
 Open access Proceedings Article DOI:10.1109/IPDPS.2005.323

Packet routing in dynamically changing networks on chip — Source link

Mateusz Majer, Christophe Bobda, Ali Ahmadinia, Jürgen Teich

Published on: 04 Apr 2005 - International Parallel and Distributed Processing Symposium

Topics: Static routing, Policy-based routing, Dynamic Source Routing, Link-state routing protocol and Multipath routing

Related papers:

 Route packets, not wires: on-chip interconnection networks

 DyNoC: A dynamic infrastructure for communication in dynamically reconfugurable devices

 Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach

 DyAD - smart routing for networks-on-chip

 A reconfigurable fault-tolerant deflection routing algorithm based on reinforcement learning for network-on-chip

Share this paper:

View more about this paper here: https://typeset.io/papers/packet-routing-in-dynamically-changing-networks-on-chip-
1x704zosr6

https://typeset.io/
https://www.doi.org/10.1109/IPDPS.2005.323
https://typeset.io/papers/packet-routing-in-dynamically-changing-networks-on-chip-1x704zosr6
https://typeset.io/authors/mateusz-majer-3j4lkwmvwm
https://typeset.io/authors/christophe-bobda-v1l7a5flxv
https://typeset.io/authors/ali-ahmadinia-nv34uaybbi
https://typeset.io/authors/jurgen-teich-1og1afyx9v
https://typeset.io/conferences/international-parallel-and-distributed-processing-symposium-lhyhe1tq
https://typeset.io/topics/static-routing-3qv8ns43
https://typeset.io/topics/policy-based-routing-x8ogmsxl
https://typeset.io/topics/dynamic-source-routing-98i90fkr
https://typeset.io/topics/link-state-routing-protocol-2ewmsg7i
https://typeset.io/topics/multipath-routing-233hlqby
https://typeset.io/papers/route-packets-not-wires-on-chip-interconnection-networks-33eceqpb2z
https://typeset.io/papers/dynoc-a-dynamic-infrastructure-for-communication-in-47bn3i6vx8
https://typeset.io/papers/packet-routing-in-dynamically-changing-networks-a-2wjt7daq6r
https://typeset.io/papers/dyad-smart-routing-for-networks-on-chip-lcbriyfk0w
https://typeset.io/papers/a-reconfigurable-fault-tolerant-deflection-routing-algorithm-4gijk2berw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/packet-routing-in-dynamically-changing-networks-on-chip-1x704zosr6
https://twitter.com/intent/tweet?text=Packet%20routing%20in%20dynamically%20changing%20networks%20on%20chip&url=https://typeset.io/papers/packet-routing-in-dynamically-changing-networks-on-chip-1x704zosr6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/packet-routing-in-dynamically-changing-networks-on-chip-1x704zosr6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/packet-routing-in-dynamically-changing-networks-on-chip-1x704zosr6
https://typeset.io/papers/packet-routing-in-dynamically-changing-networks-on-chip-1x704zosr6

Packet Routing in Dynamically Changing Networks on Chip

Mateusz Majer, Christophe Bobda, Ali Ahmadinia, Jürgen Teich

Department of Computer Science 12, Hardware-Software-Co-Design

University of Erlangen-Nuremberg, Germany

{majer, bobda, ahmadinia, teich}@cs.fau.de

Abstract

On-line routing strategies for communication in a dy-

namic network on chip (DyNoC) environment are presented.

The DyNoC has been presented as a medium support-

ing communication among modules which are dynamically

placed on a reconfigurable device at run-time. Using sim-

ulation, we compare the performance of an adaptive Q-

routing algorithm to the well known XY-routing strategy.

Both algorithms are adapted to support communication on

the DyNoC which is equivalent to routing on meshes with

obstacles. In our experiments, Q-routing proves its perfor-

mance under varying network load while using only local

information for its routing decisions.

