
1

Packet Coding for Strong Anonymity in Ad Hoc
Networks

Imad Aad Claude Castelluccia Jean-Pierre Hubaux
DoCoMo Euro Labs INRIA EPFL

Germany France Switzerland
aad@docomolab-euro.com claude.castelluccia@inria.fr jean-pierre.hubaux@epfl.ch

Abstract— Several techniques to improve anonymity have been
proposed in the literature. They rely basically on multicast or on
onion routing to thwart global attackers or local attackers respec-
tively. None of the techniques provide a combined solution due
to the incompatibility between the two components, as we show
in this paper. We propose novel packet coding techniques that
make the combination possible, thus integrating the advantages
in a more complete and robust solution.

I. I NTRODUCTION

The need for anonymity in ad hoc networks, typically for
military applications, drove several researchers to explore a
wide range of techniques that aim to thwarting omni-present
attackers and local attackers, given various optimizationcrite-
ria such as complexity, transmission costs and processing costs
[1], [2], [3], [4], [5], [6].

In the context of anonymity, the goal of an attacker is to
gather as much information as possible on the network activi-
ties, namely:who is communicating with whom?The problem
is highly relevant in ad hoc networks since the open nature
of the wireless channel goes in favor of the attacker: it can
eavesdrop “local” communications and gather the information
from the packets themselves, or it can get a “global” view of
the communications, inferring the information from the traffic
patterns.

The starting point of several existing techniques for
anonymity in ad hoc networks is the work by Chaum et
al. [7]. The basic idea in [7], for the wired Internet, is to
use “mix” mail servers that randomly delay mail forwarding,
thus reducing the correlation between incoming and outgoing
mails and hiding who is communicating with whom. The same
principle is used in mix-routes in ad hoc networks [3], where
a set of nodes takes care of diversifying the routes in order to
confuse attackers. Still, the traffic patterns reveal pronounced
shapes that help adversaries deduce the location of strategic
nodes (destinations, traffic sinks)[2]. Deng et al. [2] introduced
a mechanism that relies on random fake routes to confuse an
adversary from tracking a packet as it moves to the sink. Fake
routes, typically forming multicast trees, help randomizing the
pronounced traffic shapes, therefore minimizing the efficiency
of traffic analysis.

On a smaller scale, packets contain all the necessary infor-
mation to be forwarded along the path from the source to the
destination. Intercepting any transmission on the path, oreven
compromising a forwarding node, gives the adversary clear

information about the communicating nodes. Onion routing
[8], also inherited from the wired Internet, helps concealing
relevant routing information from potential adversaries:using
its secret key, each relaying node decrypts (peels) one layer of
the packet (onion) and sends it forward, while being unable to
read the content of inner layers of the onion, to be decrypted
with the secret keys of successor nodes. Onion routing is at
the basis of several enhanced techniques used for anonymous
communications in ad hoc networks. Ultimately, ANODR [1]
introduces a quite efficient approach for untraceable rout-
ing based on link pseudonyms. The establishment of those
pseudonyms is, of high relevance to our work, onion-based.

The two main pieces of the puzzle are therefore:

• To thwart adversaries that analyze the traffic usingglobal
viewsof the traffic patterns, traffic sources must multicast
their packets on redundant routes to confuse the attacker
and conceal the communications.

• To thwart local eavesdroppers, traffic sources must en-
crypt their packets in an onion-based way.

However, the two pieces of the puzzlecannot be put
together! As we show later in this paper, onion-based methods
cannot be combined with solutions that use multicast routes.
Therefore, existing solutions apply pretty well to thwart either
of the two different attacker models, but none of the solutions
offers acompletemechanism for both models applicable in a
generic hostile environment.

The contribution of this paper is the introduction of novel
packet coding techniques that:

• Combine multicast and onion-based packet encryption
to provide both global and local anonymity solutions,
putting the two pieces of the complete puzzle together.

• Make the packets,and their headers, change at each
hop to reduce traceability. This is an inherent property
of (unicast) onion routing that cannot be maintained
when combined with multicast routing, as we describe
in Section III.

• Leverage the wireless/open nature of the radio channel to
add supporting components to make those mechanisms
even more efficient in hiding network communications
(Section V).

We further distinguish between networks deploying tamper-
resistant devices from networks with non-tamper-resistant de-
vices, to propose “light” coding methods for the first and very
robust ones for the second. Even though we consider pure ad

2

hoc networks throughout the paper, the coding methods also
apply to hybrid networks combining a wireless network with
a fixed infrastructure.

This paper is organized as follows. Section II introduces
the system model and assumptions. Section III shows the
motivation and problem statement. Section IV introduces our
packet coding techniques with their respective evaluations.
Section V shortly introduces a method that complements
existing anonymity techniques and enhances their efficiency.
Section VI discusses various related issues. Section VII shows
the related work and Section VIII concludes the paper.

II. SYSTEM MODEL

We consider an ad hoc network ofn wireless devices
communicating with each other (or with a fixed infrastructure)
over multi-hop paths.

The nodes:Each node has a publicly known identifier
(ID), which is not necessarily an IP address. Nodes have
limited battery and processing power. We initially assume that
nodes are fixed, then we discuss mobility issues in a later
section. In our work we consider two types of network devices:
Tamper-resistant and non-tamper-resistant. In the first we
assume that attackers can eavesdrop communications, analyze
the traffic etc., while not being able to compromise secret keys
in the network devices. In the second case, we assume the
attacker is able to compromise any number of nodes along
with the keys stored within.

Nodes collaborate to forward packets even when ignoring
the source and destination IDs. Checking the authenticity of
a packet is possible (while still ignoring the source and des-
tination IDs) when using tamper-resistant devices. When we
consider networks with non-tamper-resistant devices, packet
authenticity becomes irrelevant.

Routing: We assume that global routing information is
requested proactively, then packets are routed using source
routing. Routes are requested periodically to cope with the
dynamics of the network. During the (global) route request
phases node IDs are clear to eavesdroppers/attackers. However,
using the mechanisms proposed in this paper, IDs of all nodes
involved in a specific transmission (source, destination and
routing nodes) will be highly concealed.

