
 Open access Proceedings Article DOI:10.1109/TEST.2002.1041756

Packet-based input test data compression techniques — Source link

E.H. Volkerink, Ajay Khoche, Subhasish Mitra

Institutions: Stanford University, Agilent Technologies, Intel

Published on: 07 Oct 2002 - International Test Conference

Topics: Test compression, Test data, Automatic test pattern generation, Huffman coding and Data compression

Related papers:

 Scan vector compression/decompression using statistical coding

 Test vector decompression via cyclical scan chains and its application to testing core-based designs

 Frequency-directed run-length (FDR) codes with application to system-on-a-chip test data compression

 Test volume and application time reduction through scan chain concealment

 System-on-a-chip test-data compression and decompression architectures based on Golomb codes

Share this paper:

View more about this paper here: https://typeset.io/papers/packet-based-input-test-data-compression-techniques-
41w9nulfjj

https://typeset.io/
https://www.doi.org/10.1109/TEST.2002.1041756
https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj
https://typeset.io/authors/e-h-volkerink-5fj5egyib0
https://typeset.io/authors/ajay-khoche-225l8cc0c4
https://typeset.io/authors/subhasish-mitra-8i0m9rje6c
https://typeset.io/institutions/stanford-university-24e5cwqm
https://typeset.io/institutions/agilent-technologies-3p9shh7a
https://typeset.io/institutions/intel-2nhd3qnf
https://typeset.io/conferences/international-test-conference-2twl0a7a
https://typeset.io/topics/test-compression-2p5oohvv
https://typeset.io/topics/test-data-3dtih433
https://typeset.io/topics/automatic-test-pattern-generation-fkjnl7gs
https://typeset.io/topics/huffman-coding-33xce1ga
https://typeset.io/topics/data-compression-3fp83o4g
https://typeset.io/papers/scan-vector-compression-decompression-using-statistical-471xp4bj0s
https://typeset.io/papers/test-vector-decompression-via-cyclical-scan-chains-and-its-4cnz7o8eed
https://typeset.io/papers/frequency-directed-run-length-fdr-codes-with-application-to-1liul766i3
https://typeset.io/papers/test-volume-and-application-time-reduction-through-scan-1ui272imcn
https://typeset.io/papers/system-on-a-chip-test-data-compression-and-decompression-3ey9wzu1ua
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj
https://twitter.com/intent/tweet?text=Packet-based%20input%20test%20data%20compression%20techniques&url=https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj
https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj

Packet-based Input Test Data Compression Techniques
*

Erik H. Volkerink
1,2

, Ajay Khoche
2
, Subhasish Mitra

3

1
Center for Reliable Computing (CRC)

Stanford University, Stanford, CA

2
Agilent Laboratories

Palo Alto, CA

3
Intel Corporation

Sacramento, CA

Abstract 1
This paper presents a test input data compression

technique, which can be used to reduce input test data

volume, test time, and the number of required tester

channels. The technique is based on grouping data

packets and applying various binary encoding

techniques, such as Huffman codes and Golomb-Rice

codes. Experiments on actual industrial designs and

benchmark circuits show an input vector data reduction

ranging from 17x to 70x.

Keywords: Compression, RLE, Huffman, Golomb-Rice,

LFSR, BIST, ATE, EDA.

1 Introduction

As the design complexity increases so does the test data

volume [1, 2, 4]. This increase in test data volume

results in the following critical problems:

• Limited vector memory on ATE: More test data means

that the ATE will have to support more vector

memory. However, depending on the requirements,

such an ATE may not be available or may be very

expensive. For this reason, vector sets are often

truncated, resulting in a reduced product quality [2].

• Long upload time: Large test data volume can result in

a long time to load/reload test vectors into the ATE

memory, often ranging from several tens of minutes to

hours [2, 5]. Since the ATE remains idle during the

loading and reloading of test vectors, the ATE

utilization is reduced. This can significantly increase

the cost of test.

• Limited I/O bandwidth: The I/O bandwidth is defined

as the number of input channels multiplied with the

frequency capability of these channels. Even if the

ATE has sufficient memory to store all the test data

bits, the transmission of test data to and from the

Device-Under-Test (DUT) can result in an

unacceptable long test time due to the limited

bandwidth between the ATE and the DUT. The

bandwidth could be limited due to the limited channel

frequency or due to a lack of a sufficient number of

scan channels on the ATE or the DUT. In fact, in [4]

it is shown that, with current test methods, test times

* This work was done at CRC, Stanford University

will increase almost exponentially for the device

complexity projections in the ITRS’99 roadmap [1].

Several techniques have been published to achieve

test vector compression. Our technique is based on the

packet matching compression technique described in

[24]. This paper improves the technique significantly by

introducing a compression algorithm based on encoding

combinations of packets and applying different binary

encoding techniques, like Huffman encoding and

Golomb-Rice encoding.

The compression technique reduces the ATE vector

memory requirements and upload time problems.

Moreover, the technique can reduce the limited I/O

bandwidth problem.

Experiments done on an industrial 7M gates

network processor ASIC, show a reduction in input

vector volume of about 55 times on top of the

conventional static and dynamic compaction techniques

[29].

This paper is organized as follows: Section 2

describes previous work on test data compression

techniques. Section 3 presents the test data compression

technique. Section 4 describes the experimental results.

Section 5 describes several decompression

implementations that can be used to retrieve the original

data. Section 6 compares the technique with other

published compression techniques. The paper concludes

with the conclusions in Section 7.

