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ABSTRACT— The fundamental challenge of garbage 

collector (GC) design is to maximize the recycled space with 

minimal time overhead.  For efficient memory management, 

in many GC designs the heap is divided into large object 

space (LOS) and non-large object space (non-LOS). When 

one of the spaces is full, garbage collection is triggered even 

though the other space may still have a lot of free room, thus 

leading to inefficient space utilization. Also, space 

partitioning in existing GC designs implies different GC 

algorithms for different spaces. This not only prolongs the 

pause time of garbage collection, but also makes collection 

not efficient on multiple spaces. To address these problems, 

we propose Packer, a space-and-time-efficient parallel 

garbage collection algorithm based on the novel concept of 

virtual spaces. Instead of physically dividing the heap into 

multiple spaces, Packer manages multiple virtual spaces in 

one physically shared space.  With multiple virtual spaces, 

Packer offers the advantage of efficient memory management. 

At the same time, with one physically shared space, Packer 

avoids the problem of inefficient space utilization.  To reduce 

the garbage collection pause time of Packer, we also propose 

a novel parallelization method that is applicable to multiple 

virtual spaces. We reduce the compacting GC parallelization 

problem into a tree traversal parallelization problem, and 

apply it to both normal and large object compaction.  

 
1. INTRODUCTION 

Garbage collection technology has been widely used in 

managed runtime systems, such as Java virtual 

machine (JVM) and Common Language Runtime 

(CLR) systems.  For efficient memory management, a 

modern high performance GC usually manages large 

and normal objects separately such that the heap is 

divided into large object space (LOS) and non-large 

object space (non-LOS).  However, the object size 

distribution varies from one application to another and 

from one execution phase to the next even in one 

application, thus it is impossible to predefine a proper 

heap partitioning for LOS and non-LOS.  Existing GCs 

with separate allocation spaces mostly suffer from the 

problem that they do not fit well with the dynamic 

variations of object size distribution at runtime. This 

problem leads to imbalanced space utilization and thus 

negatively impacts the overall GC performance.  For 

garbage collection algorithms, conventional mark-

sweep and reference counting collectors are susceptible 

to fragmentation.  To address this problem, copying or 

compacting GCs are introduced.  Compaction 

eliminates fragmentation in place by grouping live 

objects together in the heap and freeing up large 

contiguous spaces for future allocation.  As multi-core 

architectures prevail, parallel compaction algorithms 

have been designed to achieve time efficiency.  

However, large object compaction is hard to parallelize 

due to strong data dependencies such that the source 

object can not be moved to its target location until the 

object originally in the target location has been moved 

out. Especially, the parallelism is seemingly inadequate 

when there are few large objects.   

In this paper, we propose Packer, a space-time-

efficient parallel garbage collection algorithm based on 

the novel concept of virtual spaces.  Unlike some 

conventional garbage collectors [2] that physically 

divide the heap into multiple spaces, Packer manages 

multiple virtual spaces in one physical space.  With 

multiple virtual spaces, Packer offers the advantage of 

efficient memory management, so that different virtual 

spaces can employ best suitable collection algorithms. 

Meanwhile, with one physical space, Packer avoids the 

problem of inefficient space utilization, since there is 

no space partitioning problem any more.  Object 

allocation is highly efficient in Packer. The free space 

in the physical heap is centrally controlled by a tree 

structure.  When one of the virtual spaces needs more 

space, then it searches the tree to fetch a suitable free 

region. In particular, normal object allocation is done 

in thread local blocks with bump-pointers, requiring no 

synchronization.  Garbage collection is triggered only 

when the heap contains no free region, thus 

guaranteeing that the heap is fully utilized.  Packer 

supports both compaction and mark-sweep for large 

objects.  Hence, it incorporates the advantages of both 

the Mark-Sweep and Compaction algorithms, and is 

able to achieve high performance when either 

algorithm is suitable.  To further reduce the garbage 

collection pause time of Packer, we reduce the 

compacting GC parallelization problem into a tree 

traversal parallelization problem, and apply it to both 

normal and large object compaction.   

In this paper we present the design details of the 

proposed algorithms and evaluate their efficiencies.  

These algorithms are implemented in Apache Harmony, 

a product-quality open source JAVA SE 



implementation.  The rest of the paper is organized as 

follows. Section 2 discusses the related work. Section 3 

introduces the basic algorithm designs of Packer. 

Section 4 presents the parallelization of normal and 

large object compaction in Packer.  Section 5 presents 

the evaluation results with Specjbb2005 and Dacapo 

benchmark suites. Finally, section 6 summarizes the 

project and discusses future work. 

 

2. RELATED WORK 

Conventional garbage collectors utilize Mark-Sweep 

algorithms [14, 15, 16] to manage the whole heap.  

When the heap has no more free space, GC is triggered 

and the collectors start to trace the heap. If an object 

can be reached, then it is a live object and the object 

header is marked.  After tracing, all unmarked objects 

are swept and their occupied spaces are recycled.  The 

free space in the heap is managed with a linked list. 