The packet coding techniques we propose in this paper can
be used over insecure route establishment methods (e.g. legacy
DSR [9]) or over secure ones (e.g. ARIADNE [10]). The paper
deals with issues to help anonymity, while caring of making
it independent of other security problems in ad hoc networks,
and without imposing any constraints on their corresponding
solutions or their performances. For instance, our mechanisms
can be used over normal DSR route establishments, or over
ARIADNE if someone wants to consider the attacks that
ARIADNE thwarts.

The attacker(s): We only consider attackers with the
willingness of identifying the source, the destination andthe
relaying nodes of a given communication. Thwarting attackers
who aim to disrupt the network (e.g. jamming, DoS, route-
breaking) is out of scope of the paper. Nevertheless, in the
proposed anonymity mechanisms we define the necessary

functions to avoid packet replays and packet injection by
“malicious” attackers (who’s goal is to drain device batteries
or to mascarade another node).

Attackers may vary in “strength”, and we model their
strength levels by one parameter which is the portion of the
network where the attacker can eavesdrop the ongoing com-
munications. For simplicity, and without any loss of generality,
we consider the two extreme cases of attacker levels:

• “local attackers” with knowledge limited to their imme-
diate neighborhood.

• “global attackers” able to intercept any communication
in the whole network at any time.

Another aspect of an attacker that we consider is whether he
is an insider (compromised node) or outsider (intruder). This is
closely related to the model of the nodes we consider, tamper-
resistant or non-tamper-resistant, as considered previously.

Whether local or global, insider or outsider, attackers have
limited processing power but unlimited energy.

Secret keys:The assumptions in terms of secret keys
depend on the node model that we consider:

• In the tamper-resistant devices case, Section IV-A intro-
duces “light” coding mechanisms that are encryption-free.
A single symmetric shared key is used among nodes to
authenticate the packet sender and to hide (using keyed
hash functions) packet headers from eavesdroppers. Note
that replacing the system-wide key by a pairwise shared
key is possible, however this comes at the (high) cost
of revealing the identity of the source node to relaying
nodes.

• In the non-tamper-resistant devices case, requirements in
terms of encryption keys increase. Section IV-B intro-
duces coding methods that require every node to have a
pair of public/private keys, and a publicly known prime
number. To avoid repetitive use of asymmetric cryptogra-
phy, each pair of nodes may establish a symmetric shared
key. However, again, this comes at the cost of revealing
the identity of the source node to the relaying (possibly
compromised) nodes.

Note that node IDs are known to all other nodes in the
network and possibly to the attackers.

The MAC layer: To preserve anonymity, packets are
locally (1-hop) broadcast and not ACKed at the MAC layer.
The application layer is therefore responsible for the com-
munication reliability. Nodes use omnidirectional antennas,
therefore any communication can be eavesdropped by any
attacker in a node’s neighborhood.

III. M ULTICASTING ONIONS: THE PUZZLE

The goal of our work is to help increasing anonymity in
ad hoc networks, and hide the roles of communicating nodes
from traffic analysis. In other words, we aim at:

• Concealing the source of a given packet
• Concealing the destination of a given packet
• Concealing the fact that two given nodes are communi-

cating

3

S

D

1
2

3

4
5

6

Receive range

a

b
c

Fig. 1. Reaching an anonymity set using “unicast” routes

To reach these goals, we will incrementally describe the
building blocks (multicast and onions) of the complete mech-
anism.

Before getting into the description of anonymity mecha-
nisms, let us first explain what we mean by “anonymity set”,
that we use extensively throughout the paper: We define an
“anonymity set” of the destination, for example, as the set of
possible destination nodes. In other words, when a packet is
sent to a given anonymity set of nodes, the confusion of an
attacker increases as the size of the anonymity set gets larger.

In a DSR-like packet header, IDs of routing nodes are
inserted in clear (unencrypted), and in order (from the source
to the destination). A local attacker that eavesdrops the packet,
anywhere along its path, can easily read where the packet is
coming from and where it goes to. To thwart local eaves-
droppers, the source node can shuffle the positions of routing
nodes’ IDs in the packet header. Any receiving node that
detects its own identity in the routing list, regardless of the
position in the list, will broadcastthe packet to its first-hop
neighbors, ignoring where the packet came from, where it goes
to, where the final destination is and where the originating
node was. Packet coding will be discussed in Section IV.
To a local attacker, this increases the anonymity set of the
destination (and of the source as well), from 1 to the size
of the routing list. In other words, the eavesdropper would
be confused which node in the list is the actual destination.
However, aglobal attacker is still capable of identifying the
source and destination nodes, at both edges of the packet route.

For a global attacker, the “picture” is still clear regardless
of the packet header format, shuffled or ordered, encrypted or
clear. This motivates the use of enlarged anonymity sets as
introduced in the following subsections.

A. Extend the routing list beyond the destination

The first basic technique to thwart global attackers is to
make the traffic source extend the routebeyondthe (real) in-
tended destination of a packet. This will increase the size of the
anonymity set linearly, at the cost of additional transmissions
and receptions, of course. For instance, letl0 be the distance
(in hops) from the source to the intended destination. Extend-
ing the path byle will increase the size of the anonymity
set to l0 + le, at the cost ofle additional transmissions and
le receptions. Note that the packet size will increase because

S

D

1
2

3

2

Receive range

a

b
c

Fig. 2. Reaching an anonymity set using multicast

of the enlarged routing list in the header. This issue will be
solved and thoroughly analyzed in Section IV. Extending flow
paths can be viewed as a variant of sending redundant packets
over the network. However, extending a flow route beyond the
specific destination helps better hiding the latter, which is hard
to achieve by sending redundancy elsewhere in the network.

B. Extend the routing list beyond the source

The previous techniques help hiding the traffic destina-
tion, without hiding in whichdirection the data is flowing.
Therefore, the routing list should also go beyond the source,
giving similar advantages and drawback as going beyond the
destination, with the advantage of hiding the trafficdirection
as well.

