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Abstract— Real-time Internet services are gaining in popularity
due to rapid provisioning of broadband access technologies.
Delivery of high Quality of Experience (QoE) is important for
consumer acceptance of multimedia applications.

IP packet level errors affect QoE and the resulting quality
degradations have to be taken into account in network operation.
We derive the second order statistics of the number of packet
losses in finite Markov models over several relevant time scales
and adapt them to loss processes visible in wired and wireless
transmission channels.

Higher order Markov chains offer a large set of parameters to
be exploited by complex fitting procedures. We experience that
the 2-state Gilbert-Elliott model already captures a wide range of
observed loss pattern appropriately and discuss how such models
can be used to examine the quality degradations caused by packet
losses.

I. INTRODUCTION

The transfer of real-time data for multimedia services over
the Internet and channels in heterogeneous packet networks is
subject to errors of various types which will affect the QoS
and QoE. On wireless and mobile links temporary and long
lasting reductions in the available capacity frequently occur
and even in fixed and wired network sectors packets may be
dropped at routers and switches in phases of overload. Lost
information will affect the perceived quality by impairing the
multimedia content. The QoE degradation not only depends on
the amount of lost packets, but also on the semantic of the lost
information at the application layer. In video streams, a lost
intra predicted I-Frame that is referenced by subsequent inter
predicted P- and B-Frames may cause a much stronger visual
impact due to error propagation than a lost inter predicted
frame.

In this work, we focus on packet loss on Internet links
with most traffic controlled by TCP superposed with a con-
siderable contribution of real-time traffic without flow control.
The impact of packet loss on the user’s perception of real-
time services can be investigated starting from measurement
traces of traffic or generated by finite-state stochastic models,
which have been adapted to the characteristics observed in
the measurement and thus produce statistically similar traces.
Using model based generators for loss processes has several
advantages:

o the amount of necessary storage capacity is reduced
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significantly from several gigabyte to a set of model
parameters,

« stochastic models usually include a set of parameters with
a clear interpretation, which can be adapted to meet the
demands of a considered scenario in which the model
is used (e.g. a certain packet loss rate) and makes them
more flexible than a measurement trace,

« the length of the generated sequence is independent of
the measurement trace used for training,

¢ stochastic models produce random but statistically con-
sistent sequences.

Both, using real data loss traces—e.g. captured in backbone
links—and model generated loss traces have their benefits. The
main disadvantage of using model generated loss traces is that
statistical properties may not fit to the statistical properties of
a measured trace as they are likely to be biased by model
limitations. As measurement traces show characteristics on
multiple time scales, we derive the second order statistics of
finite Markov models to be used as a parameter estimation
technique to adapt the model to the second order statistics of
the amount of packet losses observed in a given traffic trace
on multiple time scales by moment matching. We focused
on 2-state Markov models in [10]. The present paper gives a
generalised view on finite Markov models and discusses how
these models can be used in the study of QoE impacts on
video streams. The aim is to provide a generator for packet
loss pattern to be used in the estimation of the degradation in
the Quality of Experience (QoE) for Internet services.

Section II will describe the trace evaluation as the basis
for further investigations. The traffic variability and packet
loss patterns observed in multiple time scales will be dis-
cussed in Section II. Section III will introduce Markov chains
as stochastic models to capture statistical properties of the
training traces and produce artificial traces as output. Besides
the general definition of finite-state Markov models, two
commonly used models will be introduced and related work
on Markov modelling will be discussed. From the definition of
finite Markov chains, the second order statistics on multiple
time scales will be derived in Section IV. In Section V, a
comparison of different parameter estimation techniques for
2-state Markov models shows that simple Markov processes



achieve a fairly close fit to the second order statistics over
multiple time scales. Section VI will discuss how the presented
models can be used to study degradations in the perceived
quality of real-time video.

II. TRAFFIC TRACES AND PACKET LOSS EVALUATION

UDP Traffic

Available
Traffic Traces

Queue

TCP Background
Traffic

Fig. 1. Measurement topology: TCP backbone traffic is feed from a trace
file along with UDP traffic into a router. The traffic is directed over an
bottlenecked link to a destination. The loss rate can be arbitrarily chosen
by adjusting the capacity of the outgoing, bottlenecked link.

As a starting point to estimate packet loss processes, we
consider measurement traces of traffic taken from broadband
access routers of Deutsche Telekom’s IP platform, which
connect residential ADSL access lines to the backbone [11].
Measurement data is available on an aggregation level of 2.5
Gb/s interfaces including a time-stamp and the size for each
packet. The load on the links is usually moderate below 50 %
such that packet loss is rare or not encountered at all. However,
the variability of the traffic is visible on time scales from 1 ms
to about half an hour as the length of the traces. Nevertheless,
this allows to evaluate overload phases and corresponding loss
pattern assuming lower capacity leading to more critical load
levels. The evaluation setup is illustrated in Figure 1.

