
 Open access  Proceedings Article  DOI:10.1109/TEST.2002.1041756

Packet-based input test data compression techniques — Source link 

E.H. Volkerink, Ajay Khoche, Subhasish Mitra

Institutions: Stanford University, Agilent Technologies, Intel

Published on: 07 Oct 2002 - International Test Conference

Topics: Test compression, Test data, Automatic test pattern generation, Huffman coding and Data compression

Related papers:

 Scan vector compression/decompression using statistical coding

 Test vector decompression via cyclical scan chains and its application to testing core-based designs

 Frequency-directed run-length (FDR) codes with application to system-on-a-chip test data compression

 Test volume and application time reduction through scan chain concealment

 System-on-a-chip test-data compression and decompression architectures based on Golomb codes

Share this paper:    

View more about this paper here: https://typeset.io/papers/packet-based-input-test-data-compression-techniques-
41w9nulfjj

https://typeset.io/
https://www.doi.org/10.1109/TEST.2002.1041756
https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj
https://typeset.io/authors/e-h-volkerink-5fj5egyib0
https://typeset.io/authors/ajay-khoche-225l8cc0c4
https://typeset.io/authors/subhasish-mitra-8i0m9rje6c
https://typeset.io/institutions/stanford-university-24e5cwqm
https://typeset.io/institutions/agilent-technologies-3p9shh7a
https://typeset.io/institutions/intel-2nhd3qnf
https://typeset.io/conferences/international-test-conference-2twl0a7a
https://typeset.io/topics/test-compression-2p5oohvv
https://typeset.io/topics/test-data-3dtih433
https://typeset.io/topics/automatic-test-pattern-generation-fkjnl7gs
https://typeset.io/topics/huffman-coding-33xce1ga
https://typeset.io/topics/data-compression-3fp83o4g
https://typeset.io/papers/scan-vector-compression-decompression-using-statistical-471xp4bj0s
https://typeset.io/papers/test-vector-decompression-via-cyclical-scan-chains-and-its-4cnz7o8eed
https://typeset.io/papers/frequency-directed-run-length-fdr-codes-with-application-to-1liul766i3
https://typeset.io/papers/test-volume-and-application-time-reduction-through-scan-1ui272imcn
https://typeset.io/papers/system-on-a-chip-test-data-compression-and-decompression-3ey9wzu1ua
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj
https://twitter.com/intent/tweet?text=Packet-based%20input%20test%20data%20compression%20techniques&url=https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj
https://typeset.io/papers/packet-based-input-test-data-compression-techniques-41w9nulfjj


Packet-based Input Test Data Compression Techniques
*
 

 

 

Erik H. Volkerink 
1,2

, Ajay Khoche 
2
, Subhasish Mitra 

3
  

 
1
Center for Reliable Computing (CRC) 

Stanford University, Stanford, CA  

 

2
Agilent Laboratories 

Palo Alto, CA  

3 
Intel Corporation 

Sacramento, CA 

Abstract 1 
This paper presents a test input data compression 

technique, which can be used to reduce input test data 

volume, test time, and the number of required tester 

channels.  The technique is based on grouping data 

packets and applying various binary encoding 

techniques, such as Huffman codes and Golomb-Rice 

codes.  Experiments on actual industrial designs and 

benchmark circuits show an input vector data reduction 

ranging from 17x to 70x.  

 

Keywords: Compression, RLE, Huffman, Golomb-Rice, 

LFSR, BIST, ATE, EDA. 

1 Introduction 

As the design complexity increases so does the test data 

volume [1, 2, 4].  This increase in test data volume 

results in the following critical problems: 

• Limited vector memory on ATE: More test data means 

that the ATE will have to support more vector 

memory.  However, depending on the requirements, 

such an ATE may not be available or may be very 

expensive.  For this reason, vector sets are often 

truncated, resulting in a reduced product quality [2].  

• Long upload time: Large test data volume can result in 

a long time to load/reload test vectors into the ATE 

memory, often ranging from several tens of minutes to 

hours [2, 5].  Since the ATE remains idle during the 

loading and reloading of test vectors, the ATE 

utilization is reduced.  This can significantly increase 

the cost of test.   

• Limited I/O bandwidth: The I/O bandwidth is defined 

as the number of input channels multiplied with the 

frequency capability of these channels. Even if the 

ATE has sufficient memory to store all the test data 

bits, the transmission of test data to and from the 

Device-Under-Test (DUT) can result in an 

unacceptable long test time due to the limited 

bandwidth between the ATE and the DUT.  The 

bandwidth could be limited due to the limited channel 

frequency or due to a lack of a sufficient number of 

scan channels on the ATE or the DUT.  In fact, in [4] 

it is shown that, with current test methods, test times 

                                           
* This work was done at CRC, Stanford University 

will increase almost exponentially for the device 

complexity projections in the ITRS’99 roadmap [1].  

