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Abstract. For multimedia traffic like VBR video, knowledge of the average loss
probability is not sufficient to determine the impact of loss on the perceived visual
quality and on the possible ways of improving it, for example by forward error
correction (FEC) and error concealment. In this paper we investigate how the
packet size distribution affects the packet loss process, the distribution of the
number of packets lost in a block of packets and the related FEC performance.
We present an exact mathematical model for the loss process of an MMPP +
M/Er/1/K queue and compare the results of the model to simulations performed
with various other packet size distributions (PSDs), among others, the measured
PSD from an Internet backbone. We conclude that the packet size distribution
affects the packet loss process and thus the efficiency of FEC. This conclusion is
mainly valid in access networks where a single multimedia stream might affect
the multiplexing behavior. The results show that analytical models of the PSD
matching the first three moments (mean,variance and skewness) of the empirical
PSD can be used to evaluate the performance of FEC in real networks. We also
conclude that the exponential PSD, though it is not a worst case scenario, is a
good approximation for the PSD of today’s Internet to evaluate FEC performance.

1 Introduction

For flow-type multimedia communications, as opposed to elastic traffic, the average
packet loss is not the only measure of interest. The burstiness of the loss process, the
number of losses in a block of packets, has a great impact both on the user-perceived vi-
sual quality and on the possible ways of improving it, for example by error concealment
and forward error correction.

Forward error correction (FEC) is an attractive means to decrease the loss proba-
bility experienced by delay sensitive traffic, such as real-time multimedia, when ARQ
schemes can not be used to recover losses due to strict delay constraints. There are two
main directions of FEC design to recover from packet losses. One solution, proposed by
the IETF and implemented in Internet audio tools is to add a redundant copy of the orig-
inal packet to one of the subsequent packets [1]. The other set of solutions, considered
in this paper, use block coding schemes based on algebraic coding, e.g. Reed-Solomon
coding [2]. The error correcting capability of RS codes with k data packets and c re-
dundant packets is c if data is lost. Thus, the capability of FEC to recover from losses
depends on the distribution of the number of packets lost in a block, e.g. the burstiness
of the loss process.



The burstiness of the loss process in the network can be influenced by three factors,
the burstiness of the stream traversing the network, the burstiness of the background
traffic and the packet size distribution. The effects of the burstiness of the stream travers-
ing the network and the background traffic have been investigated before [2–5]. The
effects of the packet size distribution are not clear however. It is well known that in an
M/G/1 queue the average number of customers is direct proportional to the coefficient
of variation (CoV) of the service time distribution, as given by the Pollaczek-Khinchine
formula [6]. For the finite capacity M/G/1 queue there is no closed form formula to cal-
culate the packet loss probability [7, 8], though we know from experience that a lower
CoV of the service time distribution yields lower average loss probability. It is however
unclear how the distribution of the service time affects the loss process in a finite queue
and thus how the potential of using FEC changes. The packet size distribution (PSD) in
the network can vary on the short term due to changes in the ongoing traffic and on the
long term as new applications and protocols emerge. As individual applications can not
control the PSD in the network, it is important to know how the PSD will affect their
performance, e.g. how much gain can an application expect from FEC given a certain
measured end-to-end average loss probability.

In this paper we present a model to analyze the packet loss process of a bursty
source, for example VBR video, multiplexed with background traffic in a single mul-
tiplexer with a finite queue and Erlang-r distributed packet sizes. We model the bursty
source by an L-state Markov-modulated Poisson process (MMPP) while the back-
ground traffic is governed by a Poisson process. We compare the results of the model
to the results of a model with deterministic packet sizes and to various simulations per-
formed with general PSDs, among them the measured PSD of an Internet backbone
[9], and investigate the effects of the network PSD on the packet loss process and the
efficiency of FEC.

