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Abstract 

While Packet Fair Queueing (PFQ) algorithms provide both bounded delay and fairness in 

wired networks, the}' cannot be applied directly to wireless networks. The key difficulty is 

that in wireless networks sessions can experience location-dependent channel errors. This 

may lead to situations in which a session receives significantly less service than it is sup- 

posed to, while another receives more. This results in large discrepancies between the 

sessions1 virtual times, making it difficult to provide both delay-guarantees and fairness 

simultaneously. 

Our contribution is twofold. First, we identify a set of properties, called Channel-condition 

Independent Fair (GIF), that a Packet Fair Queueing algorithm should have in a wireless 

environment: (1) delay and throughput guarantees for error-free sessions, (2) long term 

fairness for error sessions, (3) short term fairness for error-free sessions, and (4) graceful 

degradation for sessions that have received excess service. Second, we present a method- 

ology for adapting PFQ algorithms for wireless networks and we apply this methodology 

to derive a novel algorithm based on Start-time Fair Queueing, called Channel-condition 

Independent packet Fair Queueing (CIF-Q), that achieves all the above properties. To 

evaluate the algorithm we provide both theoretical analysis and simulation results. 



1    Introduction 

As the Internet becomes a global communication infrastructure, new Quality of Service 

(QoS) service models and algorithms are developed to evolve the Internet into a true in- 

tegrated services network. At the same time, wireless data networks are becoming an 

integral part of the Internet, especialhr as an access networking technology. An important 

research issue is then to extend the QoS service models and algorithms developed for wired 

networks to wireless networks. In this paper, we study how to implement Packet Fair 

Queueing (PFQ) algorithms in wireless networks. 

PFQ algorithms axe first proposed in the context of wired networks to approximate 

the idealized Generalized Processor Sharing (GPS) policy [2, 7]. GPS has been proven to 

have two important properties: (a) it can provide an end-to-end bounded-delay service to 

a leaky-bucket constrained session; (b) it can ensure fair allocation of bandwidth among 

all backlogged sessions regardless of whether or not their traffic is constrained. The former 

property is the basis for supporting guaranteed services while the later property is important 

for supporting best-effort and link-sharing services. While GPS is a fluid model that cannot 

be implemented, various packet approximation algorithms are designed to provide services 

that are almost identical to that of GPS. 

Unfortunately, the GPS model and existing PFQ algorithms are not directly applicable 

to a wireless network environment. The key difficulty is that there are location-dependent 

channel errors in a wireless environment. In GPS, at any given time, all backlogged ses- 

sions send data at their fair rates. However, in a wireless environment, some mobile hosts 

may not be able to transmit data due to channel errors, while other hosts may have error- 

free channels and can transmit data. To be work-conserving, it is impossible to achieve 

the instantaneous fairness property defined by the GPS model because only a subset of 

backlogged sessions are eligible for scheduling. That is, a session with an error-free chan- 

nel may receive more normalized amount of service than that by a session with an error 

channel. However, it is conceivable to achieve long term fairness by giving more service 

to a previously error session so that it can be compensated. Of course this compensation 

can only be achieved by degrading the services of other sessions, which may affect the QoS 

guarantees and fairness property for these sessions.  It is unclear what is the right model 



and algorithm to provide QoS guarantee and ensure fairness in a wireless network. 

In this paper, we identify a set of properties, called Channel-condition Independent Fair 

(GIF), desirable for any PFQ algorithm in a wireless network: (1) delay and throughput 

guarantees for error-free sessions, (2) long term fairness guarantee among error sessions, 

(3) short term fairness guarantee among error-free sessions, and (4) graceful degradation in 

quality of service for sessions that have received excess service. We then present a method- 

ology for adapting PFQ algorithms for wireless networks and we apply this methodology 

to derive a new scheduling algorithm called the Channel-condition Independent packet Fair 

Queueing (CIF-Q) algorithm that achieves the GIF properties. New algorithmic techniques 

are introduced in the CIF-Q algorithm. We prove that CIF-Q achieves all the properties of 

the GIF and show that it has low implementation complexity. Finally, we use simulation 

to evaluate the performance of our algorithm. 

The rest of this paper is organized as follows. In Section 2 we describe the network 

model that we are assuming and in Section 3, we discuss in detail the problems involved in 

applying existing PFQ algorithms in wireless networks. We present the GIF properties in 

Section 4 and the CIF-Q algorithm in Section 5. We then show that the CIF-Q algorithm 

achieves all the properties of GIF in Section 6. Finally, we present simulation results in 

Section 7 and conclude the paper in Section 8. 

2    Network Model 

In this paper, we consider a simplified shared-channel wireless cellular network (e.g. Wave- 

LAN [9]) model in which each cell is served by a base station. Centralized scheduling of 

packet transmissions for a cell is performed at the base station, and media access control is 

integrated with packet scheduling. Mobile hosts may experience location-dependent chan- 

nel errors in the sense that they cannot receive or transmit data error-free. Error periods 

are assumed to be short and sporadic relative to the lifetimes of the sessions so long term 

fairness is possible. Instantaneous knowledge of channel conditions (error or error-free) 

and packet queue status of all sessions is assumed at the base station. Under these as- 

sumptions, the difference between a PFQ algorithm in a wired and wireless environment is 

that in the latter a backlogged session may not be able to receive service due to location 



independent errors. Lu et al have given this broad problem a good initial formulation in [6], 

and have effectively addressed many practical issues. Therefore, in this paper, we focus on 

the algorithmic aspects of the problem. 

3    GPS and PFQ 

In wired networks, Packet Fair Queueing (PFQ) is based on the GPS model [7]. In a GPS 

each session / is characterized by its allocated rate, i\. During any time interval when there 

are exactly M non-empty queues, the server serves the M packets at the head of the queues 

simultaneously, in proportion to their rates. 

Each PFQ algorithm maintains a system virtual time V'(-). In addition, it associates 

to each session i a virtual start time Si(-), and a virtual finish time Fi(-). Intuitively, V(t) 

represents the normalized fair amount of service that each session should have received 

by time t, S;(t) represents the normalized amount of service that session i has received 

by time i, and Fi[t) represents the sum between $i(t) and the normalized service that 

session i should receive for serving the packet at the head of its queue. Since Si(t) keeps 

track of the normalized service received by session i by time t, S{{t) is also called the 

virtual time of session i, and alternatively denoted V'i(t). The goal of all PFQ algorithms 

is then to minimize the discrepancies among VJ(/)'s and V(t). This is usually achieved by 

selecting for service the packet with the smallest £>';(/) or F{(t). Notice that the role of the 

system virtual time is to reset ,5',(-) (or K(-)) whenever an unbacklogged session % becomes 

backlogged again. More precisely, 

Silt)   =   I 
max(V(t)<Sj(t — ))        i becomes active 

Si[t—) + -f- jof finishes 
(1) 

Fi(i)   =   $(<) + — (2) 

where pf represents the /c-th packet of session ?', and If represents its length. 

While GPS and PFQ algorithms provide both guaranteed and fairness services in a wired 

network, they cannot achieve both properties in a wireless network. The key difference is 

that there are location-dependent channel errors in a wireless environment. That is, some 

mobile hosts may not be able to transmit data clue to channel errors even when there 
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are backloggecl sessions on those hosts while others may have error-free channels and can 

transmit data in that time. Since GPS is work-conserving, during such a period with 

location-dependent channel errors, error-free sessions will receive more service than their 

fair share, while a session with errors will receive no service. Since the virtual time of a 

session increases only when it receives service, this may result in a large difference between 

the virtual time of an error session i and that of an error-free session. There are two 

problems with this large discrepancy between session virtual times: 

1. If session i exits from errors, and is allowed to retain its virtual time, then it will 

have the smallest virtual time among all sessions. The server will select session i 

exclusively for service until its virtual time catches up with those of other sessions. 

In the meantime, all other sessions will receive no service. Since a session can be in 

error indefinitely, the length of such zero-service period for the error-free sessions can 

be arbitrarily long. 

2. If session i exits from errors, and its virtual time is updated to the system virtual time 

V'(-), then the error-free sessions will not be penalized. However, session Vs history 

of lost service is now completely erased and session i will never be able to regain the 

service. This results in unfair behaviors. 