C. The general technique: use multicast trees

The previous mechanisms, though usable separately, were
described to provide incremental understanding of the draw-
backs and advantages of each component of this general one.
For a packet transmission to reach a given anonymity set
of nodes, by leveraging the broadcast nature of the wireless
channel, we can use multicast trees. This considerably reduces
the overall number of transmissions with respect to unicast
routing, to reach an equal number of nodes. Consider for
instance the topology in Fig. 1 where the sourceS intends
to send a packet to destinationD.1

To provide a high anonymity level for destinationD, the
sourceS may use mix routes to increase the anonymity set to
{a, b, c, D} rather than{a, D}. Moreover, mix routes can be
combined with onion routing, either using shared key between
the source and each intermediate node (hence the source is
known), or using the public keys of the intermediate nodes
(hence the source can remain anonymous).

Regardless of the use of onion routing, we can see that
the use of additional intermediate nodes will increase the
number of transmissions (6 in this example), thus the battery
consumption. One can overcome these drawbacks by making
use of the open nature of the radio channel, namely using
multicast, as shown in Fig. 2.

1Note that traditional multicast problems such as tree establishment, address
format and joining/leaving the multicast group, are irrelevant here: the source,
based on the information gathered during the initial route request phase, sends
its packet to redundant (and cooperative) destinations androuters.

4

We can see that the packet to destinationD reached the
same anonymity set as in Fig. 1 with much less transmissions
(3 in this example) and a shorter delay (2 “slots”). The delays
should not be taken into consideration here, since the scenario
is not generic enough.2 The evaluation of the gain in the
general case is shown in the next paragraph.

Performance evaluation:Benefit: Using multicast to
reach a given anonymity set is highly efficient (especially if
combined with the “eavesdropping destination” introducedin
Section V). Large anonymity set sizes make it hard for the
attacker, local or global, internal or external, to identify the
source and the destination. Using multicast to reach those
large anonymity sets makes routing easier and more efficient.
Moreover, multicast becomes even more efficient when the
source needs to send a packet to multiple destinations. Claim-
ing the method to be highly efficient may look contradictory
to the fact that we multicast the packet to several redundant
nodes on various redundant paths. However, our goal is not to
flood the network with redundant transmissions, but rather to
reach arequired anonymity set sizewith the least number of
transmissions possible. In fact, consider a multicast treethat
is h hops deep (the destination must be withinh hops), where
every transmission is relayed byr neighbors. The resulting
number of transmissions is

h∑

i=1

ri

and the resulting number of receiving nodes (i.e. anonymity
set size) is

h∑

i=1

ri+1

Therefore we increase the anonymity set byr at every
transmission, compared to an increase of 1 at every transmis-
sion with techniques using unicast. Another interesting per-
formance aspect of using multicast is how it helps eliminating
the pronounced data traffic patterns that may reveal strategic
node locations. This was introduced and well analyzed in [2].

Overhead: As in the previous mechanisms, packet header
sizes will increase, and so does the number of transmissions
and receptions, proportionally to the multicast group size. We
will tackle the packet-level issues in Section IV.

D. Hiding the source, using multicast “forests”

Note that so far, we were dealing with hiding (increasing
the anonymity set size of) the destination only. The source,
even though hidden for local attackers, can be still easily
identified by global ones. Existing techniques such as stop-
and-go, transmission of redundant flows etc. can be used in
combination with our techniques to provide source anonymity
as well. In this case, the flow patterns would look like a
multicast “forest” (several trees), or fragmented multicast
trees, highly concealing the destination(s) and the source(s)
as well.

2Using unicast, the flow could have passed throughD right aftera, before
reaching an extension list, resulting in a similar delay as multicast, similar
anonymity set size, but still with more transmissions.

E. The onion

The multicast mechanisms described in the previous subsec-
tions were motivated by the need to thwart “global attackers”
that have a global view of the communications in an ad hoc
network regardless of whether the packets are encrypted or not.
Another piece of the puzzle is thwarting “local” eavesdroppers
or compromised forwarders that intercept transmitted packets
and read the relevant information therein (source, routing
nodes, destination). One basic technique is to use disordered
routing lists in packet headers. Furthermore, one can useonion
routing [8] where each routing nodes peels a layer (decrypting
the packet with its secret key) and forwards it further. One
property of onion routing is that packets “change” as they get
forwarded, therefore becoming untraceable, a highly relevant
property that we aim to keep in our final (complete) solution.

F. Combining multicast and onions

In the previous subsections we cited the various advantages
of using multicast and onion routing respectively. A complete
solution that aims to thwart localand global attackers simul-
taneously should apply both, multicast and onion. However,
combining the two is not a straightforward procedure: If we
rule out the problem of how to place the various identifiers in
the onion, the onionpayloadmust take one of the two forms
shown in Fig. 3.

K_S,a{...}

K_S,a,b{...}

Pub_a{...}

Pub_b{...} Pub_D{...}

Message

K_S,D{...}

Pub_c{...}

(a)

(b)
Random text

Message

Fig. 3. The problem of combining multicast with onion routing.
Ki,j,...,k{...} is the encryption using a shared symmetric key between nodes
i,j,..., andk. Pubi{...} is the encryption using public key of nodei.

We have two choices for the encryption/decryption:
(a) Using symmetric keys shared between the source and

routing nodes makes the combination possible. How-
ever, it reveals the source toall routing nodes, and the
destination to some of them. Furthermore, it limits the
propagation of the packet (ex. beyond nodec in Fig. 2),
unless the payload is split in 2 sub-onions, as in Fig. 3(b).

(b) On the other hand, using public keys to encrypt the
various onion layers becomes cumbersome when the
packet goes on 2 (or more) different paths. The approach
becomes impossible to use if the packet is to be routed on
diverse paths, requiring recursive sub-onions, as shown in
Fig. 3(b).

Therefore, the first step towards our complete solution is
to consider perfect separation between the routing header and
the packet payload (possibly onion-encrypted).

