
Packet Combining in Sensor Networks

Henri DuboisFerrière∗

School of Computer and
Communication Sciences

EPFL
Lausanne, Switzerland

henri.duboisferriere@epfl.ch

Deborah Estrin
Department of Computer

Science
UCLA

Los Angeles, CA 90095

destrin@cs.ucla.edu

Martin Vetterli
School of Computer and
Communication Sciences

EPFL
Lausanne, Switzerland

martin.vetterli@epfl.ch

ABSTRACT

This paper presents the Simple Packet Combining (SPaC)
error-correction scheme for wireless sensor networks. Nodes
buffer corrupt packets, and when two or more corrupt ver-
sions of a packet have been received, a packet combining
procedure attempts to recover the original packet from the
corrupt copies. Packet combining exploits the broadcast
medium and spatial diversity of a multi-hop wireless net-
work by using packets overheard at any node, in addition to
the next-hop destination of the packet itself. Unlike point-
to-point forward error correction (FEC), packet combining
therefore helps multi-node interactions such as multi-hop
routing or broadcasting as well as to hop-by-hop commu-
nication. Also, SPaC does not transmit redundant overhead
on good links and does not require costly probes to estimate
channel conditions.

We have implemented SPaC as a link-layer extension on
sensor nodes; it is transparent to upper layer protocols and
has low memory and CPU footprints. We evaluate perfor-
mance through a combination of analysis, trace-driven sim-
ulation, indoor and outdoor testbed micro-benchmarks, and
deployment on a live network. The results show significant
performance gains, even when accounting for the energy cost
of CPU processing. We also present detailed bit-level link
measurements and the design and evaluation of a new pream-
ble detection scheme motivated by these measurements.

Categories and Subject Descriptors: C.2.1 [Computer-
Communications Networks]: Wireless Communication

General Terms: Measurement, Performance, Design, Ex-
perimentation, Algorithms.

Keywords: Packet combining, cooperative diversity, chan-
nel coding, error correction, bit error, sensor networks, wire-
less networks.

∗

The work presented in this paper was done in part while the first

author was visiting UCLA. It was supported in part by the National

Competence Center in Research on Mobile Information and Commu-

nication Systems (NCCR-MICS), a center supported by the Swiss Na-

tional Science Foundation under grant number 5005-67322.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’05, November 2–4, 2005, San Diego, California, USA.
Copyright 2005 ACM 159593054X/05/0011 ...$5.00.

1. INTRODUCTION
A fundamental challenge in wireless communications is

that radio links are subject to fading, attenuation, and noise,
which degrade the radio signal captured by a receiver and
ultimately translate into bit errors and corrupted packets.
This challenge is exacerbated in sensor networks, where se-
vere energy and complexity constraints preclude the use of
sophisticated receiver front-ends and error-correction tech-
niques that may be found in other wireless systems.

One option to increase the reliability of noisy links is for-
ward error correction (FEC): each packet is sent with some
redundant bits allowing to correct (a limited number of) er-
rors. The class of error-correcting codes is vast [14] [4], and
many have been applied to wireless communications. These
instances have typically addressed point-to-point communi-
cations. In other words, they work over a single link at a
time. But proposed sensor networks are often multi-hop, and
interactions may happen across several links at a time. A
novel aspect of our scheme is that it takes advantage of these
multi-hop interactions by using overheard packets at nodes
other than the packet’s destination. For example, when a
node sends a packet to the next hop in a route, it is possible
that an upstream node already receives some of the bits in
the packet. Traditional error-correction techniques are un-
able to exploit such information that arises from multi-hop
interactions.

This work is rooted in a recent class of techniques known
as cooperative communication Cooperative communication
seeks to generate signal diversity in a new way that exploits
the broadcast and multi-point nature of a wireless network.
We refer to [1] for an introduction to this field, and to [12]
and [24] for two instances from which our work takes some
conceptual inspiration. The schemes presented in the coop-
erative diversity literature often make assumptions that do
not hold with current sensor network technology, such as full-
duplex transceivers, hardware that can repeat and amplify
an analog signal, or knowledge of fading coefficients. The
question we ask in this paper is “Can cooperative diversity
be exploited on simple, low-cost sensor network platforms?”.

To answer this question, we have designed, implemented,
and measured Simple Packet Combining (SPaC), a coop-
erative diversity system that performs error correction by
combining corrupt packets. The proposed design is primar-
ily geared toward the class of low-rate sensor networks where
nodes sleep most of the time and where channel utilization
is very low. Packet loss in such networks is primarily caused
by fading and attenuation rather than congestion and colli-
sions. Consequently our design is geared toward corruption

consisting of small numbers of errors rather than packets
with long error bursts due to interference.

Nodes buffer corrupt packets upon reception, and when
two or more corrupt versions of a packet have been received,
a packet combining procedure attempts to recover the orig-
inal packet from the corrupt copies. If these corrupt copies
correspond to identical transmissions of a same packet, then
combining them corresponds to decoding a repetition code.
With three corrupt packets, repetition decoding can be done
by a simple majority voting scheme. With only two corrupt
packets, we use a different scheme called merging and for
which we develop an efficient implementation based on in-
cremental CRC computation. A repetition code has weak
error-correcting power; it is preferable when possible that
multiple corrupt copies have different encodings, so that
combining them becomes a decoding operation with greater
error-correcting power. Specifically, our system uses a sys-
tematic, invertible block code, and transforms some packets
into parity packets with this code before transmission. Note
that the original bits can be recovered from a parity packet if
it is received without errors, and that a parity packet has the
same length as the original. Therefore, a noteworthy aspect
of the scheme is that it never imposes redundant overhead
on transmissions which are received without errors.

On point-to-point links, packet combining behaves simi-
larly to a class of techniques known as Hybrid ARQ (HARQ),
that originated in the work of Sindhu [20]. SPaC further gen-
eralizes HARQ to multi-hop settings using a novel form of
error correction that exploits overhearing packets from the
broadcast wireless medium. As such, SPaC is a transparent
extension to the link layer that increases the efficiency of
upper layer protocols. It works either in conjunction with
link-layer retransmissions, if those are enabled, or without
link-layer retransmissions.

We report on experimental results for single-hop with
retransmissions, single-path routing, opportunistic routing,
and routing with hop-by-hop retransmissions. Gains in-
crease automatically as one or more of the underlying links
traversed becomes more and more lossy. Broadcasting ex-
periments and integration into a real deployment further
show that the gains are highly dependent on the underly-
ing links and topology. Because packet combining transmits
no overhead, it never decreases performance, allowing it to
be deployed uniformly through a network without penalty.

We also examine the energy cost of CPU processing. Pro-
filing shows that computation energy cost cannot be entirely
be neglected in comparison with communication cost, con-
trary to common assumptions.

Section 2 an overview of SPaC. Section 3 shows detailed
bit-level measurements indicating that many errors can be
corrected with simple channel codes, and introduces an
error-tolerant preamble detection scheme motivated by these
measurements. A detailed presentation of SPaC is in Sec-
tion 4, Section 5 discusses our implementation. Experimen-
tal performance, results are given in Section 6, related work
in 7, and Section 8 concludes the paper.

2. OVERVIEW
Before entering technical specifics, we explain how packet

combining comes into play under three networking primi-
tives. We only assume at this point the existence of an al-
gorithm that can recover (with some probability) the orig-
inal packet from two or more corrupt copies. The network

Primitive Nodes that can exploit received corrupt packets.
Single-hop Destination
Multi-hop All nodes on route between sender and destination
Broadcast All nodes

Table 1: Interaction spans.

primitives used to illustrate packet combining are single-hop,
multi-hop routing, and broadcasting. These are also the ones
used for the micro-benchmark evaluation of Section 6.

Other networking primitives can also benefit from packet
combining, for example multicast, anycast or multi-path
routing. The examples presented here are chosen to be sim-
ple and general, and to capture a broad class of network-
ing primitives present in sensor networks. Note that fur-
ther protocol-specific are possible for each individual primi-
tive. For example multi-hop routing may be improved by an
end-to-end reliability mechanism; and flooding can be made
more efficient by duplicate suppression. We should empha-
size that packet combining in no way precludes the use of
such protocol-specific optimizations, but rather that it is an
underlying link layer mechanism that applies transparently
to upper layer protocols.

2.1 Examples
Single-hop packet combining. In a standard ARQ

system, the receiver immediately discards a packet received
with errors. Hybrid ARQ (HARQ) schemes improve upon
ARQ by buffering a corrupt packet at the receiver whilst
awaiting retransmission, and combining multiple corrupt
copies to do error recovery. The idea of HARQ originated
in the work of Sindhu [20], who first considered the idea of
merging two non-coded packets to correct errors. Rather
than retransmit the original packet as is, the sender may re-
transmit the parity bits produced by applying an encoding
operation to the original packet. This allows the packet com-
bining decoder to recover from more errors than if the same
bits had been transmitted twice. The idea of using plain
and parity packets, which we employ in this paper, has been
studied in various forms using increasingly complex codes
[14] [7]. The contribution of this work is to generalize the
ideas of hybrid ARQ to multi-hop primitives and apply them
in a practical setting.