The loss pattern obtained in this way correspond to uncon-
trolled sources as in the UDP transport protocol (open loop),
but do not include retransmissions and source rate adaptation
of the TCP congestion control mechanism. TCP flows are
dominant at around 90% of the Internet traffic volume together
with an increasing portion (5% - 10%) of UDP including
real time applications which currently become more and more
popular. A response of TCP on packet loss is subject to
timeouts and therefore not expected on time scales below
Is. On longer time scales TCP aims at stabilizing the load
on a congested link close to a full utilization. In fact, the
analysis and simulation of TCP congestion control on packet
loss is complex and empirical studies seem missing especially
for high speed links with a mixture of thousands of flows
in parallel having largely different bandwidths and round trip
delays [28].

Since our main focus is on real time video applications via
UDP, we refer to the original measurement traces in order
to generate realistic packet loss processes, although we are
aware that the behaviour may be different on congested links.
In general, we consider an arbitrary capacity C' such that the
load is below the congested region and a tail drop buffer of
limited size B. Since the loss rate is monotonously decreasing
with the assumed capacity C, we can adjust C' in order to
approach a considered packet loss rate.

Aggregated traffic shows characteristics in multiple time
scales [11], [17], [36]. Based on the time-stamp and the
size of each packet, the variability of the traffic rates can
be observed in time scale ranging from the accuracy level
of the time-stamps well below 1 ms up to the 30 minutes
length of the traces. Let A be a time frame in this range. Then
corresponding traffic rates Ry (A) for successive intervals of
length A are determined by dividing the sum of the size of
all packets arriving in a time interval by its length. From the
sequence Ry (A) the mean rate g and the variance o%(A)
are computed. In this way, the second order statistics is given
considering 0%(A) over a relevant range of A. This statistics
is a standard description method for traffic and is equivalent to
the autocorrelation function over the considered time scales.
Long-range dependent traffic patterns are classified as exact or
second order self-similar depending on the autocorrelation of
the process [17], [34]. The Hurst parameter H characterizes
the degree of long-range correlation for self-similar traffic
where the coefficient of variation is decreasing in longer time
scales depending on H: ¢,(A) % ¢(A) /i = ¢ AH =D where
1/2 < H < 1. A Hurst parameter of H ~ 0.8 has been found
for LAN traffic rates [17].

Table I shows the second order statistics for A = 1 ms,
10 ms, 100 ms, 1 s and 10 s for UDP traffic with mean rate
1 = 50.8 Mb/s and the total traffic of a trace from a 2.5 Gb/s
broadband access link with mean rate © = 753.9 Mb/s. The
coefficients of variation ¢, (A) = o(A)/u are observed to be
about twice as high for UDP as for the total traffic and ¢, (A)
does not decrease by constant factors as would be expected for
self-similarity. This evaluation technique has been applied to

¢y (1 ms) ¢y (10 ms) ¢y (100 ms) co(ls) ¢y (10 s)
UDP 0.3209 0.1220 0.0531 0.0433 0.0394
Total 0.1689 0.0635 0.0322 0.0259 0.0216
TABLE I

TRAFFIC VARIABILITY FOR UDP AND TOTAL TRAFFIC

the packet loss process obtained from backbone traces. As the
traffic rate, also the packet loss process shows characteristic
behaviour on multiple time scales

Thus, techniques for describing the variability in traffic rates
using second order statistics will be also used for describing
the packet loss process. An example in Figure 2 shows
different packet loss rates on time scales ranging from 1 ms
up to 1 second. Some millisecond intervals show up to 50 %
packet loss, which is essentially smoothed for larger intervals.

III. STOCHASTIC PACKET LOSS MODELS

Finite-state Markov chains are widely used to characterize
error processes in telecommunication systems and for per-
formance evaluation of coding or other measures for error
resilience [25], [27], [31], [35]. In this paper, we will use
finite-state models to describe the packet loss process found in
backbone measurements (wired channels) and DVB-H traces
(wireless channels). A discrete Markov chain with a set of M
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Fig. 2.

states S = {S1,Ss,- -+, S} characterises the course of the
process with regard to the current state, which may change
over time at predefined events, e.g. packet arrivals, based on
transition probabilities. Each state is associated with different
error or packet loss behaviour. Let ¢; denote the current state
at event time ¢,¢ € Ng. Then the probabilities a;; to change
from state ¢;_1 = ¢ to ¢, = j are give in the transition matrix
A
arl aim
A= o o

ap M

(1)
ami

with coefficients

a;; = P(q = Sjlae—1=5:), 1<4,5<M,

where

N
a;; > 0; Za” =1.
j=1

We restrict our considerations to irreducible and aperiodic
Markov chains, where each state can be reached from each
other with positive probability after a number of transitions
and steady state probabilities 7 exist for finding the process
to sojourn a state in a long term perspective. The steady
state probabilities are invariant with regard to a transition with
matrix A and thus can be computed from the system of linear
equations:

M M
M= mag k=1 M; > mi=1 (2
j=1

j=1

Finally, we define error or packet loss rates in each state £ =
(e1,..;enm); 0 <e; <1 and the output of the process O(t)
as a binary sequence O(t) € 0,1 indicating an error or loss
at an event with O(t) = 1, whereas O(t) = 0 stands for error

free events, respectively. Thus we have P(O(t) = (1|¢; =

Sj) déf ej.