5

Note that as mentioned before, we use source routing. Since
the goal is to hide the destination, this last cannot be revealed
to intermediate nodes, therefore routing protocols like AODV
[11] cannot be used whendestination anonymitycomes into
the picture.

IV. PACKET CODING

Now that we motivated the separation between packet
headers and payloads, in this section we describe the actual
coding techniques of the two parts. For packet headers, we
distinguish between tamper-resistant devices and non-tamper-
resistant devices and we devise the appropriate coding tech-
niques for each (summarized in Table I). In the first case,
“light” coding is used, basically relying on hash functions. For
the second case, more encryption-demanding techniques show
to be inevitable to tackle with the problem. As for payload
coding, common techniques apply for both tamper-resistant
and non-tamper-resistant cases.

A. Routing headers for tamper-resistant devices

In these networks we assume that devices can be com-
promised: The attacker can use the compromised devices
to generate malicious/erroneous packets. However he cannot
retrieve encryption keys shared between the network nodes
neither the decrypted clear-text. We will relax this tamper-
resistance assumption in the next section (IV-B).

k one−way key−hash functions

Transmitted packet

b−bit Bloom filter + nonce + MAC

H_1() H_3()H_2() H_k()

r(t) + MAC ()

Packet header Payload

ID_6 ID_3 ID_1 ID_9(Disordered) set of m relaying nodes

ZZ

Z

Fig. 4. Using Bloom filters to compress the source routing list

Some of the mechanisms described above have a common
drawback: the packet header size increases with the size of the
anonymity set. However, the extensive list of routing entities
contains much more information than a forwarder needs. In
fact, theonly information a receiving node needs is a binary:
to forward or not. In other words it is a binary test: does the
receiving node belong to the list or not?

One common technique to use in list checking problems
is Bloom filters. Bloom filters [12] have been widely used
in databases, in peer-to-peer applications and are enjoying
growing popularity in computer communications nowadays
[13], [14]. They offer high compression rates, low false
positives and no false negatives. In our case, the compression
rate will help reducing header sizes considerably, while (low)
false positives have no considerable impact since they slightly
increase the anonymity set size. We will analyze the impact
of false positives later in this section.

The use of Bloom filters, in combination with the above
techniques, is described in Figure 4. The source establishes

the list of m forwarder/destination IDs. Each entry is passed
to k keyed-hash functionsHi with a shared keyZ. Each of
theHis defines the position of a single bit to set in the Bloom
filter (initially all bits are 0s). The resulting string of bits, i.e.
the Bloom filter, replaces the routing list in the packet header.

Each node applies thek hash functions to its own ID once
for all packets. Upon receiving the transmitted packet every
node checks whether thek positions are set in the Bloom filter
sent in the packet header. If it is the case, the node knows it
belongs to the routing list, it therefore forwards the packet.

This is the routing aspect of using Bloom filters. However,
additional functions must be added to preserve anonymity,
while avoiding flooding or packet replays:

• Since the node IDs are possibly transmitted in clear dur-
ing the route request phase, and since the hash functions
are not secret, it is possible for an attacker to check
whether any of the IDs is included in the Bloom filter
or not. To avoid this vulnerability, we use keyed hash
functions that use a secret key (Z) shared among all
nodes. Using pairwise shared keys may look as a more
robust alternative. However, it has a major drawback: how
does a receiving node know which key to use to check
whether it is included in the filter? and if it does, that
means the source ID is revealed to this node. Therefore,
since the nodes are assumed to be tamper-resistant, we
adopt the system-wide shared key solution. For non-
tamper-resistant devices we adopt the solution described
in Section IV-B.

• To avoid that an attacker forges a Bloom filter to flood
the network with redundant packets, therefore consuming
node batteries, a message authentication code (MAC) is
used with the shared key (Z) then concatenated to the
filter.

• To avoid an attacker from reusing an authentic filter (i.e.
compressed routing list), the source concatenates a nonce
r(t) to the filter before computing the MAC.r(t) can be
the value of a loosely synchronized clock.

Due to the finite filter size, some nodes may find all their
hash functions pointing to positions that are set in the Bloom
filter, while in fact they do not belong to the routing list.
This happens when a node’s bits positions in the filter are
a combination of other nodes’ bits positions. This occurs with
probability (1 − ekm/b)k.

These false positives can be reduced by increasing the
Bloom filter size. Hence, one should consider one of the two
options:

• Keep the filter size low and, with low probability, few
unintended nodes will retransmit the packet (consuming
their energy for transmission and their neighbors’ for
reception) or,

• Increase the filter size and therefore the number of bits
to be transmitted by every forwarding node. This also
increases the number of bits received by all neighboring
nodes along the path(s).

Note that the small energy consumed by the first option per-
forming unintentional transmissions goes in favor of increasing
the anonymity set, making it advantageous with respect to the

6

second option.
In brief, the main properties we derive from the use of

Bloom filters as described are:

• It hides the routing list from local eavesdroppers.
• It does not mandate the use of encryption.
• It compresses the routing list considerably.
• It perfectly fits multicast lists (to obfuscate global at-

tackers while reducing the number of transmissions, as
described above).

Yet, the proposed mechanisms rely on the strong assumption
that nodes are tamper-resistant. i.e. attackers cannot access the
shared key used for the filter hash functions or in the header
MAC computation. When this assumption does not hold, an
attacker can identify entries in the routing list/filter, can replay
packets, or it can even flood the network with redundant
packets that will be easily forwarded by (cooperating) nodes.
In the next section (IV-B) we define a new technique that is
better adapted to networks with vulnerable devices.

Performance evaluation:Considerg to be the multicast
group size andl the length (in bits) of each entry/ID. If
we consider the Bloom filter to beb bits long, then the
compression ratio it offers isg× l/b. For practical values ofg,
l andb, the ratio is drastically high, considerably reducing the
header size with respect to normal source routing, e.g. DSR
packet headers.