2 Previous Work

Previous work on test data compression can be classified

in the following categories:

• Loss-less compression techniques [3, 5, 6, 9, 21]:

These techniques typically take advantage of certain

sequences of bits in the vectors by encoding the

sequences using a smaller sequence of bits.

• Compression techniques based on LFSR reseeding [7,

10, 17, 19, 23]: These techniques assume that a large

proportion of the bits in the test vectors are

unspecified (also called don’t care bits). For every

test vector, most of the techniques attempt to find one

or multiple seeds for on-chip Linear Feedback Shift

Registers (LFSRs) or XOR networks such that the bit

sequence generated by the LFSRs or XOR-networks

matches the test vector at the specified bit positions.

The LFSR size is significantly smaller compared to

the number of scan flip-flops.

• Pseudo Random BIST compression techniques

[2,13,16]: Pseudo-random (PR) vector generation

using LFSRs belongs to this category. The PR vector

generation techniques provide the best test data

compression. However, to achieve similar fault

coverage compared to external ATPG vectors,

significantly more on-chip generated pseudo-random

vectors are required. This potentially results in longer

test times and power dissipation problems [4]. To

reduce the number of required PR vectors, additional

test points can be inserted. Moreover, additional

external ATPG vectors (also called top-off vectors)

can be applied after the PR vectors, to cover the faults

that are hard to detect by the PR vectors [2]. To

reduce the problem of long test times, deterministic

BIST techniques based on mapping logic or bit

flipping, can also be used [13, 16].

• Test response compression techniques [11, 14, 18]:

The output response can be compressed using

combinational compactors such as X-Compact [18] or

signature analysis techniques, such as Multiple Input

Signature Registers (MISRs) [11,14].

In the next section the proposed compression

technique will be described.

3 Compression Technique

Typically, Automatic Test Pattern Generation (ATPG)

consists of two steps [29]:

1. In the first step pseudo-random (or optionally

weighted pseudo-random) test vectors are applied

until the fault coverage exceeds a certain specified

fault coverage threshold. Note that this step is

skipped in certain ATPG tools or flows [29].

2. In the second step, the remaining undetected faults

are targeted using deterministic ATPG (together

with static and/or dynamic compaction). The

resulting vectors contain both specified bits, also

called care bits, and unspecified bits, also called

don’t care bits (d). Typically, the unspecified bits

are filled randomly by the ATPG to get additional

collateral coverage of un-modeled faults or to get

additional coverage of easy detectable faults in case

the first step was skipped. Since ATPG targets

specific faults in the second phase, a very high

percentage of bits are don’t care bits. In fact, IBM

reported that in their designs about 98% of the bits

are don’t care bits [19].

The proposed compression techniques will exploit the

sparseness of the care bits. The techniques will be

explained by introducing the four aspects of the

technique: (1) the creation of packets, (2) the grouping of

packets, (3) the encoding of the packet groups, and (4)

the modified ATPG flow.

3.1 Creation of packets
In [24] a new compression technique is described. A

more formal framework will be given here. The

technique is based on creating packets. A packet is

defined in definition 3.1.1.

Definition 3.1.1: Packet - A packet is a sequence of 0s,

1s, and don’t care bits (d). The length of a packet is

defined to be the number of bits in the packet.

The total input test data volume for a test is defined

as the number of used input channels (e.g., the number

of DUT scan chain inputs) multiplied by the number of

tester cycles that are required for the test, see Fig. 1.

Based on the input data volume, the packets can be

created horizontally by using bits across multiple input

channels in the same clock cycle, or vertically by using a

consecutive sequence of bits fed to the same input

channel (see Fig. 1).

T
e
s
t

C
y
c
le

 #

d d d 1 d 0 d d d 0 0 d d d

Input Channel #

1 d 0 d d d 0 0 d d d d 0 1

1 d 1 1 d 0 d d d 0 0 d d d

d d d 1 d d d d 0 0 0 d d d

Figure 1:Data Volume: Horizontal and Vertical Packet

A property of each data packet is its match type(s).

This property will be defined in definitions 3.1.2 and

3.1.3.

Definition 3.1.2: Compatible Sequences - A sequence of

0s and 1s is compatible with a data packet, if the data

packet can be represented by the sequence, i.e. there are

no conflicting bits.

Definition 3.1.3: Match Type - The match type is a

property of a packet. The match types are defined in

Table 1.
Table 1: Different Data Packet Types

Type Description
Zero Match

(L)

Data packet is compatible with a sequence

of 0s

One Match

(H)

Data packet is compatible with a sequence

of 1s

Pseudo-

random

Match (P)

Data packet is compatible with a pseudo-

random sequence, i.e. the care bits do not

conflict with the pseudo-random bits.

No Match (N) Data packet is not of the L, H, or P - type.

Note that since a data packet can be compatible with

multiple sequences, a data packet can have multiple

types. The data packets of the L, H, and P - type do not

have to be stored in the tester memory, but can be

generated by a 0-source (Ground), a 1-source (Vdd), or a

pseudo-random source (LFSR).

In case of conventional LFSR reseeding techniques,

the LFSR needs to be designed such that all care bits in

the pattern can be covered. Note that in our technique

the LFSR only needs to supply a pseudo-random source.

Hence, a low degree LFSR is sufficient. Note that the

degree of the LFSR is unrelated to the packet size.

The following examples will illustrate the match type of

data packets. Assume that the used LFSR has the

polynomial f(x) = x
4
+x

3
+1 and in the next 4 clock cycles

the LFSR generates 0, 1, 0 and 1 subsequently .