To address these problems, in [6], Lu et al augmented the GPS model and proposed 

the Wireless Fluid Fair Queueing (WFFQ) service model and the Idealized Wireless Fair 

Queueing (IWFQ) algorithm for packet systems. Their observation is that, to ensure 

fairness, it is desirable to let sessions that fall behind to "catch-up" with the other sessions. 

However, allowing an unbounded amount of "catch-up" can result in denial of service to 

error-free sessions. Therefore, in WFFQ, only bounded amount of "catch-up" B is allowed. 

As a result, delay and throughput guarantees to error-free sessions become possible. 

The WFFQ model and the IWFQ algorithm, while provide limited fairness and bounded 

throughput and delay guarantees for error-free sessions, has several limitations. First, there 

is a coupling between the delay and fairness properties. To achieve long term fairness, a 

lagging session should be allowed to catch-up as much as possible, which requires a large B. 

However, a large B also means that an error-free session can face a large "denial of service" 

period and experience a large delay.  Thus, one cannot have perfect fairness while at the 



same time achieve a low delay bound for an error-free session using the WFFQ model. In 

this paper, we will show that these two properties are in fact orthogonal and both can be 

achieved. 

In addition, the service selection policy used in WFFQ and IWFQ gives absolute priority 

to the session with the minimum virtual time. Consequently, as long as there exists a 

lagging session in the system, all other leading or non-leading sessions in the system cannot 

receive service. Under this selection policy, compensation for all lagging sessions will take 

the same amount of time regardless of their guaranteed rate, contradicting the semantics 

that a larger guaranteed rate implies better quality of service. 

We believe the root of the problems lies in the fact that the virtual time parameter in 

GPS is not adequate for performing both scheduling functions and fairness enforcement in 

a wireless environment. In the next section we present the desirable properties of a PFQ 

algorithm for wireless networks. 

4    The CIF Properties 

To implement PFQ algorithm in an environment with location-dependent errors, we need to 

address two main questions: (1) How is the service of an error session distributed among the 

error-free sessions? (2) How does a session that was in error and becomes error-free receive 

back the "lost" service? Although the answers to the above questions may depend on the 

specifics of a particular algorithm, in this section we give four generic properties, collectively 

call Channel-condition Independent Fair (CIF), that we believe any such algorithm should 

have. The first two are: 

1 Delay bound and throughput guarantees. Delay bound and throughput for error-free 

sessions are guaranteed, and are not affected by other sessions being in error. 

2 Long term fairness. During a large enough busy period, if a session becomes error- 

free, then, as long as it has enough service demand, it should get back all the service 

"lost" while it was in error. 

Thus, a session which becomes error-free will eventually get back its entire "lost" service. 

However, as implied by the first property, this compensation should not affect the service 



guarantees for error-free sessions. 

Next, we classify sessions as leading, lagging, and satisfied. A session is leading when it 

lias received more service than it would have received in an ideal error-free system, lagging 

if it has received less, and satisfied if it has received exactly the same amount of service. 

Then, the last two properties a.re: 

3 Short term fairness. The difference between the normalized services received by any 

two error-free sessions that are continuously backlogged and are in the same state 

(i.e., leading, lagging, or satisfied) during a time interval should be bounded. 

4 Graceful degradation. During any time interval while it is error-free, a leading back- 

logged session should be guaranteed to receive at least a minimum fraction of its 

service in an error-free system. 

The third property is a generalization of the well-known fairness property in classical 

PFQ algorithms. The requirement that sessions in the same state receive the same amount 

of normalized service implies that (1) leading sessions should be penalized by the same 

normalized amount during compensation, (2) compensation services should be distributed 

in proportion to the lagging sessions' rates, and (3) when services from error sessions are 

available, lagging sessions receive these services at the same normalized rate, so do leading 

sessions and satisfied sessions. Finally, the last property says that in the worst case a 

leading session gives up only a percentage of its service. This way, an adaptive application 

may continue to run. 

5    The CIF-Q Algorithm 

In this section we present our Channel-condition Independent Packet Fair Queueing 

(CIF-Q) algorithm for systems with location-dependent channel errors. 

In order to account for the service lost or gained by a session due to errors, we associate 

to each system S a reference error-free system Sr. Then, a session is classified as leading, 

lagging, or satisfied with respect to Sr, i.e., a session is leading if it has received more service 

in S than it would have received in Sr, lagging if it has received less, and satisfied if it has 

received the same amount. The precise definition of Sr depends on the corresponding PFQ 



Term Definition 

Leading session 

Lagging session 

Satisfied session 

A session i that has a negative lagi 

A session i that has a positive lag/ 

A session / that has a zero lag; 

Lead 

Lag 

The absolute value of a negative lag,- 

The value of lagt 

Backlogged session 

Active session 

Can send 

A session that has a queue length > 0 

A session that is either backlogged 

or unbacklogged with a negative lag 

A session can send if it is backlogged 

and experiences no error at the moment 

Excess service 

Compensation service 

Additional service 

Lost service 

Forgone service 

Service made available due to errors 

Service made available due to a 

leading session giving up its lead 

Excess or compensation service 

Service lost due to errors that is 

received by another session 

Service lost due to errors that is 

not received by another session 

Table 1: Definitions of terms used in the description of the CIF-Q algorithm. 

algorithm we choose to extend for the error system. Although theoretically we can choose 

any of the well-known algorithms, such as WFQ [2, 7], SCFQ [4], WF2Q+ [1], EEVDF [8], 

for simplicity, in this paper we use Start-time Fair Queueing (SFQ) [5]. The reason for 

this choice is that in a system with location-dependent channel errors, it is harder to do 

scheduling based on the finishing times than on the starting times. This is because finishing 

times are computed based on the length of the packets at the head of sessions' queues, and 

finishing times scheduling assumes implicitly that once a session is selected, that packet 

can be sent. Unfortunately, this is not true in an error system; a session can enter in error 

just before the packet is transmitted. In this case the service should be given to another 

session, whose packet may have a different length. Since, as we shall see, in our algorithm 

this service is charged to the session which is selected in the first place, this might create 

service inversions. More precisely, if the packet that is actually transmitted is longer than 



the packet that is supposed to be sent, the resulting finishing time can be larger than the 

finishing time of another error-free session that has packets to send. Since SFQ does not 

make use of finishing times in scheduling decisions, it does not exhibit this problem. 

Thus, to every error system 5' we associate an error-free reference system Sr
SFg with 

the following properties: 

1. Sr
SFQ employs an SFQ algorithm, i.e., packets are served in the increasing order of 

their virtual starting times, 

2. The same session is selected at the same time in both systems. 

3. Whenever a session is selected in Sr
SFQ, the packet at the head of its queue is trans- 

mitted. In contrast, whenever a session is selected in 5, it is possible that the packet 

of another session is transmitted. This happens when the selected session is in error, 

or when it is leading and has to give back its lead. 

4. A session is active during the same time intervals in both systems. In S a session is 

said to be active if it is backlogged, or as long as it is leading. In Sr
SFQ a session is 

active only as long as it is backlogged. 

There are two things worth noting. First, the scheduling decisions are made in S'SFQ, 

and not in 5'. More precisely, the session that has the smallest virtual time in Sr
SFQ is 

selected to be served in S. Second, no matter what session is actually served1 in S, in Sr
SFQ 

the transmitted packet is assumed to be belonging to the selected session, and therefore its 

virtual time is updated accordingly. 

Below we give some of the key techniques introduced by our CIF-Q algorithm. 

• Unlike other PFQ algorithms, in CIF-Q, a session's virtual time does not keep track 

of the normalized service received by that session in the real system S, but in the 

reference error-free system S'SFQ. 

• To provide fairness, we use an additional parameter (called lag) that keeps track of 

the difference between the service that the session should receive in S'SFQ and the 

JAs implied by 3, the selected session may not be served if it is in error or has to give up some of its 

lead. 
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service it has received in S. Then, to achieve perfect fairness, the lag of every session 

should be zero. 

• A leading session is not allowed to leave until it has given up its lead. Otherwise, as 

we will show later, this translates into an aggregate loss for the other active sessions. 