1. Introduction

Partially reconfigurable devices require efficient algo-

rithms for the placement of tasks onto the device at run-

time. For on-line temporal placement, several algorithms

have been developed [2, 1, 12, 10]. Apart from the work pre-

sented in [1], communication connections among modules

are yet not being considered. Although a new placement

strategy was developed in [1], which takes the inter-module

communication into account, it does not determine how

the communication will be realized. Its main advantage is

the reduction of communication costs by placing connected

modules close to each other. In order to support the dynamic

communication which arises when modules are dynami-

cally placed on a device, the reconfigurable device must

provide a viable communication infrastructure supporting

run-time topology changes. Recently in [5], we presented

a new communication infrastructure, the DyNoC (Dynamic

Network on Chip). However, packet routing strategies were

not part of the investigation. In this paper, we propose

and analyze two packet routing strategies for the DyNoC,

namely Q-routing and XY-routing. Both are adapted for the

DyNoC. We first motivate the need for adaptive routing pro-

tocols by showing that the on-line placement and removal

of modules rapidly changes the topology of the communi-

cation network.

The rest of the paper is organized as follows: In Sec-

tion 2, we present previous approaches for handling dy-

namic on-chip communication. The requirements on the re-

configurable architecture are presented in Section 2.1. Sec-

tion 2.2 deals with the dynamic connection of placed mod-

ules to the network. In Section 3, we propose an extension

for XY-routing called S-XY-routing. Section 4 describes the

concept of Q-routing for dynamic networks on chip. Section

5 presents our experimental methodology and discusses the

simulation results. Finally, Section 6 summarizes the paper

and concludes with an outlook.

2. The Dynamic Network on Chip (DyNoC)

Many authors have presented the Network-on-Chip

(NoC) concept as a viable and flexible communica-

tion solution for a System-on-Chip [7, 8, 3]. NoCs have

many advantages (performance, structure and modular-

ity) over global signal wiring. A chip employing a NoC is

composed of a set of network clients like DSPs, proces-

sors, memory, periphery controllers and custom logic. All

implemented network client (NC) physical layouts are con-

strained to rectangular shapes, also called tiles. Now, in-

stead of connecting these modules using dedicated signal

wires, they are connected to a network which routes pack-

ets. This network consist of network elements (router

nodes) where each network element (NE) is connected to

adjacent network elements only, thus forming a two di-

mensional mesh. While in traditional NoCs fixed loca-

tions are defined for processing elements (PEs) as well

as for router nodes, our dynamic network on chip ap-

proach has much weaker restrictions. Therefore, the

DyNoC represents an interesting infrastructure for commu-

nication among modules which are dynamically placed at

run-time onto a reconfigurable device.

2.1. Communication infrastructure

With the dynamic on chip packet-based communication,

the alteration of the network will not hinder the communi-

cation, since packets can always find their way in a strongly

connected network. In a static NoC, the clients are placed

in rectangular tiles on the chip and communicate with other

clients via a fixed network structure. It has been shown in

[7] that in this case, the area occupied by the network logic

is small (about 6 % of the tile’s area).

This ratio is expected to drastically decrease with the

rapid logic growth rate observed for reconfigurable devices,

e.g. FPGAs. In order to have a better network element to

processing element logic area ratio and to make an optimal

use of the resources, we impose the following requirements

on the communication infrastructure:

• The PEs should be flexible, but coarse grained com-

puting elements. With fine grained PEs, the ratio of

network elements to PEs logic area becomes too big

which means that the router nodes waste too much de-

vice area.

• Each PE should have access to the network. This con-

dition is very important, since it allows any module be-

ing placed on the reconfigurable device to access the

network via one of its surrounding PEs independent of

its placement region.

• PEs should directly communicate with their neighbors.

This is helpful because it allows wiring to be done lo-

cally within a module boundary.

• Network elements are only connected to adjacent NEs.