Only in simple cases, e.g. for a 2-state Markov process
with e; = 0 and es = 1, the current state can be recovered
from the output S(t) = O(t) + 1. The term Hidden Markov
Models expresses that O(t) in general leaves uncertainty about
the corresponding states S(t) of the Markov chain [27]. A
Markov process is completely defined by the transition matrix
A, the state specific error rates E and initial state Sy or, more
generally an initial state distribution m9 = P(Sp = j). We
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continue with a brief discussion of two- and four state Markov
models before the second order statistics of finite Markov
models is derived in general.

A. Gilbert-Elliot: The Classical 2-State Markov Model for
Error Processes

In 1960, Gilbert [7] proposed a 2-state Markov chain to
characterise a burst-noise channel. The usual notation of the
Gilbert model distinguishes at first a good (G) and secondly
a bad (B) state with different loss rates eq < ep. Gilbert [7]
started with the special case of an error-free good state (e =
0) and left the extension to include losses generated in both
states to Elliott [4]. Dwell times in the states are geometrically
distributed with mean 1/p for the good and 1/r for the bad
state, where p and r are the probabilities to change from the
good state to the bad and vice versa. The Gilbert-Elliott 2-
state Markov approach as depicted in Figure 3 is widely used
for describing error patterns in transmission channels [8], [9],
[20], [25], [32], [38], [40] and for analysing the efficiency of
coding for error detection and correction. For applications in
data loss processes, we interpret an event as the arrival of a
packet and an error as a packet loss. Thus, the transition matrix
and the steady state probabilities are

1— r
A= p P e ; B = P
T 1—1r p+r p+r
with a total error rate e = Tgeq + Tgeg = mc;%.

Fig. 3. The 2-state Markov model introduced by Gilbert and Elliott

Gilbert suggested to estimate the three parameters for his
special case from measurement instances of a binary error
process combining the current output O(t¢) with two recent

values O(t — 1) and O(t — 2): a def P(1) and
def B P(11) def P(111)
b= PUN = pagyrpan ¢ Paon = PO

3)



When the probabilities are computed from the 2-state model

with e¢ = 0 then the parameters are obtained via three
equations:
ac — b? b ar
r=1-_————; ep=—3; = .4
2ac — b(a+ c¢) L DL ep —a @

Gilbert observed that this way of parameter estimation may
lead to invalid parameters outside the range 0 < p,r,ep <1
especially for small traces. He suggested to avoid the mea-
surement of ¢ by simply choosing e = 0.5 = r =1 — 2b.
Morgera et al. [21] also conclude that the method proposed by
Gilbert is more appropriate for longer traces. In case of shorter
observations, better results can be obtained when considering
the Gilbert model as Hidden Markov Model trained by the
Baum-Welch algorithm [31], [35].

Parameters of an even simplified Gilbert model with ep = 1
can be estimated by assigning

p = P(1/0);
B. 4-State Markov Models

McDougall et al. [19] proposed a 4-state Markov model with
two good and bad states to generate a hypergeometrical dis-
tribution of the duration of good and bad phases with specific
transitions as approximation of an IEEE 802.11 channel. This
model is an instance of the general case of partitioned-state
models originally studied by Fritchman [6], which uses more
than one good and bad state and partitions the state space into
a good and bad state group containing k£ and M — k states,
respectively. The McDougall model with its 6 non-redundant
parameters o, oy, B34, 3y, g and py is shown in Figure 4 and
has been found to perform well also in DVB-H simulations
[25]. Due to its hypergeometric distribution of dwell times, it
can be considered as extension of the Gilbert-Elliott model. A
hypergeometric distribution is a useful approximation for loss
bursts with long term correlation, which are often observed on
error prone wireless links.

r = P(O[1). )

Good state (short) Good state (long)

Bad state (long)

Bad state (short)

w, = (1-a,)p, 5= (1-0o,)p,
m,=0-a,)1-p) = (1-0,)(1-p,)
;= (1-B,)d-p,) ;= (1-B,) (1 -p,)
w,= (1-B,)p, = (1-B,)p.