Multi-hop packet combining. When a packet traverses
a multi-hop route, HARQ may happen on a hop-by-hop basis
anywhere along the path. But beyond this, packet combin-
ing also enables a novel form of multi-point interaction that
occurs whenever an upstream node beyond next hop over-
hears a corrupt packet. This corrupt packet is buffered and
used for error correction when the next hop forwards the
packet. By exploiting this multi-point interaction in addi-
tion to single-hop combining, the effect of packet combining
on a route is greater than the sum of packet combining on
constituent hops.

The top row of Fig. 1 depicts a three-hop route with a
sender A, relays B and C, and destination D. In Fig. 1(b),
the sender transmits a packet to B, who receives it without
error. Though the link from A to C is too lossy to be used by
the protocol, it still delivers a large number of corrupt pack-
ets, and C receives a corrupt copy of this packet. In Fig. 1(c),
node B forwards the packet, which is received with errors at
C. Since C now has two corrupt copies of the packet (one
sent by A, one by B) it can combine them and (with some
probability) recover the original packet. Finally C forwards
the packet which arrives with errors at D, who now has three

corrupt copies and recovers the packet by combining them.
Note that C may occasionally overhear A’s packet without
errors. The use of an opportunistic routing protocol that can
exploit such packets (e.g., [2]) is orthogonal to packet com-
bining, and both may be used in complement. We should
emphasize that no network layer state need be exposed to
the packet combining layer; this layer simply accepts corrupt
packets blindly and attempts to combine them, without us-
ing topological information from the network layer.

Broadcast Packet Combining. We now turn to the
network broadcast primitive, where one node seeks to dis-
seminate a packet to all others. We consider a simple flood-
ing protocol that forwards each flooded packet once (with
duplicate detection by a sequence number or random iden-
tifier). Other, more efficient approaches to broadcasting are
possible [13] [8]. We note that packet combining can enhance
other broadcasting protocols in a manner similar to flooding,
and study flooding because it is a simple mechanism found
in many applications (such as Surge, tinyDB [15], or directed
diffusion [10]).

Fig. 1(e) shows a 5-node topology. In Fig. 1(f), node
A originates a flood packet that is received without errors
by B, and with some errors by C and D. B now transmits
the packet (Fig. 1(g)); it is received with errors by nodes
E and D. Node D now has two error copies of the same
packet, from which the packet combiner decodes the original
packet. Finally in Fig. 1(h), node D transmits the packet.
Node C receives the packet without errors, and can therefore
discard the corrupt packet held in its buffer. Node E however
receives a corrupt packet, and combines the two previous
corrupt copies to correct the errors.

Unlike multi-hop routing, flooding never uses link-layer re-
transmissions, and therefore cannot benefit from the single-
hop interaction of HARQ. However packet combining can
take advantage of a larger number of bad packets in flooding
than routing, since a bad packet received at any node may
be exploited (Table 1).

2.2 Comparison with FEC
An alternative solution to packet combining would be to

use standard FEC techniques. It is therefore natural to ask:
Why not use FEC instead of packet combining? The answer
is two-fold. The first part concerns link variability. For any
link with known and stationary error characteristics (bit-
error rate, burstiness), one can design a channel code which
optimally matches those characteristics. However, as soon
as the link deviates from the characteristics the code was
designed for, then performance drops sharply: if the link is
more error-prone than expected the code cannot recover the
errors, and if it is better than expected, transmitting parity
bits becomes redundant overhead. In particular, appending
any error-correcting bits to a packet which arrives without
errors is highly wasteful. Sensor network measurement stud-
ies [25] [5] have shown that link variability is high both in
time and across space, in particular for those very links which
are error-prone and most require FEC. Therefore, it is dif-
ficult to design an efficient static FEC system for the wide
range of channel conditions seen in a sensor network. Adap-
tive FEC can provide a solution to time-varying channel con-
ditions, but requires frequent, costly channel measurements
to obtain a timely and accurate estimate of the channel bit-
error rate. These measurements are especially costly when
the traffic rate is low and the channel potentially changes
between every packet transmission. In comparison, packet

combining provides a simple form of adaptive channel coding
that requires no explicit channel measurements: if the chan-
nel is good, the initial transmission is received correctly with
no redundant error correction bits having been transmitted.
If the channel is poor, then the retransmission needs only to
contain additional error-correction bits to “elevate” the two
combined packets at the receiver to a lower-rate code, with
which more errors can be corrected.

The second part of the answer is that packet combining
naturally transposes to multi-hop scenarios, whereas FEC is
inherently geared toward point-to-point links. In the case of
multi-hop routing, FEC can improve the performance of each
individual links, but can not take advantage of overheard
corrupt packets at downstream nodes. In contrast, packet
combining can do both. In the case of broadcasting, a node
receiving multiple corrupt copies from different nodes can
not combine them with standard FEC.

3. CHANNEL MEASUREMENTS
Before designing any error correction system, it is neces-

sary to know the error characteristics of the channel being
addressed. In the case of packet combining, we are interested
in the following two aspects:

• Error characteristics: What bit error rates do we
see in corrupt packets? How bursty are error patterns?
We will see that error characteristics are such that a
simple channel code can already correct a large number
of error patterns.

• Sources of packet loss: What portion of packet loss
is due to packets that are received corrupt and dis-
carded by the link layer, and what portion is due to
missed packets, i.e., those packets that were not re-
ceived at all? This breakdown is critical: if loss is pri-
marily attributable to missed packets, then an error-
correction scheme will see too few corrupt packets to
be effective. These measurements motivated the de-
sign of a new error-tolerant preamble detection scheme
(ETPD) that we present in the final part of this sec-
tion.

We consider an asynchronous, random-access channel. A
known preamble pattern, serving to achieve receiver syn-
chronization, precedes each transmitted packet. A node in
receive mode continuously draws in bits from the radio until
the previously received bits exactly match the preamble se-
quence; once a preamble has been detected the full packet is
drawn in. If a preamble is received with any bit errors, then
entire packet is missed1. The notations are as follows:

• pd is the probability of error-free packet delivery.
• pc is the probability of corrupt packet delivery

(packet received with one or more bit errors).
• pm = 1 − pd − pc is the probability of missed packet

(packet not received at all, because the preamble was
mis-detected). We therefore have pm + pd + pc = 1,
and the overall packet loss probability is pc + pm.

• Rcm = pc/pm is the ratio of corrupt to missed
packets. Packet combining will work better with high
values of Rcm; the ideal case is when pm is close to 0.

• Lpre, L, and Ltot = Lpre+L are respectively the pream-
ble length, packet length (including headers and pay-
load), and total transmission length, in bits.

1This mechanism is used in 802.11 and 802.15.4 as well as
non-standard radios like the CC1000.

d)b)a) c)

A
B

C
D

A
B

C
D

A
B

C
D A

B
C

D

b) c)a) d)

B

A

D

B

A

D

B

A

D

B

A

D

E E E E

CCCC

: good link : packet with errors: error−free packet: intermediate link : poor link

Figure 1: Packet combining in multi-hop primitives. Top: multi-hop routing. Bottom: network broadcasting.

• p̂d (resp. p̂c, p̂m, and R̂cm) denotes the estimated value
of pd (resp. pc, pm and Rcm) made on the empirical
data for a given link.

We used two testbeds: a 39-node indoor testbed with nodes
attached to the ceilings across several offices on one floor
of UCLA’s Boelter Hall and a 10-node outdoor testbed in-
stalled in a UCLA courtyard. Each node is a Crossbow
Mica2dot, which has an Atmel ATmega128L microcontroller
with 4KB of RAM, 128KB of Flash, and a CC1000 radio
[6]. The radio operates in the 433Mhz band, uses narrow-
band 2-FSK modulation, and runs at a bit rate of 19.2Kbps
(bits are Manchester encoded, resulting in a 38.4kbps symbol
rate). In our experiments each node was in turn the sender;
other nodes listened and logged received packets via a wired
backchannel. We ran experiments varying two parameters:
transmission power (-15dBm and -5dBm) and packet length
(16 and 128-byte payloads, with a 5 byte header and a 2 byte
trailer), giving us a total of four configurations and 150,000
packets transmitted.

Error characteristics are very different on a congested net-
work, where a large number of errors are due to interfer-
ence bursts from concurrent transmissions, and on a network
with low channel occupancy. Our aim is to improve perfor-
mance of low-power, low-rate applications, and we conse-
quently made measurements on a “silent” network with no
concurrent background traffic. Note that in the presence
of external RF sources (other wireless devices, electronics),
burst interferences are still possible even in a silent network.

3.1 Bitlevel Error Measurements
We now examine the error characteristics of our channel,

starting with the number of bit error rates observed in cor-
rupt packets. Figure 2(a) shows the distribution of BER
over all corrupt packets. Most corrupt packets have few bit
errors: the proportion of corrupt packets with a bit error
rate below 0.05 is 85% both for short and long packets. The
proportion of packets with a bit error rate greater than 0.1
is 6% for short packets and 10% for long packets.