 

Several techniques have been published to achieve 

test vector compression.  Our technique is based on the 

packet matching compression technique described in 

[24]. This paper improves the technique significantly by 

introducing a compression algorithm based on encoding 

combinations of packets and applying different binary 

encoding techniques, like Huffman encoding and 

Golomb-Rice encoding.  

The compression technique reduces the ATE vector 

memory requirements and upload time problems.  

Moreover, the technique can reduce the limited I/O 

bandwidth problem.   

Experiments done on an industrial 7M gates 

network processor ASIC, show a reduction in input 

vector volume of about 55 times on top of the 

conventional static and dynamic compaction techniques 

[29]. 

 

This paper is organized as follows: Section 2 

describes previous work on test data compression 

techniques.  Section 3 presents the test data compression 

technique.  Section 4 describes the experimental results.  

Section 5 describes several decompression 

implementations that can be used to retrieve the original 

data.  Section 6 compares the technique with other 

published compression techniques.  The paper concludes 

with the conclusions in Section 7.  

2 Previous Work 

Previous work on test data compression can be classified 

in the following categories: 

• Loss-less compression techniques [3, 5, 6, 9, 21]: 

These techniques typically take advantage of certain 

sequences of bits in the vectors by encoding the 

sequences using a smaller sequence of bits.  

• Compression techniques based on LFSR reseeding [7, 

10, 17, 19, 23]: These techniques assume that a large 

proportion of the bits in the test vectors are 

unspecified (also called don’t care bits).  For every 

test vector, most of the techniques attempt to find one 

or multiple seeds for on-chip Linear Feedback Shift 

Registers (LFSRs) or XOR networks such that the bit 

sequence generated by the LFSRs or XOR-networks 

matches the test vector at the specified bit positions.  



The LFSR size is significantly smaller compared to 

the number of scan flip-flops.  

• Pseudo Random BIST compression techniques 

[2,13,16]: Pseudo-random (PR) vector generation 

using LFSRs belongs to this category.  The PR vector 

generation techniques provide the best test data 

compression.  However, to achieve similar fault 

coverage compared to external ATPG vectors, 

significantly more on-chip generated pseudo-random 

vectors are required. This potentially results in longer 

test times and power dissipation problems [4].  To 

reduce the number of required PR vectors, additional 

test points can be inserted. Moreover, additional 

external ATPG vectors (also called top-off vectors) 

can be applied after the PR vectors, to cover the faults 

that are hard to detect by the PR vectors [2].  To 

reduce the problem of long test times, deterministic 

BIST techniques based on mapping logic or bit 

flipping, can also be used [13, 16].   

• Test response compression techniques [11, 14, 18]: 

The output response can be compressed using 

combinational compactors such as X-Compact [18] or 

signature analysis techniques, such as Multiple Input 

Signature Registers  (MISRs) [11,14].  

 

In the next section the proposed compression 

technique will be described.  

3 Compression Technique 

Typically, Automatic Test Pattern Generation (ATPG) 

consists of two steps [29]: 

1. In the first step pseudo-random (or optionally 

weighted pseudo-random) test vectors are applied 

until the fault coverage exceeds a certain specified 

fault coverage threshold.  Note that this step is 

skipped in certain ATPG tools or flows [29].   

2. In the second step, the remaining undetected faults 

are targeted using deterministic ATPG (together 

with static and/or dynamic compaction).  The 

resulting vectors contain both specified bits, also 

called care bits, and unspecified bits, also called 

don’t care bits (d).  Typically, the unspecified bits 

are filled randomly by the ATPG to get additional 

collateral coverage of un-modeled faults or to get 

additional coverage of easy detectable faults in case 

the first step was skipped.  Since ATPG targets 

specific faults in the second phase, a very high 

percentage of bits are don’t care bits.  In fact, IBM 

reported that in their designs about 98% of the bits 

are don’t care bits [19].   

 

The proposed compression techniques will exploit the 

sparseness of the care bits.  The techniques will be 

explained by introducing the four aspects of the 

technique: (1) the creation of packets, (2) the grouping of 

packets, (3) the encoding of the packet groups, and (4) 

the modified ATPG flow.   

3.1 Creation of packets  
In [24] a new compression technique is described.  A 

more formal framework will be given here.  The 

technique is based on creating packets. A packet is 

defined in definition 3.1.1. 

 

Definition 3.1.1: Packet - A packet is a sequence of 0s, 

1s, and don’t care bits (d). The length of a packet is 

defined to be the number of bits in the packet.  

 

The total input test data volume for a test is defined 

as the number of used input channels (e.g., the number 

of DUT scan chain inputs) multiplied by the number of 

tester cycles that are required for the test, see Fig. 1.  

Based on the input data volume, the packets can be 

created horizontally by using bits across multiple input 

channels in the same clock cycle, or vertically by using a 

consecutive sequence of bits fed to the same input 

channel (see Fig. 1).  
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Figure 1:Data Volume: Horizontal and Vertical Packet 

 

A property of each data packet is its match type(s).  