• To deal with the case when all active sessions are in error, we introduce the concept 

of forced compensation. We force a session to receive service and we charge it for this 

service, even if it cannot send any packet. This makes it possible to ensure delay and 

throughput guarantees for error-free sessions. 

Finally, we note that our algorithm is self-clocking in the sense that there is no need for 

emulating a fluid flow system for scheduling or keeping track of lead and lag. As a result, 

our algorithm has lower implementation complexity than IWFQ [6] which requires the 

emulation of a fluid system. 

For clarity, we first describe a simple version of CIF-Q that achieves the two most 

important properties of GIF: (1) delay and throughput guarantees for error-free sessions, 

and (2) long term fairness for error sessions. Definitions of some key terms appearing in 

this section are shown in Table 1. 

5.1    CIF-Q: Simple Version 

Besides a virtual time v,-. each session i in CIF-Q is associated with an additional parameter 

lag.; that represents the difference between the service that session i should receive in a 

reference error-free packet system and the service it has received in the real system. An 

active session i is said to be lagging if its lag; is positive, leading if its lag; is negative, and 

satisfied otherwise. In the absence of errors, lag; of all active sessions are zero. Since the 

system is work-conserving, the algorithm maintains at all time the following invariant: 

£/a<7,- = 0, (3) 
iS A 

where A is the set of active sessions. The simple version of CIF-Q is shown in Figure 1. 



on session i receiving packet p: 

enqueue (queuej,p) 

if (i £ A) 
vt = max(tii,mint£j4{tit}); 
lagt = 0; 
.4 = A U {/}; /* mark session active */ 

on sending current packet: /* get next packet to send */ 

i = min,,?{?' € A}; /* select session with min. virtual time */ 
if (lagt > 0 and (i can send)) /* session i non-leading, can send */ 

p =dequeue(gueuej); 
Vj = vt + p.length 11\; 

else 
j = maxiagk/rk{k G A \ k can send}; 
if (j exists) 

p =dequeue(</wewej); 
Vj = Vi + p.length/ri; /* charge session i */ 
lagt = lagi + p. length; 

lagj = lagj — p. length; 
if (?' ^ j and empty(gueuej) and Zac/j > 0) 

leave (j); 

else /* their is no active session ready to send */ 
Vj = Vj + S/rj; 
if (lagi < 0 and empty(guewej)) /* i is leading, unbacklogged */ 

j = ma,x,agk/rk{k <EA}; 

lagj = lagj + S; 
lagj = lagj — S; /* forced compensation */ 
set_time_out(on sending, S/R); 

if (empty(</weue,:) and lagj > 0) 

leave(i); 

leave(i) /* session i leaves */ 
A = A\{i}; 
for (j 6 .4) /* update lags of all active sessions */ 

lagj = lagj + lagj x rj/(J2k€A rk); 

if (3j e A s.t. empty(queuej) A lagj > 0) 
leave(j); 

Figure 1: Simple version of the CIF-Q algorithm. 
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When a. session ■/ becomes backloggecl and active, its lag is initialized to zero. Its virtual 

time is initialized to the maximum of its virtual time and the minimum virtual time among 

other active sessions to ensure the virtual times of all active sessions are bounded. The 

algorithm selects the active session i with the minimum virtual time for service. If that 

session is not leading and can send, then the packet at the head of its queue is transmitted; 

this ensures error-free non-leading sessions get their fair share. Its virtual time is advanced 

as follows to record the amount of normalized work: 

lk 

Vi = vt + ^- (4) 
r; 

where If is the length of the kih packet of session i and rt is the rate of session i. However, if 

the session is leading or cannot send, we search for the session j with the largest normalized 

lag that can send a packet. If there is such a session j, the packet at the head of its queue 

is transmitted. That is, when additional service is available, we first try to compensate the 

session that is normalized lagging the most. Note that session z's virtual time (not sessions 

j's virtual time) is advanced and lag-, and lag, are adjusted. The key is that by doing so we 

charge the packet transmission to session i (not j), and we keep track of this by adjusting 

the lags of the two sessions accordingly. The lags adjustments indicate that session i has 

now given up lj amount of service, while session j has now received if amount of additional 

service. This selection policy reduces to SFQ in an error-free system. 

To achieve long term fairness, in addition to compensating lagging sessions, we need 

to address the following question: What should happen if a session i with a non-zero lag 

becomes unbacklogged and wants to leave the active set? Clearly, if session i is allowed to 

leave, we need to modify the lag of at least one other active session in order to maintain 

the invariant (3) of the algorithm. Our solution is that when a lagging session i wants to 

leave, its positive lag, is proportionally distributed among all the remaining active sessions 

j such that each lag.j is updated according to the following equation: 

lagj = lag-j + lag{ 

hkeA rk 

where A represents the set of the remaining active sessions. In contrast, a leading session 

is not allowed to leave the active set until it has given up all its lead. 
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Intuitively, when a lagging session becomes unbackloggecl and wants to leave, its positive 

lag is "unjustified" because it does not have enough service demand to attain such lag. In 

addition, the leaving of a lagging session translates into gains in services for the remaining 

active sessions. By updating their lags according to equation ( 5), we practically distribute 

this gain in proportion to their rates. Therefore, such lag can be safely redistributed back 

into the system. In contrast, if a leading session is allowed to leave, and its lead (negative 

lag) is redistributed back into the system, then the remaining active sessions are penalized. 

If the leading session's lead is not redistributed back into the system and its lead history is 

erased (reset to zero), the aggregate sum over the lags of the remaining sessions becomes 

negative. Consequently, even if none of the remaining sessions experiences any errors in 

the future, they cannot get back their lost services unless the leading session that left the 

system becomes active again and gives back its lead. On the other hand, if the lead history 

is retained, then the leading session may be unnecessarily penalized in the future when it 

becomes active again. Therefore, a leading session is not allowed to leave. 

With the mechanisms discussed so far, as long as there exists an active session that 

can send, lost services by a session are always reflected as leads in other active sending 

sessions. Therefore, if all the error sessions exit from error and remain error-free for a long 

enough period of time, the normalized lag of all active sessions approaches zero and the long 

term fairness property of GIF is achieved. There is however a special case where no active 

sending sessions are left in the system to receive the excess service from an error session. 

Such service is said to be forgone and active error sessions are not allowed to reclaim such 

forgone services. In this case, the algorithm advances the active error session's virtual time 

using a dummy packet of length 8 so that all active sessions can be chosen by the server2 

in the correct order even when none of them can send. 

A similar special case exists for distributing compensation service. Recall that a leading 

unbacklogged session i is not allowed to leave until it has given up all its lead. However, 

if all other active sessions are in error and cannot receive compensation service from this 

leading session, this leading session may be stuck in the active set indefinitely. Using the 

dummy packet, we allow a leading unbacklogged session i to gradually give up its lead by 

forcing an active error lagging session j to "receive" 8 amount of compensation service. 

2Recall the server always chooses the session with the minimum virtual time. 
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In effect, we force session j to forgo 8 amount of service. If the leading unbacklogged 

session is not allowed to give up its lead by forcing the compensation, the allocated share 

of this leading session can be violated at a later time. Thus, the algorithm ensures that, 

given enough service demand from an error-free session, it always receives no less than 

its guaranteed share of service. As a result, the algorithm is capable of providing a delay 

bound to an error-free session whose source is constrained by a leaky-bucket regardless of 

the behavior of other sessions in the system. 

In summary, in this simple version of the CIF-Q algorithm, we have achieved two 

properties of GIF. First, long term fairness is ensured. Second, an error-free session is always 

guaranteed its fair share, thus there is a delay bound for an error-free session whose source 

is constrained by a leaky-bucket that is independent of the behavior of any other sessions 

in the system. As a result, real-time guarantee and long term fairness are decoupled. These 

properties are shown in Section 6. 

5.2    CIF-Q: Full version 

The simple version of the CIF-Q algorithm has two major drawbacks. First, the service 

received by a. leading session does not degrade gracefully when it is necessary for it to 

give up its lead. In fact, a leading session receives no service at all until it has given up 

all its lead. The second drawback is that only the session with the largest normalized 

lag receives additional services. That is, short term fairness is not ensured. Consequently, 

during certain periods of time, a session with a smaller guaranteed rate can actually receive 

better normalized service than a session with a larger guaranteed rate. This contradicts 

the semantics that a larger guaranteed rate implies better quality of service. 