• The network logic used for a network element should

be flexible enough to be used within the module which

is placed over it. Whenever a module is placed in a

given region of the device, the network elements inside

the module boundary cannot be used for network op-

erations because their channels are deactivated. There-

fore, they should be used as additional resources inside

the module which covers them. A placed module can

use the resources of all the network elements it cov-

ers.

Figure 1 shows the communication infrastructure of a re-

configurable device, as described above. In Figure 2 several

modules are placed. Obviously, the network becomes dy-

namic due to placement and relocation of modules at run-

time.

= PE = NE = Channel = Local Link

Figure 1. The dynamic NoC approach for re-

configurable communication

Having defined the communication infrastructure of the

device, the main questions are to know how to develop mod-

ules which can be dynamically connected to the network at

run-time. We provide the answers to these questions in the

next sections.

2.2. Network access

Each task is implemented as a module, represented by

a rectangular tile and stored in a database. A tile encapsu-

lates a circuit implemented with the resources in a given

area. Therefore, modules can only access the network using

one of the network elements adjacent to its boundary. With-

out loss of generality, we select a feasible network element

on which the upper right PE of the module is attached. Af-

ter the placement of a new module on the device, the placer

will store the coordinates of the feasible network element

inside the module as the network address. When placed on

the device, modules hide part of the network logic which

is restored when they complete their execution. This makes

the NoC dynamic. Hence, we call such a network a dynamic

network-on-chip (DyNoC).

Because the communication between two modules is es-

tablished at run-time and since we don’t know in advance

where modules are going to be placed, we require the cor-

= PE = NE = Channel = Local Link

M4

M3

M1

M2

Figure 2. Temporal placement of four mod-

ules on the DyNoC

responding network graph to remain strongly connected 1

during the temporal placement. This condition is fulfilled if

the following constraint is set when placing a given mod-

ule: none of the surrounding routers must be covered by

the module to be placed. Therefore, for each module placed

onto the device, we will always find at least one line of

network elements lying between any two modules. This is

a sufficient condition for having a strongly connected net-

work. Moreover, no packet will now be blocked in the net-

work. As shown in Figure 2, each placed module is al-

ways surrounded by network elements, i.e. a ring of active

network elements exists around each placed module at all

times.

While in a static NoC [4, 9], each router always has four

active neighbor router nodes2, this is not always the case in

the DyNoC presented for the first time in [5]. Whenever a

module is placed on the device, it covers all routers in its

area. Since these routers cannot be used, they will be deac-

tivated until the module completes its execution by setting

corresponding control signals. Upon completing its execu-

1 A network is strongly connected, if for each pair of network elements

a path exists which connects these two elements.

2 The network elements at the device boundary are assumed to be con-

nected to physical pins of the reconfigurable device.

tion, the deactivated routers are reset to their default state.

3. S-XY-Routing

XY-routing is a deadlock free shortest path routing al-

gorithm which routes packets first in X-dimension and then

in the Y-dimension. In the DyNoC where the placement of

modules alters parts of the mesh, thus producing ”obstacles”

for the routing, we have modified the classic XY-routing al-

gorithm.

The new routing algorithm is called S-XY (Surrounding

XY). Since it is an extension of the XY-routing algorithm it

remains local-decisive3 and deadlock free4. The routers op-

erate in three different modes:

• The N-XY (Normal XY) mode. In this mode the router

behaves as a normal XY router. A packet is first sent

horizontally to the target column and then vertically to

the target row.

• The SH-XY (Surround horizontal XY) mode. The

router enters this mode, when its left neighbor or

its right neighbor (horizontal neighbor) is deacti-

vated.

• The SV-XY (Surround vertical XY) mode. The router

enters this mode, when its upper neighbor or its lower

neighbor (vertical) is deactivated.

3.1. Surrounding Obstacles in the X-direction

Assume without loss of generality, that a packet moving

from right to left is blocked by an obstacle. There exist two

alternative paths for the packet to reach its destination.