This property will be defined in definitions 3.1.2 and 

3.1.3. 

 

Definition 3.1.2: Compatible Sequences - A sequence of 

0s and 1s is compatible with a data packet, if the data 

packet can be represented by the sequence, i.e. there are 

no conflicting bits. 

 

Definition 3.1.3: Match Type - The match type is a 

property of a packet.  The match types are defined in 

Table 1.  
Table 1: Different Data Packet Types 

Type Description 
Zero Match 

(L) 

Data packet is compatible with a sequence 

of 0s 

One Match 

(H) 

Data packet is compatible with a sequence 

of 1s 

Pseudo-

random 

Match (P) 

Data packet is compatible with a pseudo-

random sequence, i.e. the care bits do not 

conflict with the pseudo-random bits. 

No Match (N) Data packet is not of the L, H, or P - type.  

 

Note that since a data packet can be compatible with 

multiple sequences, a data packet can have multiple 

types. The data packets of the L, H, and P - type do not 

have to be stored in the tester memory, but can be 



generated by a 0-source (Ground), a 1-source (Vdd), or a 

pseudo-random source (LFSR).  

In case of conventional LFSR reseeding techniques, 

the LFSR needs to be designed such that all care bits in 

the pattern can be covered.  Note that in our technique 

the LFSR only needs to supply a pseudo-random source. 

Hence, a low degree LFSR is sufficient. Note that the 

degree of the LFSR is unrelated to the packet size.  

 

The following examples will illustrate the match type of 

data packets.  Assume that the used LFSR has the 

polynomial f(x) = x
4
+x

3
+1 and in the next 4 clock cycles 

the LFSR generates 0, 1, 0 and 1 subsequently .  

  

Example 3.1.4 - Consider the data packet 0ddd.  The 

data packet is compatible with both the 0000 sequence 

and the LFSR sequence.  Hence, the 0ddd data packet is 

of L/P-type. 
 

Example 3.1.5 - Consider the data packet dddd. This 

packet can be replaced by the 0000, 1111, and the LFSR 

sequence.  Hence, it is of the L, H and P - type. 

 

The original test data volume can be compressed by 

replacing each original L/H/P-type data packet by a new 

compressed data packet of reduced size without losing 

information. The compressed data packet consists of bits 

that designate the type of the data packet (control bits), 

see for example Table 2. If the data packet is of N-type 

(i.e. the data packet cannot be matched with a 0-source, 

1-source, or LFSR source), then the “compressed” data 

packet includes in addition to the control bits the original 

data packet.  

 
Table 2: Binary Encoding of the Match Types 

Type Type Control Bits 
Zero Match (L) 00 

One Match (H) 01 

Pseudo Random Match (P) 10 

No Match (N) 11 

 

The following example will illustrate the encoding based 

on matching packets, the binary encoding described in 

Table 2.  

 

Example 3.1.6 - Consider the following test vector that 

is separated in packets of 8 bits: “d0dddd0d d01dddddd 

dddddddd d1dd1ddd ddd1d111 d0dddddd 01ddddd0 

dddddddd 10dddddd”.  Moreover, the used pseudo-

random source is a 3 bit LFSR with polynomial f(x) = 

x
3
+x

2
+1.  The LFSR will repeat the 7 bit “1011100” 

sequence.  Hence, the data packets are of respectively 

L/P-type, P- type, L/H/P-type, P/H-type, P/H-type, P/L-

type, P-type, L/H/P-type, and N-type.  Consequently, the 

test vector can for example be compressed in the 

following sequence (using the control bit encoding from 

Table 2): “00.10.01.01.10.00.10.01.11.10101111”.  

Note that this sequence is only 1 sequence out of the 144 

possible compressed sequences (2•1•3•2•2•2•1•3).  In 

this example, the original 9•8=72 bits are compressed to 

26 bits, of which 18 bits are control bits, i.e. 69% of the 

compressed bits are control bits.  

 

In the previous example, it became clear that the 

control bits could become a significant percentage of the 

compressed test data volume.  The next sections describe 

how packets can be combined and how binary encoding 

techniques can be used to significantly reduce the control 

bit percentage.  

 

3.2 Grouping of packets   
Definition 3.2.1, 3.2.2, and 3.2.3 will define the match 

packet group, match packet size, and match packet type. 

 

Definition 3.2.1: Match Packet Group - A match packet 

group is defined as a number of consecutive data packets 

that have a common type.  For example, a data packet of 

L/P–type can be grouped with a data packet of P–type, 

because they have the P-type in common.  
 

Definition 3.2.2: Match Group Size - The group size is 

defined as the number of data packets in a group. 
 