During allocation, the allocators traverse this linked list 

to fetch a suitable free region.  The main advantage of 

this algorithm is that no data movement is necessary, 

such that it incurs low overhead during garbage 

collection.  However, it also has three disadvantages: 

first, this algorithm introduces heavy fragmentation on 

the heap, leading to inefficient space utilization.  

Second, its fragmentation property destroys the spatial 

locality of data allocation, leading to inefficient data 

access.  Last, each data allocation requires a linear 

search on the linked list that manages the free regions, 

thus it is inefficient.     

As exemplified by the LISP2 algorithm [5], 

compaction algorithms are utilized in GC designs to 

address the disadvantages of mark-sweep algorithms.  

However, compaction usually imposes lengthy pause 

time.  To reduce pause time, several parallel 

compaction algorithms have been proposed.  Flood et 

al. [6] present a parallel compaction algorithm that runs 

three passes over the heap. First, it determines a new 

location for each object and installs a forwarding 

pointer, second it fixes all pointers in the heap to point 

to the new locations, and finally, it moves all objects.  

To make this algorithm run in parallel, the heap is split 

into N areas such that N threads are used to compact 

the heap into N/2 chunks of live objects.  The main 

disadvantage of this design is that the resulted free 

space is noncontiguous.   Abuaiadh et al. [7] propose a 

three-phase parallel compactor that uses a block-offset 

array and mark-bit table to record the live objects 

moving distance in blocks.  Kermany and Petrank [8] 

propose the Compressor that requires two phases to 

compact the heap; also Wegiel and Krintz [9] design 

the Mapping Collector with nearly one phase.  Both 

approaches depend on the virtual memory support from 

the underlying operating system.  Note that concurrent 

GC and Stop-The-World (STW) GC designs are 

fundamentally different: they have different design 

goals, evaluation metrics, and algorithms: concurrent 

GC is designed to reduce pause time, whereas STW 

GC is designed to increase throughput.  In this paper, 

we only focus on STW GC design.   

For efficient memory management, Caudill and 

Wirfs-Brock first propose to use separate spaces to 

manage objects of different sizes, large object space 

(LOS) for large objects and non-large object space 

(non-LOS) for normal objects [1].  Hicks et al. have 

done a thorough study on large object spaces [2].  The 

results of this study indicate three problems for LOS 

designs.  First, LOS collection is hard to parallelize.  

Second, LOS shares the same heap with non-LOS, thus 

it is hard to achieve full utilization of the heap space.  

Third, LOS and non-LOS collections are done in 

different phases, which may affect the scalability of 

parallel garbage collection.  In [3], Soman et al. discuss 

about applying different GC algorithms in the same 

heap space, but their work does not involve 

dynamically adjusting the heap partitioning.  The study 

done by Barrett and Zorn [4] is the only known 

publication that studies space boundary adjustment, 

and their work aims at meeting the resource constraints 

such as pause time.  By contrast, Packer does not 

require any boundary adjustment mechanism.  Instead, 

it manages different virtual spaces in the same physical 

space such that it avoids the problem of inefficient 

space utilization while keeping the advantage of 

efficient memory management.   

 

3. BASIC ALGORITHM DESIGNS IN 

PACKER 

In this section, we first introduce the basic heap design 

of Packer and compare it to other heap designs. Then 

we present the data allocation scheme and garbage 

collection algorithm in Packer.   At last, we discuss 

further implications of the Packer design.    

 
3.1 The Basic Design of Packer 

As shown in Figure 1, with the Move-Compact 

algorithm (GC-MC), when the heap is partitioned into 

multiple spaces, for instance LOS and non-LOS, 

garbage collection is triggered when either space is full. 

In times when garbage collection is triggered by one 

space while the other space is partially filled, the heap 

is not fully utilized. Consequently, it leads to more 

frequent collections and lower performance. 

 
Figure 1: Compacting GC (GC-MC) with separate 

allocation spaces 



The key question here is why one space would get 

full before the other one does.  This is because within 

the same amount of time, a higher fraction of one 

space’s free region is allocated than that of the other 

space, yet the free regions of different spaces can not 

be easily shared.  Hence, if the free regions of the heap 

are centrally controlled and can be shared by both 

spaces, then the problem of low space utilization can 

be solved.  However, this is not possible when a heap is 

partitioned into two spaces with a boundary in between. 

Because it requires the GC algorithm for one space 

virtually manage the regions of another space when its 

own space is full. For instance, as shown in the lower 

part of Figure 1, if LOS is full, we cannot allocate large 

objects in the free region of non-LOS.  Otherwise, we 

destroy the advantage brought by separate spaces, 

namely, efficient memory management.   