Fig. 4. Four-state Markov model [24]

As stated in [24], the run length distribution for the dwell
time in the good and bad state groups is given by

f(n) =p(l —a)a”™ + (1 =p)(1 - B)B",

which forms a hypergeometric distribution. The model param-
eters can be adjusted by fitting the distribution of dwell times
separately for the good and bad state groups.

The parameter estimation by curve fitting is time intensive
and can easily lead to invalid model parameters (transition
probabilities ¢ [0,1]). Poikonen [25] derived an analytical
technique using moment matching. This technique has been
further simplified in [26], resulting in a single system of non-
linear equations.

C. Markov models applied in the literature

Girod et al. [8] found a simple Gilbert model (e; = O,
e2 = 1) useful to describe the characteristics of packet losses
in Internet connections and to derive an error model for
Internet video transmissions on top, as lost packets will affect
the perceived quality of the video transmission. Huitika et al.
[12] considered real-time video transmissions and extended
the simple Gilbert model by adapting it to the datagram loss
process by adding a third state to describe out-of-order packets.
Zhang et al. [40] use the simple Gilbert model to describe a
cell discard model for MPEG video transmissions in ATM
networks, where the cell losses are caused by excessive load
at ATM multiplexers.

Yajnik et al. [38] point out that the simple Gilbert model is
suitable if the error gap length of the traces is geometrically
distributed, but can be outperformed by considering high-order
Markov chains. The 4-state Markov model and the Markov-
based Trace Analysis [16] outperformed the Gilbert model,
as the latter was unable to reproduce the variance in burst
error lengths. Gamma distributed state durations can be used
to replicate the variance in error burst lengths [20], [39].

D. Parameter Estimation: Baum-Welch and Other Algorithms

The Baum-Welch algorithm [27] is a standard approach
for adjusting the parameters of a finite state Markov model
given by A = {A, E, 7} such that the probability of the
observation O(t) given the model A, P(O(t)|\), is maximised.
The Baum-Welch algorithm, as an instance of the expectation-
maximisation algorithm [35], will converge to a local max-
imum using a procedure with iterative updates to improve
the parameters. The quality of the solution depends on the
initial parameters. There is no guarantee for the estimation to
converge to the global maximum.

Alternative techniques to match parameters of a Markov
process—especially with regard to second order statistics in
multiple time scales—have been successfully applied based
on genetic algorithms [15] and using Pronys algorithm [30].

IV. VARIANCE OF THE ERROR PROCESS OVER MULTIPLE
TIME SCALES

Second-order statistics in multiple time scales are a stan-
dard approach to capture and to describe traffic variability
including long-range dependencies and self-similarity [17],
[34]. Following this trend, we next derive the second-order
statistics of the number of packet losses over a range of
relevant time frames. Starting with the general solution for



finite-state Markov models, we then derive explicit expressions
for the Gilbert-Elliott model from the general result. Although
Markov models do not exhibit self-similar properties, they
have been successfully adapted to self-similar traffic [5], [30]
and are still popular since they often lead to simple analytical
treatment.

A. Solution for Finite Markov Models

In order to capture a packet loss process generated by an
M -state Markov model, we can set up recursive equations for
the distribution function of losses in a considered sequence
of packets. Let p m)(k) denote the probability of k packets
being lost in a sequence of length n generated by a Markov
process, which starts in steady state and finally resides at state
mnmeNgand 1 <m < M).

The probabilities piﬂ)l(k) for sequences of length n + 1

can be recursively computed from p( )(k), where steady state
starting conditions are expressed as pé )(0) = Tm!

M .
B = 3 ) (
j=1

As a standard approach to obtain the mean and the variance
of the distributions of packet losses we introduce correspond-
ing generating functions defined as:

(m)

P ( 1 —ej)ajm +p(J)(k —1)ejajm.

n

Z m)

k=0

L(m)

A generating function L£Z">(z) comprises the probabilities
pﬁ;’”)(k) for k = 0,--- ,n. The recursive relationship for the
probabilities psz)l (k) transfers into the generating function

notation as follows:

M
LW () =Y L9 () (1= ¢j+¢;2) ajm. (6)

Jj=

—

According to steady state starting conditions, we again have
L(()m)( )= p(() )(O) = 7. In addition, L(m)( 1) = kpglm)(k)
generally holds for the sum of the probabilities of a distribution
by definition of generating functions. Since the considered
process stays in steady state, we have ), e )(k) = 7, as
the probability to find the process in state m after n packet
arrivals. Therefore Lﬁ;’”)(z) represent defective distributions
with regard to a final state m of the Markov chain, while
their sum L,,(z) = Zi\le L (z) characterises the complete
distribution of packet losses during a sequence of n packet
arrivals with L,,(1) = M £ (1) = M

1) Mean values: Next we compute the mean values u%m)
for the distributions p{™ (k) via the first derivative of the

1 Tm = 1.

generating function using the rule p{™ = d%Lgfn)(zﬂZ:l.
The first derivation of equation (6)