Definition 3.2.3: Match Group Type - The group match 

type is defined as the common match type(s) of the 

packets included in the group.  Hence, the type of the 

group can be zero (L), one (H), pseudo random (P), or no 

match (N).  

 

Instead of storing control bits to encode the type of 

each packet of a group, only the type of the group needs 

to be encoded. Hence, for every packet that can be 

included in a group, the packet type control bits do not 

have to be stored.  However, note that now the group 

size needs to be encoded and stored.   

Finding the optimal mapping of which packets 

should be included in which groups, depends on many 

factors.  The mapping problem can be analyzed as a 

covering problem, in which all packets need to be 

covered by the minimum number of maximum sized 

groups. In that case, the number of control bits is 

minimized.  To simplify the problem of mapping packets 

to groups, we assume that fixed-length codes are used, 

i.e. the number of control bits is independent of the 

group size and group type.  Moreover, we assume that 

there are no restrictions on the number packets that can 

be combined in a group.  Under these circumstances, the 

following greedy algorithm applies. 

 

Grouping Algorithm 

1. Get the next compressed data packet
type

2. Select type that maximizes group size
3. Merge all data packets of selected type

into one group
4. If there are remaining packets,go to 1.

 



The following examples will illustrate the grouping 

algorithm. 

 

Example 3.2.4 - The data packets of type P/L, P/L, L, L, 

N, L, P/L, L, H/P, H/P, H/P can be compressed in 4 

match groups:L(size 4), N(size 1), L(size 3), P/H(size 3).  

 

Example 3.2.5 - The test vector in example 3.1.6, i.e. the 

packets of type L/P, P, L/H/P, P/H, P/H, P/L, P, L/H/P, 

and N, can be compressed in 2 match groups: a P - type 

group of size 8 and a N - type group of size 1.  If we 

assume that the group sizes are encoded using a normal 4 

bits fixed-length binary code, then the original test 

vector can be compressed to 

“10.1000.11.0001.10101111”, reducing the number of 

control bits from 16 to 10. 

 

3.3 Encoding of the packet groups 
In previous examples, the group sizes and group types 

were encoded using fixed-length code words (e.g. see 

Table 2).  This section will describe the disadvantages of 

fixed-length code words and will propose alternatives. 

 

3.3.1 Fixed-length encoding 

If there are no restrictions on the number of packets in a 

group and all possible group sizes are encoded with their 

own fixed-length code word, then the required number 

of control bits for each codeword equals 

m=log2(groupsizemax). The overhead is defined as the 

ratio between the control bits and the data bits. Even 

though the m control bits overhead is acceptable for the 

maximum sized group (e.g. a 10 bit codeword for a 

group size of 1024 packets is acceptable), for the 

majority of smaller group sizes the m control bits 

overhead may be unacceptable (e.g. a 10 bit codeword 

for a group size of 2 packets may be unacceptable). 

 To solve this problem, only a limited number of 

group sizes are represented by an own codeword. In 

other words, only a limited number of group sizes are 

directly encoded.  For example, instead of encoding all 

group sizes, only the 8 group sizes described in Table 3 

are directly encoded. In that case, a group size of 1024 

packets can be created by splitting the group into 8 

smaller directly encoded groups (subgroups) of a group 

size of 128 packets.  Moreover, a group of size 2 can be 

directly created using only 3 control bits (001).  

 The set of the minimum number of (directly 

encoded) subgroups for a given required group size, can 

be found by using a simple greedy algorithm. The first 

subgroup is the largest directly encoded group, with a 

group size smaller than the required size.  The remaining 

gap between the required size and the already created 

size is iteratively filled with the next largest directly 

encoded group size that fits the gap. 

 The optimal set of available directly encoded group 

sizes depend on the probability of the occurrence of 

certain group sizes (i.e. group sizes that occur rarely 

don’t need to be encoded directly with own code words).   

3.3.2 Variable-length encoding 

Instead of fixed-length code words, Huffman codes can 

be used to attach shorter code words to group sizes 

and/or group types that occur with a higher probability 

[15].  The codes can be derived using a Huffman tree. 

By again only directly encoding a limited number of 

group sizes, the hardware implementation can be kept 

simple.  Table 3 gives an example of 8 Huffman codes. 

 
Table 3: Binary encoding techniques for the group size 

Golomb-Rice Size Prop. Fixed- 

length 

Huff- 

man 
Prefix Tail 

1 60% 000 01 1 001 

2 20% 001 100 1 010 

3 10% 010 001 1 011 

4 4% 011 110 1 100 

8 2% 100 101 01 000 

16 2% 101 111 001 000 

32 1% 110 0000 00001=0
4
1 000 

128 1% 111 0001 0
16

1 000 

By using a Golomb-Rice encoding [3,12], all group 

sizes can be directly encoded, while still maintaining a 

simple hardware decoder implementation. A Golomb-

Rice codeword consists of a concatenation of a variable-

length prefix of n bits and a fixed-length tail of m bits 

(representing a decimal value of q), making the total 

length of the codeword n+m bits. The n bit prefix starts 

with n-1 0s and the last bit is always 1 (notation: 0
n-1

1).  