With two or more corrupt copies of a packet, we effectively
have an encoding that is half-rate or lower. Bit error rates of
0.05 are within corrective reach of half-rate codes [14]. This
indicates that many corrupt packets should be recoverable
through packet combining. But bit error rate alone does
not completely characterize the error process; in particular
burstiness is an important factor to guide the choice of error-
correction mechanism. Assume for example the use of a code

 0
 0.2
 0.4
 0.6
 0.8

 1

 50 45 40 35 30 25 20 15 10 5 1

P
(e

i+
k
 |
 e

i)

Lag k (bits)

Indoor (Packets with BER > 0.05)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 50 45 40 35 30 25 20 15 10 5 1

P
(e

i+
k
 |
 e

i)
Indoor (Packets with BER < 0.05)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 50 45 40 35 30 25 20 15 10 5 1

P
(e

i+
k
 |
 e

i)

Outdoor (Packets with BER < 0.05)

Figure 3: Empirical bit-error probability conditional
on an error having occurred k bits earlier. Horizon-
tal lines show the average bit-error rate for each data
set. Top and center: packets with BER < 0.05. Bot-
tom: packets with BER > 0.05.

which can correct 1 error in every 8-bit codeword, and a
BER well below 1/8. If errors are uniformly distributed,
then most codewords will have 0 or 1 errors and will be
recovered. For the same BER, but with bursty errors, the
probability of a packet containing a uncorrectable codeword
with more than one error is increased.

Figure 3 shows the empirical bit-error probability condi-
tional on an error having occurred K bits earlier. Hori-
zontal lines show the average bit-error rate for each data
set, or equivalently, the auto-conditional error probability of
an i.i.d. error process with same BER. These plots sug-
gest that one can coarsely classify corrupt packets into two
categories: packets with a low bit-error rate and low error
burstiness, and packets with higher error rates and a bursty
error process. Since the former category represents nearly
90% of all corrupt packets, (see Fig. 2(a)) and since the lat-
ter has higher error rates which are harder to correct with
low computational complexity, we design Section 4 an error-
correction coding which is designed to correct the low BER
majority of packets, but not the highly bursty ones.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
(B

E
R

 <
 x

 |
 B

E
R

 >
 0

)

BER

Empirical CDF of bit error rates

Outdoor
Indoor

a) Empirical CDF of bit error rates.
Most corrupt packets have few bit errors.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 20 15 10 5 1

P
(R

c
m

 <
 x

)

x

Empirical CDF of Rcm

16 byte payload (all links)
128 byte payload (all links)

16 byte payload (weak links only)
128 byte payload (weak links only)

b) Empirical CDF of R̂cm, the ratio of
corrupt to missed packets.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.01 0.1 1 10 100 1000

P
(R

c
m

 <
 x

)

x

Empirical CDF of Rcm with error-tolerant preamble detection

Ne = 0
Ne = 1
Ne = 2
Ne = 3

c) Empirical CDF of R̂cm with
error-tolerant preamble detection.

Figure 2: Bit error rate and preamble detection measurements.

The top and center plots are computed over the subset of
packets with BER < 0.05. Of these two plots, the outdoor
is least bursty: the presence of an error at bit i slightly in-
creases the probability of errors in the following two bits,
but after that the error probability is the same as for an
i.i.d. process. The indoor trace is slightly more bursty, with
the probability of an error immediately following a previ-
ous one at approximately 0.09. This difference between in-
door and outdoor burstiness, may be due to interfering RF
sources which are more likely to be found inside a building
than outside. The bottom plot is computed over the much
smaller subset of packets with BER > 0.05. Here, the pic-
ture changes sharply: the error process is much more bursty,
over a range of at least 50 bits. For these packets, the short
code discussed above would not suffice, since the probability
of at least one codeword in the packet having multiple errors
is high.

While we have chosen, due to complexity constraints, to
“ignore” the class of packets with highly bursty errors, we
note that two simple techniques are possible two improve
error correction with bursty errors. The first is interleav-
ing. The second is to use codes with block lengths larger
than the burst lengths. Unfortunately, it is not feasible to
implement either technique in software with simple micro-
controllers. For increased burst-tolerance and robustness,
both interleaving and longer-block decoding are possible in
a hardware implementation.

3.2 Sources of Packet Loss and ETPD
We now turn to the breakdown of packet loss between

corrupt and missed packets. Fig. 2(b) shows the empirical

CDF of R̂cm, the observed ratio of corrupt to missed packets,
for short and long packets. We observe that R̂cm is lower for
short packets than for long packets. For example no links
have R̂cm > 5 with short packets, whereas with long packets
over 40% of our links have R̂cm > 5. This observation can be
explained by noting that pm is independent of packet length
(because preamble length is constant), whereas pc increases
with packet length, since for a given BER, the probability
that at least one bit in the packet is corrupt increases with
the number of bits. From this observation, we expect packet
combining to give more gains with long than short packets.

Fig. 2(b) further distinguishes R̂cm over weak links, which

we defined as those with p̂d < 0.4. R̂cm is lower when con-
sidering only the weak links. Yet, links with a low delivery
rate are those where packet combining is most needed, and
if packet combining sees too few corrupt packets its utility

will be limited. Since a receiver misses a packet whenever its
preamble is received with errors, these measurements moti-
vated the design of ETPD, to increase Rcm by allowing the
reception of a packet in the presence of preamble bit errors.

Our initial implementation of ETPD accepted preambles
with up to Np

max = 4 bit errors (out of 4 preamble bytes).
We set this initial value for Np

max because packets with more
preamble errors are likely to have too high a bit error rate to
be corrected with a half-rate code, and furthermore allowing
a greater number of errors would increase the probability
of false positives. We added the additional constraint that
no single byte could have more than 1 bit errors, to further
reduce the probability of false positives and allow for more
efficient software implementation.

We ran experiments identical to those of Section 3.1, ex-
cept that the received preamble was also dumped out along
with each packet. We then classified received packets ac-
cording to the number Ne of preamble bit errors. Figure
2(c) compares the empirical CDF of R̂cm with and without
ETPD for 1 ≤ Np

e ≤ 4. The data for all CDFs originate from
the same packet traces: by examining the received pream-
bles, we can see which packets would be received with a
given preamble error-tolerance. ETPD allows a significant
increase in R̂cm: we go from having R̂cm > 10 for only 20%
of links without ETPD, to 60-70% with ETPD (depending
on the setting of Np

e).

The observed increase in R̂cm does not demonstrate alone
that ETPD is worthwhile. Under the assumption that the
channel does not vary dramatically over the duration of a
packet, we expect that packets with error(s) in the preamble
will have a higher bit-error rate than those without. If those
packets have a sharply increased BER, then receiving them
may be pointless. We therefore classified corrupt packets by
the number of preamble errors each one had, and computed
in Table 2 the observed bit-error rate for each set of corrupt
packets. This table shows that the packet BER increases
with the preamble BER, in line with the intuition that BER
does not vary widely over the duration of a packet.

Our final ETPD implementation can be configured for
maximum allowed preamble errors Np

max between 0 and 3.
We set Np

max = 2 for all further experiments reported in
this paper, since with higher error tolerance, the marginal
increase in packet yield is small (Fig. 2(c)), and the addi-
tional packets have a very high bit error rate (Table 2).

A final aspect to consider with ETPD concerns the in-
creased probability of false positive preamble detections.
When placed in receive mode, a radio transceiver continu-

Preamble BER Packet BER
Np

e Np
e /Lpre (L = 16) (L = 128)

0 0 0.029 0.032
1 0.031 0.052 0.084
2 0.063 0.073 0.128
3 0.094 0.095 0.165

Table 2: Observed bit-error rate as a function of
number of preamble bit errors Np

e , for two different
payload lengths L.

ously reads and demodulates bits from the RF front-end. If
no transmission is ongoing, this effectively amounts to read-
ing random bytes. By increasing the preamble detection’s
error-tolerance, we increase the probability of having a se-
quence of random bytes that is falsely detected as a pream-
ble. We must therefore take into account the probability
of spurious packet receptions due to false positive preamble
detections. The probability of a spurious reception P (Np

e),
when tolerating exactly Np

e errors in the preamble can be
simply computed by counting the number of possible 32 bit
sequences with Np

e errors, and no more than 1 error per

byte: P (Np
e) = 2−32

Pi=Np

e

i=0

`

Np

e

4

´

8Np

e . For our chosen set-
ting Np

max = 2, this evaluates to a probability on the order
of 10−7, meaning that the number of spurious packet recep-
tions occurring in practice is negligible.

4. DECODING AND MERGING
Section 2 showed how a node may come to receive cor-

rupt packets in various settings. We now describe the packet
combining algorithms used on the receive path and the cor-
responding packet encoding functions on the transmit path.

4.1 Linear Block Codes
The class of error-correcting codes is vast. We focus in

this work on linear block codes, which can be implemented
efficiently in software using table-based methods (unlike, for
example, convolutional codes). A (n, k) linear block code is
defined by its generator matrix G, of size k x n. The encoder
multiplies each input block with the matrix G, transforming
k input bits into a codeword of length n. The decoder, given
a received codeword of n bits, finds the closest codeword (in
the set generated by G) and returns the information bits
corresponding to that codeword. If the number of bit errors
is higher than the half-distance between two codewords, then
the decoder returns the wrong information bits (that can
then be detected with high probability by an outer CRC
checksum). If two closest codewords are at equal distance to
the received word, the decoder cannot infer which was the
transmitted codeword, and declares a failure. For a general
overview of decoding algorithms, we refer to [14].