Figure 2: Mark-Sweep GC (GC-MS) 

On the other hand, Mark-Sweep algorithm (GC-

MS) does not divide the heap into separate spaces thus 

both normal and large objects share the same allocation 

space.  When garbage collection is triggered, it scans 

the heap and marks all live objects.  Then it sweeps all 

the unmarked objects, leaving holes in the heap.  These 

holes are then added into a linked list for future 

allocations.   Although this algorithm is efficient and 

does not require object movement, it introduces several 

serious problems.  As shown in the lower part of Figure 

2, in cases when fragmentation is very serious, it is 

unable to find a hole on the linked list to fit a newly 

allocated object, such as the one at the bottom of 

Figure 2, even though the heap has about 50% of free 

space.  This creates a “deadlock” situation, in which 

compaction has to be initiated in order to alleviate the 

problem.  In addition, GC-MS’s allocation scheme 

breaks the spatial locality: when it allocates several 

objects that are meant to be accessed continuously, it 

has to allocate these objects sparsely all over the heap.   

Furthermore, for the allocation of each object, it has to 

traverse the free-region linked list to find a suitable free 

region, which is inefficient, especially when the list is 

long.  

 
Figure 3: the design of heap structure in Packer 

Packer is able to solve these problems by 

managing multiple virtual spaces in one physical space, 

such that these virtual spaces can share the free regions.  

As shown in Figure 3, to coordinate data management 

in Packer, we utilize three data structures: a virtual 

non-LOS list, a virtual LOS list, and a Free Area Pool. 

The virtual non-LOS list points to the first normal 

object block in the heap, and this block contains a 

pointer that points to the next normal object block, and 

so on.  Hence, it is easy to find all normal blocks 

through this virtual non-LOS list, and they form the 

virtual non-Large Object Space.  Similarly, the virtual 

LOS list points to the first large object, and this large 

object contains a pointer to the next large object, and so 

on.  The virtual LOS list and the blocks of large objects 

form the Large Object Space.  The Free Area Pool 

manages all free blocks in the heap, and it is actually a 

table of linked lists indexed by the number of blocks. 

Each linked list in the Free Area Pool manages all free 

regions with a certain number of contiguous blocks.  

For instance, block 2 and block 7 in Figure 3 are both 

free regions with only one block.  Hence slot 1 of the 

Free Area Pool contains a pointer to block 2, and block 

2 contains a pointer to block 7.  Also, block 10, 11, and 

12 form a free region that contains 3 free blocks, and 

thus slot 3 of the Free Area Pool contains a pointer to 

block 10.  For all free regions that contains more than 

32 free blocks, Packer organizes them in slot >32.  In 

this way, all free blocks in the heap are centrally 

managed.  With this design, the virtual spaces can grow 

based on need and garbage collection only happens 

when the heap is fully utilized.    

It is relatively easy to come up with a design that 

manages the heap with block-number indexed table, 

the difficulty and subtlety in Packer actually lie in its 

allocation and collection algorithms. The first glimpse 

of Packer heap structure might give an impression that 

Packer is similar to a mark-sweep GC that employs 

size-segregated lists as the main data structure, but 

different from a mark-sweep GC, Packer can achieve 

the benefits of fast bump-pointer allocation, and 

parallel compacting collection for both large and 

normal objects, which are not possible in a mark-sweep 

GC. In following subsections, we will describe the 



object allocation and garbage collection mechanism in 

Packer. 

3.2 Object Allocation in Packer 

When multiple threads are running in an application 

program, they share the heap resources thus accesses to 

the Free Area Pool for object allocation need to be 

synchronized.   However, if one atomic operation is 

required for each object allocation, then the overhead 

would be very serious.  In most application programs, 

the majority of objects are normal objects which are 

much smaller than the block size.  Thus it is essential 

to have an efficient allocation scheme for normal 

objects. The Mutator thread is responsible for object 

allocation.  To reduce the synchronization overhead, in 

Packer, each Mutator fetches a thread local block from 

the Free Area Pool through an atomic operation, and 

then allocates normal objects on this thread local block 

with bump-pointer allocation. Note that when objects 

are allocated locally by the Mutator, no 

synchronization operation is necessary.  When there is 

no more space in this thread local block, the Mutator 

atomically fetches another thread local block from the 

Free Area Pool and starts allocation again.  In this way, 

only one atomic operation is required for each block 

instead of for each object. 

To guarantee fast normal object allocations, Packer 

only allocates thread local block from slot 1 or slot >32 

in the Free Area Pool.  It first checks if slot 1 is null, if 

not, it allocates from slot 1; otherwise it allocates from 

the last slot, slot >32.  In this way, it only requires one 

atomic operation for each thread local block.  To grab a 

region from other slots, Packer needs to pick off the 

region, allocate a block, and put back the rest into the 

corresponding slot, which requires two atomic 

operations. When picking the thread local block from 

slot 1, one atomic operation is enough because it never 

needs to put back the rest.  For thread local block 

allocation in slot >32, instead of picking off a region, 

Packer simply reduces the number of blocks of a region 

in the last slot. This reduction operation is atomic thus 

it guarantees thread-safe block allocation and only one 

atomic operation is needed.   