The full version of the CIF-Q algorithm which addresses both of these problems is 

shown in Figure 2 and 3. Several new parameters are introduced and their definitions 

can be found in Table 2. For clarity, we have separated out some groups of operations 

into new functions. Function send_pkt(j,i) now contains the operations performed when 

the server serves a packet from session j but charge the service to session i. Because of 

the changes in lags resulting from the charging technique, sessions' states may change. 

Therefore, several cases are listed to check for state changes to update each parameter 

accordingly. Operations related to sending a dummy packet, which are identical to those in 
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Parameter Definition 

Q Minimal fraction of service retained by 

any leading session 

Si Normalized amount of service actually received by 

a leading session i through virtual time (vi) selection 

since it became leading 

Ci Normalized amount of additional service received by 

a lagging session i 

fi Normalized amount of additional service received by 

a non-lagging session / 

Table 2: Definitions of new parameters used in the full version of CIF-Q. 

the simple version, are now in the send_dummy_pkt(i) function. In addition, parameters 

are also updated when a session exits from error state as shown in the processing of the on 

exiting from error-mode event, and when a session leaves the active set as shown in the 

leave(z) function. 

To achieve graceful degradation in service for leading sessions, we use a system param- 

eter a (0 < a < 1) to control the minimal fraction of service retained by a leading session. 

That is, a leading session has to give up at most (1 - a) amount of its service share to 

compensate for lagging sessions. To implement this policy, we associate to each leading 

session i a parameter s,-, which keeps track of the normalized service actually received by 

such leading session through virtual time (vi) selection. When a session i becomes leading, 

si is initialized to at), (see case 4 in send_pkt and on exiting from error-mode). There- 

after, Si is updated whenever a leading session is served through virtual time selection (see 

send_pkt). When selected based on vt, a leading session is assured service only if the 

normalized service it has received through virtual time selection since it became leading is 

no larger than a of the normalized service it should have received based on its share. That 

is, a leading session is assured service only if s, < avi. Intuitively, the larger the value of 

a. the more graceful the degradation experienced by leading sessions. At the limit, when 

Q is set to one, no compensation is given to lagging sessions. 
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on session i receiving packet p: 

enquCTie((/HC«f;, p) 

if (i <£ A) 
Vj = max(vj ,mmkeA{vk}); 

lew = 0; 
./;• = max(/,-, minted {/A- | lagk <0Ak can send}); 
A = A U {/}; /* mark session active */ 

on sending current packet: /* get next packet to send */ 
i = mm,,,{/ £ A}; 
if ((/ can send) and [lagt > 0 or (lagi < 0 and s,- < or,))) 

send_pkt(/, ?'); /* session i served through Vj selection */ 
else /* / cannot send or i is leading and not allowed to send */ 

/* select, lagging session j to compensate */ 
j = minCl.{k £ A \ lagk > 0 A k can send}; 
if (?' can send) 

if (j exists) 

send_pkt(j, i)\ /* serve session j but charge to i */ 
else /* there is no lagging session that can send */ 

send_pkt(/, ?'); /* service given back to session i */ 
else /* i cannot send */ 

if (VA' £ A   k cannot send) 
send_diimmy_packet(/); 

else /* there is at least one session that can send */ 
if (j exists) 

send_pkt(j, ?'); /* serve session j but charge to i */ 
else /* no active lagging session, and i cannot send */ 

/* select session j to receive excess service */ 
j = min^. {k £ A | session k can send}; 
send_pkt(j, /); /* serve session j but charge to i */ 

if (i / j and eiiipty(</«f»f,-) and lagj > 0) 
leave(j); /* j becomes inactive */ 

if (empty(fyt/fiwff;) and lagi > 0) 
leave(?'); /* i becomes inactive */ 

Figure 2: The full version of the CIF-Q algorithm (Part I). 
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send_pkt(j. i) /* serve session j but charge to i */ 
p =dequeue(</«et/,ej); 
Vf = iij + p.length/i'i; /* charge session i */ 
if (■/ == j and lagi < 0 and s, < ain) 

/* session i is leading and served through m selection */ 
Sj = S{ + p.length/i'i; 

if (i + j) 
lagj = lagj — p.length; /* session j has gam extra service */ 
if [lagj > 0) 

/* case 1: j continues to be lagging */ 
cj = CJ + P-length/r-j; 

if (lagj + p.length < 0 and lagj < 0) 
/* case 2: j continues to be non-lagging */ 

fj = fj + p.length I r-j; 

if (lagj + p.length > 0 and lagj < 0) 
/* case 3: j just becomes non-lagging */ 

fj = m&x{fj,mmk€A{fk I lagu < 0 A k can send}); 
if (lagj + p.length > 0 and lagj < 0) 

Sj = avj\ /* case Jt: j just becomes leading */ 
lagi = la-9i + p.length; /* session i has lost service */ 
if (lagi - p.length < 0 and lagi > 0) 

/* case 5: i just becomes lagging */ 

c, = max(c,-, minfce^{cA: | lagit > 0 A k can send}); 

send_dummy_pkt(«) /* i was selected, but no session can send */ 
Vi = V{ + S/i'i\ /* send an infinitesimally small dummy packet */ 
if (lagi < 0 and empty(queuei)) 

j = max,agk/rk{k £A}; 

lagt = lagi + S; 
lagj = lagj — 6; /* forced compensation */ 
set_time_out(on sending packet, S/R); 

on session i exiting from error-mode: 
if (lagi > 0) 

d = max(cj, minted {cj. | lagi- > 0 A k can send}); 
else 

/„• = max(/i,minA-e^{/A- | lagk < 0 A k can send}); 
if (lagi < 0) 

SJ = ain; 

leave(i) /* session i leaves */ 
A = A\{i}; 
for (j G A) /* update lags of all active sessions */ 

lag'j =lagf, 

lagj = lagj + lagt x rj/(J2keA rk); 
if (lag'j < 0 and lagj > 0 and j can send) 

/* j just becomes lagging */ 
Cj = max(Cj, miiik£A{ck I ^a#A.- > 0 A k can send}); 

if (3j G .4 s.t. e.mpty(queuej) A lagj > 0) 
leave(j); 

Figure 3: The full version of the CIF-Q algorithm (Part II). 
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To provide short term fairness, we distinguish the two types of additional service in the 

algorithm: excess service and compensation service. Excess service is made available due 

to a session's error, while compensation service is made available due to a leading session 

giving up its lead. 

First of all, lagging sessions have higher priority to receive additional services to expedite 

their compensation. But we now distribute these additional services among lagging sessions 

in proportion to the lagging sessions' rates, instead of giving all of it to the session with 

the largest normalized lag. This way a lagging session is guaranteed to catch up, no matter 

what the lags of the other sessions are, and the short term fairness property is ensured 

among lagging sessions during compensation. This policy is implemented by keeping a new 

virtual time c.j that keeps track of the normalized amount of additional services received 

by session i while it is lagging. When a session i becomes both lagging and can send, c; is 

initialized according to (see case 5 in send.pkt, on exiting from error-mode and leave): 

c, = max(c,-,min{cA- I logi- > 0 A k can send}). (6) 

When additional service is available, the lagging session j with the minimum Cj that 

can send is chosen to receive it. Session j's c.j is then updated accordingly (see case 1 in 

sencLpkt). However, if such session j does not exist, then there are two scenarios. First, 

if the additional service is a compensation service, then this service is given back to the 

original chosen session ?'. Otherwise, it must be an excess service. If none of the active 

sessions can send at the moment, then send_dummy_packet(i) is called to advance the 

virtual time V{ and perform any applicable forced compensation. But if there are active 

sessions that can send left in the system, then this excess service is distributed among all 

non-lagging sending sessions in proportion to their rates. This way, short term fairness 

is ensured among non-lagging sessions when excess services are available. This policy is 

implemented by keeping a virtual time /,• that keeps track of the normalized amount of 

excess services received by session i while it is non-lagging. When a session i becomes 

non-lagging and sending, /,• is initialized according to (see on receiving packet, case 3 in 

send_pkt and on exiting from error-mode): 

fi = max( fi, min{ fj. \ lagk < 0 A k can send}). 
keA 



To distribute the excess service, the non-lagging session j with the minimum f3 that can 

send is chosen to receive it. Session j's fj is then updated accordingly (see case 2 in 

sencLpkt). 