This way, decoding the prefix (n) is reduced to only 

counting the number of 0s. The tail is a normal binary 

fixed-length code.  The value of a Golomb-Rice 

codeword is defined as n• 2
m
+q  

 

For clarity, Fig. 2 shows the different steps in the 

compression approach. Row 1 shows the uncompressed 

data stream, separated in packets of 4 bits. Row 2 shows 

the LFSR sequence based on the f(x) = x
4
+x

3
+1 

polynomial. Note that the LFSR sequence repeats every 

15 bits, whereas the packet size is only 4 bits.  Row 3 

shows the different packet types, based on comparing the 

data stream packets to the LFSR sequence. Row 4 shows 

the result of combining packets in groups (the group size 

is designated between parentheses). Row 5 shows the 

result of creating the required group sizes using 

subgroups of directly encoded sizes (see Table 2). 

Finally, row 6 shows the resulting compressed data 

stream (based on the Huffman size encoding described in 

Table 3 and the fixed-length type encoding described in 

Table 2).  

 

3.4 ATPG flow 
If ATPG is performed without the initial pseudo-random 

test vector phase, then not filling the don’t care bits of 

patterns with random values will increase the number of 

patterns significantly.  This is because the potential extra 

fault coverage of the random filled patterns is not 

exploited.  



 
dd1d dddd 1d0d ddd1 101d 1d11 d0dd 000d dddd 00d0 dddd

1111 0101 1001 0001 1110 1011 0010 0011 1101 0110 0100

H/P L/H/P P H/P N:101d H L/P L L/H/P L L/H/P

P(4) N(1):101d H(1) L(6)

P(4) N(1):101d H(1) L(4) L(2)

10(110) 11(01):101d 01(01) 001(110) 00(100)  

1.Uncompr. Data  

3.Packet Types 

4.Grouping Packets 

5.Use Encoded Sizes   

6.Compr. Data 

2.LFSR 

 
Figure 2: Compression overview based on Table 2, Table 3 (Huffman), and f(x) = x

4
+x

3
+1 LFSR. Notation: type(size) 

 

There are 2 possible ATPG flows that prevent an 

increase in the number of patterns: 

1. It is possible to match the fill sequence during 

ATPG with the pseudo-random fill of the 

decompression hardware.  In this case, the number 

of patterns will not increase.  This approach 

however, requires modifying the ATPG tool. This is 

not possible in case a commercial ATPG tool is 

used.  

2. A solution that does not require modifying the 

ATPG tool is described in the algorithm below. 

 

ATPG Flow Algorithm 

1. Drop easy detectable faults from
fault list (by using random
patterns until 60% coverage

2. Do ATPG without random fill for
remaining faults in the fault list

3. Perform compaction (if needed
extra compaction compared to the
normal flow)

4. Perform the LFSR based pseudo-
random fill (e.g., by using a
system call in case of a
commercial tool)

5. Fault grade the filled vector set
6. Perform deterministic ATPG, in

case a few easy detectable faults
are not covered by the random fill

 

If in this flow the number of no random fill patterns 

still increase compared to the number of random fill 

patterns, then step 2, 3 and 4 can be repeated 

multiple times on a smaller number of patterns. 

 

Note that in both flows the compression algorithm can 

be applied on the fully compacted ATPG set and that 

there are no restrictions in the number of care bits per 

pattern. 

The next section will explain the experimental 

results of applying the compression techniques on 

industrial devices.  

4 Experimental Results 

The compression techniques were applied on two large 

industrial designs implementing network processors with 

the characteristics, described in Table 4. 

 
Table 4: Design Characteristics of the ASICs 

Parameters ASIC 1 ASIC 2 

Design Size ~7M gates ~300k gates 

Total Number of F/F ~105k ~30k 

Total Number of Scan 

Chains 

23 10 

Total number of 

Collapsed Faults 

~6M  ~300k 

Test Data Volume ~1.6G ~18M 

 

The test vectors for the considered designs were 

generated using a commercial ATPG tool, using flow 2 

described in section 3.4.   

By initially dropping the easy detectable faults (step 

1) and by extra compaction (step 3), an increase in the 

number of vectors without random fill could be 

prevented.  Only one design (ASIC1) resulted in a 1.5x 

increase in the number of vectors compared to the 

normal ATPG set.  This was due to memory limitation 

problems during the extra compaction (step 3).  Note that 

if flow 1 (section 3.4) were used, then there would have 

been no increase in the number of patterns.  After 

automatic test pattern generation, the generated vectors 

were written in the STIL format. 
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Figure 4: The group frequency as function of the specific match group sizes, for the 4 different match types (ASIC1) 

 

After STIL generation, a PERL script was used to extract 

the scan input vectors from the STIL output file.  A 

software package has been developed to perform the 

described compression techniques on the extracted scan 

input vectors.  The compression software was executed 

on a HP 9000/785/J5600 machine with 2 550MHz PA-

RISC processors and 2G of physical RAM.  