Figure 4: block allocation from the Free Area Pool 

Different from normal objects, each large object 

occupies one or more blocks.  Thus, the Mutators 

directly allocate large objects in the Free Area Pool. 

When there is an allocation request, a Mutator first 

checks the number of blocks requested, n.  Then it 

searches the Free Area Pool using n as index.  If slot n 

is Null, then it searches slot n+1 and so forth until a 

non-Null slot is found. Next, it fetches the first free 

region from this non-Null slot and grabs n blocks, then 

storing the rest back into the Free Area Pool.  As an 

illustration in Figure 4, it requests one free block but 

slot 1 of the Free Area Pool is Null.  Then it searches 

down and fetches a free region in slot 2.  This free 

region contains free blocks 1 and 2.  Packer allocates 

block 1 and stores block 2 back into the Free Area Pool, 

and it is inserted into slot 1, since now there is only one 

free block, block 2, left in this free region.   With this 

design, Packer can achieve fast object allocation for 

both the large and normal objects, much faster than a 

mark-sweep GC. Next we describe how Packer 

achieves fast garbage collection. 

3.3 Garbage Collection in Packer 

When the heap is fully occupied by normal and large 

objects, garbage collection is triggered.  Packer utilizes 

compaction algorithms, and its garbage collection is 

divided into four phases.  In the first phase, it scans the 

heap and marks all live objects, then it builds the 

virtual spaces by adding all normal blocks into the 

virtual non-LOS linked list, and all large blocks into 

the virtual LOS linked list.  This phase corresponds to 

lines 1 and 2 in the Packer_Compact_Collection() 

pseudo-code shown in Figure 5.  In phase 2, normal 

blocks are compacted towards the left of the heap and 

the forwarding tables are set in each block.  These 

forwarding tables store the offsets between the source 

and target addresses of objects, and they are used for 

the reference fixing operation in the next phase.   This 

phase corresponds to lines 3, 4, and 5 in the pseudo-

code.  In phase 3, Packer fixes all the references from 

both normal and large objects using the forwarding 

tables set in the previous phase.   In this case, if there is 

a reference pointing to an object that has already been 

compacted, it checks the forwarding table in this block 

to look for the address offset.  Then it subtracts this 

offset from the original address stored in the reference 

to get the new address of this object.  This phase 

corresponds to line 6 of the pseudo-code.  In the last 

phase, large blocks are compacted and the free blocks 

are added to the Free Area Pool.  This phase 

corresponds to line 7, 8, and 9 in the pseudo-code.         

Figure 5: Garbage Collection algorithm in Packer 



Packer can optionally choose not to compact large 

objects, such that large objects are mark-swept. With 

this support, Packer incorporates the advantages of 

both GC-MS and GC-MC.  For the two extreme cases: 

1) if it is large-object-intensive, Packer can choose to 

mark-sweep large objects, as GC-MS does, thus 

avoiding the object moving overhead; 2) if there are 

few large objects in the application, Packer behaves the 

same as GC-MC, thus creating a large contiguous free 

region while keeping the object moving overhead low.  

Note that the major steps, marking, normal object 

moving, reference fixing, and large object moving, 

which correspond to steps 1, 3, 6, and 8 in pseudo-code, 

are fully parallelized.  The detailed parallelization 

mechanism will be explained in the next section. 

Since all the live objects are identified during the 

first marking phase, the compaction algorithm can pack 

all the live objects to one end of the heap without any 

holes unfilled. There is no fragmentation issue. Also 

note that Packer compacts the normal objects before 

the large objects: it squeezes out large contiguous free 

space after the normal object compaction and then uses 

the free space for large object compaction. 

3.4 Further Implications of Packer 

Besides the advantages in object allocation and garbage 

collection, the Packer design has three further 

implications: it facilitates pinned object management, 

the management of managed and native data in the 

same heap, and the management of discrete physical 

areas.  Pinned object support is required in some 

runtime systems that use conservative GC.  When a 

garbage collector scans the heap for live objects, 

sometimes it will trace to a location, the content of 

which (pointer or value) is unknown.  In this situation, 

conservative garbage collectors would assume that it 

stores an address to an object.  However, the collector 

cannot update this reference slot because it may be 

storing a value instead of an address.  Thus, this object 

is a pinned object because it cannot be moved. In 

conventional moving GC designs, the algorithms have 

to sacrifice performance when there is a pinned object 

in the heap.  By introducing the concept of virtual 

spaces, Packer is able to jump over the block 

containing pinned objects when building the virtual 

spaces without any performance compromise.  

Pinned object is also desirable if there are lots of 

interactions between managed code and unmanaged 

code in the application. In most Virtual Machines, 

including JVM and CLR, the managed and unmanaged 

environments often need to communicate with each 

other and pass data around. The most common 

approach to deal with this problem is to copy data from 

the managed environment to the native environment 

and vice versa [17].  This is highly inefficient because 

large amount of data copying incurs very high time and 

space overheads.  Indeed, this problem can be solved 

by either temporarily disabling garbage collection or 

pinning the data passed across the boundary. With 

Packer’s support of pinned object, this problem can be 

easily resolved. 