LT () =

M

Z((%Lg)(z)) (1—e;+e2)+ Lgf)(z)ej)ajm

j=1

is evaluated for z = 1 to obtain the mean values recursively:

M
1P =3 + mies)ajm. (7

Jj=1

(m)

The result is a scheme to compute py, = starting from

ng™ = 0;
(m) ije,ajm,
M
m k
Mé ) = Z(u§ ) + Thek)km
k=1
M M
= Z (Z mie;ajk + wkek) Qe
k=1 \j=1

M M M
= E 7Tjejg ajkakm+§ TECEAkm
j=1 k=1 k=1

M
_ 0.2 ea.
—E Tj€jjy, + Tj€i05m
Jj=1

(k)

where a;,, denote the k-step transition probabilities as co-

efficients of the matrix A*, including a( ) We
straightforwardly proceed to the general result

m) = ijej Z a]m (8)

To conclude the mean value analysis, we look at the mean
values for the complete distribution

POTEES DR ) S

k=1m=1
= g ;e g 1=n g Tje; = ne.
j=1 k=1 j=1

Since we start and stay in steady state conditions with loss
rate e = ), mje; per considered packet, it is not surprising
to encounter ne losses in the mean for n packets.

2) Second order statistics: Next we proceed with the sec-
ond order statistics of the process to calculate the variance
of the number of packet losses as our main focus. Therefore
the second derivatives of the generating functions are again
evaluated at z = 1:

d? (m
dTL5L+)1( z) =

Mo d
Z((dTL(m)( ))(1 —ej+ejz)+ 2(£L£Lm)(2))€j)ajm

j=1

Ajm -

M

> W +2ue;)asm
j=1

(m) _
= Vp+1 =



where ™ & d2 L(m)( )|2=1. Summing up over the final

state m of the Markov process, we approach the result for the
complete distribution:
M

M
Z v =S + 2uey) Z Arm
T]\:/[l .
=Y +2ulVe) = Z 2ue,
Tzl o . s=1r=1
=35 N omie; > alPe, using (8)
s=1r=1j4=1 =
P
DD RIS 3 ol
j=1lr=1 s=1k=1
M M M n—1
Zlygm)zgzlz Tkz (n —k)al.
m= J =1 =1

Finally, we obtain the variance—or the coefficient of variation,
respectively—of a Markovian loss process for a series of n
packets via the general rule for the generating function X (z)
of a discrete random variable X with mean E(X) and standard
deviation o(X):

X"(1) = E(X?) - B(X) = 0*(X) + 1(X) - p(X)

With regard to the Markovian loss process within a series of
n packets we have

o X'(1) =M ™ as the second derivative,

m=1
o u(X) :=ne for the mean number of losses,
def
o cu(n) X)/E(X) =
1 (m)
cp(n) = — 4| ne — (ne)? + Z Un )
ne
1 M M n—1
— _ 249 eieny —k (.k),
| e (ne)? + ;;ﬂ]eje ;(n )a,

3) Explicit eigenvalue solution: The previous result is
generally applicable to compute ¢,(n) at a moderate com-
putational complexity, including the determination of the k-
step transition matrices for K = 1,--- ,n as the main step.
In addition, it is well known that the coefﬁ01ents agﬁ) can
be expressed in a direct solution form for the corresponding
eigenvalue problem.

In particular, an irreducible transition matrix A = (a;,) has
M eigenvalues z1, ---, zpr which can be computed as the
roots of a characteristic polynomial A — Iz = 0, where [
denotes the identity matrix. The largest eigenvalue is zp; = 1,
whereas the others are located inside the complex unit sphere.
For each eigenvalue z; the right and left eigenvectors are
denoted as xq;,--- ,xpq and yp1,- -+ ,yia- Then the k-step
transition probabilities can be written in the form

M M
(k) _ ) k
Q. = Tj1Yirz TsilYis-
=1 s=1

We have tools available to find the roots zi,--- ,z,, of
the characteristic polynomial even for lar e degree M [33].
Therefore the latter representation of a as a sum of M
geometrical terms can be used to resolve the last sum over
the length n in equation (9) on account of a sum over M — 1
eigenvalue terms, where the term for z;; = 1 can be ignored.
In this way the calculation of ¢, (n) is facilitated especially for
large n and small number M of states in the Markov process.
For a 2-state Markov process the eigenvalue solution reduces
to a single real valued geometrical term, which is evaluated
and adapted to measurement data in the next subsections.

B. Solution for 2-State Gilbert-Elliott Models

As a special case, we summarize the explicit solution for
the Gilbert-Elliott Markov model as derived in [10]. To the
authors knowledge, explicit expressions for the second order
statistics of the 2-state Markov model for arbitrary time scales
are not given in the literature, although there is a large volume
of work involving the Gilbert-Elliott model, as partly discussed
in Section III-C. However, most of this work is devoted to error
detecting and correcting codes and the residual error rates of
coding schemes for different transmission channels, rather than
on traffic or packet loss characterisation.