The first path is chosen if the Y-coordinate of the packet

destination is greater or equal than that of the router ad-

dress and the packet is sent upwards. Otherwise, the second

path is chosen and the packet is sent downwards. One prob-

lem occurs when a packet with destination Ydest is sent for

example upwards and reaches a router node r with coordi-

nate Yr > Ydest. According to the previous defined scheme

the packet will be sent downwards to the router with coor-

dinate Yr − 1 which will send it upwards, thus producing

a ”ping-pong” game. To avoid this, the packet is stamped

by setting a ”stamp-bit” to notify router r not to send the

packet back its incoming path. Upon reaching the router in

the upper right of the obstacle, the stamp is removed and the

packet is sent left, until its destination column or until an-

other obstacle is found.

3 The decision where to send a packet is taken at the local level.

4 Each packet will reach its destination after a finite number of steps.

3.2. Surrounding Obstacles in the Y-direction

The situation is different when a packet moving in the

Y-direction is blocked. Assume without loss of generality

that a packet moving from top to bottom is blocked by a

placed module. Dealing with this case as with the previ-

ous one, the packet will be sent left or right. No preference

is set here, because the packet is already in its right col-

umn. Let us assume that the packet is sent to the right, to

the next router. Because the basic routing algorithm is the

XY-routing, the next router will first compare the X posi-

tion of the packet with its own position address. With the

packet’s X-destination being smaller, it will send the packet

back to the router from which it received the packet. These

two routers will keep sending the same packet to each other,

thus creating a deadlock.

To avoid this ”ping-pong” game again, we stamp the

packet to notify all the routers above the obstacle that the

packet is willing to surround the module. In our example

the packet will then be sent right until the last router node

above the module. There, the router removes the stamp and

sends the packet downwards. From there on, we have the

same situation as defined in the previous part (Surrounding

Obstacles in the X-direction).

3.3. Deadlock free routing

In order to prove the S-XY algorithm to be deadlock free,

we need to first prove that there is always a path from the

packet source to the destination. Second, we must prove that

each packet will reach its destination within a finite num-

ber of steps. The first requirement is guaranteed through the

mentioned statement for strong connections among placed

modules as described in Section 2.2. We now assume that a

packet never reaches its destination. This will happen only

if the packet is blocked or if the packet is looping in a

given region. Because a path always exists from one active

router to all other active routers, no packet can be blocked in

the network, i.e. a packet is looping. Since this situation is

not possible using the normal XY-routing algorithm, it can

only arise while surrounding obstacles. But, when a packet

is blocked in a given direction, it takes the perpendicular

one. This is done until the last router on the module bound-

ary which is at one corner of the module to be surrounded.

From there, the normal XY routing resumes. The looping of

a packet around a module is therefore not possible.

In the S-XY routing, fixing a priori for all routers the

direction, where to send a packet whenever an obstacle is

encountered can lead to extremely long routing paths like,

caused by placements for which the routers always choose

the extreme longest path.

To avoid this, each router is instructed by the placed

module about the direction to take, whenever an incoming

packet is blocked in a given direction by the module. In-

stead of using only one activation line, two lines are used in

this case. The first line is used for the activation (1 = acti-

vate, 0 = deactivated) and the second one for the direction

to take 0 = (east or south), 1 = (west or north). This con-

siderably limits the complexity of the routers and there is

no need for stamping anymore. We call this modification

router guidance because the routers are guided by the mod-

ules.

4. Q-Routing

Loading and unloading of modules creates changing

conditions and communication patterns. To optimize the

performance of the dynamic network on chip, we need to

adapt existing routing algorithms to support this dynamic

environment.

Q-routing [6] is an adaptive packet routing algorithm for

static networks, which is adapted here to dynamic networks

on chip. The algorithm allows a network to continuously

adapt to changing topology or congestion by routing pack-

ets on routes which estimate the least delivery time. During

the entire operation of the network, data packets are sent

only between directly adjacent routers. When a route be-

comes unavailable due to failure, router removal or conges-

tion, Q-routing learns to avoid this route and chooses an al-

ternate path. Therefore, we expect that Q-routing will work

well in the context of the DyNoCs, where newly placed

modules change the network topology by removing active

network routers.