Also, in some cases, a process’s address space is 

segmented by the operating system. For example, the 

system may load DLLs to arbitrary address ranges, thus 

breaking the heap into multiple chunks. Packer is able 

to link these discrete chunks to create a virtual heap for 

the process, therefore providing an as large as possible 

managed heap to the applications, making the heap 

management efficient. 

 

4. PARALLELIZATION OF GARBAGE 

COLLECTION IN PACKER  

In this section we first demonstrate how we reduce the 

compaction parallelization problem into a tree traversal 

parallelization problem.  Then we present the 

implementation of parallel normal and large object 

compaction in Packer.  

4.1 Parallelization of Compacting GC 

Compacting GCs move live objects towards one end so 

as to eliminate fragmentations.  In order to increase GC 

efficiency, parallel compaction algorithms are essential 

in modern GC designs.  The fundamental goal of a 

parallel compaction algorithm is to exploit as much 

parallelism as possible while keeping the 

synchronization overhead as low as possible.  

 

Figure 6: normal and large object compaction 

As shown in Figure 6, there exist many normal 

objects in virtual non-LOS, and the data dependencies 

between these normal objects are fairly low, implying a 

high degree of parallelism.  However, in order to 

parallelize the compaction process in a straightforward 

manner, an atomic operation, which is notorious for its 

inefficiency, is needed for each object movement.  

Thus the cost of parallelization may well surpass the 

performance gain.  On the other hand, there exist 

strong data dependencies in virtual LOS such that the 

source object can not be moved to its target location 

until the object originally in the target location has 

been moved out. Especially, when there are only few 

very large objects, the parallelism is seemingly 

inadequate.  

This observation indicates that we need to set a 

proper parallelization granularity in the heap such that 

it reduces the high synchronization overheads caused 



by fine-grain data movement (as in virtual non-LOS) 

and the false data dependencies caused by coarse-grain 

data movement (as in virtual LOS).  Our design is to 

divide the heap into equal-sized blocks.  This means 

that the parallelization granularity is a block.  For 

virtual non-LOS, each block contains multiple objects. 

During collection, each thread obtains a block and 

moves all the objects in the block.  Thus, at most one 

atomic operation is required for the movement of 

multiple objects in a block, greatly reducing the 

synchronization overhead.  On the other hand, for 

virtual LOS, each object contains one or more blocks.  

When one block of a large object can not be moved due 

to data dependency, the other blocks can still be moved, 

thus reducing the false dependency problem.  For 

instance, in Figure 7, blocks 7 and 8 belong to one 

object, and blocks 11 and 12 belong to another. 

Originally, the blocks of one large object must be 

moved together, so blocks 7 and 8 cannot be moved 

until block 5 has been moved out.  With equal-sized 

blocks, dependencies only exists between block 7 and 5, 

so the dependencies between block 8 and 5 are false 

data dependencies. Block 8 can be moved 

independently of block 7. Thus the movements of 

block 7 and 8 can be parallelized.  

 

Figure 7: Packer with equal-sized blocks 
By dividing the heap into equal-sized blocks, both false data 

dependencies and synchronization costs can be reduced.  To 

capture all data dependencies and to facilitate the 

parallelization of data compaction, dependency lists are 

generated for virtual LOS and a dependency tree is generated 

for virtual non-LOS.   

Further complications exist in parallelizing the 

compaction process. For virtual non-LOS, races 

between multiple collectors exist when they move 

objects from a source block to a target block. For 

instance, two collectors may move data from two 

source blocks into the same target block, or one 

collector may write into a target block in which the 

original objects have not been moved away yet.  This 

observation indicates two properties.  First, each block 

has two roles, it is a source block when its objects are 

compacted to some other block, and it can be a target 

block after its original data has been moved away.  

Second, in virtual non-LOS, multiple source blocks 

may compact into one target block, and thus the access 

to this target block should be synchronized.  In order to 

achieve high performance, the complex relations 

between the blocks need to be clarified before the 

compacting threads start.  To achieve this, we generate 

dependence trees, such as the one in Figure 7, which 

captures all the data dependencies between the blocks.  

For instance, in virtual LOS, block 5 is the source 

block for block 4 and it is also the target block for 

block 7.  Thus, block 7 cannot be moved to block 5 

until block 5 has been moved to block 4.  In virtual 

non-LOS, block 1 is the target block for block 3, and 

block 3 is also the target block for blocks 6, 9 and 10.  

Thus, blocks 6, 9, and 10 cannot be moved to block 3 

until block 3 has been moved to block 1.  When 

compaction starts, the threads traverse the tree to obtain 

a source block and a target block.  After the current 

data movement is done, the thread moves down the tree 

to obtain a new source block and set the old source 

block to be the new target block.  This process finishes 

after the thread has reached the leaf nodes of the tree.  