Example 3.1.4 - Consider the data packet 0ddd. The

data packet is compatible with both the 0000 sequence

and the LFSR sequence. Hence, the 0ddd data packet is

of L/P-type.

Example 3.1.5 - Consider the data packet dddd. This

packet can be replaced by the 0000, 1111, and the LFSR

sequence. Hence, it is of the L, H and P - type.

The original test data volume can be compressed by

replacing each original L/H/P-type data packet by a new

compressed data packet of reduced size without losing

information. The compressed data packet consists of bits

that designate the type of the data packet (control bits),

see for example Table 2. If the data packet is of N-type

(i.e. the data packet cannot be matched with a 0-source,

1-source, or LFSR source), then the “compressed” data

packet includes in addition to the control bits the original

data packet.

Table 2: Binary Encoding of the Match Types

Type Type Control Bits
Zero Match (L) 00

One Match (H) 01

Pseudo Random Match (P) 10

No Match (N) 11

The following example will illustrate the encoding based

on matching packets, the binary encoding described in

Table 2.

Example 3.1.6 - Consider the following test vector that

is separated in packets of 8 bits: “d0dddd0d d01dddddd

dddddddd d1dd1ddd ddd1d111 d0dddddd 01ddddd0

dddddddd 10dddddd”. Moreover, the used pseudo-

random source is a 3 bit LFSR with polynomial f(x) =

x
3
+x

2
+1. The LFSR will repeat the 7 bit “1011100”

sequence. Hence, the data packets are of respectively

L/P-type, P- type, L/H/P-type, P/H-type, P/H-type, P/L-

type, P-type, L/H/P-type, and N-type. Consequently, the

test vector can for example be compressed in the

following sequence (using the control bit encoding from

Table 2): “00.10.01.01.10.00.10.01.11.10101111”.

Note that this sequence is only 1 sequence out of the 144

possible compressed sequences (2•1•3•2•2•2•1•3). In

this example, the original 9•8=72 bits are compressed to

26 bits, of which 18 bits are control bits, i.e. 69% of the

compressed bits are control bits.

In the previous example, it became clear that the

control bits could become a significant percentage of the

compressed test data volume. The next sections describe

how packets can be combined and how binary encoding

techniques can be used to significantly reduce the control

bit percentage.

3.2 Grouping of packets
Definition 3.2.1, 3.2.2, and 3.2.3 will define the match

packet group, match packet size, and match packet type.

Definition 3.2.1: Match Packet Group - A match packet

group is defined as a number of consecutive data packets

that have a common type. For example, a data packet of

L/P–type can be grouped with a data packet of P–type,

because they have the P-type in common.

Definition 3.2.2: Match Group Size - The group size is

defined as the number of data packets in a group.

Definition 3.2.3: Match Group Type - The group match

type is defined as the common match type(s) of the

packets included in the group. Hence, the type of the

group can be zero (L), one (H), pseudo random (P), or no

match (N).

Instead of storing control bits to encode the type of

each packet of a group, only the type of the group needs

to be encoded. Hence, for every packet that can be

included in a group, the packet type control bits do not

have to be stored. However, note that now the group

size needs to be encoded and stored.

Finding the optimal mapping of which packets

should be included in which groups, depends on many

factors. The mapping problem can be analyzed as a

covering problem, in which all packets need to be

covered by the minimum number of maximum sized

groups. In that case, the number of control bits is

minimized. To simplify the problem of mapping packets

to groups, we assume that fixed-length codes are used,

i.e. the number of control bits is independent of the

group size and group type. Moreover, we assume that

there are no restrictions on the number packets that can

be combined in a group. Under these circumstances, the

following greedy algorithm applies.

Grouping Algorithm

1. Get the next compressed data packet
type

2. Select type that maximizes group size
3. Merge all data packets of selected type

into one group
4. If there are remaining packets,go to 1.

The following examples will illustrate the grouping

algorithm.

Example 3.2.4 - The data packets of type P/L, P/L, L, L,

N, L, P/L, L, H/P, H/P, H/P can be compressed in 4

match groups:L(size 4), N(size 1), L(size 3), P/H(size 3).

Example 3.2.5 - The test vector in example 3.1.6, i.e. the

packets of type L/P, P, L/H/P, P/H, P/H, P/L, P, L/H/P,

and N, can be compressed in 2 match groups: a P - type

group of size 8 and a N - type group of size 1. If we

assume that the group sizes are encoded using a normal 4

bits fixed-length binary code, then the original test

vector can be compressed to

“10.1000.11.0001.10101111”, reducing the number of

control bits from 16 to 10.

3.3 Encoding of the packet groups
In previous examples, the group sizes and group types

were encoded using fixed-length code words (e.g. see

Table 2). This section will describe the disadvantages of

fixed-length code words and will propose alternatives.

3.3.1 Fixed-length encoding

If there are no restrictions on the number of packets in a

group and all possible group sizes are encoded with their

own fixed-length code word, then the required number

of control bits for each codeword equals

m=log2(groupsizemax). The overhead is defined as the

ratio between the control bits and the data bits. Even

though the m control bits overhead is acceptable for the

maximum sized group (e.g. a 10 bit codeword for a

group size of 1024 packets is acceptable), for the

majority of smaller group sizes the m control bits

overhead may be unacceptable (e.g. a 10 bit codeword

for a group size of 2 packets may be unacceptable).