Within the class of linear block codes, we further restrict
our attention to invertible and systematic linear block codes.
A block code is systematic if the first k bits of a codeword
are the same as the input message bits, in other words the
generator matrix of a systematic code is of the form G =
[I |P] where I is the k × k identity matrix and P is a k × (n−
k) matrix called the parity matrix. A block code is invertible
if n = 2k and the matrix P is invertible. Note that an
invertible code is half-rate since n = 2k. Given this matrix
P , and an input word m (of length k bits), the encoder
outputs the 2k-bit codeword Gm = [I |P]m = [m|Pm]. This
codeword is the concatenation of the unmodified input m,

...1 2 3 n Corrupt plain packet

...
n321 Corrupt parity packet

... n321

n n

Plain and parity blocks are interleaved and passed to the decoder.
...

1 1 2 2 3 3

Figure 4: Packet Decoding: Recovering the original
packet from two corrupt packets, when one is plain
and the other is parity.

which we call the plain bits, and Pm, which we call the
parity bits. Note that since P is invertible, there is a one-
to-one mapping from Pm back to m, and therefore one can
recover the plain bits from the parity bits of a codeword and
vice-versa.

4.2 Packet Encoding and Decoding
In a standard block-coded FEC system, the encoder trans-

mits the plain and parity bits of a codeword together. This
comes at the expense of increasing the number of transmit-
ted bits by a factor of two, in the case of a half-rate code.
As discussed in Section 2.2, imposing this overhead on every
packet transmissions is prohibitive, given that many packets
are received without errors and do not need parity bits.

The key intuition allowing to use a code without trans-
mitting redundant overhead is to observe that we can sim-
ply send some “plain” packets which are not encoded, and
some “parity” transmissions containing only the parity part
of each codeword. Specifically, consider an input packet
m = m1m2 . . . ml, where each block mi is of length k bits.
The encoder outputs either m unmodified (a plain packet),
or the packet m∗ = Pm1Pm2 . . . Pml (a parity packet).
How the encoder chooses between outputting a plain or a
parity packet is discussed in Section 4.4. The motivation for
using a systematic, invertible code is now apparent:
1) If a parity packet m∗ is received without errors, the orig-
inal m is obtained simply by multiplying the packet by P−1:

P−1m∗ = P−1Pm1P
−1Pm2 . . . P−1Pml

= m1m2 . . . ml = m.

Note that since a parity packet has the same length as the
corresponding plain packet, the system does not transmit
any redundant overhead on good links, whether it transmits
a plain or a parity packet.
2) Two corrupt copies of a packet (one plain and one parity)
can be jointly decoded by taking k bits at a time from each
packet, and decoding the concatenated word. This operation
is illustrated in Fig. 4.

Our implementation uses the Hamming (7, 4) code, ex-
tended to (8, 4) with an additional error-detecting bit. The
(7, 4) code can correct up to one error per 7-bit block; the
extended (8, 4) code allows in addition to detect (but not cor-
rect) any 2 bit error per 8-bit block. The primary motivation
for using the extended code was to have byte-aligned blocks,
given that unaligned operations are inefficient to implement
in software. The additional error detection capability of the
extended code allows the decoding operation to ’abort’ as
soon as it encounters an uncorrectable error, in which case
wasted CPU cycles are saved.

0 010 000 01000 0 000 001 00000

0 000 001 01000

0 010 000 00000 0 000 000 0000 1 0 000 000 00000

0 0 000000 00 0

0 010 001 01000 0 010 001 00000

0

Set of candidate packets considered by packet merging

Transmitted data packet Two received corrupt packets

Figure 5: Packet Merging: Recovering the original
packet from two corrupt packets of same type.

Our choice of a short code was dictated by the practical
constraints on decoding overhead: the most efficient software
implementation is based on table-lookups, and table size is
exponential in block length. With more processing power,
syndrome decoding would alleviate these memory require-
ments. Beyond this constraint, any other systematic and in-
vertible block code can be used with minimal modifications.
For example a longer Hamming code, an extended Golay
code (with block length 24), or a Reed-Solomon code all
have more error-correcting power than the Hamming (8, 4)
we used.

4.3 Packet Merging
The preceding section showed how two corrupt packets of

different types (one plain, one parity) are jointly decoded.
What if the receiver has two corrupt packets of same type?
We call the corresponding operation packet merging. Given
that it essentially corresponds to decoding a repetition code,
it is not surprising that merging can correct fewer errors than
decoding.

Let m1 and m2 be corrupt copies of an original packet m;
ie m1 = m + e1 and m2 = m + e2, where e1 6= 0, e2 6= 0,
and additional is modulo 2. Note that m1 + m2 = e1 + e2.
Therefore by XORing m1 and m2, the receiver obtains a
merged error mask with a 1 in all bits that are errors in
either m1 or m2. Note that the merged error mask does not
show an error bit that occurred in identical positions in both
packets. We call such an error a hidden error.

Assume that the merged error mask contains ne non-zero
bits. There are then 2ne − 2 candidate error patterns that
may have occurred. The packet merging procedure corrects
each candidate error pattern on one of the corrupt pack-
ets, and recomputes the checksum to verify if it matches the
transmitted CRC checksum in the packet trailer2. Figure 5
illustrates a case with ne = 3 and shows all 23 − 2 candidate
corrected packets. We distinguish three cases, based on the
number k of error patterns for which the checksum is valid:
k = 0. None of the candidate error patterns, corrected on
the corrupt packet, yield a valid checksum. Packet merg-
ing cannot recover the original packet. This case can only
happen if there are hidden errors, since otherwise of the can-
didate error patterns corresponds to the effective error pat-
tern.
k = 1. A unique error pattern yields a valid checksum. The
resulting packet is passed up the stack.
k > 1. Multiple error patterns can recover a packet with
a valid checksum. Which (if any) corrected packet is the
original packet is undecidable; a failure is declared.

Since the number of candidate error patterns increases ex-
ponentially with ne, the computational overhead becomes

2
Merging is not attempted if the two received packets have differing

checksums, since this means that either both packets are different (in

which case combining is pointless), or that one of the checksums has

errors, and we cannot know which (if any) is correct.

prohibitive if we attempt to merge two packets that differ
in a large number of bits. The probability of hidden errors
increases with ne, and furthermore, so does the probability
of the case k > 1 occurring. We can see this intuitively by
considering the extreme case where both packets differ in all
bits, in which case we would iterate through all 2L possible
packets. For these reasons, we introduce an algorithm pa-
rameter nmax that upper-bounds the largest value of ne for
which packet merging is attempted. If the merged error mask
contains more than nmax errors, merging is not attempted
and a failure is declared. Besides bounding the number of
candidate packets searched, this parameter also controls the
two key performance metrics that are probability of merging
success, and probability of false positives. We shall see in
Section 5 that the effective choice in our implementation is
dictated by the computational constraints of merging more
than the probability of false positives.

For a given set of parameters (bit error rate, packet
length), the error correction performance of this merging al-
gorithm is characterized by two measures. The first is the
probability of success (the original packet is correctly recov-
ered from two corrupt copies), and second the probability
of false positives (the algorithm produces a ’repaired’ packet
that is different than the original packet, but for which the
checksum is correct). Clearly we wish to maximize probabil-
ity of success whilst minimizing probability of false positives.
Note that even without packet merging, the probability of
false positives is never zero, because a CRC checksum cannot
detect every possible error pattern. The key is then to ensure
that merging does not significantly increase the probability
of false positives with respect to a standard receiver.

Merging increases the probability of false positives by at
most a factor of 2nmax . Note that in the absence of hidden
errors, the error pattern that effectively occurred is present
in the set of candidates. Therefore a false positive can only
occur in the presence of hidden errors: if there are no hid-
den errors, and if there is an additional ’false positive’ error
pattern giving the correct checksum is correct, then the al-
gorithm finds more than one candidate repaired packet and
declares a failure (case k > 1). This further reduces the
probability by a factor of at least nmax/L.

4.3.1 Decoding and merging failure probability

We consider i.i.d. bit errors with bit error probability pe.
With the (8, 4) Hamming code which can correct up to one
error per codeword, jointly decoding two packets fails if any
codeword has more than one error. The decoding failure
probability ρ is thus:

ρ = 1 − ((1 − pe)
8 + 8pe(1 − pe)

7)L/4. (1)

where the the exponent is L/4 because the decoder oper-
ates over two packets of length L bits, or equivalently L/4
codewords of 8 bits each.

Merging fails in the presence of hidden errors or when both
corrupt copies contain together more than nmax errors. For
simplicity, we approximate the probability ρ̃ of this event by
the probability that two corrupt packets contain less than
nmax errors, noting that the probability of hidden errors
approaches 0 for small values of nmax.

ρ̃ = 1 −

nmax
X

i=0

2L

i

!

pe
i(1 − pe)

2Lpkt−n (2)

4.3.2 Efficient CRC computation

The overhead of the CRC computation is critical, because
for each candidate error pattern, packet merging must re-
compute the CRC on the packet corrected with the error
pattern. For example, in MRD [16] the CRC is computed in
a non-incremental fashion, and was found to be the bottle-
neck for the entire combining process. Since the set of bits
that change between each candidate packet is small (at most
nmax), recomputing the CRC over the entire packet is redun-
dant. However, existing incremental CRC algorithms (such
as those for ATM/IP networks [3]) do not apply here because
they assume that only bits at fixed positions (in packet head-
ers) can change at each hop. In our case, the candidate errors
can be anywhere in the packet.