The experimental results will focus on showing the 

compression ratio.  For completeness, this ratio is 

defined in equation 1. 

 

bits compressed Total

ncompressio without bits Total
nRatioCompressio =

 [1] 

 

4.1 Creating packets and encode packets 
The graph in Fig. 3 shows the results of applying the 

compression techniques with fixed-length type encoding 

and without grouping (see Table 2) on ASIC 1 as 

function of the packet size.  The results are shown for 

different types of compression: 

• P/N designates the compression ratio if only P and 

N types are used for compression.  

• L/H/N designates the compression ratio if only L, 

H, and N types are used for compression.  

• L/H/P/N designates the compression ratio if all 

types are used for compression. 

 

The figure shows that for this design a maximum 

compression ratio of 16.8x can be achieved by using 

L/H/P/N-type compression and a packet size of 64 (also 

see [24]). The total compression run time for all these 

scenarios was about 4.5 hours.   

The figure also shows the dependency of the 

compression ratio on the packet size. The compression 

ratio is smaller in case of small packet sizes, because the 

ratio of the control bits to the data bits for the packet, i.e. 

the overhead, is larger.  Increasing the packet size 

increases the compression ratio as control bits replace a 

higher number of data bits.  However, increasing the 

packet size beyond a certain point will reduce the 

probability of finding L/H/P-type packets.  Increasing 

the packet size further, will reduce the probability of 

matching a packet, effectively reducing the compression 

ratio.  
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Figure 3: Compression results on ASIC1 without 
grouping and with fixed-length type codes and Huffman 
size codes  

 

4.2 Group packets and encode groups 
The graph in Fig. 4 gives the group frequencies (i.e. the 

number of occurrences) for the N, L, H, and P-type 

groups versus the different group sizes, in case the 

grouping algorithm is applied on ASIC 1. The figure 

shows that the maximum group size of the H and the L-

type groups are respectively 5 and 10 packets.  The 

maximum group size of the N-type groups is 55 packets. 

Hence, the N-type compression due to grouping will be 

bigger than the H and L-type compression, because 

larger groups can be created (i.e. making the control bit 

overhead smaller).  Moreover, the biggest compression 

ratio due to grouping will occur by introducing the P-

type groups. 



Table 5: Experimental results of applying the compression technique on 2 industrial devices 

Compressed Test Data Volume  

No Grouping Grouping with 

fixed size encoding 

 

Grouping with 

group type 

Huffman encoded 

Grouping with 

group type and 

size Huffman 

Encoded 

Grouping with group 

size 

Golomb-Rice Encoded 

 

 

 

Circuit 

Name 

 

 

Input 

Test 

Data 

Volume 

Packet

Size 

Total 

# Bits 

Packet

Size 

Total 

# Bits 

Packet

Size 

Total 

# Bits 

Packe

tSize 

Total 

# Bits 

# Tail bits in 

code word(m) 

Total 

# Bits 

 

ASIC 1 

 

 

 

1,600M 

16 

32 

64 

128 

213M 

125M 

96M 

97M 

16 

32 

64 

128 

42M 

33M 

54M 

77M 

16 

32 

64 

128 

41M 

32M 

53M 

77M 

16 

32 

64 

128 

37M 

29M 

52M 

76M 

6 

7 

8 

9 

70M 

61M 

52M 

60M 

 

ASIC 2 

 

 

18,249k 

16 

32 

64 

128 

2,946k 

2,152k 

2,087k 

2,574k 

4 

8 

12 

16 

13,705k 

1,124k 

1,307k 

1,753k 

4 

8 

16 

32 

10,511k 

1,033k 

2,030k 

1,287k 

4 

8 

12 

16 

13M 

1,078k 

1,274k 

1,723k 

4 

5 

6 

7 

2,370k 

2,001k 

1,911k

1,958k 

* Based on statistical analysis the {1,2,3,4,8,16,32,128} packet sizes are selected (in case of Huffman: see codes in Table 3). 
 

Fig. 5 gives the actual L, H, and P-type compression 

ratios of encoding the groups using different encoding 

schemes.  Since these different scenarios did not have a 

significantly different impact on the N-type compressed 

data volume, this data volume is not shown.  
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Figure 5: P, H, and L-type compressed data volume and 
the corresponding compression ratios for approach 
A,B,C,D and E. 

 

The following group encoding schemes are considered: 

• The results of encoding each 64-bit packet 

individually, without using the grouping algorithm, 

are represented by the packet A bar. The types are 

encoded using the fixed-length code words, see 

Table 2.  The compression ratio equals 16.8x. 

