
Packer: an Innovative Space-Time-Efficient Parallel Garbage

Collection Algorithm Based on Virtual Spaces

Shaoshan Liu
1
, Ligang Wang

2
, Xiao-Feng Li

2
, and Jean-Luc Gaudiot

1

1
EECS, University of California, Irvine

2
Intel China Research Center

ABSTRACT— The fundamental challenge of garbage

collector (GC) design is to maximize the recycled space with

minimal time overhead. For efficient memory management,

in many GC designs the heap is divided into large object

space (LOS) and non-large object space (non-LOS). When

one of the spaces is full, garbage collection is triggered even

though the other space may still have a lot of free room, thus

leading to inefficient space utilization. Also, space

partitioning in existing GC designs implies different GC

algorithms for different spaces. This not only prolongs the

pause time of garbage collection, but also makes collection

not efficient on multiple spaces. To address these problems,

we propose Packer, a space-and-time-efficient parallel

garbage collection algorithm based on the novel concept of

virtual spaces. Instead of physically dividing the heap into

multiple spaces, Packer manages multiple virtual spaces in

one physically shared space. With multiple virtual spaces,

Packer offers the advantage of efficient memory management.

At the same time, with one physically shared space, Packer

avoids the problem of inefficient space utilization. To reduce

the garbage collection pause time of Packer, we also propose

a novel parallelization method that is applicable to multiple

virtual spaces. We reduce the compacting GC parallelization

problem into a tree traversal parallelization problem, and

apply it to both normal and large object compaction.

1. INTRODUCTION

Garbage collection technology has been widely used in

managed runtime systems, such as Java virtual

machine (JVM) and Common Language Runtime

(CLR) systems. For efficient memory management, a

modern high performance GC usually manages large

and normal objects separately such that the heap is

divided into large object space (LOS) and non-large

object space (non-LOS). However, the object size

distribution varies from one application to another and

from one execution phase to the next even in one

application, thus it is impossible to predefine a proper

heap partitioning for LOS and non-LOS. Existing GCs

with separate allocation spaces mostly suffer from the

problem that they do not fit well with the dynamic

variations of object size distribution at runtime. This

problem leads to imbalanced space utilization and thus

negatively impacts the overall GC performance. For

garbage collection algorithms, conventional mark-

sweep and reference counting collectors are susceptible

to fragmentation. To address this problem, copying or

compacting GCs are introduced. Compaction

eliminates fragmentation in place by grouping live

objects together in the heap and freeing up large

contiguous spaces for future allocation. As multi-core

architectures prevail, parallel compaction algorithms

have been designed to achieve time efficiency.

However, large object compaction is hard to parallelize

due to strong data dependencies such that the source

object can not be moved to its target location until the

object originally in the target location has been moved

out. Especially, the parallelism is seemingly inadequate

when there are few large objects.

In this paper, we propose Packer, a space-time-

efficient parallel garbage collection algorithm based on

the novel concept of virtual spaces. Unlike some

conventional garbage collectors [2] that physically

divide the heap into multiple spaces, Packer manages

multiple virtual spaces in one physical space. With

multiple virtual spaces, Packer offers the advantage of

efficient memory management, so that different virtual

spaces can employ best suitable collection algorithms.

Meanwhile, with one physical space, Packer avoids the

problem of inefficient space utilization, since there is

no space partitioning problem any more. Object

allocation is highly efficient in Packer. The free space

in the physical heap is centrally controlled by a tree

structure. When one of the virtual spaces needs more

space, then it searches the tree to fetch a suitable free

region. In particular, normal object allocation is done

in thread local blocks with bump-pointers, requiring no

synchronization. Garbage collection is triggered only

when the heap contains no free region, thus

guaranteeing that the heap is fully utilized. Packer

supports both compaction and mark-sweep for large

objects. Hence, it incorporates the advantages of both

the Mark-Sweep and Compaction algorithms, and is

able to achieve high performance when either

algorithm is suitable. To further reduce the garbage

collection pause time of Packer, we reduce the

compacting GC parallelization problem into a tree

traversal parallelization problem, and apply it to both

normal and large object compaction.

In this paper we present the design details of the

proposed algorithms and evaluate their efficiencies.

These algorithms are implemented in Apache Harmony,

a product-quality open source JAVA SE

implementation. The rest of the paper is organized as

follows. Section 2 discusses the related work. Section 3

introduces the basic algorithm designs of Packer.

Section 4 presents the parallelization of normal and

large object compaction in Packer. Section 5 presents

the evaluation results with Specjbb2005 and Dacapo

benchmark suites. Finally, section 6 summarizes the

project and discusses future work.

2. RELATED WORK

Conventional garbage collectors utilize Mark-Sweep

algorithms [14, 15, 16] to manage the whole heap.

When the heap has no more free space, GC is triggered

and the collectors start to trace the heap. If an object

can be reached, then it is a live object and the object

header is marked. After tracing, all unmarked objects

are swept and their occupied spaces are recycled. The

free space in the heap is managed with a linked list.

During allocation, the allocators traverse this linked list

to fetch a suitable free region. The main advantage of

this algorithm is that no data movement is necessary,

such that it incurs low overhead during garbage

collection. However, it also has three disadvantages:

first, this algorithm introduces heavy fragmentation on

the heap, leading to inefficient space utilization.