We now describe an incremental algorithm that recom-
putes the CRC on a packet with one operation per changed
bit. It can be seen as a extension of [3] which removes any
constraints on the changed bit’s location in the packet. We
denote, as polynomials over GF(2), the packet M(x), and
E(x) the candidate errors bits (for which we wish to recom-
pute the CRC), we would like to compute the CRC over the
message Mc(x) = M(x) + E(x):

xr(M(x) + E(x)) mod G(x) =

xrM(x) mod G(x)
| {z }

fixed

+xrE(x) mod G(x)
| {z }

variable

, (3)

where G(x) is the CRC generator. The separation of (3) into
a sum is possible because the CRC is linear. Defining Ek(x)
as the vector containing a single 1 at position k and zeros
elsewhere, we can further decompose the variable part of (3)
as

xrE(x) mod G(x) =

L
X

i=0

1i(x
rEi(x) mod G(x)), (4)

where the indicator variable 1i is equal to 1 iff E(x) contains
a 1 at bit i. So with a pre-computed lookup table T with
entries defined as T [i] = xrEi(x) mod G(x), we can recom-
pute the CRC in one operation per changed bit. The table
T has length L and can be stored in ROM; in exchange we
make a linear gain of L/ne in computational overhead. As
the profiling results of Section 5.1 will show, packet merging
would be computationally infeasible (in software) without
this reduction.

4.4 When to send a plain or parity packet
Decoding can correct more errors than merging, and uses

fewer CPU cycles (as we shall see in Section 5.1). We there-
fore wish to maximize the probability that two corrupt pack-
ets received successively at a node are of different types
(plain and parity), so that they can be decoded. In the case
of retransmissions, this is straightforward: the sender alter-
nates between parity and plain. For multi-hop and flood-
ing however, there are multiple potential receivers, and the
sender cannot know the type of any corrupt packets already
buffered at a neighbor. For a node relaying a multi-hop
packet, the initial transmission is of opposite type to the last
received packet. For a flooded packet, the sender randomly
chooses between plain or parity.

Receiver processing depends on the type of packet re-
ceived. A valid plain packet is passed directly up the stack;
a valid parity packet must first be inverted. Two corrupt
packets of same type are merged, and then inverted if they

m Action
Plain None
Parity Invert

m n Action
Plain Plain Merge
Plain Parity Decode
Parity Plain Decode
Parity Parity Merge, invert

a) b)

Table 3: Receiver processing actions: a) for a valid
packet m, b) for two corrupt packets m and n.

are parity; two corrupt packets of different type are decoded.
These actions are summarized in Table 3.

4.5 Extensions
Two simple improvements can be made to the current de-

sign. We outline them for completeness and note that they
can be implemented as extensions to SPaC. The first is to
allow the receiver to buffer more than two corrupt packets.
With multiple corrupt copies, the receiver has more candi-
date pairs to combine. The probability of successful combin-
ing thus increases as

`

n
2

´

, where n is the number of packets
at hand. Note however that this also implies an increase in
the worst-case computational cost.

The second improvement is to use a higher order (mn, n)
code with a generator matrix of form G = [G1|G2| . . . |Gm],
where each Gi is an invertible matrix of dimension n × n.
This generalizes the notion of plain and parity packets to m
distinct packet types, each being invertible in the absence
of errors. A further desirable property is that any two sub-
matrices taken together form a half-rate invertible code such
as the ones considered previously in this section, so that
the combiner can jointly decode any two packets of different
types. With all m packets of distinct types, the encoding
rate 1/m allows to correct yet more errors. The general
form of such codes is not known, but some specific examples
exist such as the work of Alfaro and Meo [7], who propose
a third-order (24, 8) code. Though the 24-bit block length
means that decoding three packets jointly would be hard in
software on sensor nodes, such a code is advantageous even if
we only decode two packets at a time (giving a (16, 8) code),
because it decreases likelihood that any two corrupt packets
are of same type. With such a code, merging operations are
attempted less frequently and the combining success rate is
increased.

5. IMPLEMENTATION
We implemented ETPD and SPaC in TinyOS. The SPaC

component currently works over B-MAC; it uses simple
packet interfaces, and can be integrated with other link lay-
ers such as S-MAC [23] or T-MAC [22] with minimal mod-
ifications. The ETPD implementation is part of the lowest
part of the MAC and is not cleanly portable. We embed the
type of each packet (parity or plain) in the preamble so that
it does not require additional bits.

Fig. 6 shows a high-level block diagram of the necessary
functions. Link-layer acknowledgement and retransmission
functions are shown for completeness. Shaded components
are those required to support SPaC; white components are
also present in a non-packet combining system. On the send
path, the inner encoder block implements the plain/parity
decision of section 4.4. On the receive path, the combiner
block performs decoding or merging depending on the types
of the input packets. The receive path decision sequence is
represented in Fig. 7.

Inverter

Feedback (ACKs)

Feedback (ACKs)

Data packets
Inner Encoder

Retransmission
Buffer

Data packets

Combiner
Buffer

Corrupt Pkt

(CRC)
Outer Encoder

Outer Decoder
(CRC)

Transmitter

Receiver

Upper layers

Upper layers

Figure 6: Block diagram of packet combining func-
tions on transmit/receive paths.

Figure 7: Receiver Flowchart.

Buffer management. Given two received corrupt pack-
ets, a node does not know if they correspond to the same
original packet, or two different packets. A buffer manage-
ment strategy is therefore important to reduce the number of
attempts to combine two different packets. The current im-
plementation records a timestamp with each received corrupt
packet, and discards a corrupt packet after a given timeout,
which is determined based on the traffic load and statically
configured into the application. Note also that combining is
not attempted for packets with differing CRCs (except for
multi-hop packets). There are no explicit mechanisms to
detect if two corrupt packets come from different originals
– whenever the receiver has two corrupt packets, combin-
ing is attempted. This means that combining two different
packets, which will fail and is a waste of CPU cycles, can
sometimes happen.

Our assumption of a low-rate application is key to this
design choice: with a short enough timeout, cache pollution
and cross-traffic (where two different corrupt packets arrive
in a smaller interval than the timeout value) are infrequent.

Component RAM ROM (code) ROM (tables)

ETPD 8 450 256
Pkt Combining 2L + 78 3674 16L + 512

Table 4: Memory footprint in bytes, as a function of
maximum packet size L.

Equivalent
CPU Cycles transmitted bits

Function L=29 bytes 128 29 128
Encode/Invert 436 1673 1.1 4.3
Decode 2155 9234 5.6 24.1
Diff 1228 4396 3.2 11.4
Merge (ne = 2) 172 172 0.5 0.5
Merge (ne = 4) 1563 1563 4.1 4.1
Merge (ne = 6) 9305 9305 24.2 24.2

Table 5: Worst-case CPU overhead of SPaC func-
tions. The CPU energy used for each function is
compared with the number of bits that the radio
would transmit to use equivalent energy.

More sophisticated buffer management strategies are possi-
ble. For example, determining the timeout adaptively, or
not buffering a corrupt packet that can only be sent once
(such as local broadcast packets sent by a routing protocol).
Another option would be to add a randomly chosen identifier
(with error protection) to each packet, but the overhead of
adding a fixed field to each packet would outweigh the gain
from making a few less unnecessary combining attempts.
Multi-hop packets. Routing headers on multi-hop packets
usually contain fields that change at each hop, such as next-
hop address or distance to destination. Combining packets
with differing contents would fail, and so it is necessary to
take into account the header fields which may change at each
hop. Our current implementation treats multi-hop packets
differently from single-hop and broadcast packets, and ig-
nores these fields from the CRC and combining operations.
A future improvement will consist of applying the incremen-
tal CRC to the modified fields rather than ignoring them.
Memory Footprint. Wherever possible, we used pre-
computed table lookups for encoding, decoding and merg-
ing. The memory overhead depends on the maximum packet
length defined for the application. With the default value of
29 bytes, the ROM footprint of our implementation is 5580
bytes, including code and lookup tables. The RAM footprint
includes two packet buffers and totals 158 bytes. A detailed
breakdown is given in Table 4.

5.1 CPU Overhead
We evaluated the CPU overhead of all packet combin-

ing functions using a combination of manual inspection and
scripts that we derived from the PowerTossim [19] distri-
bution. We also converted the computation cost of each
function into equivalent communication cost3 to allow easy
comparison between CPU and radio energy costs.

The scripts disassembled the binary image (compiled at
-O3 gcc optimization level) and annotated each line in the
c sources with the number of corresponding CPU cycles.
When a line or function was inlined at different places in the

3
This translation was computed for the case where the radio sends

at 0 dBm, using the constants measured in [19]; converting to other

transmit powers is simply a matter of multiplying the cycle count by

a different constant.

assembly code, with different cycle counts, the script com-
puted the average of the different counts. We then manually
summed the total cycles for each function, being careful to
account properly for loops (counting the initialization as-
sembly once, and the loop test as many times as the loop is
executed).