1) Mean values: In the previous notation, the recursive
formula (7) for the mean number of losses during a series
of n packets with final state G (B) in the 2-state Markov
process are rewritten as

reg peB
uﬁll(lp)'( +u§>+r~< +u§>,

ptr ptr

B reg el pPeEB B
1 =0 ——+py | +(Q—r)- + 1y |-
Pnt1 p(p+r u) ( )<p+r u)

As an explicit solution we obtain

where o @' 1 — (p+1);
(10)

a(l —a™
T :ﬂBnJF’YBi( " )

1—

def Preg + p’ep

B aof Pries — cc)
B — (p—‘r?“)Q .

) fYB - (p+7“)2

The case « =1 < p =r = 0 implies a reducible and thus
non-ergodic Markov chain.

Due to the symmetry of both states G' and B, the result for

@ has mutually exchanged parameters p < r and eg « ep:
Mg(]% T, €ea, eB) = NE(T7P7 €B, eG)'

2) Second order statistics: Again we can start from the
result for the coefficient of variation ¢, (n) for M -state Markov
processes given in Equation (9), which is expressed in terms
of the mean values ;2 and ufj using the previously presented



explicit solution:

1
cw(n) = —1\/ne — (ne)? + nD 4B
ne
1 G) (B),,
=~ \/ne— p
—\ne— (ne)? + Z uk e+, en)
1 1
=—4/-—-1 11
NARE + 7o(n) (11)
2pr(l —p — —ep)?
where 7 = pril —p = r)(ec eQB)
(p+r)(pe +rec)
1-(1—p—r)"
and ga(n):lfu.

n(p+r)
The solution is comprehensible enough to interpret the influ-
ence of the model parameters.

C. Parameter Impact on the Second Order Statistics of the
Gilbert-Elliott Model

Based on the analytical result in Equation (11) for ¢, (n), the
main properties of the second order statistics of the Gilbert-
Elliott model are summarised as follows.

1) Starting point of the ¢, (n)-curves is ¢, (1) = y/1/e — 1
since (1) = 0. ¢, (n) only depends on the entire packet
loss rate e = (reg + peg)/(p+ 7).

2) For the asymptotical behaviour we observe
lim, 0 ¢(n) = 1, which simplifies the c¢,(n)-
curve lim, o cy(n) = +/1/e—147/y/n. In the
logarithmic representation of Figure 5 the ¢, (n)-curves
therefore approach straight lines with the same slope.

3) Figure 5 shows results, where p + r is again stepwise
reduced by a factor 10. In all examples of Figure 5
we keep the ratio p/r = 0.1 constant such that e =
0.001 = ¢,(1) = v/999. The curves are characterised
by a horizontal part, which holds the variance on the
initial ¢, (1) value followed by a declining part. The
length of the part at constant level depends on p+r, i.e.
on the intensity of transitions between the states, which
is different but fixed for each curve in Figure 5. The
sojourn times of the good and bad state are geometrically
distributed with mean 1/p and 1/r, respectively. For
limpy, —. o the mean holding times of the states are
extended on longer times scales. Then the correlation in
the modelling process persists over about the same time
scale and the transition point from the constant to the
declining part of the ¢,(n) curve is shifted in the range
between 1/p and 1/7.

The decreasing part soon approaches the same slope as is
valid for a memoryless process with independent random
losses at a given rate, such that ¢, (kn)/c,(n) — 1/Vk.

It is apparent from the latter example that the ¢, (n)-curve

consists of up to three parts:
1) A decreasing phase where ¢,(n) =~ \/1/e —1/4/n for
n < ny such that p(n) = 0 and 7p(n) < 1/e — 1;
2) A phase at almost constant level for ny < n < ny where
= y/1/e —1/,/ny while p(n) is increasing from
w(ny) =0 to p(ng) =~ 1;
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Fig. 5. Parameter impact on the 2. order statistics of the Gilbert-Elliott model

3) A decreasing phase where ¢, (n
for ny < n.

=4/1/e=1+71/y/n

Depending on the parameters, the first two phases are not
always relevant, as can be seen in some examples of Figure 5.

V. EVALUATION

The following section will discuss the evaluation of the
proposed parameter adaption technique based on second order
statistics in multiple time scales for 2-state Markov models
and compares the results to classical fitting methods.

The evaluation of the trained 2-state Markov models using
the coefficient of variation ¢, (n) is shown in Figure 6 and 7
for a backbone trace evaluated with two different packet loss
rates using the network simulator ns-2 with a RED queue
leading to two loss traces. In both plots, the Poisson process
provides a linear lower bound for ¢, (n) = ¢,(1)/+/n without
any autocorrelation.