B. Routing headers for non-tamper-resistant devices

In a network with vulnerable (non-tamper-resistant) devices,
attackers have access to all keys in the compromised nodes,
therefore no authentication can be performed. In this case
compromised nodes can be used to flood the network in order
to drain the battery energies of all cooperative nodes, and the
ones hearing their transmissions. To deal with this problemone
must consider rate limiters at each forwarding node, a solution
that is well studied in the literature [15] and somehow out of
scope of this paper.

When the system’s shared key and the nodes’ IDs get
disclosed to an attacker, all routing lists in packet headers
become clear to him and the techniques described above do not
apply anymore. To avoid this problem, we adopt asymmetric
cryptography as described below. We assume that each node
i has:

• an identifierIDi, known to all other nodes, and possibly
to the attacker(s).

• a public keyPubi known to all other nodes, and possibly
to the attacker(s).

• a private keyPrvi known to nodei only, possibly
revealed to the attacker that compromises the node.

1) Encrypt each entry with public key:The source node
establishes the routing list (set of IDs), then it encrypts each
entryIDi

3 with the entry’s public keyPubi (Fig. 5). To avoid
replays by attackers, the source should concatenate the entry’s
ID with a random short string (or nonce) before encrypting
it. This method ensures that for a given forwarder/destination
IDi, only IDi is capable of checking whether it belongs to

3Or any conventional short text.

the forwarding list, by using its private keyPrvi to decrypt
the ciphered entry, and checking its integrity. This makes it
impossible to attackers, whether insiders or outsiders, toread
the entries of the routing list.

ID_i || nonce

Pub_i{ input }

Pos(ID_i, c)

c
Seed

c Entry_1 Entry_k

...

PayloadPacket header

Routing list: ID_3, ID_7, ... , ID_4

Fig. 5. Encrypting the routing list at the source.Pubi{M} stands for the
encryption of M using the public key of nodei

Upon receiving a packet, nodes should check whether they
are included in the ciphered list. One straightforward solution
for a nodeIDj is to decrypt every entry in the list using
its private keyPrvj and check whether it retrieves itsIDj.
However, decrypting every entry in the (potentially large)
routing list is a time and power consuming task. To cope with
this, the source should give every forwarder a hint on which
position in the list to decrypt, reducing the decryption load,
in a way such that the hint cannot be used by attackers to
identify the forwarder in the list. This is done as follows (cf.
Fig. 5):

The source uses a functionPos(id, c) which first input is
the ID of the node to be inserted in the list, and second input
is a seed numberc. The output of the function is a number
pointing to the position to fill in the routing list.c is added
to the routing list, in clear. If two or more IDs happen to
refer to the same position in the list, the source changesc and
computes the positions again until no collisions occur. Empty
positions are filled with random text to make it impossible for
attackers to reduce the anonymity set by distinguishing empty
and filled positions in the routing list.

Upon receiving a packet, a nodeIDi readsc from the packet
header and computesPos(IDi, c). It then decrypts the entry
at positionPos(IDi, c) in the list using its private keyPrvi. If
it reads its ID inside,IDi, then it knows it belongs to the list,
and it forwards the packet. Else, the field must be containing
a differentIDj encrypted withPubj, or it is just random text.
In both casesIDi is not in the list, and the node discards the
packet.

For the intended destinationIDd to know whether it should
read the payload, the source may include some indicators
along withIDd in the packet header, before encrypting them
with Pubd.

As for the payload, we totally separated it from the routing
list encryption in order to keep it possible to use multicast
lists, as described before. Section IV-C discusses the various

7

operations that we can apply to the packet payload.
The big advantage of this technique is that compromising

one or several nodes (and their keys or ID databases) does
not compromise the whole system. It limits the attacker to the
knowledge of whether the compromised node belongs to the
routing list, without compromising any other information.

Since the routing list is encrypted using asymmetric keys,
attackers have no way to read the list entries but the ones
of compromised nodes. However, if the routing list remains
ordered, local attackers still can get valuable information such
as how far they are from the source, from the destination, or
in which direction the packet is being routed. Therefore dis-
ordering the routing list remains useful even after asymmetric
encryption of the list entries.

This method, though practical and clear, lacks three func-
tionalities:

• It does not prevent routing loops (though it is easy to
introduce)

• Packet headers cannot be easily changed over the route
by intermediate nodes (to avoid tracking packets)

Those functionalities are the two additional building blocks
of the techniques presented in Section IV-E.

2) Chinese remainder theorem (CRT) for list aggregation:
The traffic source cannot use Bloom filters to compress the
routing list since encryption/decryption are asymmetric.We
therefore adopt the mechanism presented in [16], based on
the Chinese remainder theorem, which in the context of ad
hoc networks can be described as follows:

Let each nodei be assigned a public numberpi, where all
pis are co-prime,along with its public keyPubi and private
key Prvi.

When a given source wants to send a set of valuesxi to a
set of nodesIDi, it computes the single valueX that satisfies
0 < X ≤

∏n
i=1

pi according to the CRT. Upon reception of
X (i.e. the aggregated list of values), each nodei recovers
xi from X by computingxi = X mod pi. To send a private
binary information to a node, i.e. whether it belongs to the list
or not, the CRT can be used as follows:

• For each forwarding nodei, the source node chooses a
random valueRi and setsxi = Pubi{Ri||hash(Ri)}

• The source node computesX using the Euclidean algo-
rithm

• X is sent in the packet header as an aggregated list of
forwarding nodes

• When nodei receivesX , it computesx̂i = X mod pi

• Node i decryptsx̂i using its private keyPrvi

• If the integrity check (usinghash(Ri)) of xi succeeds,i
infers that it belongs to the routing list. Else,i knows it
does not belong to the list and discards the packet.

Discussion: To make the encryption lighter, the source
may establish symmetric keys with every forwarding node
using public/private keys at an initial phase. This makes
encryption/decryption much lighter at subsequent phases (i.e.
during message forwarding), using symmetric cryptography
only. However, this comes at a high cost: Using the shared
key, the source ID will be revealed to any attacker that
compromises any of the forwarding nodes. Moreover, the

source will have to give routing nodes a hint on its ID for them
to use the proper symmetric key to extract their entries. This
makes the symmetric solution inconvenient for non-tamper-
resistant devices.