In summary, using the four new parameters (a, .?.;, ct, and ft) and the associated mech- 

anisms presented above, the full version of the CIF-Q algorithm now achieves (a) graceful 

degradation in service for leading sessions and (b) short term fairness guarantee (these 

properties are shown in Section 6) in addition to (c) long term fairness guarantee and 

(d) error-free sessions delay bound/throughput guarantee that are achieved by the simple 

version of the algorithm. Thus, all the properties of GIF are satisfied. 

5.3    Algorithm Complexity 

In this section we discuss the algorithm complexity. We are interested in the complexity of 

each of the following five operations: (1) a session becoming active, (2) a session becoming 

inactive, (3) a session being selected to receive service, (4) an active session entering error 

mode, and (5) an active session becoming error-free. It can be deduced from Figure 2 that 

these operations ultimately reduce to the following basic set operations: adding, deleting, 

and querying the element with the minimum key from the set. Since these operations can 

be efficiently implemented in 0(log?i) by using a heap data structure, a straightforward 

implementation of our algorithm would be to maintain three heaps based on i>,-, /,-, and 

ct-, respectively. More precisely, the first heap will maintain all active sessions based on u,-, 

the second one will maintain all non-lagging error-free sessions based on /,-, and the last 

one will maintain all lagging error-free sessions based on c;. Since with the exception of 

the leaving operation, all the other four operations involve only a constant number of heap 

operations, it follows that they can be implemented in O(logn), where n represents the 

number of active sessions. 

Regarding the leaving operation, when the lag is non-zero, this operation requires up- 

dating of the lags of all other active sessions. However, when a session's lag changes, that 

session might change its state from leading to lagging, which eventually requires moving it 

from one heap to another. Thus, in the worst case the leaving operation takes 0{n\ogn). 

Although the leaving operation takes significantly longer than that in an error-free 

Packet Fair Queueing algorithm, we note that in wireless networks, algorithm efficiency is 
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not as critical as in wired networks. The main reason for this is that wireless networks are 

mainly used as access technology, they have significantly lower bandwidth, and support 

a significantly lower number of hosts compared to wired networks. As an example, the 

current WaveLAN technology provides 2 Mbps theoretical throughput and supports on the 

order of 100 hosts [9]. These figures are several orders of magnitude smaller than the ones 

for a high speed communication switch. 

6    Fairness and Delay Results 

In this section we show that our algorithm meets the properties presented in Section 4. 

Specifically, Theorem f says that the difference between the normalized services received 

by two error-free active sessions during any time interval in which they are in the same state 

(i.e., leading, satisfied, or lagging) is bounded (Property 3), Theorem 2 says that the time it 

takes a lagging session that no longer experiences errors to catch up is bounded (Property 

2), and finally, Theorem 3 gives the delay bound for an error-free session (Property f). 

Note that Property 4 is explicitly enforced by the algorithm via, the parameter a. The 

complete proofs can be found in the Appendix. 

Theorem 1 The difference between the normalized service received by any two sessions i 

and j during an interval [tiJ^) in which both sessions are continuously backlogged, error- 

free, and their status does not change is bounded as follows: 

WiituU)     Wjit^U) l^m-ax    ,    l^max <ßl^± + ^±\, (8) 

where M-^(^i, 12) represents the service received by session i during [/i,^)? Lmax is the max- 

imum, packet length, and ß = 3 if both sessions are non-leading, ß = 3 + a otherwise. 

Theorem 2 Consider an active lagging session i that becomes error-free after time t. If 

session, i is continuously backlogged after time t. then it is guaranteed to catch up after at 

most A units of time, 

A   =     ^ 7jjla9i{t)+ (9) 
rirmin{l - a)R 

(R(R/n + n + 2)   p      , i   (     R \ Lmax 

—   ■ n -   ^— + " + ! + —   —E~, 
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Pkt. size Guaranteed rate Src model Error 

Audio 1 KB 160 Kbps CBR None 

Video 8KB 1.25 Mbps CBR. None 

FTP-1 3 KB 2 Mbps Greedy None 

FTP-2 3 KB 2 Mbps Greedy Pattern 1 

FTP-3 8 KB 2 Mbps Greedy Pattern 2 

FTP-4 8KB 2 Mbps Greedy Pattern 1 

Cross 4 KB 10 Mbps Poisson None 

Table 3: Properties of the 7 sessions used in the simulations. 

where n is the number of sessions that are active at any time in [t,t'), R is the channel 

capacity, Lmax is the maximum length of a packet, R is the aggregate rate of all sessions in 

the system, and rmin is the minimum, rate of any session. 

Theorem 3 The delay experienced by a packet of an error-free session i with rate ri in an 

error system S is bounded by 

T tk        T 

{n - 1)—^ h — + (10) 
R       R 

where n is the number of active sessions. If is the length of the kth packet of session i, and 

R is the channel capacity. 

7    Simulation Experiments 

In this section, we present results from simulation experiments to demonstrate the delay 

bound guarantees and the fairness properties of CIF-Q. All the simulations last for 200 

seconds and there are seven sessions: a real-time audio session, a real-time video session, 

four FTP sessions, and a cross traffic session to model the rest of the traffic in the system. 

The properties of each session are shown in Table 3. The audio and video sessions are 

constant-bit-rate (CBR) sources such that their packets are evenly spaced at 50 ras apart3 

and their throughputs are 160 Kbps and 1.25 Mbps respectively.  The four 2 Mbps FTP 

3To be more realistic and to avoid the worst case behavior of SFQ, the packet spacing has a small 

probability of drifting slightly 
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Max Min Mean Std Dev 

Audio 

Video 

46 ms 

49 ms 

0.40 ms 

3.2 ms 

4.1 ms 

6.9 ms 

4.4 ms 

4.3 ms 

Table 4: Packet delay statistics for the audio and video sessions when a is 0.9. 

sessions are all continuously backlogged. Finally, the cross traffic session is a Poisson source 

with an average rate of 10 Mbps. 

For clarity in showing the effects of channel errors and for ease of interpretation, we 

choose to model errors as simple periodic error bursts rather than using a more realistic 

model [3]. During the 200 second periods of our simulation experiments, channel errors 

occur only during the first 45 seconds, leaving enough error-free time to demonstrate the 

long term fairness property of our algorithm. Error pattern 1 represents a periodic error 

burst of 1.6 second with 3.2 seconds of intermediate error-free time. Error pattern 2, a less 

severe error pattern, represents a periodic error burst of 0.5 seconds with 5.5 seconds of 

intermediate error-free time. Notice session FTP-2 and session FTP-4 experience identical 

error pattern but have different packet sizes, while session FTP-1 experiences no error at 

all. In the following, we present two sets of simulation results using different values as the 

the system parameter a. 

7.1     a = 0.9 

An a value of 0.9 intuitively means that leading sessions will give up up-to 10 percents 

of their service rates to compensate for lagging sessions. Table 4 shows the packet delays 

statistics for the two real-time sessions under this compensation policy. For comparison 

purpose, if the audio and video sessions were served by an error-free fluid GPS system, 

their packets would have a delay bound of 50 ms. Clearly, the delays experienced by the 

audio and video packets under our algorithm compare favorably against the GPS delay 

bound and are well below the worst case delay bound of our algorithm. The worst case 

delay bound is much larger than 50 ms due to the SFQ discipline used. However, a packet 

experiences the worst case delay only when the starting virtual time of all sessions are 

perfectly synchronized. This is avoided in the simulation by introducing small infrequent 
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Figure 4: Behavior of the FTP sessions when a is 0.9. (a) Service received by each FTP 

session. Note that FTP-2,4 are the bottom two lines that virtually overlap each other, (b) 

Difference between the actual service received by the FTP sessions and the corresponding 

expected amount of service. Note this is not the same as the lead defined in the CIF-Q 

algorithm 

drifts into the packet spacing to portrait a more realistic situation. 