 To solve this problem, only a limited number of

group sizes are represented by an own codeword. In

other words, only a limited number of group sizes are

directly encoded. For example, instead of encoding all

group sizes, only the 8 group sizes described in Table 3

are directly encoded. In that case, a group size of 1024

packets can be created by splitting the group into 8

smaller directly encoded groups (subgroups) of a group

size of 128 packets. Moreover, a group of size 2 can be

directly created using only 3 control bits (001).

 The set of the minimum number of (directly

encoded) subgroups for a given required group size, can

be found by using a simple greedy algorithm. The first

subgroup is the largest directly encoded group, with a

group size smaller than the required size. The remaining

gap between the required size and the already created

size is iteratively filled with the next largest directly

encoded group size that fits the gap.

 The optimal set of available directly encoded group

sizes depend on the probability of the occurrence of

certain group sizes (i.e. group sizes that occur rarely

don’t need to be encoded directly with own code words).

3.3.2 Variable-length encoding

Instead of fixed-length code words, Huffman codes can

be used to attach shorter code words to group sizes

and/or group types that occur with a higher probability

[15]. The codes can be derived using a Huffman tree.

By again only directly encoding a limited number of

group sizes, the hardware implementation can be kept

simple. Table 3 gives an example of 8 Huffman codes.

Table 3: Binary encoding techniques for the group size

Golomb-Rice Size Prop. Fixed-

length

Huff-

man
Prefix Tail

1 60% 000 01 1 001

2 20% 001 100 1 010

3 10% 010 001 1 011

4 4% 011 110 1 100

8 2% 100 101 01 000

16 2% 101 111 001 000

32 1% 110 0000 00001=0
4
1 000

128 1% 111 0001 0
16

1 000

By using a Golomb-Rice encoding [3,12], all group

sizes can be directly encoded, while still maintaining a

simple hardware decoder implementation. A Golomb-

Rice codeword consists of a concatenation of a variable-

length prefix of n bits and a fixed-length tail of m bits

(representing a decimal value of q), making the total

length of the codeword n+m bits. The n bit prefix starts

with n-1 0s and the last bit is always 1 (notation: 0
n-1

1).

This way, decoding the prefix (n) is reduced to only

counting the number of 0s. The tail is a normal binary

fixed-length code. The value of a Golomb-Rice

codeword is defined as n• 2
m
+q

For clarity, Fig. 2 shows the different steps in the

compression approach. Row 1 shows the uncompressed

data stream, separated in packets of 4 bits. Row 2 shows

the LFSR sequence based on the f(x) = x
4
+x

3
+1

polynomial. Note that the LFSR sequence repeats every

15 bits, whereas the packet size is only 4 bits. Row 3

shows the different packet types, based on comparing the

data stream packets to the LFSR sequence. Row 4 shows

the result of combining packets in groups (the group size

is designated between parentheses). Row 5 shows the

result of creating the required group sizes using

subgroups of directly encoded sizes (see Table 2).

Finally, row 6 shows the resulting compressed data

stream (based on the Huffman size encoding described in

Table 3 and the fixed-length type encoding described in

Table 2).

3.4 ATPG flow
If ATPG is performed without the initial pseudo-random

test vector phase, then not filling the don’t care bits of

patterns with random values will increase the number of

patterns significantly. This is because the potential extra

fault coverage of the random filled patterns is not

exploited.

dd1d dddd 1d0d ddd1 101d 1d11 d0dd 000d dddd 00d0 dddd

1111 0101 1001 0001 1110 1011 0010 0011 1101 0110 0100

H/P L/H/P P H/P N:101d H L/P L L/H/P L L/H/P

P(4) N(1):101d H(1) L(6)

P(4) N(1):101d H(1) L(4) L(2)

10(110) 11(01):101d 01(01) 001(110) 00(100)

1.Uncompr. Data

3.Packet Types

4.Grouping Packets

5.Use Encoded Sizes

6.Compr. Data

2.LFSR

Figure 2: Compression overview based on Table 2, Table 3 (Huffman), and f(x) = x

4
+x

3
+1 LFSR. Notation: type(size)

There are 2 possible ATPG flows that prevent an

increase in the number of patterns:

1. It is possible to match the fill sequence during

ATPG with the pseudo-random fill of the

decompression hardware. In this case, the number

of patterns will not increase. This approach

however, requires modifying the ATPG tool. This is

not possible in case a commercial ATPG tool is

used.

2. A solution that does not require modifying the

ATPG tool is described in the algorithm below.

ATPG Flow Algorithm

1. Drop easy detectable faults from
fault list (by using random
patterns until 60% coverage

2. Do ATPG without random fill for
remaining faults in the fault list

3. Perform compaction (if needed
extra compaction compared to the
normal flow)

4. Perform the LFSR based pseudo-
random fill (e.g., by using a
system call in case of a
commercial tool)

5. Fault grade the filled vector set
6. Perform deterministic ATPG, in

case a few easy detectable faults
are not covered by the random fill

If in this flow the number of no random fill patterns

still increase compared to the number of random fill

patterns, then step 2, 3 and 4 can be repeated

multiple times on a smaller number of patterns.

Note that in both flows the compression algorithm can

be applied on the fully compacted ATPG set and that

there are no restrictions in the number of care bits per

pattern.

The next section will explain the experimental

results of applying the compression techniques on

industrial devices.

4 Experimental Results

The compression techniques were applied on two large

industrial designs implementing network processors with

the characteristics, described in Table 4.