In Section V we introduce a technique that assumes the
packet destination can be an eavesdropping node close to
the packet route. If the packet payload is encrypted, and if
the destinationD is not included in the aggregated routing
list X , D will have to decrypt every packet it eavesdrops, a
very costly solution. Therefore, the source must includeD in
X , with an additional hint concatenated to its ID, that it is
the intended destination. Still, the attacker will have no clue
of D’s presence in the list, unless the attacker compromises
D itself, and the eavesdropping destination benefits (increase
anonymity set size) still apply, while reducing the decryption
costs atD. Note thatX does not compress the routing list but
rather aggregates it. We are considering the compression ofX
in future extensions of this work.

C. Packet payload

Due to the separation between the packet header and pay-
load, different operations can be applied to the payload:

• If it is not necessary to hide the content of the message,
the payload can be kept in clear.

• At the source node, the payload can be encrypted using
the intended destination’s public keyPubD. At each
forwarding node the payload remains unchanged. At
the destinationD, the payload is decrypted usingD’s
private keyPrvD. Since the payload remains unchanged
along all the route this technique allows recognizing and
tracking packets by global attackers.

• The source encrypts the payload, as in onion-routing
(however without including the IDs inside the onion)
using the public keys of the forwarding nodes until the
intended destination (Fig. 6 and 7). Upon detecting its ID
in the forwarding list, decrypting it with its private key, a
node peels a layer of the payload onion and transmits the
packet. If the transmitting node is on the “right” route
(e.g., in Fig. 6, nodes 8,1,6,5) from the source (S) to
the intended destination (D′), the message will arrive
properly peeled using the right sequence of public keys.
On redundant routes (e.g., 8,3,0), the payload will be
peeled using wrong private keys, or wrong private key
sequence, arriving to the route ends with no meaningful
message. To an attacker, whether internal or external, the
“right” route remains indistinguishable from redundant
ones, considerably decreasing his ability to analyze the
traffic. Furthermore, the encrypted payload is changing
as it progresses along the route(s), making it hard for
attackers to identify the packet (unless by recognizing
the header).

Similar to the packet header coding methods, the onion
payload can be made using symmetric shared keys, however
this comes at the cost of revealing the source ID.

Note that multicast would not have been possible without
the separation of the routing list from the payload onion:
encrypting the receivers’ IDs inside the onion layers will make

8

Route−1

3

8

0

1

7

6

2

4

9

5
D’

S

Route−3

Route−2D

Fig. 6. Example of packet routing concealed by multicast trees.

the packet go on the correct path while being decrypted cor-
rectly. On redundant paths, though, the packet gets decrypted
with the wrong private keys resulting in random outputs,
making it impossible to include the IDs in the onion layers.
One possible alternative is to include several payloads (asin
Fig 3(b)), one per forwarder, in the onion layers. This makes
the overall payload onion tremendously large, without bringing
any advantages. The separation between the routing list and
the payload onion is therefore better adapted to multicast.

D. Avoiding routing loops

Changing the payloads was described in the previous sec-
tion. Still, packet headers remain unchanged, resulting intwo
problems:

• Routing loops occur at any segment of the whole packet
path(s)

• With constant packet headers, all packets are easily
traceable by an attacker

In this section we solve the routing loops issue, and in the
next section we show mechanisms to make packet headers
untraceable.

Since the routing list in a packet header is disordered, does
not contain “from” and “to” fields, and since packets should
not contain fixed identifiers, packets will “bounce” backward
and forward on every segment of the packet path(s). The
following techniques help avoiding routing loops/bounces:

• Using TTLs (Time To Live). However, this would not
avoid the packet from continuously “bouncing” until the
TTL expires

• Every forwarding node “marks” the packet by adding
its own “reminder” to the routing list. However, when
using Bloom filters adding new entries will increase
false positives, therefore forwarding the packet more than
necessary and consuming energy.

• Every forwarding node removes its entry from the routing
list

We will describe this last option with respect to the two
node models we are considering.

1) Removing entries from Bloom filters:Removing an
entry from a Bloom filter solves the problem of routing
loops/bounces. However, the implementation method brings
another problem: A routing node cannot set any of the filter
bits to zero, even the ones that are referred to by its hashed

Pub_1{...}

Pub_6{...}

Message
Pub_5{...}

Packet header Payload

Prv_6 x Pub_6{...}
Pub_5{...}

Prv_1 x Pub_1{...}

Pub_6{...}
Pub_5{...}

At the source (S) Along Route−2

Prv_5 x Pub_5{...}

Message

Message

Message

Fig. 7. Decryption of the payload.Prvj × Pubi{M} stands for the
decryption ofPubi{M} using the public key of nodej. If j = i decryption
is successful, else it results in random text.

own ID. In fact, the same bit positions can be referred to
by other hash functions of other IDs of nodes supposed to
forward the packet further. Setting bits to zeros will exclude
those nodes from the routing list, stopping the packet from
being forwarded.

To solve the above problem, we consider using a variant
of Bloom filters used in [17], where the bits are replaced
by counters (bytes). All counters in the filters are initially
set to zeros. The source node constructs the routing list and
inputs each entry to the hash functions, as described before.
However, instead of setting the bits where the hash functions
refer to, it will increase the corresponding counters (by 1).
To check whether it belongs to the routing list, a receiving
node will test if the counters (instead of the bits) its hashed
ID refers to are> 0 or = 0. If all corresponding counters
are > 0, the node forwards the packet. The approach looks
quite similar to the description of the basic Bloom filter,
however now a forwarding node can extract its hashed ID
from the filter by reducing the corresponding counters by 1.
Since we use counters instead of bits, decreasing the counters
at some positions will not introduce any false negatives, where
routing nodes get excluded from the list and packets stop being
forwarded.

On the other hand, the compression rate will decrease with
respect to the basic Bloom filter, depending on how large a
counter is (in bits).