Q-routing is a distributed routing algorithm which learns

a routing policy to minimize the delivery time of a packet

to its destination. It performs its minimization by experi-

menting with different routing policies and gathering statis-

tics about decisions which lead to minimal delivery time.

Each router node in the network runs its own copy of the

Q-routing algorithm using only local information from its

direct neighbors.

When a router node x has to send a packet to a node

d, it sends the packet to the neighbor y with the lowest es-

timated delivery time Qx(d, y). Using Q-routing, a router

learns the expected delivery times to d for each adjacent

router y, where an adjacent router is a direct neighbor of

node connected to x by a network link. Each router node

x keeps a two dimensional table Qx of estimated delivery

times which is updated after sending a packet according to

the following formula:

Qx
t (d, y) = (1 − α)Qx

t−1(d, y) + α(bx
t + min

z
Qx

t−1(d, z))

The table Qx has n ∗ m entries, where n is the num-

ber of accessible destination routers and m is the number

of adjacent routers. The parameter α controls the learning

rate and bx
t is the time the current packet spent in x’s buffer

or queue before being sent at time step t. Immediately af-

ter sending the packet to neighbor y, router node x receives

y’s time estimate minz∈neighbors of yQx(d, z) to destina-

tion d. Once the router has learned the values associated

with each destination-neighbor (d, y), it executes a greedy

policy. When a router node has to send a packet for node d,

it sends this packet to the neighbor y with the lowest es-

timated delivery time Qx
t (d, y). Boyan and Littman have

shown in [6] that a fast learning rate of α = 0.5 worked

well since it allows the network to adapt quickly.

Adapting Q-routing to the dynamic network on chip do-

main is straight forward. Here, the placement of a new mod-

ule can cover up router nodes which have to be taken out of

the network. Moreover, these routers are reactivated in the

network after this module completes its execution. To ad-

dress this, the delivery time to d via router y is set to ∞,

i.e. Qx(d, y) = ∞. When a router node reappears in the

network, we optimistically set the estimated delivery time

to d to 0, i.e. Qx(d, y) = 0. This optimistic bias encour-

ages exploration of new paths, as node x will always try to

send packets via a node y which has just joined the network.

If the result of this exploration does not yield a smaller de-

livery time, then node x will revert to its original behavior

since Qx(d, y) will be updated to its true value. However, if

this new router y can deliver packets in shorter time to their

destination, then node x will continue to use y as its outgo-

ing neighbor.

5. Evaluation

In the following case study, we evaluate the performance

of the adapted XY-routing, as well as Q-routing on a 7 × 7

DyNoC array.

5.1. Simulator for DyNoCs

In order to evaluate the dynamic behavior of DyNoCs,

we have implemented a simulator. SimDyNoC is a flexible

and object oriented implementation of a discrete event net-

work simulator written in python. Its main advantage is its

ability to allow the removal of existing routers and its adja-

cent links during the run-time of the simulation. Due to the

dynamic instantiation of routers and links, it is topology in-

dependent. This means that the number of links connected

to each router node is not limited. Moreover, a link can con-

nect any two routers inside the network if required.

Action Description

R Add a router to the network.

rR Remove a router from the network.

rRC Remove a router and all adjacent channels.

C Add a channel between two routers.

rC Remove a channel from network.

M Place a module on to the network. Covered

routers and channels are removed.

rM Remove an existing module from the network

and restore routers and channels which

were covered by this module.

traffic Specify the traffic pattern of one module

to other placed modules.

Table 1. Supported actions in the simulation

testbench

At each period of time, the simulator state reflects the

state of a reconfigurable device on which modules are

placed and removed dynamically.