Table 4: Design Characteristics of the ASICs

Parameters ASIC 1 ASIC 2

Design Size ~7M gates ~300k gates

Total Number of F/F ~105k ~30k

Total Number of Scan

Chains

23 10

Total number of

Collapsed Faults

~6M ~300k

Test Data Volume ~1.6G ~18M

The test vectors for the considered designs were

generated using a commercial ATPG tool, using flow 2

described in section 3.4.

By initially dropping the easy detectable faults (step

1) and by extra compaction (step 3), an increase in the

number of vectors without random fill could be

prevented. Only one design (ASIC1) resulted in a 1.5x

increase in the number of vectors compared to the

normal ATPG set. This was due to memory limitation

problems during the extra compaction (step 3). Note that

if flow 1 (section 3.4) were used, then there would have

been no increase in the number of patterns. After

automatic test pattern generation, the generated vectors

were written in the STIL format.

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1

1
2

2
3

3
4

4
5

5
6

6
7

7
8

8
9

1
0
0

1
1
1

1
2
2

1
3
3

1
4
4

1
5
5

1
6
6

1
7
7

1
8
8

1
9
9

2
1
0

2
2
1

2
3
2

2
4
3

2
5
4

 Match Group Size

M
a
tc

h
 G

ro
u

p
 F

re
q

u
e
n

c
y

D type
L type
H type
P type

Figure 4: The group frequency as function of the specific match group sizes, for the 4 different match types (ASIC1)

After STIL generation, a PERL script was used to extract

the scan input vectors from the STIL output file. A

software package has been developed to perform the

described compression techniques on the extracted scan

input vectors. The compression software was executed

on a HP 9000/785/J5600 machine with 2 550MHz PA-

RISC processors and 2G of physical RAM.

The experimental results will focus on showing the

compression ratio. For completeness, this ratio is

defined in equation 1.

bits compressed Total

ncompressio without bits Total
nRatioCompressio =

 [1]

4.1 Creating packets and encode packets
The graph in Fig. 3 shows the results of applying the

compression techniques with fixed-length type encoding

and without grouping (see Table 2) on ASIC 1 as

function of the packet size. The results are shown for

different types of compression:

• P/N designates the compression ratio if only P and

N types are used for compression.

• L/H/N designates the compression ratio if only L,

H, and N types are used for compression.

• L/H/P/N designates the compression ratio if all

types are used for compression.

The figure shows that for this design a maximum

compression ratio of 16.8x can be achieved by using

L/H/P/N-type compression and a packet size of 64 (also

see [24]). The total compression run time for all these

scenarios was about 4.5 hours.

The figure also shows the dependency of the

compression ratio on the packet size. The compression

ratio is smaller in case of small packet sizes, because the

ratio of the control bits to the data bits for the packet, i.e.

the overhead, is larger. Increasing the packet size

increases the compression ratio as control bits replace a

higher number of data bits. However, increasing the

packet size beyond a certain point will reduce the

probability of finding L/H/P-type packets. Increasing

the packet size further, will reduce the probability of

matching a packet, effectively reducing the compression

ratio.

0

2

4

6

8

10

12

14

16

256 192 128 64 32 16 8 4

Packet size [bits]

C
o

m
p

re
s
s
io

n
 r

a
ti

o
 [

x
]

P/N types

L/H/P types

L/H/P/N types

Figure 3: Compression results on ASIC1 without
grouping and with fixed-length type codes and Huffman
size codes

4.2 Group packets and encode groups
The graph in Fig. 4 gives the group frequencies (i.e. the

number of occurrences) for the N, L, H, and P-type

groups versus the different group sizes, in case the

grouping algorithm is applied on ASIC 1. The figure

shows that the maximum group size of the H and the L-

type groups are respectively 5 and 10 packets. The

maximum group size of the N-type groups is 55 packets.

Hence, the N-type compression due to grouping will be

bigger than the H and L-type compression, because

larger groups can be created (i.e. making the control bit

overhead smaller). Moreover, the biggest compression

ratio due to grouping will occur by introducing the P-

type groups.

Table 5: Experimental results of applying the compression technique on 2 industrial devices

Compressed Test Data Volume

No Grouping Grouping with

fixed size encoding

Grouping with

group type

Huffman encoded

Grouping with

group type and

size Huffman

Encoded

Grouping with group

size

Golomb-Rice Encoded

Circuit

Name

Input

Test

Data

Volume

Packet

Size

Total

Bits

Packet

Size

Total

Bits

Packet

Size

Total

Bits

Packe

tSize

Total

Bits

Tail bits in

code word(m)

Total

Bits

ASIC 1

1,600M

16

32

64

128

213M

125M

96M

97M

16

32

64

128

42M

33M

54M

77M

16

32

64

128

41M

32M

53M

77M

16

32

64

128

37M

29M

52M

76M

6

7

8

9

70M

61M

52M

60M

ASIC 2

18,249k

16

32

64

128

2,946k

2,152k

2,087k

2,574k

4

8

12

16

13,705k

1,124k

1,307k

1,753k

4

8

16

32

10,511k

1,033k

2,030k

1,287k

4

8

12

16

13M

1,078k

1,274k

1,723k

4

5

6

7

2,370k

2,001k

1,911k

1,958k

* Based on statistical analysis the {1,2,3,4,8,16,32,128} packet sizes are selected (in case of Huffman: see codes in Table 3).

Fig. 5 gives the actual L, H, and P-type compression

ratios of encoding the groups using different encoding

schemes. Since these different scenarios did not have a

significantly different impact on the N-type compressed

data volume, this data volume is not shown.