In addition to providing delay bound guarantees, an equally important aspect of our 

algorithm is on fairness. To demonstrate the fairness properties, consider the behavior 

of the four FTP sessions as shown in Figure 4. Figure 4(a) shows the amount of service 

receivecl by each FTP session over the period of the simulation. Recall that sessions FTP- 

2,3,4 experience errors during the first 45 seconds of the simulation as evidenced by the 

flat periods in their service progressions. Sessions FTP-2,4 experience identical errors and 

session FTP-3 experiences slighter errors. Session FTP-1 is error-free during the simulation. 

The most notable feature in Figure 4(a) is the fact that the service received by all 

four FTP sessions, regardless of the amount of errors they have experienced, converges 

gradually when the system becomes error-free. This demonstrates the perfect long term 

fairness guarantee over a busy period provided by our algorithm. To see the changes 

in leads and lags more easily, we show in Figure 4(b) the difference between the actual 

service received by the FTP sessions and the corresponding expected amount of service. 

The expected amount of service is computed as the product of the overall throughput and 

time. A leading session gives up its lead to lagging sessions at a rate of 1 — a that of its 

actual service rate.   Notice the give-up rates and compensation rates varies slightly since 
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Max Min Mean Stcl Dev 

Audio 

Video 

43 ms 

51 ms 

0.40 ms 

3.2 ms 

4.1 ms 

7.0 ms 

4.4 ms 

4.5 ms 

Table 5: Packet delay statistics for the audio and video sessions when a is 0.0. 

the Poisson traffic of the cross traffic session affects the actual service rates. 

Finally, notice in both Figure 4(a) and (b), the lines for sessions FTP-2 and FTP-4 

almost overlap each other and the lines for sessions FTP-1 and FTP-3 parallel each other 

while they are both leading. This shows the short term fairness guarantee provided by our 

algorithm which states that the difference in normalized services received by two sessions 

during a period in which the}7 are in the same state (leading or lagging, error or error-free) 

is bounded. This ensures that all leading sessions in the same error state give up their 

leads at approximately the same normalized speed and that all lagging sessions in the same 

error state get compensated at about the same normalized speed. One might incorrectly 

assume that the lines for sessions FTP-2 and FTP-4 should completely overlap each other 

since the}' experience the same errors. The reason they do not is that the difference in the 

amount of normalized services received may drift apart when the sessions change states 

as can be seen in Figure 4(b). Nonetheless, it is important to note that the two lines are 

parallel during periods where the two sessions do not change state. 

7.2    a = 0.0 

In this experiment, the value of a is zero. This means that a leading session i will receive 

no service as long as there exists a lagging error-free session in the system. This absolute 

priority compensation behavior is similar to the behavior of the algorithm proposed in 

[6], except that we have not put an artificial upper bound on this zero-service period 

and that real-time requirements are still guaranteed. Although we believe such aggressive 

compensation is not desirable, it is worthwhile to demonstrate the behavior of our algorithm 

under this policy. Even though such an aggressive compensation policy is used, the delays 

experienced by real-time packets are unaffected under our algorithm (See Table 5). Thus, 

delay bounds for real-time sessions are guaranteed independent of the value of a or whether 

23 



FTP-1 (Delia) - 
FTP-2 (Delta) - 
FTP-3 (Delia) ■ 

FTP-4 (Delta) 

20    40    60 100    120    140    tGO    180    200 

(a) (b) 

Figure 5: Behavior of the FTP sessions when a is 0.0. (a) Service received by each FTP 

session, (b) Difference between the actual service received by the FTP sessions and the 

corresponding expected amount of service. 

compensation is bounded. The value of a only affects the fairness properties of the system. 

That is, real-time delay bound guarantee and fairness guarantees are decoupled under our 

algorithm. 

In Figure 5, we show the behavior of the four FTP sessions Clearly, the services received 

by the four FTP sessions converge very rapidly after each error period. However, the 

price to pay for such absolute priority compensation is the abrupt changes in the available 

bandwidth experienced even by error-free sessions (e.g. FTP-1). Despite the abruptness, 

it is clear from Figure 5 that the long term and short term fairness guarantees provided 

by our algorithm still hold. One thing worth explaining is that in Figure 5(b), the lines 

converge to a value above zero and then slowly drop to zero together. This is due to the 

changing actual service rates caused by the Poisson traffic of the cross traffic session in 

the system. Nevertheless, the convergence of the services sufficiently shows the fairness 

properties of our algorithm. 

8    Conclusion 

In this paper, we make two main contributions. First, we identified four key properties 

(GIF) that any PFQ algorithm should have in order to work well in a wireless network where 

channel errors are location-dependent. Specifically, the properties are (1) delay guarantees 
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and throughput guarantees for error-free sessions, (2) long term fairness guarantee for 

error sessions, (3) short term fairness guarantee for error-free sessions, and (4) graceful 

degradation in quality of service for sessions that have received excess service. As a second 

contribution, we present a methodology for adapting PFQ algorithms for wireless networks 

and we apply this methodology to derive a new scheduling algorithm called CIF-Q that 

provably achieves all the properties of CIF. Four novel algorithmic techniques are introduced 

in CIF-Q to make achieving the CIF properties possible. We demonstrate the performance 

of CIF-Q in simulation and show how compensation rate can be tuned to suit specific needs. 

As possible further work, the CIF-Q algorithm may be extended to support hierarchical 

link-sharing service. 
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Appendix 

In this section we prove the main fairness and delay properties of our algorithm. First, 

we start with several preliminary results. Lemma 1 gives a upper bound for the lag of 

an error-free session, while the next three lemmas give bounds for the difference between 

the virtual times (r,'s), the virtual compensation times (c,-'s), and the virtual excess times 

(/,'s) between any two active sessions. 

Lemma 1 The lag of an error fret session is never greater than Lmax, where Lmax repre- 

sents the maximum size of a message. 

Proof. The proof is by induction. From the algorithm in Figures 2 and 3, the lag of an 

error-free session i changes in one of the following three cases: (a) session i becomes active, 

(b) session i is selected based on its virtual time but since it is leading another session j is 

selected to receive service, and (c) session i receives service from another session j. 

Basic step. When an error-free session i becomes active, its lag is set to zero, and therefore 

the lemma is trivially true. 

Induction step. Assume lag, < Lmax. We consider two cases: (1) lagi < 0, and (2) 

0 < lagi < Lmax. Since in case (1) session i is leading, its lag can increase only when its 

service is given to another session j (see case (b) above). In this case, we have 

lagi = lagi + l)<lk
i<Lrnax, (11) 

wf here lk represents the length of the packet at the head of the queue of session j. In case 

(2), session i is non-leading, and so its lag can only decrease (case (c) above). Thus, the 

bound holds. D 

Lemma 2   The difference between the virtual times of any two active sessions i and j is 

bounded as follows: 

 < Vi - Vj <  . (12) 
r; r; 
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Proof. The virtual time of a session is updated in one of the following cases: (1) the 

session becomes active, (2) the session is selected. Again, the proof is by induction. 

Basic step. When there is only one active session, the lemma is trivially true. 

Induction step. Consider a session i that becomes active at time t, and assume that the 

lemma is true at any time before t. Then the virtual time of session i is either initialized to 

the minimum virtual time among all active sessions, or remains the same if it is larger than 

this minimum. Since virtual times are non-decreasing, it is easy to see that the difference 

between Vi and the virtual time of any other active session remains in the same bounds. 

This concludes the argument for case (1). 

For case (2), assume again that before session i is selected, the lemma holds.   When 

selected, the virtual time of session i changes as follows 

lk 

Vi = Vi + -, (13) 
rt 

where lk represents the length of the packet that is served (not necessary a packet of session 

■/) when session i is selected, if any. (If there is no such packet, we assume a dummy packet 

of length 5 <C Lmax is served, the proof proceeds identically.) Since V{ represents the 

minimum virtual time among all currently active sessions, we have 

Vi < v,,  Vj € A. (14) 

Since Vi is the only virtual time that changes at time t, it is enough to show that the 

difference between u, and any other Vj is bounded. Recall that by hypothesis we have 

_h^i. < v. _ v  < ^£, \Jj G A. (15) 
rj r,- 

From this and from Eq. (13) and Ineq. (14) it follows that 

vi + --vj<-<^  VJ€A (16) 

Similarly, if we assume that j is selected (instead of i), we have 

Vl -Vj-t>JL> „h^L^ yt € ^ (17) 
rj rj r3 
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which concludes the proof. D 

Since the proofs of the next two lemmas axe similar to that of Lemma 2, we give the 

results without the proofs. 