The simulation configuration resides in the simulation

testbench which describes all the time step-action pairs till

the last time step. At each time step, modules can be placed

or removed from the DyNoC. However, during the first time

step, the basic DyNoC grid has to be created. This is done

by instantiating routers and channels. A channel consists of

two links which connect two routers together. Each input

channel is connected to a FIFO where all incoming pack-

ets are stored. The size of the FIFO can be set for each link

individually. Finally, application modules can be placed to-

gether with their respective traffic patterns at any desired

time step. The list of possible actions is depicted in Table

1. It gives an overview over the most important actions sup-

ported by the simulation testbench. The most used action

is traffic as it allows to dynamically adjust the communica-

tion patterns used for traffic generation between modules.

The router’s arbiter is a central resource which resolves

conflicts when two links compete for the same outgoing

link. In this case, packets obtain control of the outgoing link

based on round robin distribution. There is a one cycle rout-

ing delay per packet.

5.2. Experimental Results

The S-XY router implementation is straight forward in

software as in hardware. The Q-routing as well as the S-

XY-routing are implemented in our simulator. We imple-

mented this S-XY-routing strategy in order to compare the

performance and behavior with the Q-routing algorithm.

4000 cycles 20000 cycles 50000 cycles

Sent Packets 11741 96759 261627

Throughput avg./max. 0.08 / 0.63 0.14 / 0.26 0.14 / 0.27

Network Load avg./max. 0.10 / 0.41 0.14 / 0.29 0.15 / 0.30

Latency avg./max. 4.82 / 14.65 4.80 / 13.00 4.82 / 13.00

Table 2. S-XY-routing performance values

from simulation

Both routing algorithms are compared on a 2D-mesh net-

work, like the 7 × 7 configuration shown in Figure 1.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 L
oa

d

Time (cycles)

Load

Figure 3. S-XY-routing load on a 7x7 DyNoC

with active modules connected to each router

In the first evaluation, we use an increasing load func-

tion with uniform random communication pattern. This pat-

tern is interesting as it varies the load on each router con-

stantly while varying the packet destinations at the same

time. Moreover, we must limit the load in the beginning of

the simulation in order not to block the whole Q-routing net-

work during its exploration phase. In the beginning, the low

packet generation rate is held till the simulation cycle 1000.

Thereafter, the probability for packet generation increases

for every 20 simulation cycles. During each simulation cy-

cle, a random router node is selected with the probability

Pa(t). When selected, this node generates a data packet

with a random destination address. This packet is stored in

a separate FIFO and can be sent in the next or following

cycles, depending on the scheduler’s decision. When this

FIFO is full the generated data packet is discarded.

4000 cycles 20000 cycles 50000 cycles

Sent Packets 9500 96849 261714

Throughput avg./max. 0.15 / 0.51 0.15 / 0.43 0.15 / 0.43

Network Load avg./max. 0.23 / 0.49 0.16 / 0.58 0.16 / 0.58

Latency avg./max. 16.98 / 338 6.97 / 338.00 5.75 / 338

Table 3. Q-routing performance values from

simulation

Pa(t) =

{ 1
155

1
155−(t−100)÷20

if 0 ≤ t < 1000

if t ≥ 1000

In our setup, network load is defined as the number of

data packets held by the FIFOs in all network elements.

Throughput is the number of transported data packets in the

network. Network load, as well as throughput are normal-

ized. Normalized load is defined to be the percentage of all

queued packets divided by the sum of existing queue ele-

ments in the network. Similarly, normalized throughput is

defined as the percentage of transported packets divided by

the number of existing links.