Second, its fragmentation property destroys the spatial

locality of data allocation, leading to inefficient data

access. Last, each data allocation requires a linear

search on the linked list that manages the free regions,

thus it is inefficient.

As exemplified by the LISP2 algorithm [5],

compaction algorithms are utilized in GC designs to

address the disadvantages of mark-sweep algorithms.

However, compaction usually imposes lengthy pause

time. To reduce pause time, several parallel

compaction algorithms have been proposed. Flood et

al. [6] present a parallel compaction algorithm that runs

three passes over the heap. First, it determines a new

location for each object and installs a forwarding

pointer, second it fixes all pointers in the heap to point

to the new locations, and finally, it moves all objects.

To make this algorithm run in parallel, the heap is split

into N areas such that N threads are used to compact

the heap into N/2 chunks of live objects. The main

disadvantage of this design is that the resulted free

space is noncontiguous. Abuaiadh et al. [7] propose a

three-phase parallel compactor that uses a block-offset

array and mark-bit table to record the live objects

moving distance in blocks. Kermany and Petrank [8]

propose the Compressor that requires two phases to

compact the heap; also Wegiel and Krintz [9] design

the Mapping Collector with nearly one phase. Both

approaches depend on the virtual memory support from

the underlying operating system. Note that concurrent

GC and Stop-The-World (STW) GC designs are

fundamentally different: they have different design

goals, evaluation metrics, and algorithms: concurrent

GC is designed to reduce pause time, whereas STW

GC is designed to increase throughput. In this paper,

we only focus on STW GC design.

For efficient memory management, Caudill and

Wirfs-Brock first propose to use separate spaces to

manage objects of different sizes, large object space

(LOS) for large objects and non-large object space

(non-LOS) for normal objects [1]. Hicks et al. have

done a thorough study on large object spaces [2]. The

results of this study indicate three problems for LOS

designs. First, LOS collection is hard to parallelize.

Second, LOS shares the same heap with non-LOS, thus

it is hard to achieve full utilization of the heap space.

Third, LOS and non-LOS collections are done in

different phases, which may affect the scalability of

parallel garbage collection. In [3], Soman et al. discuss

about applying different GC algorithms in the same

heap space, but their work does not involve

dynamically adjusting the heap partitioning. The study

done by Barrett and Zorn [4] is the only known

publication that studies space boundary adjustment,

and their work aims at meeting the resource constraints

such as pause time. By contrast, Packer does not

require any boundary adjustment mechanism. Instead,

it manages different virtual spaces in the same physical

space such that it avoids the problem of inefficient

space utilization while keeping the advantage of

efficient memory management.

3. BASIC ALGORITHM DESIGNS IN

PACKER

In this section, we first introduce the basic heap design

of Packer and compare it to other heap designs. Then

we present the data allocation scheme and garbage

collection algorithm in Packer. At last, we discuss

further implications of the Packer design.

3.1 The Basic Design of Packer

As shown in Figure 1, with the Move-Compact

algorithm (GC-MC), when the heap is partitioned into

multiple spaces, for instance LOS and non-LOS,

garbage collection is triggered when either space is full.

In times when garbage collection is triggered by one

space while the other space is partially filled, the heap

is not fully utilized. Consequently, it leads to more

frequent collections and lower performance.

Figure 1: Compacting GC (GC-MC) with separate

allocation spaces

The key question here is why one space would get

full before the other one does. This is because within

the same amount of time, a higher fraction of one

space’s free region is allocated than that of the other

space, yet the free regions of different spaces can not

be easily shared. Hence, if the free regions of the heap

are centrally controlled and can be shared by both

spaces, then the problem of low space utilization can

be solved. However, this is not possible when a heap is

partitioned into two spaces with a boundary in between.

Because it requires the GC algorithm for one space

virtually manage the regions of another space when its

own space is full. For instance, as shown in the lower

part of Figure 1, if LOS is full, we cannot allocate large

objects in the free region of non-LOS. Otherwise, we

destroy the advantage brought by separate spaces,

namely, efficient memory management.

Figure 2: Mark-Sweep GC (GC-MS)

On the other hand, Mark-Sweep algorithm (GC-

MS) does not divide the heap into separate spaces thus

both normal and large objects share the same allocation

space. When garbage collection is triggered, it scans

the heap and marks all live objects. Then it sweeps all

the unmarked objects, leaving holes in the heap. These

holes are then added into a linked list for future

allocations. Although this algorithm is efficient and

does not require object movement, it introduces several

serious problems. As shown in the lower part of Figure

2, in cases when fragmentation is very serious, it is

unable to find a hole on the linked list to fit a newly

allocated object, such as the one at the bottom of

Figure 2, even though the heap has about 50% of free

space. This creates a “deadlock” situation, in which

compaction has to be initiated in order to alleviate the

problem. In addition, GC-MS’s allocation scheme

breaks the spatial locality: when it allocates several

objects that are meant to be accessed continuously, it

has to allocate these objects sparsely all over the heap.

Furthermore, for the allocation of each object, it has to

traverse the free-region linked list to find a suitable free

region, which is inefficient, especially when the list is

long.