• The results of applying the grouping algorithm on 

64 bit packets, and encoding the groups using 8 

different group sizes ({1,2,4,8,16,32,64,128}), with 

fixed-length code words, is represented by the group 

B bar.  The compression ratio equals 28.8x.  

• The results of applying the grouping algorithm on 

64 bit packets, and encoding the groups using 10 

different Huffman encoded group sizes 

({1,2,4,8,16,32,64,128,256,512}), are represented 

by the group C bar.  The compression ratio equals 

30.1x.  

• The results of applying the grouping algorithm on 

64 bit packets, and encoding the groups using 9 

different Huffman encoded group sizes 

({1,2,4,8,16,32,64,128,256}), are represented by the 

group D bar.  The compression ratio equals 31.6x.  

This is better than the previous scenarios, because 

the 9 different codes enable a slight improvement in 

L/H-type volume compression.   

• The results of applying the grouping algorithm on 

32 bit packets, and encoding the groups using the 8 

different Huffman encoded group sizes from Table 3 

({1,2,3,4,8,16,32,128}), are represented by the 

group E bar.  The compression ratio equals 55x.   

 

Table 5 gives experimental results of applying the 

compression techniques using different packet sizes.  In 

addition, it shows the results of applying the 

compression techniques on the second industrial design 

(ASIC2). Note that the additional advantage of applying 

a Huffman encoding compared to the fixed-length 

encoding is very limited.  This is due to the limited 

number of directly encoded sizes. 

   

5 Implementation Examples 

This section will describe different implementation 

examples. The described techniques can be implemented 

(1) using ATE and on-chip logic, (2) using only on-chip 

logic, and (3) using only ATE.  

 

5.1 Using ATE and on-chip logic  
Fig. 6 shows a decompression unit architecture that can 

be used in case the code words are of a fixed bit length. 
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Figure 6: Decompression Unit 
 

The architecture consists of a Finite State Machine 

(FSM) and an internal shift register consisting of two 5-

bit shift registers connected to the 2 input channels.  

Moreover, for each of the 10 output channels, a 

multiplexer and a data generator (i.e. a 0, 1, and LFSR 

source) is required.   

In the architecture, the number of input channels of 

the decompression unit is equal to the number of bits of 

the type codeword (i.e. 2 bits). A packet is defined 

horizontally as the required output bits at a certain tester 

cycle, see Fig. 1.  Hence, the number of output channels 

is chosen equal to the optimal packet size. In this 

example, an optimal packet size of 10 bits is assumed (in 

case of the experiments in Fig. 3, a packet size of 64 was 

used).  

 

The FSM decodes the packet type, designated by the 

2 input channels: 

• In case of a N-type (no match) packet, the FSM 

directs the internal shift registers to serially shift in 

the data packet in 5 tester cycles using the two input 

channels (5*2 bits). After the register is filled with 

the 10 bits of the packet, the 10 bits of the packet 

can be directed to the 10 output channels in one 

tester cycle (10*1 bits).  Since the number of output 

bits equals the number of input bits, the input 

bandwidth equals the output bandwidth. 

• In case of a P/H/L-type packet, the FSM sets all 

multiplexers to direct the appropriate internal data 

generator (pseudo-random, 0, or 1) to the 10 outputs 

in one tester cycle. In other words, without the 

decompression unit we would need 5 tester cycles to 

feed in the 10 bits through the 2 channels, and with 

the decompression unit we only need 1 cycle. 

Hence, a 5x test time reduction for P/H/L-type 

packets is achieved in this example.   

 

More details about the scheme can be found in [24]. 

When multiple packets are grouped, the same type 

codeword needs to be repeated multiple times. This can 

be achieved by using a ATE repeat-count instruction.  

This ATE instruction enables repeating a certain bit 

value a number of tester cycles. Note that depending on 

the ATE architecture, the instruction op-code overhead 

does not count towards the critical data memory 

requirements, i.e. it counts towards the non-critical 

instruction memory requirements.  

 

5.2 Using only on-chip logic 
An additional test time reduction can be achieved by 

implementing the repeat-count on-chip, instead of 

relying on the ATE.  When the decompression unit is 

busy decoding a group, the input channels can be 

multiplexed towards another decompression unit. 

Techniques to enable this are typical for compression 

techniques using compression code words.  In [3] a good 

overview of the techniques, tradeoffs, and benefits, is 

given.  

 

 The additional hardware of a variable-length 

type/size decoder is small, because the number of 

directly encoded sizes is very limited (e.g., only 8 

directly encoded sizes).  The experiments showed that 

variable-length codes do not result in a significant 

increase in the compression ratio, so we will not describe 

the implementation in much detail. A low overhead 

Huffman decoder implementation can be found in [31], 

and a low overhead Golomb-Rice decoder 

implementation can be found in [3].   