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 lo
ad

Time (cycles)

Load

Figure 4. Q-routing load on a 7x7 DyNoC with

active modules connected to each router

Figure 5 shows the latency during the S-XY-routing dur-

ing the first 4000 cycles. The latency goes up to 14.65 cycles

and achieves an average of 4.82 cycles during this simula-

tion as shown in Figure 5. The load is under 0.10 in the first

half of the simulation, as can be seen in Figure 3 and Table

2. All the simulations were performed with a 4 element deep

FIFO buffer at each channel input. At around 3800 cycles,

0

2

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000 3500 4000

La
te

nc
y

(c
yc

le
s)

Time (cycles)

Latency

Figure 5. XY-routing latency on a 7x7 DyNoC

with active modules connected to each router

the number of injected packets into the network reaches a

critical point. Now both the load and latency increase with-

out bound as the network enters the saturation point. During

these 4000 cycles, the network manages to send and to de-

liver 11741 packets to their destination.

Q-routing behaves differently during the setup phase as

it has to learn the shortest paths through exploration of the

network. During the setup phase of the NoC, the data pack-

ets are traveling on sub-optimal paths (i.e. in general also

longer paths with more hops) through the network, thus

generating higher load in the individual routers and increas-

ing the packet latency. This behavior is shown in Figure 6

and Figure 4. However, after a transient period of around

1000 simulation cycles the load settles down and remains

at a constant level. From cycles 2500 on, the load curve of

Q-routing is almost identical with the S-XY-routing curve

from Figure 3. This similarity does not apply to the la-

tency behavior. Here, approximately around cycle 3800, Q-

routing saturates very quickly the network, whereas the S-

XY-routing is just entering the saturation level. This shows

that congestion avoidance and recovery [11] is required to

prevent saturation from blocking the whole network.

To verify the performance of Q-routing, we have simu-

lated these configurations for 20000 and 50000 cycles. We

use the same increasing packet generation rate as in the

4000 cycle simulation, but we freeze the packet generation

rate at time step 3500. The network load at this time step is

shown in Table 4. This packet generation rate stays fixed till

the end of the simulation. The following formula Pb(t) de-

fines the probability function used for packet generation in

the second evaluation:

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000

La
te

nc
y

(c
yc

le
s)

Time (cycles)

Latency

Figure 6. Q-routing latency on a 7x7 DyNoC

with active modules connected to each router

Throughput Network Load Average Latency

S-XY-routing 0.20 0.20 3.20

Q-routing 0.19 0.19 3.75

Table 4. XY-routing and Q-routing perfor-

mance values at time step 3500

Pb(t) =







1
155

1
155−(t−100)÷20
1
30

if 0 ≤ t < 1000

if 1000 ≤ t < 3500

if t ≥ 3500

Comparing Table 2 and Table 3, we know that for this

load level, Q-routing is able to send and deliver as many

packets as S-XY-routing.

6. Summary and Future Work

This paper presents a concept for handling the problem

of dynamic communication among modules which are dy-

namically placed on a reconfigurable device. Our contribu-

tions are the S-XY-routing and Q-routing algorithms which

we have adapted for the dynamic environment with obsta-

cles which are caused by dynamically placed modules.

Using simulation, we show that the S-XY, as well as the

Q-routing algorithms are suitable for a dynamic network on

chip implementation. Both algorithms have the advantage to

depend on local information only. While the S-XY is sim-

ple and small, the Q-routing presents the learning advan-

tage which quickly brings the system in a state of conver-

gence. The constant adjustment of the Q-routing algorithm

enables the by-passing of local hot spots which is not pos-

sible with the S-XY-routing because all packets take a pre-

defined path to destination. The drawbacks of the Q-routing

are its setup phase and area costs. For a Q-routing imple-

mentation, the area cost is considerably higher, as Q-routing

has to store the estimated delivery times in a table. However,

the table size does not grow quadratically, as it is the prod-

uct of number of placed modules, n and the number of adja-

cent router nodes m. With only ten placed modules and four

adjacent router nodes, the table has forty elements. The high

packet latency caused by the setup phase can be fully allevi-

ated by preloading all router node tables with precomputed

values when a predefined set of modules is loaded.