Figure 3: the design of heap structure in Packer

Packer is able to solve these problems by

managing multiple virtual spaces in one physical space,

such that these virtual spaces can share the free regions.

As shown in Figure 3, to coordinate data management

in Packer, we utilize three data structures: a virtual

non-LOS list, a virtual LOS list, and a Free Area Pool.

The virtual non-LOS list points to the first normal

object block in the heap, and this block contains a

pointer that points to the next normal object block, and

so on. Hence, it is easy to find all normal blocks

through this virtual non-LOS list, and they form the

virtual non-Large Object Space. Similarly, the virtual

LOS list points to the first large object, and this large

object contains a pointer to the next large object, and so

on. The virtual LOS list and the blocks of large objects

form the Large Object Space. The Free Area Pool

manages all free blocks in the heap, and it is actually a

table of linked lists indexed by the number of blocks.

Each linked list in the Free Area Pool manages all free

regions with a certain number of contiguous blocks.

For instance, block 2 and block 7 in Figure 3 are both

free regions with only one block. Hence slot 1 of the

Free Area Pool contains a pointer to block 2, and block

2 contains a pointer to block 7. Also, block 10, 11, and

12 form a free region that contains 3 free blocks, and

thus slot 3 of the Free Area Pool contains a pointer to

block 10. For all free regions that contains more than

32 free blocks, Packer organizes them in slot >32. In

this way, all free blocks in the heap are centrally

managed. With this design, the virtual spaces can grow

based on need and garbage collection only happens

when the heap is fully utilized.

It is relatively easy to come up with a design that

manages the heap with block-number indexed table,

the difficulty and subtlety in Packer actually lie in its

allocation and collection algorithms. The first glimpse

of Packer heap structure might give an impression that

Packer is similar to a mark-sweep GC that employs

size-segregated lists as the main data structure, but

different from a mark-sweep GC, Packer can achieve

the benefits of fast bump-pointer allocation, and

parallel compacting collection for both large and

normal objects, which are not possible in a mark-sweep

GC. In following subsections, we will describe the

object allocation and garbage collection mechanism in

Packer.

3.2 Object Allocation in Packer

When multiple threads are running in an application

program, they share the heap resources thus accesses to

the Free Area Pool for object allocation need to be

synchronized. However, if one atomic operation is

required for each object allocation, then the overhead

would be very serious. In most application programs,

the majority of objects are normal objects which are

much smaller than the block size. Thus it is essential

to have an efficient allocation scheme for normal

objects. The Mutator thread is responsible for object

allocation. To reduce the synchronization overhead, in

Packer, each Mutator fetches a thread local block from

the Free Area Pool through an atomic operation, and

then allocates normal objects on this thread local block

with bump-pointer allocation. Note that when objects

are allocated locally by the Mutator, no

synchronization operation is necessary. When there is

no more space in this thread local block, the Mutator

atomically fetches another thread local block from the

Free Area Pool and starts allocation again. In this way,

only one atomic operation is required for each block

instead of for each object.

To guarantee fast normal object allocations, Packer

only allocates thread local block from slot 1 or slot >32

in the Free Area Pool. It first checks if slot 1 is null, if

not, it allocates from slot 1; otherwise it allocates from

the last slot, slot >32. In this way, it only requires one

atomic operation for each thread local block. To grab a

region from other slots, Packer needs to pick off the

region, allocate a block, and put back the rest into the

corresponding slot, which requires two atomic

operations. When picking the thread local block from

slot 1, one atomic operation is enough because it never

needs to put back the rest. For thread local block

allocation in slot >32, instead of picking off a region,

Packer simply reduces the number of blocks of a region

in the last slot. This reduction operation is atomic thus

it guarantees thread-safe block allocation and only one

atomic operation is needed.

Figure 4: block allocation from the Free Area Pool

Different from normal objects, each large object

occupies one or more blocks. Thus, the Mutators

directly allocate large objects in the Free Area Pool.

When there is an allocation request, a Mutator first

checks the number of blocks requested, n. Then it

searches the Free Area Pool using n as index. If slot n

is Null, then it searches slot n+1 and so forth until a

non-Null slot is found. Next, it fetches the first free

region from this non-Null slot and grabs n blocks, then

storing the rest back into the Free Area Pool. As an

illustration in Figure 4, it requests one free block but

slot 1 of the Free Area Pool is Null. Then it searches

down and fetches a free region in slot 2. This free

region contains free blocks 1 and 2. Packer allocates

block 1 and stores block 2 back into the Free Area Pool,

and it is inserted into slot 1, since now there is only one

free block, block 2, left in this free region. With this

design, Packer can achieve fast object allocation for

both the large and normal objects, much faster than a

mark-sweep GC. Next we describe how Packer

achieves fast garbage collection.