2) Removing entries from CRT headers:For each routing
node to remove its entry from the aggregated routing listX , a
node uses all publicpi values to extract the encrypted entries
of all nodes (regardless of whether they are valid or not). The
node then removes its own entry from the list, keeps other
nodes’ entries unchanged and computes a new valueX to
be used for packet forwarding. This approach, though simple,
shows two main drawbacks:

• The source node has to (compute and) include an entry
for everynode in the network using the correspondingpi,
a time/processing consuming procedure.

• Every forwarding node that needs to remove its entry
from the X header should extractall entries in X ,
whether their decryption is valid (for forwarding nodes
in the routing list) or invalid (for other nodes in the
network), delete or invalidate its entry, and recompute

9

TABLE I

SUMMARY OF THE PROPOSED CODING TECHNIQUES

Extensive routing Aggregate routing Avoid routing Change packet Decorrelate packets
list list loops on path with similar paths

Tamper-resistant devices Sec. III Sec. IV-A Sec. IV-D.1 Sec. IV-E.1 Sec. IV-E.1
Non-tamper-resistant devices Sec. IV-B Sec. IV-B.2 Sec. IV-D.2 Sec. IV-E.2 Sec. IV-E.2

a newX , another time/processing consuming procedure.

Even though only nodes that need to change their entries
are subject to the above drawbacks, we are currently working
on alleviating this procedure, taking more advantages of the
mathematical properties of the CRT.

E. Making packet headers untraceable

Whenever a forwarding node removes its entry from the
routing list (Bloom filter, or the CRTX), it makes the packet
header change. However, such changes are not enough to make
the packet header untraceable:

• Using Bloom filters with counters, constantly decreasing
counters and constant positions of 0 counters give attack-
ers a potential tool to trace packets as they progress in
the network.

• Using CRT routing lists, deleting entries from a routing
list X will reduce the number of includedpi. Therefore
the value ofX decreases since0 < X ≤

∏n
i=1

pi,
increasing the capability of an attacker to trace the packet.

1) Changing the Bloom filters:

• The zeros in Bloom filters with counters can be converted
to “redundant counters” that help nodes make packets
untraceable by randomly changing them. Each forwarding
node, after removing its entry from the routing list,
randomly sets the values of the “redundant counters”.
Several methods can be used to indicate the positions
of the “redundant” counters in the Bloom filter, such as
encrypting the list of positions using the shared keyZ,
or constructing another Bloom filter to include the list of
redundant counters’ positions.

• Instead of decreasing (respectively increasing) the corre-
sponding Bloom filter counters by 1, a forwarding nodei
(resp. the source node) can decrease (resp. increase) the
counters byδ(Z, IDi, r(t), counter position), a shared
function of (for example) the shared keyZ, the node ID,
the clear-text nonce and the counter position in the filter.
This makes the packet headers change irregularly as they
progress along their route(s), and the tracking/analysis
harder to perform.

• To avoid that different packets with the same route use
the same header (refer to Fig. 4), the hash functions can
use the noncer(t) (transmitted in clear) as an additional
input, to generate totally different bit/counter positions
for similar routing lists.

2) Changing the CRT headers:To avoid that the integer
value of CRT list (X) constantly decreases when deleting a
nodes’ entries as it progresses on the path, nodes should rather
insert an invalid entry instead of deleting it. This ensures

that the number ofpis does not decrease, and thereforeX
(0 < X ≤

∏n
i=1

pi) changes randomly, regardless from
the direction the packet goes in, or from its distance to the
intended destination.

V. EAVESDROPPING DESTINATIONS

Leveraging the broadcast nature of node transmissions in
an ad hoc network, the source can construct the packet route
to pass bythe intended destination, in a way that this last can
eavesdrop the transmission, without necessarily being on the
route. This will lead to a drastic increase of the anonymity set,
at very negligible cost. It further slightly reduces the size of the
routing list, making it less energy consuming for transmission
and for reception. In fact, letv be the average number of
distinct neighbors each node has, out of whichr nodes
relay the packets on the multicast tree. Using this technique
multiplies the average size of the multicast anonymity set by
v − r, at the cost of additional processing at each neighbor.
With respect tounicast, the set size increases to

v ×
h∑

i=1

ri

i.e. v times more efficient than a unicast that does not use
eavesdropping destinations.

This technique, though simple, is highly efficient. However,
one should carefully design the traffic pattern of eavesdropping
destinations, for instance not to send one ACK per received
packet, to avoid being recognized by the attacker.

VI. D ISCUSSION

Mobility: One relevant issue that was not tackled in the
previous sections is about networks with mobile devices. In
the system model we assumed “global routing information is
requested at an initial phase”, after which the traffic sources
are able to establish their anonymous routing lists. If any of
the forwarding node moves away from the path, the source
cannot be notified of the route break, as in normal ad hoc
routing, since it is assumed to be unknown to forwarding
nodes. The destination cannot notify the source neither, unless
it uses a different route that did not change in the meanwhile.
In the same vein, a similar problem occurs at the MAC layer:
since no MAC acknowledgments are used, a routing node has
no direct way to see whether a link is broken. Listening to
neighbor advertisements does not solve the problem since a
routing node ignores which neighbor is the next forwarding
node on the path.

Therefore, periodic route requests should be used to main-
tain a global view of the network topology. The impact of
mobility on the performance of routing protocols has been
analyzed in the literature [18], in the general context, not

10

specific to anonymity. However, the results therein can be
reused in our network model since the impact of mobility is
somehow orthogonal to anonymity.

Anonymity performance evaluation:The coding methods
we propose aim to combine generic anonymity techniques,
multicast-based or onion-based, so they can thwart generic
attackers, global or local. Evaluating the performance of a
given protocol (e.g. multicast-based) in terms of anonymity
level is specific to the protocol itself and not to our coding
methods.