Still, there are important questions open: 1) Must the re-

moval of routers caused through the placement of new mod-

ules delete the stored packets inside the FIFOs? 2) How

must the hardware platform be constructed to efficiently

support partial reconfiguration, module preemption and re-

location? Moreover, future DyNoC hardware infrastructure

concepts might be able to exploit the interplay between

routing aware module placement and load aware routing al-

gorithms in order to minimize the overall load in the net-

work.

7. Acknowledgments

This work is supported by the DFG (German Science

Foundation) Priority Program SPP 1148 ”Rekonfigurierbare

Rechensysteme” under grant Te163/12-1.

References

[1] A. Ahmadinia, C. Bobda, and J. Teich. A dynamic schedul-

ing and placement algorithm for reconfigurable hardware. In

C. Müller-Schloer, T. Ungerer, and B. Bauer, editors, Proc.

of 17th International Conference on Architecture of Comput-

ing Systems (ARCS 2004), volume 2981 of Lecture Notes in

Computer Science (LNCS), pages 125–139, Augsburg, Ger-

many, Mar. 2004. Springer.

[2] K. Bazargan, R. Kastner, and M. Sarrafzadeh. Fast template

placement for reconfigurable computing systems. IEEE De-

sign and Test - Special Issue on Reconfigurable Computing,

January-March:68–83, 2000.

[3] L. Benini and G. Micheli. Network on chips: A new soc par-

adigm. IEEE Computer, Jan. 2001.

[4] D. Bertozzi and L. Benini. Xpipes: A network-on-chip ar-

chitecture for gigascale system-on-chip. IEEE Circuits and

Systems Magazine, Second Quarter:18–31, 2004.

[5] C. Bobda, M. Majer, D. Koch, A. Ahmadinia, and J. Teich.

A dynamic NoC approach for communication in reconfig-

urable devices. In Proceedings of International Conference

on Field-Programmable Logic and Applications (FPL), vol-

ume 3203 of Lecture Notes in Computer Science (LNCS),

pages 1032–1036, Antwerp, Belgium, Aug. 2004. Springer.

[6] J. A. Boyan and M. L. Littman. Packet routing in dy-

namically changing networks: A reinforcement learning ap-

proach. In J. D. Cowan, G. Tesauro, and J. Alspector, editors,

Advances in Neural Information Processing Systems, vol-

ume 6, pages 671–678. Morgan Kaufmann Publishers, Inc.,

1994.

[7] W. J. Dally and B. Towles. Route packets, not wires: On-chip

interconnection networks. In Proceedings of the Design Au-

tomation Conference, pages 684–689, Las Vegas, NV, June

2001.

[8] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg,

M. Millberg, and D. Lindqvist. Network on chip: An archi-

tecture for billion transistor era. In Proceeding of the IEEE

NorChip Conference, Nov. 2000.

[9] T. Marescaux, J.-Y. Mignolet, A. Bartic, W. Moffat, D. Verk-

est, S. Vernalde, and R. Lauwereins. Networks on chip

as hardware components of an OS for reconfigurable sys-

tems. In Proceedings of 13th International Conference on

Field Programmable Logic and Applications, Lisbon, Portu-

gal, Sept. 2003.

[10] C. Steiger, H. Walder, M. Platzner, and L. Thiele. Online

Scheduling and Placement of Real-time Tasks to Partially

Reconfigurable Devices. In Proceedings of the 24th Inter-

national Real-Time Systems Symposium, Dec. 2003.

[11] M. Thottethodi, A. Lebeck, and S. Mukherjee. Exploiting

global knowledge to achieve self-tuned congestion control

for k-ary n-cube networks. In IEEE Transactions on Par-

allel and Distributed Systems, volume 15, pages 257 – 272,

Mar. 2004.

[12] H. Walder, C. Steiger, and M. Platzner. Fast online task

placement on FPGAs: Free space partitioning and 2d-

hashing. In Proceedings of the 17th International Parallel

and Distributed Processing Symposium (IPDPS) / Recon-

figurable Architectures Workshop (RAW), page 178. IEEE

Computer Society, Apr 2003.