We have thus actually reduced the compaction 

parallelization problem into a tree traversal 

parallelization problem.  For virtual LOS compaction, 

the situation is simpler because one source block has 

only one target block, and vice versa. Therefore, the 

dependency trees degenerate into dependence lists.  

 

4.2 Implementation of Parallel Normal Object 

Compaction 

Packer utilizes the Move-Compact algorithm from 

Apache Harmony JVM for normal object compaction 

[7].  This algorithm involves three phases for parallel 

normal object compaction: live object marking, object 

moving, and reference fixing.    

Phase 1: Live object marking. It traces the heap from 

root set and marks all the live objects; 

Phase 2: Object moving. It copies the live objects to 

their new locations; 

Phase 3: Reference fixing. It adjusts all the reference 

values in the live objects to point to the referenced 

objects’ new locations. 

Although the three phases are fully parallel, we 

only focus on the parallelization of the moving phase, 

which is most related to our proposed design.  In this 

phase, a collector first atomically grabs a source block 

in heap address order.  Then it grabs a target block that 

has lower address than the source block.  Each block is 

divided into multiple sectors that each encapsulates a 

number of live objects.  For each sector of live objects 

in the source block, the collector computes its target 

address in the target block, moves the sector to its 

target position, and stores the address offset to the 

forwarding table in the block header.  When the target 

block has not enough space, the collector grabs the 

next target block.  When the source block has no more 



live objects, the collector grabs another source block in 

heap address order until all the blocks have been 

visited.  In this phase, two atomic operations are 

needed for one block to eliminate data races: one for 

taking the ownership of the source block, and the other 

for taking the ownership of the target block.  Note that 

this process can be seen as a parallel tree traversal 

process. When a collector grabs a source block and a 

target block in heap address order, it is actually 

traversing from the top of the tree.  When it finishes the 

movement of data in the current source block, the 

source block is released and can be used as a target 

block in the next iteration, thus the collector is indeed 

traversing down the dependency tree until all blocks 

have been compacted.  If multiple collectors try to grab 

the same target block, synchronization mechanism is 

necessary to coordinate their operations.  Note that in 

this three-phase algorithm, target address calculation 

and object movement is done in the same phase, thus 

the dependency tree is generated dynamically instead 

of pre-generated.   

 
Figure 8: parallel large object compaction 

4.3 Implementation of Parallel Large Object 

Compaction 

To demonstrate the effect of the parallel virtual LOS 

compaction algorithm, we implemented the parallel 

compaction algorithm presented above in the Apache 

Harmony GC and the pseudo-code is shown in Figure 8.  

Before collection starts, a number of disjoint 

dependence lists are generated to capture the 

dependence relationship among the large object blocks.  

Each collector can then atomically grab a dependence 

list and works on it independently.  In this case, it only 

requires an atomic operation for each dependency list 

instead of for each block.  In essence, a thread first 

acquires the ownership of a dependency list through an 

atomic operation. From the list, it gets the first block, 

which is the target block, and the second block, which 

is the source block, and moves the source to the target.  

When it finishes this block movement, the source block 

now becomes the target block and a new source block 

is obtained by taking the next block in the dependency 

list.  This operation repeats until there is no more block 

in the dependency list.  Then, the thread obtains 

another dependency list from the task pool.  

5. EXPERIMENTS AND RESULTS 

In this section, we present our experiment results for 

our Packer algorithm.  All proposed algorithms have 

been implemented in Apache Harmony, a product-

quality open source JAVA Virtual Machine [10].  The 

heap is divided into equal-sized blocks, and each block 

contains a block header for its metadata, including 

block base address, block ceiling address, block state, 

etc.  Block size is adjustable, but the block header size 

is a constant and independent of the block size.  For 

this study, the block size is set to 32 KB and the size 

threshold for large objects is set to 16 KB.  The 

evaluation of Packer is done with the SPECjbb2005 

[11] and Dacapo [12] benchmark suites.  SPECjbb2005 

is a large server benchmark that employs several 

program threads; it is representative of commercial 

server-side applications.  On the other hand, Dacapo is 

a suite of client-side Java applications.  For all 

experiments, we use a 256 MB heap by default.   

In these experiments, we compare three GC 

designs: GC-MC, GC-MS, and Packer.  GC-MC is the 

default GC algorithm in Apache Harmony and it 

utilizes the Move-Compact algorithm for garbage 

collection. It divides the heap into separate spaces: 

Large Object Space (LOS) and non-LOS, to manage 

large and normal objects.  However, this algorithm can 

not be parallelized for the compaction of large objects.   

For GC-MC, with a heap size of 256M, we 

experimented with four configurations: GC-MC with 

50M LOS (GC-MC 50M), GC-MC with 100M LOS 

(GC-MC 100M), GC-MC with 150M LOS (GC-MC 

150M), and GC-MC with 200M LOS (GC-MC 200M).  

GC-MS uses Mark-Sweep for the garbage collection of 

the whole heap.  Packer manages virtual LOS and 

virtual non-LOS in the same heap, and enables the 

parallelization of both normal and large object 

compactions.     