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

Packet

A

Group

B

Group

C

Group

D

Group

E
Compression Approach

X
,O

,
Z

-t
y
p

e
 D

a
ta

 V
o

lu
m

e
 [

b
it

s
]

P Type

H Type

L type

Figure 5: P, H, and L-type compressed data volume and
the corresponding compression ratios for approach
A,B,C,D and E.

The following group encoding schemes are considered:

• The results of encoding each 64-bit packet

individually, without using the grouping algorithm,

are represented by the packet A bar. The types are

encoded using the fixed-length code words, see

Table 2. The compression ratio equals 16.8x.

• The results of applying the grouping algorithm on

64 bit packets, and encoding the groups using 8

different group sizes ({1,2,4,8,16,32,64,128}), with

fixed-length code words, is represented by the group

B bar. The compression ratio equals 28.8x.

• The results of applying the grouping algorithm on

64 bit packets, and encoding the groups using 10

different Huffman encoded group sizes

({1,2,4,8,16,32,64,128,256,512}), are represented

by the group C bar. The compression ratio equals

30.1x.

• The results of applying the grouping algorithm on

64 bit packets, and encoding the groups using 9

different Huffman encoded group sizes

({1,2,4,8,16,32,64,128,256}), are represented by the

group D bar. The compression ratio equals 31.6x.

This is better than the previous scenarios, because

the 9 different codes enable a slight improvement in

L/H-type volume compression.

• The results of applying the grouping algorithm on

32 bit packets, and encoding the groups using the 8

different Huffman encoded group sizes from Table 3

({1,2,3,4,8,16,32,128}), are represented by the

group E bar. The compression ratio equals 55x.

Table 5 gives experimental results of applying the

compression techniques using different packet sizes. In

addition, it shows the results of applying the

compression techniques on the second industrial design

(ASIC2). Note that the additional advantage of applying

a Huffman encoding compared to the fixed-length

encoding is very limited. This is due to the limited

number of directly encoded sizes.

5 Implementation Examples

This section will describe different implementation

examples. The described techniques can be implemented

(1) using ATE and on-chip logic, (2) using only on-chip

logic, and (3) using only ATE.

5.1 Using ATE and on-chip logic
Fig. 6 shows a decompression unit architecture that can

be used in case the code words are of a fixed bit length.

17x

 29x
 30x 32x 55x

 1 2 3 4 5

LFSR1 LFSR6

 6 7 8 9 10

F
S

M

M
U

X
1

M
U

X
6

DECOMPRESION UNIT Data In 1 Data In 2

DUT

Data Out 1 Data Out 6

• •

Figure 6: Decompression Unit

The architecture consists of a Finite State Machine

(FSM) and an internal shift register consisting of two 5-

bit shift registers connected to the 2 input channels.

Moreover, for each of the 10 output channels, a

multiplexer and a data generator (i.e. a 0, 1, and LFSR

source) is required.

In the architecture, the number of input channels of

the decompression unit is equal to the number of bits of

the type codeword (i.e. 2 bits). A packet is defined

horizontally as the required output bits at a certain tester

cycle, see Fig. 1. Hence, the number of output channels

is chosen equal to the optimal packet size. In this

example, an optimal packet size of 10 bits is assumed (in

case of the experiments in Fig. 3, a packet size of 64 was

used).

The FSM decodes the packet type, designated by the

2 input channels:

• In case of a N-type (no match) packet, the FSM

directs the internal shift registers to serially shift in

the data packet in 5 tester cycles using the two input

channels (5*2 bits). After the register is filled with

the 10 bits of the packet, the 10 bits of the packet

can be directed to the 10 output channels in one

tester cycle (10*1 bits). Since the number of output

bits equals the number of input bits, the input

bandwidth equals the output bandwidth.

• In case of a P/H/L-type packet, the FSM sets all

multiplexers to direct the appropriate internal data

generator (pseudo-random, 0, or 1) to the 10 outputs

in one tester cycle. In other words, without the

decompression unit we would need 5 tester cycles to

feed in the 10 bits through the 2 channels, and with

the decompression unit we only need 1 cycle.

Hence, a 5x test time reduction for P/H/L-type

packets is achieved in this example.

More details about the scheme can be found in [24].

When multiple packets are grouped, the same type

codeword needs to be repeated multiple times. This can

be achieved by using a ATE repeat-count instruction.

This ATE instruction enables repeating a certain bit

value a number of tester cycles. Note that depending on

the ATE architecture, the instruction op-code overhead

does not count towards the critical data memory

requirements, i.e. it counts towards the non-critical

instruction memory requirements.

5.2 Using only on-chip logic
An additional test time reduction can be achieved by

implementing the repeat-count on-chip, instead of

relying on the ATE. When the decompression unit is

busy decoding a group, the input channels can be

multiplexed towards another decompression unit.

Techniques to enable this are typical for compression

techniques using compression code words. In [3] a good

overview of the techniques, tradeoffs, and benefits, is

given.

 The additional hardware of a variable-length

type/size decoder is small, because the number of

directly encoded sizes is very limited (e.g., only 8

directly encoded sizes). The experiments showed that

variable-length codes do not result in a significant

increase in the compression ratio, so we will not describe

the implementation in much detail. A low overhead

Huffman decoder implementation can be found in [31],

and a low overhead Golomb-Rice decoder

implementation can be found in [3].

To design an optimal decoder, the optimal set of

directly encoded group sizes, and the corresponding

group probabilities, need to be calculated. This can only

be done when the ATPG vector set is available.