3.3 Garbage Collection in Packer

When the heap is fully occupied by normal and large

objects, garbage collection is triggered. Packer utilizes

compaction algorithms, and its garbage collection is

divided into four phases. In the first phase, it scans the

heap and marks all live objects, then it builds the

virtual spaces by adding all normal blocks into the

virtual non-LOS linked list, and all large blocks into

the virtual LOS linked list. This phase corresponds to

lines 1 and 2 in the Packer_Compact_Collection()

pseudo-code shown in Figure 5. In phase 2, normal

blocks are compacted towards the left of the heap and

the forwarding tables are set in each block. These

forwarding tables store the offsets between the source

and target addresses of objects, and they are used for

the reference fixing operation in the next phase. This

phase corresponds to lines 3, 4, and 5 in the pseudo-

code. In phase 3, Packer fixes all the references from

both normal and large objects using the forwarding

tables set in the previous phase. In this case, if there is

a reference pointing to an object that has already been

compacted, it checks the forwarding table in this block

to look for the address offset. Then it subtracts this

offset from the original address stored in the reference

to get the new address of this object. This phase

corresponds to line 6 of the pseudo-code. In the last

phase, large blocks are compacted and the free blocks

are added to the Free Area Pool. This phase

corresponds to line 7, 8, and 9 in the pseudo-code.

Figure 5: Garbage Collection algorithm in Packer

Packer can optionally choose not to compact large

objects, such that large objects are mark-swept. With

this support, Packer incorporates the advantages of

both GC-MS and GC-MC. For the two extreme cases:

1) if it is large-object-intensive, Packer can choose to

mark-sweep large objects, as GC-MS does, thus

avoiding the object moving overhead; 2) if there are

few large objects in the application, Packer behaves the

same as GC-MC, thus creating a large contiguous free

region while keeping the object moving overhead low.

Note that the major steps, marking, normal object

moving, reference fixing, and large object moving,

which correspond to steps 1, 3, 6, and 8 in pseudo-code,

are fully parallelized. The detailed parallelization

mechanism will be explained in the next section.

Since all the live objects are identified during the

first marking phase, the compaction algorithm can pack

all the live objects to one end of the heap without any

holes unfilled. There is no fragmentation issue. Also

note that Packer compacts the normal objects before

the large objects: it squeezes out large contiguous free

space after the normal object compaction and then uses

the free space for large object compaction.

3.4 Further Implications of Packer

Besides the advantages in object allocation and garbage

collection, the Packer design has three further

implications: it facilitates pinned object management,

the management of managed and native data in the

same heap, and the management of discrete physical

areas. Pinned object support is required in some

runtime systems that use conservative GC. When a

garbage collector scans the heap for live objects,

sometimes it will trace to a location, the content of

which (pointer or value) is unknown. In this situation,

conservative garbage collectors would assume that it

stores an address to an object. However, the collector

cannot update this reference slot because it may be

storing a value instead of an address. Thus, this object

is a pinned object because it cannot be moved. In

conventional moving GC designs, the algorithms have

to sacrifice performance when there is a pinned object

in the heap. By introducing the concept of virtual

spaces, Packer is able to jump over the block

containing pinned objects when building the virtual

spaces without any performance compromise.

Pinned object is also desirable if there are lots of

interactions between managed code and unmanaged

code in the application. In most Virtual Machines,

including JVM and CLR, the managed and unmanaged

environments often need to communicate with each

other and pass data around. The most common

approach to deal with this problem is to copy data from

the managed environment to the native environment

and vice versa [17]. This is highly inefficient because

large amount of data copying incurs very high time and

space overheads. Indeed, this problem can be solved

by either temporarily disabling garbage collection or

pinning the data passed across the boundary. With

Packer’s support of pinned object, this problem can be

easily resolved.

Also, in some cases, a process’s address space is

segmented by the operating system. For example, the

system may load DLLs to arbitrary address ranges, thus

breaking the heap into multiple chunks. Packer is able

to link these discrete chunks to create a virtual heap for

the process, therefore providing an as large as possible

managed heap to the applications, making the heap

management efficient.

4. PARALLELIZATION OF GARBAGE

COLLECTION IN PACKER

In this section we first demonstrate how we reduce the

compaction parallelization problem into a tree traversal

parallelization problem. Then we present the

implementation of parallel normal and large object

compaction in Packer.

4.1 Parallelization of Compacting GC

Compacting GCs move live objects towards one end so

as to eliminate fragmentations. In order to increase GC

efficiency, parallel compaction algorithms are essential

in modern GC designs. The fundamental goal of a

parallel compaction algorithm is to exploit as much

parallelism as possible while keeping the

synchronization overhead as low as possible.

Figure 6: normal and large object compaction

As shown in Figure 6, there exist many normal

objects in virtual non-LOS, and the data dependencies

between these normal objects are fairly low, implying a

high degree of parallelism. However, in order to

parallelize the compaction process in a straightforward

manner, an atomic operation, which is notorious for its

inefficiency, is needed for each object movement.

Thus the cost of parallelization may well surpass the

performance gain. On the other hand, there exist

strong data dependencies in virtual LOS such that the

source object can not be moved to its target location

until the object originally in the target location has

been moved out. Especially, when there are only few

very large objects, the parallelism is seemingly

inadequate.

This observation indicates that we need to set a

proper parallelization granularity in the heap such that

it reduces the high synchronization overheads caused

by fine-grain data movement (as in virtual non-LOS)

and the false data dependencies caused by coarse-grain

data movement (as in virtual LOS). Our design is to

divide the heap into equal-sized blocks. This means

that the parallelization granularity is a block. For

virtual non-LOS, each block contains multiple objects.