 

5.1 Comparison of Space Utilization 

In real applications, the object size distribution varies 

from one application to another and from one 

execution phase to next even in one application.  For 

instance, specjbb2005 is a non-large-object-intensive 

benchmark that allocates a very small number of large 

objects, thus it requires a large non-LOS. On the other 

hand, xalan, jython, and bloat from the Dacapo 

benchmark suite are large-object-intensive thus 

requiring a large LOS. In addition, specjbb2005 

allocates all the large objects at the beginning of its 

execution and very few large objects afterwards.  Thus 

in different phases of its execution, it requires different 

sizes for LOS.   
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Figure 9: Space Utilization of GC-MC, GC-MS, and 

Packer 
Y-axis shows the fraction of utilized heap space when 

garbage collection happens.  This result is obtained by 

averaging the space utilization of all garbage collections 

throughout execution.  The last set of results, avg, compares 

the average heap utilization of all selected benchmarks on 

different GC designs.    

Figure 9 shows the space utilization of different 

designs.  Packer guarantees the heap space is fully 

utilized because collection is triggered only when there 

is no free region in the Free Area Pool.  The average 

space utilization of GC-MS is 81%.  For lusearch, the 

space utilization is only 49%, which is caused by heavy 

fragmentation.  The average space utilization ratios are 

78%, 69%, 49%, and 26% for GC-MC 50M, GC-MC 

100M, GC-MC 150M, and GC-MC 200M respectively.  

Usually in application programs, most objects are 

normal objects. Hence when LOS gets too big, there is 

insufficient space for normal object allocation, causing 

frequent garbage collections and low space utilization.  

Nonetheless, for Xalan, GC-MC space utilization is 

maximized when LOS size is 100M.  This is because 

Xalan is a large-object-intensive application, which 

contains a large number of large objects when garbage 

collection happens.  In general, space utilization is 

worse when the heap is statically partitioned into 

multiple spaces.  Static partition fails to meet the needs 

of large object and non-large object space utilization, 

precisely because this is a dynamic behavior.  On the 

other hand, although GC-MS does not suffer from this 

problem, it creates a heavy fragmentation problem, 

often leading to low space utilization.  By managing 

multiple virtual spaces in one physical space, Packer 

overcomes all these problems.       

        

Table 1: GC pause time comparison of Packer, GC-MS, and GC-MC 

 Packer GC-MS GC-MC 50M GC-MC 100M GC-MC 150M GC-MC 200M 

eclipse 199 1863 206 1602 291 2427 225 2048 338 2670 845 5474 

hsqldb 32 1410 F F 44 2085 125 5975 F F F F 

Jython 190 1109 266 436 232 1259 303 1396 455 1686 918 2573 

lusearch 84 3389 175 3465 100 3707 134 4323 203 5553 416 9331 

specjbb 39 1204 41 1160 119 3927 F F F F F F 

 

Table 1 shows the single-thread performance of 

Packer, GC-MS, and GC-MC, including the number of 

garbage collection events triggered throughout 

execution (left column) and the total GC pause time 

(right column).  The first observation is that Packer 

always triggers fewer garbage collections compared to 

other designs. This is because Packer guarantees that 

the heap is fully utilized.  The second observation is 

that some applications fail to finish execution, as those 

denoted “F” in the table. For Specjbb and hsqldb, some 

GC-MC configurations with large LOS size fail to 

complete because they do not have sufficient space for 

normal object allocation.  In addition, for hsqldb, GC-

MS fails to complete because of heavy fragmentation.  

This happens when it can not find suitable free region 

in the heap for the newly allocated object.  The third 

observation is that GC-MS usually has lower pause 

time than both Packer and GC-MC.  One extreme case 

is jython, in which GC-MS’s pause time is only 1/3 of 

that of Packer.  This is because Mark-Sweep does not 

involve object movement, which may incur a high 

performance overhead.  

 

5.2 Scalability of Packer 

To demonstrate the effect of Packer’s parallel 

compaction algorithms, we compare the scalability of 

Packer and GC-MS with 1, 2, 3, and 4 threads and the 

results are shown in Figures 10 and 11.  The Y-axis of 

these figures represents the normalized total GC pause 

time.    Figure 10 shows Packer’s scalability.  In 

general, Packer demonstrates very good scalability.  On 

average, the speedups of Packer are 1.92x, 2.64x, and 

2.67x respectively with 2, 3, 4 collectors.   
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Figure 10: Packer Scalability 
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Figure 11: Mark-Sweep Scalability 

Figure 11 shows GC-MS’s scalability.  Compared 

to Packer, GC-MS’s scalability is lower.  On average, 

the speedups of GC-MS are 1.5x, 1.72x, and 1.64x 

respectively with 2, 3, 4 collectors. Note that the 

average speedup for the 4-thread case is actually lower 

than that of the 3-thread case.  This is because for some 

benchmarks, such as lusearch and luindex, the 4-thread 

case introduces long pause time.  This is particularly 

true for lusearch, where the pause time for the 4-thread 

case is much higher than the sequential case due to the 

heavy fragmentation in these applications.  When 

fragmentation is serious, garbage collections become 

much more frequent and the elapsed time between two 

garbage collections is very short.  Hence, only a small 

number of objects are allocated and collected in each 

allocation-collection period.  Under this situation, 

synchronization overhead becomes the major 

component of the GC pause time, negatively impacting 

GC performance.   For other applications with low 

degree of fragmentation, such as xalan and specjbb, the 

speedups are comparable to those of Packer.         
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Figure 12: Comparison of Parallel Packer and GC-

MS 

Table 1 indicates that in the sequential case, Mark-

Sweep is more efficient than compaction algorithms 

because it does not involve the movement of objects.  