VII. R ELATED WORK

Considerable work has been done on anonymous routing
and untraceability. We limit this discussion to the ones of
nearest link to our work. In [1] Kong and Hong proposed a
novel technique called ANODR which introduces anonymous
connection setup into the route discovery process using link
pseudonyms. ANODR relies on the novel idea of broadcast
with trapdoor information. ANODR provides excellent per-
formance to thwartlocal attackers, but it does not diversify
packet routes. Therefore, traffic analysis by aglobal attacker
enables him to reveal the sender and destinations IDs. In [3]
Jiang et al. proposed a method based on Mix routes. Mix
is controlled by specific mix nodes, also called “dominators”
that diversify routes. It relies on onion routing and has the
following properties/limitations:

• Each Mix only knows the previous and next Mix
• The first and last Mix know the sender and recipient of

the message, respectively
• High energy consumption at the Mixes
• For a global attacker, source and destination are still not

well hidden. Stop-and-go, and dummy packet injection
can help improving sender/recipient anonymity. This was
proposed by the authors briefly, without getting into the
details.

In [2], Deng et al. show how traffic analysis can localize
traffic sinks in the network and propose using multicast trees to
provide route diversity in the network and hide traffic sources
and destinations. The approach is quite appealing, but the
paper provides a high-level description, without dealing with
implementation issues, such as how to combine multicast with
onion routing (used in other anonymity techniques). In [16]
Molva and Tsudik propose using the CRT to provide “secret
sets” in generic communications. Our work differs from [16]
by the fact that it applies the CRT to ad hoc multi-hop routing,
combining it with onion routing, and by using considerably
“lighter” mechanisms when tamper-resistant devices are used.
Note that our coding techniques can be used in combination
with most of the anonymity techniques we describe above
and other ones like stop-and-go, varying packet sizes etc. Our
techniques help combining separate anonymity techniques to
reach higher levels of anonymity than the ones they reach
separately.

VIII. C ONCLUSION

In this paper we first showed the relevance of using mul-
ticast for anonymity in ad hoc networks. Multicast consid-
erably reduces the number of transmissions, with respect to

anonymity techniques based on unicast, whenever a given
anonymity set is to be reached. To make multicast work
with anonymity techniques, such as onion encryption, we
devised techniques for packet routing headers and the packet
payloads separately. The resulting combination is a constantly
changing/unrecognizable packet (header and payload), being
routed on a multicast tree to reach a given anonymity set while
reducing the transmission costs. Different novel techniques
were introduced for different network models: for networks
with tamper-resistant devices, the anonymity techniques we
introduce alleviate the use of encryption, making it “light”
enough without compromising the required level of anonymity.
For networks with non-tamper-resistant devices, we introduced
new techniques that guarantee anonymity, even when a large
number of nodes gets compromised. Though novel, the tech-
niques we present may be combined or adapted to existing se-
curity protocols to thwart their corresponding security attacks,
without being constrained by our techniques. We evaluate each
technique to show its performance costs and benefits.

REFERENCES

[1] J. Kong and X. Hong, “ANODR: ANonymous On Demand Routing
with Untraceable Routes for Mobile Ad-hoc Networks,” inProceedings
of MobiHoc, 2003.

[2] Jing Deng, Richard Han, and Shivakant Mishra, “Countermeasures
Against Traffic Analysis Attacks in Wireless Sensor Networks,” in
Proceedings of IEEE/CerateNet Conference on Security and Privacy in
Communication Networks (SecureComm), 2005.

[3] Shu Jiang, Nitin Vaidya, and Wei Zhao, “A mix route algorithm for
mix-net in wireless ad hoc networks,” inProceedings of MASS, 2004.

[4] Yanchao Zhang, Wei Liu, and Wenjing Lou, “Anonymous communi-
cations in mobile ad hoc networks.” inProceedings of IEEE Infocom,
2005.

[5] Bo Zhu, Zhiguo Wan, Mohan S. Kankanhalli, Feng Bao, and Robert H.
Deng, “Anonymous Secure Routing in Mobile Ad-Hoc Networks,” in
Proceedings of of the 29th Annual IEEE International Conference on
Local Computer Networks (LCN), 2004.

[6] Marc Rennhard and Bernhard Plattner, “Practical anonymity for the
masses with mix-networks,” inProceedings of IEEE WETICE, 2003.

[7] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,”Communications of the ACM, 1981.

[8] Paul F. Syverson, David M. Goldshlag, and Michael G. Reed, “Anony-
mous connections and onion routing,” inProceedings of IEEE Sympo-
sium on security and privacy, 1997.

[9] David B. Johnson and David A. Maltz, “Dynamic source routing in
ad hoc wireless networks,”In Imielinski and Korth, editors, Mobile
Computing, volume 353. Kluwer Academic Publishers, 1996.

[10] Y. Hu, A. Perrig, and D. Johnson, “A secure on-demand routing protocol
for ad hoc networks,” inProceedings of MobiHoc, 2002.

[11] Charles E. Perkins and Elizabeth M. Royer, “Ad hoc on-demand distance
vector routing,” inProceedings of the 2nd IEEE Workshop on Mobile
Computing Systems and Applications, 1999.

[12] Burton H. Bloom, “Space/time trade-offs in hash codingwith allowable
errors,” Communications of the ACM, 13(7):422-426, 1970.

[13] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” inAllerton, 2002.

[14] Claude Castelluccia and Pars Mutaf, “Hash-based dynamic source
routing,” in Proceedings of Networking, 2004.

[15] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker, “Mitigating
routing misbehavior in mobile ad hoc networks,”Mobile Computing
and Networking, pages 255-265, 2000.

[16] R. Molva and G. Tsudik., “Secret sets and applications,” Information
Processing Letters, 1998.

[17] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder, “Summary
cache: a scalable wide-area web cache sharing protocol,” inProceedings
of the ACM SIGCOMM, 1998.

[18] Fan Bai, Narayanan Sadagopan, and Ahmed Helmy, “IMPORTANT: A
framework to systematically analyze the Impact of Mobilityon Perfor-
mance of RouTing protocols for Adhoc NeTworks,” inProceedings of
IEEE Infocom, 2003.