For most functions, the cycle count depends on the input
packets and error patterns. For example, in the case of a
packet merging, the procedure exits early if it encounters two
candidate error patterns resulting in the same CRC (case k >
1, Section 4.3), or yet earlier if the merged error mask has
more than nmax errors. In the case of a packet decoding, the
decoding loop exits early if the (8, 4) Hamming code detects
an uncorrectable error. We present here the worst-case cycle
counts for all functions with input-dependent behavior.

Table 5 shows worst-case cycles and energy-equivalent ra-
dio transmitted bits for each function. Encoding, inverting,
and decoding are linear in packet size. Encoding and invert-
ing use negligible CPU energy in comparison to transmis-
sion, representing less than 0.5% of the energy to transmit
the packet. Decoding is barely more costly in CPU energy,
requiring less than 2.5% of a packet transmission cost.

Merging two packets requires first a “diff” operation to
compute the merged error mask (Section 4.3) by XORing
two packets. It is then followed by a search through all
candidate error patterns and has cost exponential in ne. The
overhead of merging is sharply higher than that of other
functions. We set nmax = 6 in our experiments, as the
worst-case overhead for ne > 6 becomes non-negligible in
comparison with a packet transmission cost. For ne = 6,
merging is comparable to 7% of the transmission cost for a
packet with 29 byte payload, or 2% with a 128 byte payload.

In summary, the energy overhead of SPaC shown by these
measurements is far lower than the energy cost of sending
a packet, even with the worst-case numbers given in this
section. It is nonetheless not negligible, in particular when
considering the simplicity of the codes used and the table-
driven implementation; computation must therefore be care-
fully considered in the design of more future, more complex
schemes.

6. EVALUATION
In this section we present performance results for the three

networking primitives of Section 2 (single-hop with retrans-
missions, multi-hop routing, and flooding), as well as end-
to-end results on a live network. The results in this Sec-
tion cover the two testbeds of Section 3, as well as a 5-node
testbed and a semi-permanent deployment, both at EPFL’s
BC building. Three very different physical environments
have therefore been considered; while they cover a substan-
tial ground they are by no means exhaustive.

6.1 Singlehop with Retransmissions
We used B-MAC’s acknowledgement mechanism with

sender-side ACK timeouts increased by 2 radio byte trans-
mission periods to account for the increased receiver process-
ing time (this results in a maximum throughput reduction
of less than 4%, in the worst-case where the receiver must
merge every two packets with ne = 6). We built a sim-
ple retransmission scheme based on the acknowledgement
mechanism that is implemented in B-MAC. When acknowl-
edgements are enabled, a node acknowledges reception of a
valid unicast packet addressed to it by transmitting a short
(4 byte) “ack” code. The sender waits a short period for

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

η

pd

Throughput efficiency versus underlying link PDR

16-byte payloads
Theoretical

128-byte payloads
Theoretical

Figure 8: Single-hop throughput efficiency η as a
function of raw throughput efficiency pd.

the acknowledgement, and sets the packet ack field appro-
priately before signalling the sendDone() event, allowing the
upper layer to take some action (e.g., retransmit the packet)
if the packet is unacknowledged.

We define the single-hop throughput efficiency η (or sim-
ply throughput) as 1/Nt, where Nt is the average number
of packets transmitted until the packet is successfully ac-
cepted at the receiver. The throughput without combining
is therefore pd. The retransmission mechanism retransmits
a packet up to a maximum number of attempts Tmax, until
a transmission is positively received. We set Tmax = 5 for
the experiments of this section. We ran these experiments
over 20 pairwise links (using a 5-node subset of the testbed),
with varying transmission power and packet lengths. Nodes
dumped all sent and received packets via the serial backchan-
nel, as for our bit-level measurements. When a node suc-
cessfully combined two corrupt packets into a valid one, this
packet was also logged, allowing us to distinguish in the logs
which valid packets were the result of a combining operation.
In addition, the sender logs showed how many retransmis-
sions were needed for each sent packet.

Fig. 8 shows the observed throughput efficiency η as a
function of underlying link delivery pd, as well as the theo-
retical curve from Appendix A. The theoretical curve qual-
itatively matches the empirical data, and is a good approx-
imation for pd > 0.6. For lower values of pd, the theoretical
curve has an upward bias. This is due, at least in part, to
the finite number of retransmissions Tmax used in the exper-
iments.

The empirical results show that many links with a raw
PDR of 5-20% see a throughput increase of over 100%; for
some links the increase is more than five-fold. Links with a
raw PDR between 30% and 70% see a throughput increase
between 5% and 50%. Single-hop combining makes little
difference on links above 90% PDR. As expected from the
analysis of Section A, the strongest gains come on links with
low delivery rate. Single-hop packet combining is therefore
most useful on links that are persistently poor, or when links
are temporarily degraded by environmental changes.

6.2 Multihop routing

A
B

C A
B

C

Figure 10: Shortcut link on a two-hop segment.

In multi-hop routing, packet combining can happen using
overheard corrupt packets at upstream nodes in the route,
in addition to combining hop-by-hop retransmissions. We
first consider routing without hop-by-hop retransmissions,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

c
ti
o

n
 o

f
ro

u
te

 s
e

g
m

e
n

ts

p

CDF of pd and pc for the shortcut link in a 2-hop segment.

pd (100)
pc (100)
pd (30)
pc (30)

a) CDF of pd and pc for the shortcut
link from A to C in a route A, B, C.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

c
ti
o

n
 o

f
ro

u
te

 s
e

g
m

e
n

ts

Efficiency ηm

CDF of Efficiency over two-hop route segments

SP
SP-SPaC

OPP
OPP-SPaC

b) CDF of efficiency ηm for single-path
and opportunistic routing, with and
without SPaC (100-byte packets).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
it
h

 p
a

c
k
e

t
c
o

m
b

in
in

g

Without packet combining

End-to-End Delivery Rate on Two-Hop Segments

100 byte payload
30 byte payload

c) Scatter plot comparing end-to-end
delivery rate (single-path routing) with

and without SPaC.

Figure 9: Shortcut link measurements and impact of SPaC on multi-hop routing performance.

in order to see what gains are possible only via multi-hop
overhearing. We used trace-driven simulations over traces
generated from every node in turn (in a 25-node subset of
our testbed) sending a broadcast packet, up to a total of
200 packets per node. Receivers dumped received packets
(including corrupt ones) through the backchannel. This was
repeated ten times, for three transmission powers, giving us
a total of 30 connectivity snapshots. We use Hull et al’s met-
ric of multi-hop efficiency [9] and define ηm as the number
of hops useful packets travel divided by the total number
of packet transmissions. Multi-hop efficiency is a key mea-
sure because energy is a scarce resource in low-rate sensor
networks. We also consider end-to-end reliability of two-hop
paths.

For simplicity we consider only the corrupt packets heard
one hop ahead of the next hop (i.e., the corrupt packet over-
heard at node C in Fig. 10); the results given here therefore
do not incorporate possible gains when a node more than
two hops out overhears a packet. We consider a two-hop
route segment with three nodes A, B, C as in Fig. 10. We
note pAB

d and pBC
d the packet delivery rate on the segment’s

two hops, and pAC
d the delivery rate from A directly to C.

Many approaches to link cost estimation and route selection
are possible. Due to lack of space, we focus here only on
a simple routing metric that maximizes end-to-end delivery
rate, with link quality estimation being the average delivery
rate seen on that link in the full 200-packet trace. Using the
empirical pairwise delivery matrix, we identified all feasible
two-hop segments that might be chosen by such a proto-
col, that is those segments for which pAB

d pBC
d > pAC

d . The
schemes examined in this section are evaluated over all such
feasible segments.

How often the multi-hop form of packet combining from
Fig. 1 occurs depends on the link between A and C. On a
route A,B, C, what quality link exists (if any) between A and
C? Does C overhear many packets, good or corrupt, from A?
Fig. 9(a) shows the CDF of pAC

d and of pAC
c . In many route

segments, corrupt packets from A are frequently received at
C. For example, in half of the route segments considered,
C receives over 40% of A’s transmissions (with errors). The
number of packets overheard at C without errors is much
smaller.

We consider two routing schemes: single-path routing and
opportunistic routing. The difference between both schemes
is that in opportunistic routing, packets from A overheard

without errors at C are counted as successful transmissions4.
Using the packet traces, we then evaluated the efficiency of
both schemes with and without packet combining. The re-
sults are shown in Fig. 9(b) (omitting segments for which
pAB

d ≥ 0.99 and pBC
d ≥ 0.99, since these already have near-

perfect delivery). This data shows that even using only
multi-hop combining and no hop-by-hop combining, packet
combining often improves the efficiency of two hop route seg-
ments. There are two main regions in Fig. 9(b). The right
half is the region with high efficiency paths. These paths
have good links and there is little opportunity for packet
combining to improve performance. The left half is the re-
gion with low efficiency paths. In this region packet com-
bining is more frequently invoked. With packet combining,
less than one-third of paths have ηm < 0.4, whereas nearly
half of paths have ηm < 0.4 without packet combining. Op-
portunistic routing offers a comparatively smaller advantage.
Figure 9(c) shows the effect of packet combining on end-to-
end delivery rates for single-path routing. Since SPaC does
not transmit more data than the equivalent link-layer with-
out SPaC, it never decreases performance. As in the case
of single-hop with retransmissions, gains are strongest with
long packets.