Typically, the ATPG vector set is only available after the

design is ready. Hence, if the design is modified such

that the original optimal decoding is not optimal

anymore, then the decoder hardware might need to be

modified.

5.3 Using only ATE
If the main objective is reducing ATE vector memory

requirements and reducing test time is not the main

concern, then the decompression techniques can be

implemented on the ATE. The advantage of an ATE

implementation is that no on-chip decompression

hardware is required.

The implementation is similar to the architecture of

Fig. 6, with only one input channel: the FSM detects the

type and size string serially. Moreover, unless the

scheme is used for multiplexing ATE channels, the

decompression unit has only one output. (and packets are

created vertically instead of horizontally, see Fig. 1).

Table 6: Comparison of the compression techniques with other compression techniques

6 Comparison with Other Approaches

6.1 Compression using compression codes
The proposed compression techniques fit best in the

category of compression using compression codes.

When determining the packet size, all possible sizes

are considered, including a packet size of 1. The

scenario in which the packet size is 1 can be considered

a pure 3-symbol run-length encoding. However, due to

the overhead of encoding the type and the fact that only

a limited number of group sizes are encoded directly, our

technique of introducing packets, i.e. a packet size larger

than 1, turns out to be more effective.

Maintaining the don’t care information during

compression, enables us to get a high compression ratio,

while still maintaining pseudo-randomness where it is

needed. Other 2-symbol compression techniques that

don’t exploit don’t care bits, result in a significantly

lower compression ratio.

To increase the compression ratio of 2-symbol

compression techniques, the don’t care bits can be filled

with constant 0s/1s or the last care bit can be repeated

[3,6,26]. However, due to the reduced coverage per

patterns the number of patterns will increase. In case of

an on-chip implementation of the decompression unit,

the effect of fanning out to multiple scan chains might

compensate the effect of the increase in the number of

patterns. In case of an ATE implementation, an increase

in the number of decompressed patterns is often simply

unacceptable.

Whereas the proposed techniques have the described

advantages, the on-chip hardware overhead is

comparable to other compression techniques based on

using compression codes [3]. Previously published

techniques used ATE repeat-count instructions for the

purpose of compression [26]. However, a repeat-count of

random bits was not possible. One of the implementation

examples of the proposed technique enables ATE repeat-

count instructions for random fill, by combining it with

on-chip logic.

6.2 Compression based on LFSR reseeding
The technique does not require the calculation of

LFSR seeds. In addition, the LFSR can be of a very low

degree, i.e. only a few flip-flops. Moreover, the LFSR

doesn’t have to be (re)set each pattern. In addition, there

are no restrictions to the maximum number of care bits

per pattern. The compression technique can be applied

on the fully dynamically and statically compacted set. In

addition, a higher probability of a certain bit value within

a certain consecutive sequence, also called clustering,

can be exploited (e.g. consecutive padding bits due to a

mismatch in scan-chain lengths).

In addition, the proposed technique is able to create

consecutive sequences of ones and zeros easily, for

example to prevent bus contention, illegal states, or to

reduce scan power dissipation.

6.3 Pseudo-random BIST techniques
Typically, the compression techniques based on pseudo-

random BIST techniques, require more decompressed

patterns. This will result in the same power dissipation

and ATE implementation issues, described before.

All proposed techniques are also applied on ISCAS’89

benchmark circuits. Table 6 describes the best

compression results compared with other published

techniques [27].

7 Conclusions

The problems of having a limited ATE vector memory,

having long upload times, and having limited I/O

bandwidth, are among the most critical problems the

industry is facing.

This paper explored several compression techniques

based on creating packets, grouping packets, and

encoding packets using both fixed-length encoding

techniques and variable-length encoding techniques.

Compared to previous work, the techniques have several

advantages.

The proposed compression techniques are applied

on multiple industrial designs and benchmark circuits,

Mintest

[28]

Illinois Scan

Architecture [20]

FDR Codes

[6]

Linear

Decompressors [30]

Proposed Approach

Circuit

Name

Number

of Scan

Flip

Flops
Number

of

Vectors

Number

of

Bits

Number

of

Vectors

Number

of

Bits

Number

of

Vectors

Number

of

Bits

Number

of

Vectors

Number

of

Bits

Number

of

Vectors

Number

of

Bits

S13207 700 233 163k 273 110k 236 31k 251 24k 250 7k

S15850 611 96 59k 178 33k 126 26k 170 16k 257 5k

S38417 1664 68 113k 337 96k 99 93k 296 94k 358 8k

S39694 1464 110 161k 239 96k 136 78k 182 35k 137 8k

resulting in compression ratios varying from 17x-70x, on

top of static and dynamic compaction techniques.

The compression algorithms are simple to

implement and the impact on the overall design and test

flow is limited. There are no hard tool requirements on

the proposed compression techniques. It only requires

an ATPG tool, which can generate don’t care bit

information.

8 Acknowledgments

The authors would like to thank Professor McCluskey,

James Li and Chao-Wen Tseng of the Center for

Reliable Computing at Stanford University for their

valuable discussions on the paper and the experimental

results. This work was sponsored by Agilent

Technologies.

9 References

[1] International Technology Roadmap for Semiconductors

(ITRS), 1999.

[2] G. Hetheringten, T. Fryars, N. Tamarapalli, M. Kassab, A.

Hassan and J. Rajski, “LBIST for Large Industrial Designs”,

Proc. Of International Test Conference”, pp. 358-367, 1999.