During collection, each thread obtains a block and

moves all the objects in the block. Thus, at most one

atomic operation is required for the movement of

multiple objects in a block, greatly reducing the

synchronization overhead. On the other hand, for

virtual LOS, each object contains one or more blocks.

When one block of a large object can not be moved due

to data dependency, the other blocks can still be moved,

thus reducing the false dependency problem. For

instance, in Figure 7, blocks 7 and 8 belong to one

object, and blocks 11 and 12 belong to another.

Originally, the blocks of one large object must be

moved together, so blocks 7 and 8 cannot be moved

until block 5 has been moved out. With equal-sized

blocks, dependencies only exists between block 7 and 5,

so the dependencies between block 8 and 5 are false

data dependencies. Block 8 can be moved

independently of block 7. Thus the movements of

block 7 and 8 can be parallelized.

Figure 7: Packer with equal-sized blocks
By dividing the heap into equal-sized blocks, both false data

dependencies and synchronization costs can be reduced. To

capture all data dependencies and to facilitate the

parallelization of data compaction, dependency lists are

generated for virtual LOS and a dependency tree is generated

for virtual non-LOS.

Further complications exist in parallelizing the

compaction process. For virtual non-LOS, races

between multiple collectors exist when they move

objects from a source block to a target block. For

instance, two collectors may move data from two

source blocks into the same target block, or one

collector may write into a target block in which the

original objects have not been moved away yet. This

observation indicates two properties. First, each block

has two roles, it is a source block when its objects are

compacted to some other block, and it can be a target

block after its original data has been moved away.

Second, in virtual non-LOS, multiple source blocks

may compact into one target block, and thus the access

to this target block should be synchronized. In order to

achieve high performance, the complex relations

between the blocks need to be clarified before the

compacting threads start. To achieve this, we generate

dependence trees, such as the one in Figure 7, which

captures all the data dependencies between the blocks.

For instance, in virtual LOS, block 5 is the source

block for block 4 and it is also the target block for

block 7. Thus, block 7 cannot be moved to block 5

until block 5 has been moved to block 4. In virtual

non-LOS, block 1 is the target block for block 3, and

block 3 is also the target block for blocks 6, 9 and 10.

Thus, blocks 6, 9, and 10 cannot be moved to block 3

until block 3 has been moved to block 1. When

compaction starts, the threads traverse the tree to obtain

a source block and a target block. After the current

data movement is done, the thread moves down the tree

to obtain a new source block and set the old source

block to be the new target block. This process finishes

after the thread has reached the leaf nodes of the tree.

We have thus actually reduced the compaction

parallelization problem into a tree traversal

parallelization problem. For virtual LOS compaction,

the situation is simpler because one source block has

only one target block, and vice versa. Therefore, the

dependency trees degenerate into dependence lists.

4.2 Implementation of Parallel Normal Object

Compaction

Packer utilizes the Move-Compact algorithm from

Apache Harmony JVM for normal object compaction

[7]. This algorithm involves three phases for parallel

normal object compaction: live object marking, object

moving, and reference fixing.

Phase 1: Live object marking. It traces the heap from

root set and marks all the live objects;

Phase 2: Object moving. It copies the live objects to

their new locations;

Phase 3: Reference fixing. It adjusts all the reference

values in the live objects to point to the referenced

objects’ new locations.

Although the three phases are fully parallel, we

only focus on the parallelization of the moving phase,

which is most related to our proposed design. In this

phase, a collector first atomically grabs a source block

in heap address order. Then it grabs a target block that

has lower address than the source block. Each block is

divided into multiple sectors that each encapsulates a

number of live objects. For each sector of live objects

in the source block, the collector computes its target

address in the target block, moves the sector to its

target position, and stores the address offset to the

forwarding table in the block header. When the target

block has not enough space, the collector grabs the

next target block. When the source block has no more

live objects, the collector grabs another source block in

heap address order until all the blocks have been

visited. In this phase, two atomic operations are

needed for one block to eliminate data races: one for

taking the ownership of the source block, and the other

for taking the ownership of the target block. Note that

this process can be seen as a parallel tree traversal

process. When a collector grabs a source block and a

target block in heap address order, it is actually

traversing from the top of the tree. When it finishes the

movement of data in the current source block, the

source block is released and can be used as a target

block in the next iteration, thus the collector is indeed

traversing down the dependency tree until all blocks

have been compacted. If multiple collectors try to grab

the same target block, synchronization mechanism is

necessary to coordinate their operations. Note that in

this three-phase algorithm, target address calculation

and object movement is done in the same phase, thus

the dependency tree is generated dynamically instead

of pre-generated.

Figure 8: parallel large object compaction

4.3 Implementation of Parallel Large Object

Compaction

To demonstrate the effect of the parallel virtual LOS

compaction algorithm, we implemented the parallel

compaction algorithm presented above in the Apache

Harmony GC and the pseudo-code is shown in Figure 8.

Before collection starts, a number of disjoint

dependence lists are generated to capture the

dependence relationship among the large object blocks.

Each collector can then atomically grab a dependence

list and works on it independently. In this case, it only

requires an atomic operation for each dependency list

instead of for each block. In essence, a thread first

acquires the ownership of a dependency list through an

atomic operation. From the list, it gets the first block,

which is the target block, and the second block, which

is the source block, and moves the source to the target.