 

To design an optimal decoder, the optimal set of 

directly encoded group sizes, and the corresponding 

group probabilities, need to be calculated.  This can only 

be done when the ATPG vector set is available.  

Typically, the ATPG vector set is only available after the 

design is ready.  Hence, if the design is modified such 

that the original optimal decoding is not optimal 

anymore, then the decoder hardware might need to be 

modified.  

 

5.3 Using only ATE 
If the main objective is reducing ATE vector memory 

requirements and reducing test time is not the main 

concern, then the decompression techniques can be 

implemented on the ATE. The advantage of an ATE 

implementation is that no on-chip decompression 

hardware is required. 

The implementation is similar to the architecture of 

Fig. 6, with only one input channel: the FSM detects the 

type and size string serially.  Moreover, unless the 

scheme is used for multiplexing ATE channels, the 

decompression unit has only one output. (and packets are 

created vertically instead of horizontally, see Fig. 1). 

 

 



Table 6: Comparison of the compression techniques with other compression techniques 

6 Comparison with Other Approaches 

6.1 Compression using compression codes  
The proposed compression techniques fit best in the 

category of compression using compression codes.   

When determining the packet size, all possible sizes 

are considered, including a packet size of 1.  The 

scenario in which the packet size is 1 can be considered 

a pure 3-symbol run-length encoding.  However, due to 

the overhead of encoding the type and the fact that only 

a limited number of group sizes are encoded directly, our 

technique of introducing packets, i.e. a packet size larger 

than 1, turns out to be more effective.   

Maintaining the don’t care information during 

compression, enables us to get a high compression ratio, 

while still maintaining pseudo-randomness where it is 

needed.  Other 2-symbol compression techniques that 

don’t exploit don’t care bits, result in a significantly 

lower compression ratio.   

To increase the compression ratio of 2-symbol 

compression techniques, the don’t care bits can be filled 

with constant 0s/1s or the last care bit can be repeated 

[3,6,26].  However, due to the reduced coverage per 

patterns the number of patterns will increase.   In case of 

an on-chip implementation of the decompression unit, 

the effect of fanning out to multiple scan chains might 

compensate the effect of the increase in the number of 

patterns. In case of an ATE implementation, an increase 

in the number of decompressed patterns is often simply 

unacceptable. 

Whereas the proposed techniques have the described 

advantages, the on-chip hardware overhead is 

comparable to other compression techniques based on 

using compression codes [3]. Previously published 

techniques used ATE repeat-count instructions for the 

purpose of compression [26]. However, a repeat-count of 

random bits was not possible. One of the implementation 

examples of the proposed technique enables ATE repeat-

count instructions for random fill, by combining it with 

on-chip logic.  

 

6.2 Compression based on LFSR reseeding 
The technique does not require the calculation of 

LFSR seeds.  In addition, the LFSR can be of a very low 

degree, i.e. only a few flip-flops. Moreover, the LFSR 

doesn’t have to be (re)set each pattern. In addition, there 

are no restrictions to the maximum number of care bits 

per pattern.  The compression technique can be applied 

on the fully dynamically and statically compacted set.  In 

addition, a higher probability of a certain bit value within 

a certain consecutive sequence, also called clustering, 

can be exploited (e.g. consecutive padding bits due to a 

mismatch in scan-chain lengths).  

In addition, the proposed technique is able to create 

consecutive sequences of ones and zeros easily, for 

example to prevent bus contention, illegal states, or to 

reduce scan power dissipation.   

 

6.3 Pseudo-random BIST techniques  
Typically, the compression techniques based on pseudo-

random BIST techniques, require more decompressed 

patterns.  This will result in the same power dissipation 

and ATE implementation issues, described before.   

 

All proposed techniques are also applied on ISCAS’89 

benchmark circuits.  Table 6 describes the best 

compression results compared with other published 

techniques [27].  

7 Conclusions  

The problems of having a limited ATE vector memory, 

having long upload times, and having limited I/O 

bandwidth, are among the most critical problems the 

industry is facing.  

This paper explored several compression techniques 

based on creating packets, grouping packets, and 

encoding packets using both fixed-length encoding 

techniques and variable-length encoding techniques. 

Compared to previous work, the techniques have several 

advantages.  

The proposed compression techniques are applied 

on multiple industrial designs and benchmark circuits, 
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S13207  700 233 163k 273 110k 236 31k 251 24k 250 7k 

S15850  611 96 59k 178 33k 126 26k 170 16k 257 5k 

S38417 1664 68 113k 337 96k 99 93k 296 94k 358 8k 

S39694 1464 110 161k 239 96k 136 78k 182 35k 137 8k 



resulting in compression ratios varying from 17x-70x, on 

top of static and dynamic compaction techniques.   

The compression algorithms are simple to 

implement and the impact on the overall design and test 

flow is limited.  There are no hard tool requirements on 

the proposed compression techniques.  It only requires 

an ATPG tool, which can generate don’t care bit 

information.    
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