[3] A. Chandra, and K. Chakravarty, “Test Data Compression

and Decompression for System-on-a-chip using Golomb

codes”, VLSI Test Symposium, pp. 113-120, 2000.

[4] A. Khoche and J. Rivoir, “I/O Bandwidth Bottleneck for

Test:Is it Real?” IEEE Test Resource Partitioning Workshop,

pp. 2.3-1 - 2.3-6, 2000.

[5] M. Ishida, D.S Ha and T. Yamaguchi, “COMPACT: A

Hybrid Method for Compressing Test Data”, VLSI Test

Symposium, pp. 62-69, 1998.

[6] A. Chandra and K. Chakravarty, “Frequency Directed Run-

length Codes with applications to System-on-a-chip”, VLSI

Test Symposium, pp. 42-27, 2001.

[7] B. Koenemann, “LFSR-Coded Test Patterns for scan

Designs”, Proceedings of European Test Conference”, pp. 237-

242, 1991.

[8] S. Hellerbrand, J. Rajski, S Tarnick, S. Venkatraman and B.

Courtois, “Built-in Test for Circuits with Scan Based

Reseeding of Multiple Polynomial Linear Feedback Shift

Registers”, IEEE Transaction on Computers, vol. 44, No. 2,

pp.223-233, 1995.

[9] A. Jas, J. Ghosh Dastidar and N. A. Touba, “Scan Vector

Compression Using Statistical Coding”, VLSI Test

Symposium, pp. 114-120, 1999.

[10] I. Bayraktaroglu and A. Orailoglu, “Test Volume and

Application Time Reduction Through Scan Chain

Concealment”, Design Automation Conference, pp. 151-155,

2001.

[11] P. H. Bardell, W. H. McAnney and J. Savir, “Built-in Test

For VLSI: Pseudo-random Techniques”, Wiley Inter-Science,

1987.

[12] S.W. Golomb, “Run-length encoding,” IEEE Trans.

Inform. Theory, vol.. 11-12, pp.399-401, Dec. 1966.

[13] G. Kiefer and H-J. Wunderlich, “Application of

Deterministic Logic BIST on Industrial Circuits”, International

Test Conference (ITC). pp. 105-114, 2000

[14] K. Barnhart, B. Keller, B. Konenmann and R. Walther,

“OPMISR: Accelerated scan with On product signatures”,

IEEEE European Test Workshop (ETW), 2001.

[15] D.A. Huffman, “A Method for the Construction of

Minimum Redundancy Codes”, Proc. of IRE, Vol.40, No.9, pp.

1098-1101, 1952.

[16] N.A. Touba and E.J. McCluskey, "Altering a Pseudo-

Random Sequence of Bits for Scan-Based BIST", Proc. of

IEEE International Test Conference (ITC), pp. 167-175, 1996.

[17] C.V. Krishna, A. Jas and N.A. Touba, "Test Vector

Encoding Using Partial LFSR Reseeding", Proc. of IEEE

International Test Conference (ITC), pp. 885-893, 2001.

[18] S. Mitra and K. S. Kim, “X-compact: An Efficient

Response Compaction for Test Cost Reduction”, To appear in

Proc. of the IEEE International Test Conference (ITC), 2002.

[19] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O.

Farnsworth, D. Wheater, “A SmartBIST Variant with

Guaranteed Encoding”, IEEE Test Resource Partitioning

Workshop, pp.2.4.1-6, 2001

[20] I. Hamzaoglu, J. Patel, “Reducing Test Application Time

for Full Scan Embedded Cores,” Proc. of Int. Symposium on

Fault Tolerant Computing, pp. 260-267, 1999.

[21] F. F. Hsu, K. M. Butler, J. H. Patel, "A Case Study on the

Implementation of the Illinois Scan Architecture," Proc. of the

IEEE International Test Conference (ITC), pp. 538-547, 2001.

[22] E. J. McCluskey and C.W. Tseng, "Stuck-Fault Tests vs.

Actual Defects," Proc. of the International Test Conference,

2000.

[23] TestKompress datasheet,

http://www.mentor.com/dft/testkompress/test_kompress_ds.pdf
[24] A. Khoche, E.Volkerink, J. Rivoir and S. Mitra, “Vector

Compression using EDA/ATE Synergies”, IEEE VLSI Test

Symposium, pp. 97-102, 2002.

[25] W.B. Pennebakerand J. L. Mitchell, “JPEG Still Image

Data Compression Standard”, Van Nostrand Reinhold, 1993.

[26] K. Barnhart, B. Keller, B. Konenmann and R. Walther,

“OPMISR: The Foundation for Compressed ATPG Vectors”,

ITC 2001.

[27] C.V. Krishna and N. A. Touba, “Reducing Test Data

Volume Using LFSR Reseeding with Seed Compression”, To

appear in Proc. of the IEEE International Test Conference

(ITC), 2002.

[28] I. Hamzaoglu and J. Patel, “Test Set Compaction

Algorithms for Combinational Circuits” Proc. of International

Conference on Computer-Aided Design (ICCAD), pp. 283-

289, 1998.

[29] Tetramax Userguide, Synopsys, 1998.

[30] I. Bayraktaroglu, and A. Ogailoglu, “Test Volume and

Application Time Reduction Through Scan Chain

Concealment,” IEEE Proc. of Design Automation Conference,

pp. 151-155, 2001.

[31] A. Mukherjee, N. Ranganathan, and M. Bassiouni,

“Efficent VLSI Designs for Data Transformation of Tree-based

Codes,” IEEE Transactions on Circuits and Systems, pp. 306-

314, March 1991.