When it finishes this block movement, the source block

now becomes the target block and a new source block

is obtained by taking the next block in the dependency

list. This operation repeats until there is no more block

in the dependency list. Then, the thread obtains

another dependency list from the task pool.

5. EXPERIMENTS AND RESULTS

In this section, we present our experiment results for

our Packer algorithm. All proposed algorithms have

been implemented in Apache Harmony, a product-

quality open source JAVA Virtual Machine [10]. The

heap is divided into equal-sized blocks, and each block

contains a block header for its metadata, including

block base address, block ceiling address, block state,

etc. Block size is adjustable, but the block header size

is a constant and independent of the block size. For

this study, the block size is set to 32 KB and the size

threshold for large objects is set to 16 KB. The

evaluation of Packer is done with the SPECjbb2005

[11] and Dacapo [12] benchmark suites. SPECjbb2005

is a large server benchmark that employs several

program threads; it is representative of commercial

server-side applications. On the other hand, Dacapo is

a suite of client-side Java applications. For all

experiments, we use a 256 MB heap by default.

In these experiments, we compare three GC

designs: GC-MC, GC-MS, and Packer. GC-MC is the

default GC algorithm in Apache Harmony and it

utilizes the Move-Compact algorithm for garbage

collection. It divides the heap into separate spaces:

Large Object Space (LOS) and non-LOS, to manage

large and normal objects. However, this algorithm can

not be parallelized for the compaction of large objects.

For GC-MC, with a heap size of 256M, we

experimented with four configurations: GC-MC with

50M LOS (GC-MC 50M), GC-MC with 100M LOS

(GC-MC 100M), GC-MC with 150M LOS (GC-MC

150M), and GC-MC with 200M LOS (GC-MC 200M).

GC-MS uses Mark-Sweep for the garbage collection of

the whole heap. Packer manages virtual LOS and

virtual non-LOS in the same heap, and enables the

parallelization of both normal and large object

compactions.

5.1 Comparison of Space Utilization

In real applications, the object size distribution varies

from one application to another and from one

execution phase to next even in one application. For

instance, specjbb2005 is a non-large-object-intensive

benchmark that allocates a very small number of large

objects, thus it requires a large non-LOS. On the other

hand, xalan, jython, and bloat from the Dacapo

benchmark suite are large-object-intensive thus

requiring a large LOS. In addition, specjbb2005

allocates all the large objects at the beginning of its

execution and very few large objects afterwards. Thus

in different phases of its execution, it requires different

sizes for LOS.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bl
oa
t

ch
ar
t

ec
lip
se

hs
ql
db

jy
th
on

lu
in
de
x

lu
se
ar
ch

pm
d

sp
ec
jb
b

xa
la
n

av
g

s
p
a
c
e
 u
ti
li
z
a
ti
o
n GC-MC 50M

GC-MC 100M

GC-MC 150M

GC-MC 200M

GC-MS

Packer

Figure 9: Space Utilization of GC-MC, GC-MS, and

Packer
Y-axis shows the fraction of utilized heap space when

garbage collection happens. This result is obtained by

averaging the space utilization of all garbage collections

throughout execution. The last set of results, avg, compares

the average heap utilization of all selected benchmarks on

different GC designs.

Figure 9 shows the space utilization of different

designs. Packer guarantees the heap space is fully

utilized because collection is triggered only when there

is no free region in the Free Area Pool. The average

space utilization of GC-MS is 81%. For lusearch, the

space utilization is only 49%, which is caused by heavy

fragmentation. The average space utilization ratios are

78%, 69%, 49%, and 26% for GC-MC 50M, GC-MC

100M, GC-MC 150M, and GC-MC 200M respectively.

Usually in application programs, most objects are

normal objects. Hence when LOS gets too big, there is

insufficient space for normal object allocation, causing

frequent garbage collections and low space utilization.

Nonetheless, for Xalan, GC-MC space utilization is

maximized when LOS size is 100M. This is because

Xalan is a large-object-intensive application, which

contains a large number of large objects when garbage

collection happens. In general, space utilization is

worse when the heap is statically partitioned into

multiple spaces. Static partition fails to meet the needs

of large object and non-large object space utilization,

precisely because this is a dynamic behavior. On the

other hand, although GC-MS does not suffer from this

problem, it creates a heavy fragmentation problem,

often leading to low space utilization. By managing

multiple virtual spaces in one physical space, Packer

overcomes all these problems.

Table 1: GC pause time comparison of Packer, GC-MS, and GC-MC

 Packer GC-MS GC-MC 50M GC-MC 100M GC-MC 150M GC-MC 200M

eclipse 199 1863 206 1602 291 2427 225 2048 338 2670 845 5474

hsqldb 32 1410 F F 44 2085 125 5975 F F F F

Jython 190 1109 266 436 232 1259 303 1396 455 1686 918 2573

lusearch 84 3389 175 3465 100 3707 134 4323 203 5553 416 9331

specjbb 39 1204 41 1160 119 3927 F F F F F F

Table 1 shows the single-thread performance of

Packer, GC-MS, and GC-MC, including the number of

garbage collection events triggered throughout

execution (left column) and the total GC pause time

(right column). The first observation is that Packer

always triggers fewer garbage collections compared to

other designs. This is because Packer guarantees that

the heap is fully utilized. The second observation is

that some applications fail to finish execution, as those

denoted “F” in the table. For Specjbb and hsqldb, some

GC-MC configurations with large LOS size fail to

complete because they do not have sufficient space for

normal object allocation. In addition, for hsqldb, GC-

MS fails to complete because of heavy fragmentation.