The parameters of the Gilbert model and its simplified ver-
sion for e = 0,ep = 1 have been estimated from the given
loss traces using the traditional methods shown in Equation
(5) and (3-4). A Gilbert-Elliott model has been fitted using
the Baum-Welch algorithm for both traces. Due to limitations
of the Jahmm library [1], a set of 2436 observations, each
containing 10000 packets, have been randomly chosen from
the backbone packet loss trace and used as input for the Baum-
Welch algorithm. As the mean loss rate in a single observation
varies from the mean loss rate of the entire trace (cf. Figure 2),
the resulting model parameters did not exactly fit the mean
loss rate of the considered trace. We corrected the model to
match e = (peg + rep)/(p + r) by modifying p := p+ A
and 7 :=r — A such that
(p+D)eg+(r—A)ep)/(p+7) = e+ (ec—en)A/(p+7).
In this way, the loss rate e can be modified in a range between
ec and ep which is sufficient since usually small corrections
apply.

Moreover, the simplified Gilbert model with only two pa-
rameters and the Gilbert-Elliott model have been trained based
on the second order statistics over multiple time scales n €
[1,10°], as shown in Figure 6 and 7. The model parameters
were estimated by fitting the coefficient of variation curve



to the one obtained from the corresponding trace using the
Levenberg-Marquardt algorithm for numeric optimisation of
non-linear functions. Initial trial values for the parameters were
estimated from the study of the impact of different model
parameters shown in Figure 5.

The distance between different model curves as shown in
Figure 6, 7 and 8 and the trace curve is measured by the Mean
Square Error (MSE)

10°
MSE(model) = 107° Z(cf(’del(n)
n=1
where a smaller MSE indicates a better fit. The MSE distance
is shown in Table II.
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Fig. 6. Evaluation of the trained 2-state Markov models using the coefficient
of variation ¢, (n) for backbone traffic with a mean packet loss rate of 1%
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Fig. 7. Evaluation of the trained 2-state Markov models using the coefficient
of variation ¢, (n) for backbone traffic with a mean packet loss rate of 0.1%

In addition to backbone traces, parameter adaption tech-
niques were evaluated for a DVB-H packet loss trace resulting
from a laboratory measurement at University of Turku, leading
to a good fit of the Gilbert-Elliott model trained in multiple
time-scales as shown in Figure 8.

Considering the coefficient of variation curve as variance-
time plot [3], [17], the Hurst parameter can be obtained by
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Fig. 8. Evaluation of the trained 2-state Markov models using the coefficient
of variation ¢, (n) for DVB-H traffic with a mean packet loss rate of 1.8%

fitting ¢, (1) - n~1 to the ¢,(n) curve for n € [1,10°]. For
both traces, a Hurst parameter H ~ 0.8 has been found, as can
be seen in Figure 6 and 7. The loss process of the considered
traces shows a faster decay than self-similar processes for a
time scale of > 103 packets, suggesting that Markov models
are appropriate to capture this behaviour.

However, when we look at the distribution of the length of
packet losses in a series, then the classical fitting procedures
seem to be in favour, as experienced from first evaluations.
This is not unexpected, since they are closer related to error
burst lengths whereas the second order statistics can include
long-range correlation. The extraction of the most relevant
information in measurement traces to be used for the fitting
of model parameters with regard to the Quality of Experience
aspects (QoE) is still for further study. The relevance of bursts
surely increases with the observed mean failure burst length
in a considered traffic flow.

VI

In the following section, we discuss the impacts of packet
loss on video quality metrics including related work. The
integration of the previous packet layer loss models into a
common framework with the video transmission and impair-
ments visible to a viewer are for further study in an ongoing
project.

VIDEO QUALITY OF EXPERIENCE

A. Impairments at the Video Layer caused by Packed Loss

We focus mainly on the H.264/AVC video standard (aka
MPEG-4 Part 10), written by the ITU-T Video Coding Experts
Group (VCEG) together with the ISO/IEC Moving Picture
Experts Group (MPEG), as used in the IPTV platform of
Deutsche Telekom. In video compression, sequences are de-
composed into still pictures (frames) which are grouped into
a Group of Pictures (GoP). Frames are segmented into macro
blocks—usually of size 16x16 pels—and organized into groups
of blocks called slice. Macro blocks are typically positioned
in scan-line order, but due to Flexible Macroblock Ordering
in H.264 arbitrary order is also possible. A frame is coded in



[ Trace: Mean Loss Rate [ Simple Gilbert (eq. 5) [ Gilbert (eq. 3-4) [ Gilbert (Baum-Welch) | Simple Gilbert (Timescale) [ Gilbert-Elliott (Timescale) |

Fig. 6: 1 % 3.0047 0.90945 0.78548 0.72772 0.13490

Fig. 7: 0.1 % 43.524 19.087 15.420 7.9595 1.0929

Fig. 7: 1.8 % 34.54 27.08 - - 0.008
TABLE I

MEAN SQUARE ERROR (MSE) DISTANCE BETWEEN TRAINED MODELS AND THE TRACES

one of three modes: I frames contain only intra coded macro
blocks, P frames can contain intra or predicted macro blocks
and B frames can also contain bidirectional predicted macro
blocks. When using prediction, the displacement of a macro
block is expressed as motion vector relative to the reference
frame.