6.2.1 Routing with hopbyhop retransmissions

We now look at the gains from combining when hop-by-
hop retransmissions are used at each hop. The acknowledge-
ment and retransmission mechanism is the same as in Section
6.1, with the setting Tmax = 3. Figure 11 shows the CDF
of multi-hop efficiency ηm for single-path routing, with and
without combining. It is qualitatively similar to Fig. 9(b),
with an overall improvement in efficiency for both proto-
cols. In comparison with Fig. 9(b), packet combining offers
greater gains with hop-by-hop retransmissions than without.
Gains increase with retransmissions because there are more
opportunities to combine packets. The third curve in Fig.
11 shows efficiency when only hop-by-hop packet combin-
ing is allowed, in other words when corrupt transmissions
from A overhead at C are not exposed to SPaC. This curve
shows that the additional gains from multi-hop combining
are appreciable in comparison to the gains from hop-by-hop
HARQ.

4
In further work, one could assume a distributed coordination scheme

which allows B to learn when C overhears a direct transmission [2].
We do not assume the use of such a scheme, and so B forwards the
packet even when C has received it successfully.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

c
ti
o

n
 o

f
ro

u
te

 s
e

g
m

e
n

ts

Efficiency ηm

CDF of Efficiency over two-hop route segments

SP
SP-SPaC-H

SP-SPaC

Figure 11: CDF of efficiency ηm for single-path
routing with retransmissions (SP), with hop-by-
hop packet combining only (SP-SPaC-H), and un-
restricted packet combining (SP-SPaC). 100-byte
packets.

6.3 Flooding
We now turn to the network flooding primitive described

in 2.1. The protocol used was the standard TinyOS broad-
cast implementation (tos/lib/Broadcast/), which is a sim-
ple flooding protocol with sequence-number based duplicate
suppression. We made 6 interleaved runs, with one run con-
sisting of a series of 1000 consecutive floods followed by a
second series of 1000 floods with SPaC. The originator was
a node in the center of the network, who originated floods at
one second intervals. In our first experiments, we observed
that with the default backoff timer settings of B-MAC [17],
a large number of packets were lost due to collisions. This
observation was inferred from the bit-error distribution of
received packets: corrupt packets had sharply higher num-
bers of bit errors than observed in Section 3.1, and these bit
errors were often present in large bursts. We then increased
the MAC layer backoff timers to operate in a non-congested
and hence more efficient regime.

Fig. 12(a) shows the delivery rate for all 39 nodes, with
and without packet combining, with node 22 being the orig-
inator. Nodes 19 and 34 were not responding properly and
show up as having received no flood packets. A first observa-
tion is that packet combining increases the delivery rate for
all nodes that did not already have 100% delivery without
packet combining. For nodes 1-14, the delivery increased by
over 75%, while for nodes 15-18 and 37, delivery increased by
over 25%. A second observation is that the graph has marked
plateaus (nodes 1-14 and 20-33), within which the increase in
delivery rate due to packet combining is constant. These ob-
servations indicate that the network is heterogeneous, with
well connected sub-clusters within which a packet is reliably
propagated to every node. Inter-cluster connectivity how-
ever is weaker, and it is at the border nodes between clus-
ters that packet combining makes a difference to the overall
reception rate. We tested this hypothesis by running similar
experiments with different flood originators, and saw that
indeed, within either group (nodes 1-14 and 20-33), nodes
had similar delivery rates independently of the originator.

The impact of packet combining on flooding clearly de-
pends on the network topology. In a dense (homogeneous)
network (and assuming that protocol parameters are prop-
erly set to avoid excessive collisions), nodes will receive most
flooded packets correctly and packet combining functions are
rarely invoked. In a sparse (homogeneous) network with a
large number of poor links (such as the example of 1), packet

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

D
e
liv

e
ry

 R
a
te

Node

Flooding Delivery Rate

No PC
PC

a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

W
it
h
 p

a
c
k
e
t
c
o
m

b
in

in
g

Without packet combining

End-to-End Delivery rate

Tmax= 5
Tmax=3

b)

Figure 12: Flooding delivery rate (left) and scat-
ter plot of end-to-end delivery rate in SensorScope
(right).

Attempted Successful
Operation Single-hop Multi-Hop Single-hop Multi-Hop

Decode 83% 64% 44% 48%
Merge 17% 36% 14% 22%

Table 6: Breakdown of attempted and successful
combine operations between decode and merging.

combining will operate at many nodes, since they frequently
receive more than one corrupt copy of a flooded packet. In
the case of a heterogeneous topology such as the one we used,
packet combining operates at a small subset of nodes, essen-
tially on either side of the weak links between sub-clusters.

6.4 Breakdown of Combining Attempts
The results given above relate the performance improve-

ment from packet combining with the underlying link or path
delivery rate. They allow to compare theoretical and empir-
ical performance, and to evaluate the effect of underlying
topologies and channel conditions on the behavior of the
scheme.

We now investigate the behavior of packet combining at
a more fine-grained level, to gain insight on how frequently
merging and combining operations respectively come into
play, and what their associated success rates are.

Table 6 gives the breakdown. The left side shows the pro-
portion of attempted merging versus decoding operations.
In the single-hop case, merging is attempted less frequently
than decoding because the sender alternates between plain
and parity packets, and therefore the receiver only has two
packets of same type when a packet (or an acknowledgement)
is missed and the two adjacent transmissions are corrupt.
For multi-hop, the sender randomly chooses between plain
and parity for each transmission, and so the breakdown is
roughly even.

The second part of Table 6 shows the success rate for de-
coding and merging operations. Overall, combining has a
success rate below 40%, underscoring the potential for fur-
ther gains in systems using more powerful codes or mul-
tiple packets. Decoding has a significantly higher success
rate than merging. While this difference is explained by the
larger number of error patterns that can be corrected with
two packets of different types, the overall success rate for
merging is still low. We processed our traces to further un-
derstand why merging fails so frequently, and found that in
a vast majority of cases (over 90%), merging aborts because
the number of differing bits between both corrupt packets is
greater than nmax. Note that in these cases merging aborts

at the “diff” step, whose processing requirements are much
lower than a full merging (see Table 5). Hidden errors ac-
count for fewer than 10% of merging failures, suggesting that
nmax could be increased if more CPU processing power were
available, or in a more efficient hardware-based implementa-
tion.

6.5 Endtoend performance
We integrated our packet combining implementation into

SensorScope [18], a indoor monitoring network deployed at
EPFL. SensorScope is a long-running deployment consisting
of 18 mica2dot nodes installed throughout a 4 story campus
building. The radio stack uses our ETPD implementation,
an ACK-based retransmission mechanism, and low-power lis-
tening [17]. One experiment consisted of logging all sensor
data packets received at the basestation over a duration of
40 hours. The network was re-configured at hourly intervals
(via broadcast commands) to alternate between enabling and
disabling packet combining. We repeated this whole exper-
iment twice, changing the maximum number Tmax of link
layer retransmissions.

We chose SensorScope for our experiment for practical rea-
sons: it was both available and under our control. This net-
work should a priori see little gains from packet combining,
due to three reasons. The first is that it is dense, and nodes
have most of the time high quality paths to the sink. The
second reason is that the network is shallow, with an aver-
age sink distance of less than two hops, and the third is that
packets are relatively short (19 byte payloads).

Figure 12(b) shows the end-to-end data delivery rate for
each node, averaged over all 20 runs, with and without
packet combining, for two different maximum retransmission
values. We see that delivery rate with packet combining is
increased for a large majority of nodes, with 30% of the nodes
seeing a delivery increase of over 10%. Though such gains
are worthwhile given the negligible overhead of packet com-
bining, they are weaker than the microbenchmark gains, due
to the unfavorable characteristics of SensorScope discussed
above.

The question is then whether the SensorScope is partic-
ularly representative of deployed sensor networks. An at-
tempt to answer this question is beyond the scope of this
paper, and probably premature while sensor networks are
still a nascent field. We simply note in comparison that one
of the few well-documented large-scale deployments to date
(Great Duck Island [21]) has characteristics making it far
more susceptible to packet combining gains: it is larger, has
a greater proportion of multi-hop nodes, as well as a larger
proportion of weak to intermediate links.

7. RELATED WORK
To the best of our knowledge, the only existing work which

has analysed, designed, and implemented a working system
based on multi-point packet combining is the Multi-Radio
Diversity (MRD) system of Miu et al [16]. MRD exploits
the spatial diversity generated by having multiple receiving
radios placed at distributed locations, and effectively turns
these radios into a distributed antenna array. MRD employs
a novel block-based merging algorithm that is well-suited to
bursty error characteristics. Beyond the different physical
layer technologies employed, the fundamental (and comple-
mentary) difference between MRD and the scheme proposed
here is that MRD considers multiple radios receiving from

one sender, whereas this scheme considers a single radio re-
ceiving from multiple (or single) senders.