This happens when it can not find suitable free region

in the heap for the newly allocated object. The third

observation is that GC-MS usually has lower pause

time than both Packer and GC-MC. One extreme case

is jython, in which GC-MS’s pause time is only 1/3 of

that of Packer. This is because Mark-Sweep does not

involve object movement, which may incur a high

performance overhead.

5.2 Scalability of Packer

To demonstrate the effect of Packer’s parallel

compaction algorithms, we compare the scalability of

Packer and GC-MS with 1, 2, 3, and 4 threads and the

results are shown in Figures 10 and 11. The Y-axis of

these figures represents the normalized total GC pause

time. Figure 10 shows Packer’s scalability. In

general, Packer demonstrates very good scalability. On

average, the speedups of Packer are 1.92x, 2.64x, and

2.67x respectively with 2, 3, 4 collectors.

0

0.2

0.4

0.6

0.8

1

1.2

bl
oa
t

ch
ar
t

jy
th
on

lu
se
ar
ch

lu
in
de
x

xa
la
n

sp
ec
jb
b

N
o
rm
a
li
z
e
d
 G
C
 P
a
u
s
e
 T
im
e

1 thread

2 threads

3 threads

4 threads

Figure 10: Packer Scalability

0

0.2

0.4

0.6

0.8

1

1.2

bl
oa
t

ch
ar
t

jy
th
on

lu
se
ar
ch

lu
in
de
x

xa
la
n

sp
ec
jb
b

N
o
rm
a
li
z
e
d
 G
C
 P
a
u
s
e
 T
im
e

1 thread

2 threads

3 threads

4 threads

Figure 11: Mark-Sweep Scalability

Figure 11 shows GC-MS’s scalability. Compared

to Packer, GC-MS’s scalability is lower. On average,

the speedups of GC-MS are 1.5x, 1.72x, and 1.64x

respectively with 2, 3, 4 collectors. Note that the

average speedup for the 4-thread case is actually lower

than that of the 3-thread case. This is because for some

benchmarks, such as lusearch and luindex, the 4-thread

case introduces long pause time. This is particularly

true for lusearch, where the pause time for the 4-thread

case is much higher than the sequential case due to the

heavy fragmentation in these applications. When

fragmentation is serious, garbage collections become

much more frequent and the elapsed time between two

garbage collections is very short. Hence, only a small

number of objects are allocated and collected in each

allocation-collection period. Under this situation,

synchronization overhead becomes the major

component of the GC pause time, negatively impacting

GC performance. For other applications with low

degree of fragmentation, such as xalan and specjbb, the

speedups are comparable to those of Packer.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4

Number of Threads

N
o
rm
a
li
z
e
d
 G
C
 P
a
u
s
e
 T
im
e

Packer

GC-MS

Figure 12: Comparison of Parallel Packer and GC-

MS

Table 1 indicates that in the sequential case, Mark-

Sweep is more efficient than compaction algorithms

because it does not involve the movement of objects.

Nevertheless, as the number of threads increases,

Packer gradually takes the performance advantage over

GC-MS due to better scalability. As an illustration, in

Figure 12 we compare the performance of parallel GC-

MS and Packer on jython. It clearly shows that

although GC-MS’s GC pause time is only 1/3 of that of

Packer in the sequential case, these two numbers

converge as the number of threads increase.

5.3 Impacts on Overall Performance

This section presents how Packer impacts the

performance of the overall program execution. To

collect this data, we run the respective benchmarks on

an Intel 8-core Tulsa platform and compare the

performance of Packer, GC-MC, and GC-MS. For

GC-MC, we manually optimized the LOS size to

maximize space and time efficiency for each

application. Figure 13 shows the results on

Specjbb2005 benchmark. The X-axis shows the

number of warehouses used in execution and the Y-

axis shows the normalized Specjbb score, a higher

score represents higher performance. Packer’s

performance is almost always 1.2% higher than that of

GC-MS. Although this seems to be a very small

performance gain, but considering that garbage

collection only takes about 10% of the total execution

time, this result is actually a great improvement on GC

performance. Also, Packer’s performance is higher

than that of GC-MC, but the advantage is not obvious.

This is because both GC-MC and Packer utilize the

same algorithm for normal object compaction and

Specjbb2005 is not a large-object-intensive benchmark.

0.7

0.75

0.8

0.85

0.9

0.95

1

9 10 11 12 13 14 15 16

Number of Warehouses

N
o
rm
a
li
z
e
d
 S
p
e
c
jb
b
 S
c
o
re

Packer

GC-MC

GC-MS

Figure 13: Impacts on Specjbb2005 Overall

Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

jython bloat

N
o
rm
a
li
z
e
d
 E
x
e
c
u
ti
o
n
 T
im
e

Packer

GC-MC

GC-MS

Figure 14: Impacts on Dacapo Overall Performance

Figure 14 presents the results with the Dacapo

benchmark suite. Compared to Specjbb, jython and

bloat are large-object-intensive. Packer’s performance

is 3% higher than that of GC-MS and 8% higher than

that of GC-MC. Note that in GC-MC, large object

compaction is not parallelized. Thus in sequential case,

the Mark-Sweep algorithm has better performance than

compaction in large object garbage collection.