Lemma 3  The difference between the virtual compensation times of any two active error- 

free sessions i and j that are both lagging is bounded as follows: 

Junior     , .   -L/mar I \ o\ 
 < a - CJ <  (lb) 

rj ■ 1\ 

Lemma 4  The difference between the virtual excess times of any two active error-free 

sessions i and j that are both non-lagging is bounded as follows: 

-—<fi-fi<— (19) 

The next lemma gives bounds on the difference between the normalized service received 

by a leading session i (s;) and the amount it should have received (at',). 

Lemma 5 For any leading error-free session i, 

, ^.■L'ma.T   ^ ^       '-'max /on\ 
(Q — 1)  < av{ — Si < a . (20) 

Proof. The proof is by induction. 

Basic step. Initially, when session i becomes leading $,■ is initialized to m?,-, and therefore 

the bounds hold. 

Induction step. Assume the bounds hold before v-t and/or S{ are updated. Since in and/or 

Si change only when session i is selected, we consider two cases: (1) session i is actually 

served, and (2) another session j is served. According to the algorithm, the first case occurs 

only when ,s, < av;. Therefore, we have, 

a(vi +l>-)-si-
lt = (a-l)lt + QVi - s: > (o - 1)^, (21) 

7 ,' 1 i 1 i 7 j 

where If represents the length of the packet being transmitted. 

In the second case (si > of,), the service is allocated to another session j, if any, u; is 

updated but 5, is not. Thus, we have 
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I" l" 
a(vi + -) - Si < Q— < a 

■L^'maa 
(22) 

r; 

w here lk- represents the length of the transmiteed packet of session j. D 

Theorem 1 The difference between the normalized service received by any two sessions i 

and j during an interval [t1,t2) in which both sessions are continuously backlogged, error- 

free, and their status does not change is bounded as follows: 

Wiii-uh)      W3{tut2) 

r; r 3 

s~   fk I      max '-'max 

r; 
(23) 

where Wi(tut2) represents the service received by session i during [^I,^), Lmax is the max- 

imum packet length, and ß = 3 if both sessions are non-leading, ß = 3 + a otherwise. 

Proof. We consider three cases: both sessions are (1) lagging, (2) satisfied, or (3) leading 

during the entire interval [t\,t2). 

(1) (both sessions are lagging) In this case both sessions receives service each time they are 

selected, or when they receive compensation from a leading session. Since both the virtual 

time Vi and the compensation virtual time c» are updated before a packet is send, it follows 

that the total service received by an error-free lagging session during [tut2) is bounded by 

i-L \         n \   ,     i4 \         14- \      Lmax            Wi\ti,t2) 
Vi{t2) - ViiU) + Ci(t2) - c-(*i) <      

Ti 
(24) 

<      Vi(t2) ~ ViiU) + Ci(t2) - Ci(ti) + 
'-'max 

Vi 

In the left-hand inequality, the term - ^f^ accounts for the worst case in which t2 occurs 

exactly after a packet is selected, while in the right-hand inequality the term ^-^ accounts 

for the worst case when tx occurs exactly after a virtual time is updated but before the cor- 

responding packet is transmitted. Thus, from the above inequality and by using Lemmas 2 

and 3, it is easy to see that 

Wi(tut2)     Wjituh) 

r; 

. .-,  I  '-'max '-'max 

Vi r 
(25) 

3 
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(2) (both sessions are satisfied) In this case both sessions are served each time they are 

selected based on their virtual times, or when they receive excess service. Then, similar to 

the previous case we have 

vdu) - vi(u) + Mt2) -MU) - —  <  ^^ 
V; V; 

(26) 

<      Vi(h)-Vi(h) + fi{t2)-fi(t1) + 
L, 

and consequently, similarly to the previous case, by using Lemmas 2 and 4, we obtain 

H',-(*i,*2)     W3{hJ2) , .-,  /  '-'■max '-'max 
u< 

V; 

(3) (both sessions are leading) Similar to the previous case, the service received by a leading 

session i during [^1,^2) is bounded by 

Si(t2) ~ Si(U) + Mt2) ~ Mh) ~ —     <      -^^ 
V; ri 

(28) 

<    si(t2)-si(t1) + fi(t2)-fi(t1] 
L, 

Further, according to Lemma 5, for any leading error-free session i and any time t, while 

it is active, we have 

av; It) — (a — 1) 
L„ 

>s;{t)>avi{t)-a 
'-'max 

rr rt 

Consequently, for any two leading error-free sessions that are active at time t, we have 

I     U\ t-i\\   1       j'-'max Lmar Lmax 
o{vi(t) - Vj{t)) + a( ) <    Si{t)-Sj{t) 

(29) 

(30) 

<    a{vi{t) - Vj(t)) + a 

From the above inequality and Lemma 2, we obtain 

'-'max '-''max <.    ,    '-'max + 
ri 

-a 
'-'max '-'max     ~       , ,\ ,.,     .       '-'max    ,    '-'max 
 < s;(t) - Silt) < a— + 

r-i ri 
(31) 

Finally, from this inequality and Ineq. (28), we have 

Wi{tut2)      H-j(/i,<2) ^  /o    1        \   /   '-'mar    .    J->max 
< (3 + Q) I h 

r; 
(32) 

which concludes the proof of the theorem. D 
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Theorem 2 Consider an active lagging session i that becomes error-free after time t. If 

session i is continuously backlogged after time t, then it is guaranteed to catch up after at 

most A units of time, 

A = R2 lagM) + /^/r'+w + 2> + n + 1 + A] ^£? (33) 
rirmin(l-a)R      % \     rmin{l - a) rminJ     R 

where n is the number of sessions that are active at any time in [t,t'), R is the channel 

capacity, Lmax is the maximum, length of a packet, R is the aggregate rate of all sessions in 

the system., and rmin is the minimum, rate of any session. 

Proof. After time t, as long as session i is lagging, its lag decreases each time it receives 

compensation. Since the total compensation received by session i during the interval [t, t') 

is ri(ci{t') - Ci(t)), we have 

lagi{t') = lagt(t) - rt(Ci{t') - ct(t)). (34) 

Let C{t,t') be the total compensation received by all sessions during the interval [t,t'), 

and let £(t, t') denote the set of all lagging session that have received compensation at 

some point in the interval [t,f). It is easy to see that during [t,t') the compensation is 

always given to a lagging session. This is because there is at least one continuously lagging 

session, namely session i, that is error-free during this interval. Clearly, in the worst case, 

all sessions in C(t,t') are continuously lagging and error-free (so therefore they can accept 

compensation at any time) during the interval [t,t'). Thus, in this case, we have 

C(t,t')<      E     rjiCjW-Cjity + Lna*. (35) 
jec(t,t>) 

By using Lemma 3 for any two lagging error-free sessions i and j that are active during 

the interval [t,t') we have 

c,(t') - c3(t) < <,(*') - cl{t) + h^L + ^ (36) 
<t I j 

and therefore 
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C(i,t')    <      E    rjiait') - Ci[t) + ^ + ^) + Lmar (37) 
jEC{t.1') 7-> ?1 

=    (ci(t') - a(t))    £    r:i + Lmax\£(tj')\ + ^    Y.    'V + ^K,, 

j€C(u') ?'    .iec(t.t') 

<    (c,.(f')_C!-(i))ß+(n + -)Imar, 

where n represents the total number of sessions that axe active at any time in [t, t'), which 

is at least \C(tJ')\ + 1. This is because as long as there is at least a lagging session, there 

is also at least a leading session. We denote this set of active sessions as A. 