During the decoding process, the decoder may have to
cope with errors due to packet loss, where the concrete error
concealment strategy is decoder dependent. When only a small
fraction of the slice is corrupted, the decoder often is not
aware of the concrete error position and thus may discard the
slice. The perceived visual quality of an erroneous received
but decoded and displayed slice may be worse than in case
of discarding and copying the slice from a previous frame.
Information introduced by copying from a previous slice may
not always be noticeable by a viewer. An example may be
comic strips which usually have a very static background and
thus losing a slice that holds only background information is
often unnoticed if the lost data is copied from the last slice.

As most currently used encoders are not aware of the
underlying transport protocol, slices are typically larger than
the payload of a single IP packet. When MPEG?2 transport
streams are used to packetize the video data into IP packets,
slice boundaries are usually inside an IP packet, as MPEG-
2 TS considers video data as endless bitstream. Thus, losing
such a packet can discard two slices at once.

Losing a parameter set due to packet loss will have a severe
effect on the decoding process. Thus, they may be transmitted
out-of-band or in-band but periodically, e.g. with each GoP,
or prioritized using different service classes in differentiated
services.

B. Markov Models as Basis for Subjective Evaluations

Finite Markov models can be used as a basis for subjective
video quality evaluations where subjects are asked to rate given
video sequences using the Mean Opinion Score (MOS) as cur-
rently conducted at T-Labs Berlin for high-definition (HDTV)
video sequences in Internet Protocol Television (IPTV). Dur-
ing the test preparation, H.264/AVC videos are packetized
using a MPEG2 transport stream and impaired with a Markov
model. The impaired video sequence is rated by the subject
during test. The advantage of Markov models is their flexibility
to be adapted to arbitrary loss rates and loss burst lengths,
such that different impairments can be studied. The result of
a subjective evaluation can be a mapping of the packet loss
rate to quality degradations in the MOS rating.

C. Related Work on Analytical Video Frameworks

Whereas empirical evaluations treat video as a black box
and typically try to find correlations between link-layer factors

and the subjective quality, objective quality metrics can be
derived that ideally correlate well with human perception and
thus avoid cost intensive empirical evaluations. Quality metrics
can be classified into three categories by the required amount
of reference information [37]: Full-reference (FR) metrics are
based on frame-by-frame comparison between a reference
video and the video to be evaluated; No-reference (NR)
metrics have to make assumptions about the video content
and distortions, e.g. by evaluating the blockiness of a frame,
as a common artifact in block-based compression algorithms
such as MPEG; Reduced-reference (RR) metrics evaluate the
test video based on a subset of features previously extracted
from the reference video. Lotfallah et al. [18] propose a
RR metric to evaluate the visual quality based on traces
which are enriched with frame and motion related information.
The proposed metric is based on frame dependencies and
models the impact of a packet loss by considering the error
propagation of the affected frame, e.g. a lost I-frame will
impair the entire Group of Pictures. However, this metric does
not consider bursty losses.

The peak signal-to-noise ratio (PSNR) as a NR metric has
been found not to correlate well with human perception [23],
[41] as it works on a pixel basis only and neglects the complex
human perception. Some work extends the PSNR [2], [22].

Based on empirical evaluations, the visibility of packet
loss in MPEG-2 video sequences using a decision tree is
investigated in [13] and for H.264/AVC coded videos in [14]
by assuming a packet loss results in a lost slice and not
considering Flexible Macroblock Ordering (FMO). A metric
that combines these RR metrics has been proposed in [29].

VII. CONCLUSION

Quality of Experience aspects are a vital factor in ensuring
customer satisfaction in today’s network services. In order
to study quality degradations in video streams caused by
packet loss, a Markovian error pattern generator can be used
to simulate physical channels of various type. We derived
the second order statistics for the distribution of the number
of lost packets over multiple time scales, which in general
can be recursively determined for increasing time frames and
via explicit terms for the Gilbert-Elliott model. The fitting
procedure leads to a closer match in multiple time scales
than classical methods. The proposed approach gives more
flexibility to include information from different time scales
enabling a simple and useful fit for long traces of traffic and
packet loss processes. We plan to study the effect on the video
frame level for future work, charatersising the impairments
at the receiver side depending on the applied video coding
scheme.
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