Nevertheless, with the parallel large object compaction

algorithm proposed in this paper, compaction can be

more efficient compared to Mark-Sweep.

6. CONCLUSION

Space and time efficiency are the two most important

design goals in garbage collector design. However,

many garbage collection algorithms trade space

utilization for performance and vice versa. In this

paper, we proposed Packer, a novel garbage collection

algorithm that manages multiple virtual spaces in one

physical space, thereby guaranteeing the space is fully

utilized while avoiding the fragmentation problems.

To improve performance, we first reduced the heap

compaction parallelization problem into a parallel tree

traversal problem, and then designed solutions to

eliminate false sharing and to reduce the

synchronization overhead, thereby maximizing the

exploitable parallelism for both normal and large object

compaction. It is noteworthy that Packer is generic

enough to be used in any situation that involves the

management and coordination of multiple virtual

spaces in one physical space and vice versa.

The experiment results show that Packer has much

better space utilization than GC-MC and GC-MS. Also,

the parallel compaction algorithms in Packer

demonstrate great scalability. Although GC-MS has

lower GC pause time than Packer in the sequential case,

as the number of threads increases, Packer gradually

takes the performance advantage over GC-MS due to

better scalability. In addition, we evaluate Packer’s

impact on the overall performance. Note that although

GC only takes about 10% of the total execution time in

the application programs, Packer is able to achieve

1.2% and 3% performance gain over GC-MS in the

Specjbb and Dacapo benchmark suites, respectively.

Hence, our results demonstrate that Packer is highly

space-and-time efficient.

Our ongoing work is to apply Packer in more GC

designs. Specifically, we intend to implement a

generational Packer, which consists of a physical

Nursery Object Space (NOS), a virtual Large Object

Space (LOS), and a virtual Mature Object Space

(MOS). In minor collection, live normal objects are

copied from NOS to virtual MOS, and virtual LOS can

be marked and swept. Then in major collection, the full

heap is compacted. In the next step, we would attempt

to manage virtual NOS, virtual MOS, and virtual LOS

in one physical space, thereby achieving a generational

GC with fully virtualized space management.

REFERENCES

1. P.J. Caudill, A. Wirfs-Brock. A Third Generation

Smalltalk-80 Implementation. Conference proceedings

on Object-oriented programming systems, languages

and applications, Portland, Oregon, USA, 1986

2. M. Hicks, L. Hornof, J.T. Moore, S.M. Nettles. A Study

of Large Object Spaces. In Proceedings of ISMM 1998

3. S. Soman, C. Krintz, D.F. Bacon. Dynamic selection of

application-specific garbage collectors. In Proceedings

of ISMM 2004.

4. D. Barrett and B.G. Zorn. Garbage Collection using a

Dynamic Threatening Boundary. In Proceedings of

PLDI 1995.

5. R.E. Jones. Garbage Collection: Algorithms for

Automatic Dynamic Memory Management. Wiley,

Chichester, July 1996. With a chapter on Distributed

Garbage Collection by R. Lins.

6. C. Flood, D. Detlefs, N. Shavit, and C. Zhang. Parallel

garbage collection for shared memory multiprocessors.

In the USENIX JVM Symposium, 2001

7. D. Abuaiadh, Y. Ossia, E. Petrank, and U. Silbershtein.

An efficient parallel heap compaction algorithm. In the

ACM Conference on Object-Oriented Systems,

Languages and Applications, 2004.

8. H. Kermany and E. Petrank. The Compressor:

Concurrent, incremental and parallel compaction. In

PLDI, 2006.

9. M. Wegiel, C. Krintz, The Mapping Collector: Virtual

Memory Support for Generational, Parallel, and

Concurrent Compaction, In ASPLOS '08, Seattle, WA,

March 2008.

10. Apache Harmony: Open-Source Java SE.

http://harmony.apache.org/

11. Spec: The Standard Performance Evaluation

Corporation. http://www.spec.org/.

12. Dacapo Project: The DaCapo Benchmark Suite.

http://www-ali.cs.umass.edu/dacapo/index.html

13. Ming Wu and Xiao-Feng Li, Task-pushing: a Scalable

Parallel GC Marking Algorithm without

Synchronization Operations. IEEE IPDPS2007.

14. J. McCarthy. Recursive Functions of Symbolic

Expressions and their Computation by Machine.

Commun. ACM, 1960 3(4):184~195

15. E. Toshio, K. Taura, A. Yonezawa. A Scalable Mark-

Sweep Garbage Collector on Large-Scale Shared-

Memory Machines. Proc. Of ACM/IEEE conference on

Supercomputing, New York, USA, 1997.

16. T. Domani, E.K. Kolodner, E. Lewis, etc. Implementing

an On-the-fly Garbage Collector for Java. ACM

SIGPLAN Notices, 2001, 36(1):155~166

17. The Mono Project. www.mono-project.com