Nevertheless, as the number of threads increases, 

Packer gradually takes the performance advantage over 

GC-MS due to better scalability.  As an illustration, in 

Figure 12 we compare the performance of parallel GC-

MS and Packer on jython.  It clearly shows that 

although GC-MS’s GC pause time is only 1/3 of that of 

Packer in the sequential case, these two numbers 

converge as the number of threads increase.         

 

5.3 Impacts on Overall Performance 

This section presents how Packer impacts the 

performance of the overall program execution.  To 

collect this data, we run the respective benchmarks on 

an Intel 8-core Tulsa platform and compare the 

performance of Packer, GC-MC, and GC-MS.  For 

GC-MC, we manually optimized the LOS size to 

maximize space and time efficiency for each 

application.  Figure 13 shows the results on 

Specjbb2005 benchmark.  The X-axis shows the 

number of warehouses used in execution and the Y-

axis shows the normalized Specjbb score, a higher 

score represents higher performance.  Packer’s 

performance is almost always 1.2% higher than that of 

GC-MS.  Although this seems to be a very small 

performance gain, but considering that garbage 

collection only takes about 10% of the total execution 

time, this result is actually a great improvement on GC 

performance.  Also, Packer’s performance is higher 

than that of GC-MC, but the advantage is not obvious. 

This is because both GC-MC and Packer utilize the 

same algorithm for normal object compaction and 

Specjbb2005 is not a large-object-intensive benchmark. 
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Figure 13: Impacts on Specjbb2005 Overall 

Performance 
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Figure 14: Impacts on Dacapo Overall Performance 

Figure 14 presents the results with the Dacapo 

benchmark suite.  Compared to Specjbb, jython and 

bloat are large-object-intensive.  Packer’s performance 

is 3% higher than that of GC-MS and 8% higher than 

that of GC-MC.  Note that in GC-MC, large object 



compaction is not parallelized.  Thus in sequential case, 

the Mark-Sweep algorithm has better performance than 

compaction in large object garbage collection.  

Nevertheless, with the parallel large object compaction 

algorithm proposed in this paper, compaction can be 

more efficient compared to Mark-Sweep. 

 

6. CONCLUSION 

Space and time efficiency are the two most important 

design goals in garbage collector design.  However, 

many garbage collection algorithms trade space 

utilization for performance and vice versa.  In this 

paper, we proposed Packer, a novel garbage collection 

algorithm that manages multiple virtual spaces in one 

physical space, thereby guaranteeing the space is fully 

utilized while avoiding the fragmentation problems.  

To improve performance, we first reduced the heap 

compaction parallelization problem into a parallel tree 

traversal problem, and then designed solutions to 

eliminate false sharing and to reduce the 

synchronization overhead, thereby maximizing the 

exploitable parallelism for both normal and large object 

compaction.  It is noteworthy that Packer is generic 

enough to be used in any situation that involves the 

management and coordination of multiple virtual 

spaces in one physical space and vice versa.     

The experiment results show that Packer has much 

better space utilization than GC-MC and GC-MS.  Also, 

the parallel compaction algorithms in Packer 

demonstrate great scalability.  Although GC-MS has 

lower GC pause time than Packer in the sequential case, 

as the number of threads increases, Packer gradually 

takes the performance advantage over GC-MS due to 

better scalability.  In addition, we evaluate Packer’s 

impact on the overall performance.  Note that although 

GC only takes about 10% of the total execution time in 

the application programs, Packer is able to achieve 

1.2% and 3% performance gain over GC-MS in the 

Specjbb and Dacapo benchmark suites, respectively. 

Hence, our results demonstrate that Packer is highly 

space-and-time efficient.     

Our ongoing work is to apply Packer in more GC 

designs. Specifically, we intend to implement a 

generational Packer, which consists of a physical 

Nursery Object Space (NOS), a virtual Large Object 

Space (LOS), and a virtual Mature Object Space 

(MOS).  In minor collection, live normal objects are 

copied from NOS to virtual MOS, and virtual LOS can 

be marked and swept. Then in major collection, the full 

heap is compacted.  In the next step, we would attempt 

to manage virtual NOS, virtual MOS, and virtual LOS 

in one physical space, thereby achieving a generational 

GC with fully virtualized space management.     
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