Further, note that since the compensation C(t.t') represents a fraction a of the work 

received by leading sessions, and since this work is proportional to the sessions' rates, it 

follows that the worst case occurs when there is only one leading session k and this session 

has rate rk = rmra. Thus, in general, we have 

C(tj') > rk(vk(t') - vk(t)) - rk(sk(t') - sk(t)) - Lmax, (38) 

Similar to Ineq. (37) we obtain 

R(t'~t)      <      Eri(^(O-lV(0) + imar (39) 
jeA 

< L r,-(r*(f) - vk(t) + ^ + ^) + Lmax 

< {vk.(t') - vk(t))R + (n + 1 + —)Lmax. 

By combining the above two inequalities, and by using Lemma 5 we get 

C(t, t')    >   rk(vk(t') - vk(t)) - rk(sk(t') - sk(t)) - Lmax (40) 

> rk(vk(t') - vk{t)) - rk(avk(t') - avk(t) + ^) - LmaT 

Tk 

=   rk(l-a)(vk(t')-vk(t))-2Lmax 

^       n ,R(t'-t)-(n + l + R/rk)Lmar     0T 
> rk(1 - a■) ~ ■ 2Lmax. 

K 

Now, from Ineqs. (37) and (40) we obtain 
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... C(tJ')-(n + R/rt)Lmax 
Ci(t) -c.it)    >     g  (41) 

ti 

,Ä(*'-«)-(n + l + Ä/rt)£m„     (n+2 + Ä/ri)I„„ 
>   rt(l-a) B g ■ 

Finally, since lagi[t') is assumed to be no larger than zero, from the above inequality, 

Ineq. (34), and by taking A = t' — t the proof follows. D 

Since during any busy period of a server there is no forced compensation, from the 

above theorem we have the following result: 

Corollary 1 Consider two sessions i and j backlogged during a service busy period [t\,t2), 

and assume that at time t\ both sessions have the same normalized lag, i.e., /ag;(ii)/r8- = 

lagj(ti)/rj. Then, irrespective of the errors experienced by these sessions during the interval 

[ti-h), if both sessions become error-free after t2 and they have enough demand, then there 

exists a time t3 > t2 such that the difference between the normalized service received by the 

two sessions during the interval [^1,^3) is bounded. 

In the following, we determine the delay bound for an error-free session.   In the next 

two lemmas we give two preliminary results used in proving Theorem 3. 

Lemma 6 Let Wt(ti,t2) be the service received by an error-free session during the interval 

\t\,t2) (t1 and t2 are packet transmission finish times) while it is continuously active in S, 

and let W[(ti,t2) be the service received by the same session in Sr
SFg.  Then, we have 

W[(tut2) = Wi(tut2) + lagt(t2) - lagiih). (42) 

Proof. The lag and/or the work received by session i in S during [tl}t2) change when one 

of the following events occur: (1) session i is selected and the packet at the head of its 

queue is transmitted, (2) session i receives service from another session, and (3) session i is 

leading and its service is given to another session. On the other hand, the service received 

by session i in S'SFn changes only when it is selected and the packet at the head of its 

queue is transmitted. In the following, we use induction on the events that change the lag 

and the work received by session i in S. 

34 



Basic step. At ix, Eq. (42) reduces to Wf(tiJi) = W;{tuti), which is obviously true. 

Induction step. Assume that at time / G [^1,^2) one of the above three events occurs, 

and that for any time smaller than t Eq. (42) holds. 

In case (1), when session i is selected and the packet at the head of its queue is served 

we have 

Wi(tut+)   =   Wt(tut) + lf,  and (43) 

W[(hJ+)   =   W[(n,t) + $, 

where t-\- represents the time immediately after the packet has been transmitted. Since 

according to our algorithm, lag; does not change in this case, it follows that if Eq. (42) 

holds at time t, then it will also hold at time /+. 

In case (2), when session i receives service from another session in ,5', its lag and work 

change as follows 

lagi(t+)    =    lagt{t)-lf,  and (44) 

W;(t1.t+)   =    Wi(U.t) + lf. (45) 

where again If represents the packet at the head of session ?''s queue. However, note that 

in this case Wf is not updated (because session i is not selected). Thus, we have 

W[(tut+)    =    W[(tut) = Wi(tut) + la9i(t) - lagiih) (46) 

=    Wi(hJ) + If + lacjiit) - If - hgiiU) = Wi(t1,t+) + lagi(f+) - lag^h). 

Finally, in case (3), session i is selected but its service is given to another session j. If 

there is no such session j that can send, then we simply assume a packet of a session j 

of length S is served (forced compensation), and the proof proceeds identically. If there is 

such session, then let if be the length of the packet at the head of session j's queue. Then, 

we have 

lagi{t+)    =    lag;{t) + l],  and (47) 

W[(iut+)   =    W[(h,t) + /J, (48) 
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while Wj does not change. From this, it follows that 

W[(UJ+)   =   WrituV + l^WiituV + lagiW + lj-lagdt!) (49) 

=    Wi(t!,t) + lagj(t+) - lagiih) = Wi(t1J+) + lagi(t+) - lagi(h), 

which completes the proof of the lemma, D 

From Lemmas 1 and 6 it follows that the difference between the service received by an 

error-free session in the reference system and the service the session receive in the error 

system is bounded. 

Lemma 7 Assume an error-free session i becomes active at time t in an error system. S. 

Then, the difference between the service received by i during any time interval \t,t') (f is 

a packet transmission finish time) while it remains active in S and the service the session 

would receive in the reference system S'SFQ is bounded as follows: 

W[(t,t')-Wi(t,t')<Lmax. (50) 

Proof. Since when session i becomes active at time t, lag^t) = 0, according to Lemma 6, 

we have 

W[(t,t/) = Wi(t,f) + lagi(t')7 (51) 

Further, since session i is assumed to be error-free during the interval [t,f), according to 

Lemma 1, we have lagt(t
r) < Lmax, which concludes the proof. D 

Since in our case Sr
SFQ represents an error-free system where sessions are served by the 

SFQ policy, the above result suggests that we can use SFQ delay guarantees to bound the 

packet delay in S. In particular, it has been proved in [5] that the delay of any packet k of 

a session i under SFQ is bounded by 

rf?<e? + (n-l)^ + |, (52) 

where R is the channel capacity, n represents the total number of active sessions, d\ repre- 

sents the fc-th packet of session i's departure time, and e\ represents the expected arrival 

time of the fc-th packet of session i, and is computed as follows 
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/
A

'
_1 

ef = maxjof, ef"1 + -*—},  A- > 1, (53) 
r, 

where a1- represents the actual arrival time, and e- = —oo. 

Theorem 3 The delay experienced by the k-th packet of an error-free session i in an error 

system S is bounded as follows: 

T lk       T 

«,• < (; + (n - 1)—5- + — + . (54) 
K ti i'i 

Proof. Since by time c/f the A-th packet of session i has been transmitted, we have 

Wi-K-,rf?) = E^ (55) 

But according to Lemma 7, in the reference error-free system S'SFQ, we ha.ve 

W[(al^)<Lmar + Y,li (56) 

Thus, in the worst case the work that session i need to receive in the error-free reference 

system S'SFQ until the A'-th packet of session i in the error system is transmitted is at most 

Lmax + 12j=i If- Consequently, according to Eq. (53) the expected arrival time of the k-th. 

packet of session i in S'SFQ, denoted e-'' is bounded by: 

k.r ^     k   1    '-'max tr<-r\ e,-    < e,- + . (5/) 
r, 

From the above equation and Eq. (52) the proof follows. D 

Finally, the next result gives the delay bound for an error-free session ?', whose traffic 

conforms to the leaky-bucket constraints (e^, ?',-) where a; is the bucket depth and rt is the 

token rate. Since in this case, for any packet k of session i we have e^ < af + <rt-/r,-, from 

the above theorem the corollary below follows. 

Corollary 2 Consider an error-free session i with a reserved rate ?%• and its traffic conforms 

to a leaky-bucket (<r, r,-). Then the deadline experienced by the k-th packet of session i is 

bounded as follows: 
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dt < a? + (n - 1) 
Lr 

R r, 
(58) 

R        ti        rt 

where af represents the arrival, time of that packet, Lmax represents the maximum size of a 

packet. R represents the server's rate, and n represents the number of active sessions. 

38 