A large and fast-growing body of work in the information
theory literature that addresses cooperative diversity in var-
ious theoretical settings. While a survey of this burgeoning
field is beyond the scope of this paper, we should mention the
recent work of Laneman, Tse and Wornell [12] that compares
the outage behavior of different relaying schemes (amplify-
and-forward, decode-and-forward, selective relaying) in a 4-
node network.

Our work is closest in spirit to that of Valenti and Zhao
[24] who give a generalization of Hybrid-ARQ in the context
of a diversity routing protocol. They provide analytical and
numerical results on the outage behavior and throughput
gains achievable with hybrid-ARQ. Note that their work is
theoretical in nature, assuming for example the use of opti-
mal (in an information-theoretic sense) channel codes with
no constraints on block length or decoding complexity.

To our knowledge, the only existing work examining
packet combining in the context of practical sensor networks
is that of Koepke [11]. This early work examines through
simulation the gains of packet combining in a single-hop set-
ting, using repetition coding only.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced a novel scheme for

error-correction that exploits temporal and spatial diversity
through packet combining. Beside hop-by-hop communica-
tion, the scheme also works on multi-hop interactions present
in routing or broadcasting. As such, it is fundamentally cou-
pled to the broadcast nature of the wireless medium, in con-
trast to traditional point-to-point FEC techniques that work
identically in wired and in wireless networks.

The performance gains shown are promising, in light of the
simple design choices made. Much room remains to explore
systems that employ more powerful codes, and that operate
over more than two corrupt packets. Integrating our merging
algorithm with the block combining [16] technique of Miu et
al may lead to improved performance on bursty channels.
While a software implementation has low overhead for the
short codes used in this paper, more powerful coding schemes
may require hardware support for fast decoding operations.
Another area of future work also concerns the interaction
of packet combining with other network protocols, such as
opportunistic routing [2] or epidemic broadcast [13].

9. ACKNOWLEDGEMENTS
We thank our shepherd Hari Balakrishnan for his useful

suggestions in the revision of this paper. We also thank
Guillermo Barrenetxea, Jun Luo, and the anonymous re-
viewers for their feedback, and Thomas Schmid for his assis-
tance with SensorScope.

APPENDIX

A. SINGLEHOP ANALYSIS
We analyze the performance gains offered by packet com-

bining as a function of the underlying link quality and of
packet length. Our analysis explicitly considers the proba-
bility of missed packets, which means that two consecutively
received packets may be of same type, even when the sender
alternates between plain and parity. We consider a retrans-
mission scheme where the sender repeats the transmission

3

pm

pm

pd + pc(1− ρ̃)

pcpd

pd

pc

pm
pm + pcρ̃

pcρ

pd + pc(1− ρ)

2

1

4

Figure 13: Markov chain model for packet combin-
ing over a single-hop unicast link. State transitions
happen at each packet (re-)transmission.

of a packet, alternating between plain and parity encodings,
until it has successfully received an acknowledgement from
the receiver5. A reliable feedback channel is assumed.

We model the sender-receiver pair with a Markov chain
(Fig. 13) that (self-)transitions at each packet transmission.
State 1 is when the receiver has an empty buffer. State 2 is
when the receiver has a valid packet, either received directly
or as a result of combining two corrupt packets. In states
3 and 4, the receiver has a corrupt packet. In state 3, the
sender will next transmit a packet of type opposite to the
one in the receiver’s buffer; in state 4 the sender will trans-
mit a packet of same type. The Markov chain is irreducible
and positive recurrent, and therefore has a unique stationary
distribution π.

The receiver successfully receives or combines a packet at
every transition spent in state 2. Therefore the throughput
efficiency is immediately obtained from the chain’s station-
ary distribution. We omit the the explicit form of π and
show here only η = π(2):

η =
(1−pm)((ρ̃−1)p2

m+(ρ−ρ̃+ρ̃pd) pm−ρ+pdρ+1)

(ρ̃−2) p2
m+(ρ+ρ̃pd−pd−ρ̃)pm−ρ+pdρ−pd+2

(5)

Note that for fixed L and Lpre, all the quantities in (5) are
a function of the single parameter pe (or equivalently, pd),
allowing us to compare the theoretical value of η with empir-
ical results in Fig. 8. Substituting ρ = ρ̃ = 1 (5), gives pd,
the throughput without packet combining. In the case when
pm = 0, that is, if preambles are always correctly detected,
then states 1 and 4 of the Markov chain are never visited,
and (5) considerably simplifies:

η =
1 − pcρ

1 + pc(1 − ρ)
. (6)

We observe that (6) does not depend on ρ̃: if pm = 0, the
receiver never invokes the merging operation.

2. REFERENCES
[1] T. H. A. Nosratinia and A. Hedayat. Cooperative

communication in wireless networks. IEEE Communications
Magazine, 42(10):68–73, Oct 2004.

[2] S. Biswas and R. Morris. Opportunistic routing in multi-hop
wireless networks. In Proceedings of the ACM Symposium on
Communications Architectures and Protocols (SIGCOMM),
Philadelphia, USA, 2005.

[3] F. Braun and M. Waldvogel. Fast incremental CRC updates for
IP over ATM networks. In 2001 IEEE Workshop on High
Performance Switching and Routing (HPSR 2001), pages
48–52, Dallas, TX, USA, May 2001.

[4] R. E. Blahut. Theory and Practice of Error Control Coding.
Addison-Wesley, 1983.

5
In practice the maximum number of retransmissions is finite; there-

fore the theoretical throughput considered here is an upper bound on

the achievable throughput with finite retransmissions.

[5] A. Cerpa, N. Busek, and D. Estrin. Scale: A tool for simple
connectivity assessment in lossy environments. In CENS
Technical Report 0021, 2003.

[6] Chipcon. CC1000 transceiver datasheet.
http://www.chipcon.com.

[7] L. de Alfaro and A. R. Meo. Codes for second and third order
GH-ARQ schemes. IEEE Trans. on Communications, 1994.

[8] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
SenSys ’04: Proceedings of the 2nd international conference
on Embedded networked sensor systems, pages 81–94, New
York, NY, USA, 2004. ACM Press.

[9] B. Hull, K. Jamieson, and H. Balakrishnan. Mitigating
Congestion in Wireless Sensor Networks. In ACM SenSys
2004, Baltimore, MD, November 2004.

[10] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: a scalable and robust communication paradigm for
sensor networks. In Mobile Computing and Networking, pages
56–67, 2000.

[11] A. Köpke. Uses of channel codes and checksums to improve
energy efficiency in sensor networks. Technical Report
TKN-03-008, Technische Universität Berlin, May 2003.

[12] J. N. Laneman, D. N. C. Tse, and G. W. Wornell. Cooperative
diversity in wireless networks: Efficient protocols and outage
behavior. IEEE Trans. on Information Theory, 50, 2004.

[13] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A
self-regulating algorithm for code propagation and maintenance
in wireless sensor network. In Proceedings of the First
USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI 2004), 2004.

[14] S. Lin and D. J. Costello. Error Control Coding, Second
Edition. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2004.

[15] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. Tinydb:
An acqusitional query processing system for sensor networks.
ACM TODS, 2005.

[16] A. K. Miu, H. Balakrishnan, and C. E. Koksal. Improving Loss
Resilience with Multi-Radio Diversity in Wireless Networks. In
11th ACM MOBICOM Conference, Cologne, Germany,
September 2005.

[17] J. Polastre, J. Hill, and D. Culler. Versatile low power media
access for wireless sensor networks. In Proceedings of ACM
Sensys, Los Angeles, USA, April 2003.

[18] T. Schmid, H. Dubois-Ferrière, and M. Vetterli. SensorScope:
Experiences with a Wireless Building Monitoring Sensor
Network. In Workshop on Real-World Wireless Sensor
Networks (REALWSN’05), 2005.

[19] V. Shnayder, M. Hempstead, B. rong Chen, G. W. Allen, and
M. Welsh. Simulating the power consumption of large-scale
sensor network applications. In SenSys ’04: Proceedings of the
2nd international conference on Embedded networked sensor
systems, 2004.

[20] P. Sindhu. Retransmission error control with memory. IEEE
Transactions on Communications, 1977.

[21] R. Szewczyk, A. Mainwaring, J. Polastre, and D. Culler. An
analysis of a large scale habitat monitoring application. In
Proceedings of the Second ACM Conference on Embedded
Networked Sensor Systems (SenSys), Baltimore, November
2004.

[22] T. van Dam and K. Langendoen. An adaptive energy-efficient
mac protocol for wireless sensor networks. In SenSys ’03:
Proceedings of the 1st international conference on Embedded
networked sensor systems, pages 171–180, New York, NY,
USA, 2003. ACM Press.

[23] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac
protocol for wireless sensor networks. In Proceedings of the
IEEE Infocom, pages 1567–1576, New York, NY, USA, June
2002. USC/Information Sciences Institute, IEEE.

[24] B. Zhao and M. C. Valenti. Practical relay networks: A
generalization of hybrid-ARQ. IEEE JSAC (Special Issue on
Wireless Ad Hoc Networks), 23, 2005.

[25] J. Zhao and R. Govindan. Understanding packet delivery
performance in dense wireless sensor networks. In Proceedings
of ACM Sensys, Los Angeles, USA, April 2003.

