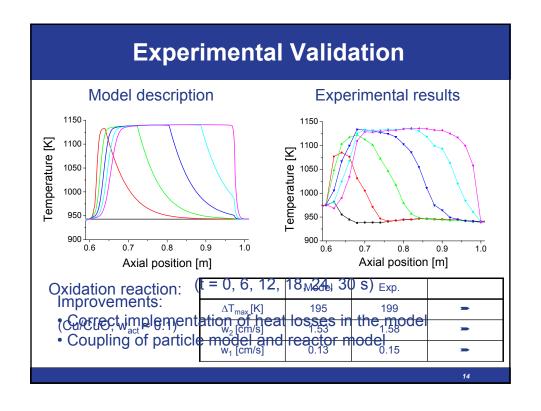
- Evaluation of the feasibility of packed bed CLC as an alternative power production technology:
 - Can CLC be carried out using packed bed (membraneassisted) technology?
 - ➤ How can packed bed CLC with an optimal overall energy efficiency be realized?
 - ➤ How does packed bed CLC perform, compared to fluidized bed CLC and other CO₂ capture processes?
- This presentation:
 - Modeling and experimental work on packed bed CLC.


É

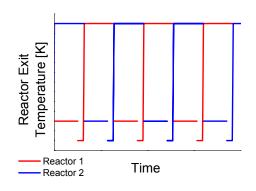



Oxygen Carrier Properties


- · Analytical approximation:
 - ➤ Infinitely high reaction rate
 - ➤ No influence of conduction
- $\Delta T = \frac{(-\Delta H_R)}{\frac{C_{p,s}M_{act}}{W_{act}}\xi} \frac{C_{p,g}M_{O_2}}{W_{g,O_2}^{in}}$
- Temperature increase can be tuned:
 - > Active content
 - Support material
 - Oxygen concentration



Packed Bed CLC: Reduction CO₂/H₂O Reduction cycle: > Efficient use of fuel ➤ High CO₂ capture efficiency ➤ Selectivity to CO₂ and H₂O Incomplete regeneration of part of the bed 1.0 MeO Concentration [-] 0.8 0.6 0.4 0.2 0.0 0.0 MeO 0.4 0.6 8.0 CH₄ Axial position [m]



Implementation

- Implementation in power plant:
 - ➤ Combined cycle to maximize overall energy efficiency
- · Process design:
 - > Pressure drop
 - > Number of reactors
 - Reactor sizing
 - > Heat integration, etc.
- Important features:
 - Compact design
 - Suitable for part-load operation

15

Conclusions

- Packed bed (membrane-assisted) CLC is an interesting alternative power production technology:
- Process operation:
 - > Oxidation cycle: generation of high temperature air stream
 - ➤ Reduction cycle: combining efficient use of fuel and high CO₂ capture efficiency
- Implementation in power plant:
 - > Combined cycle
- Future work:
 - Experimental validation of packed bed CLC
 - > Process design and efficiency calculations

1