It is well known that compressed multimedia, like VBR video, exhibits a self-similar
nature [10]. Yoshihara et al. use the superposition of 2-state IPPs to model self-similar
traffic in [11] and compare the loss probability of the resulting MMPP/D/1/K queue
with simulations. They found that the approximation works well under heavy load con-
ditions and gives an upper bound on the packet loss probabilities. Ryu and Elwalid
[12] showed that short term correlations have dominant influence on the network per-
formance under realistic scenarios of buffer sizes for real-time traffic. Thus the MMPP
may be a practical model to derive approximate results for the queuing behavior of long
range dependent traffic such as real-time VBR video, especially in the case of small
buffer sizes [13]. Recently Cao et al. [14] showed that the traffic generated by a large
number of sources tends to Poisson as the load increases due to statistical multiplexing
and hence justifying the Poisson model for the background traffic. Recent measure-
ments indicate that Internet traffic can be approximated by a non-stationary Poisson
process [15]. According to the results the change free intervals are well above 150 ms,
the ITU’s G.114 recommendation for end-to-end delay for real-time applications.

The paper is organized as follows. Section 2 gives an overview of the previous work
on the modeling of the loss process of a single server queue. In Section 3 we describe
our model used for calculating the loss probabilities in a block of packets. In Section 4
we evaluate the effects of the PSD on the packet loss process in various scenarios. We



consider constant average load in Subsection 4.1, constant average loss probability in
Subsection 4.2, and we isolate the effect of the PSD from other factors in Subsection
4.3. We conclude our work in Section 5.

2 Related work

In [16], Cidon et al. presented an exact analysis of the packet loss process in an M/M/1/K
queue, that is the probability of losing j packets in a block of n packets, and showed
that the distribution of losses may be bursty compared to the assumption of indepen-
dence. They also considered a discrete time system fed with a Bernoulli arrival process
describing the behavior of an ATM multiplexer. Gurewitz et al. presented explicit ex-
pressions for the above quantities of interest for the M/M/1/K queue in [17]. In [18],
Altman et al. obtained the multidimensional generating function of the probability of j
losses in a block of n packets and gave an easy-to-calculate asymptotic result under the
condition that n≤ K + j +1.

Schulzrinne et al. [19] derived the conditional loss probability (CLP) for the N ∗
IPP/D/1/K queue and showed that the CLP can be orders of magnitude higher than
the loss probability. In [2] Kawahara et al. used an interrupted Bernoulli process to
analyze the performance of FEC in a cell switched environment. The loss process of
the MMPP/D/1/K queue was analyzed in [20] and the results compared to a queue
with exponential packet size distribution.

Models with general service time distribution have been proposed for calculating
various measures of queuing performance [21, 22], but not to analyze the loss process.
Though models with exponential and deterministic PSDs are available, a thorough anal-
ysis of the effects of the PSD on the packet loss process has not yet been done.

3 Model description

Flows traversing large networks like the Internet cross several routers before reaching
their destination. However, most of the losses in a flow occur in the router having the
smallest available bandwidth along the transmission path, so that one may model the
series of routers with a single router, the bottleneck [23, 24].

We model the network with a single queue with Erlang-r distributed packet sizes
having average transmission time 1/µ. The Erlang-r distribution is the distribution of
the sum of r independent identically distributed random variables each having an expo-
nential distribution. By increasing r to infinity the variance of the Erlang-r distribution
goes to zero, and thus the distribution becomes deterministic.

Packets arrive to the system from two sources, a Markov-modulated Poisson process
(MMPP) and a Poisson process, representing the tagged source and the background
traffic respectively. The packets are stored in a buffer that can host up to K packets, and
are served according to a FIFO policy. Every n consecutive packets from the tagged
source form a block, and we are interested in the probability distribution of the number
of lost packets in a block in the steady state of the system. Throughout this section we
use notations similar to those in [16].



We assume that the sources feeding the system are independent. The MMPP is
described by the infinitesimal generator matrix Q with elements rlm and the arrival rate
matrix Λ = diag{λ1, . . . ,λL}, where λl is the average arrival rate while the underlying
Markov chain is in state l [25]. The Poisson process modeling the background traffic
has average arrival rate λ. The superposition of the two sources can be described by
a single MMPP with arrival rate matrix Λ̂ = Λ⊕λ = Λ + λI = diag{λ̂1, . . . , λ̂L}, and
infinitesimal generator Q̂ = Q, where ⊕ is the Kronecker sum. Packets arriving from
both sources have the same size distribution. Each packet in the queue corresponds to r
exponential stages, and the state space of the queue is {0, . . . ,rK}×{1, . . . ,L}.

Our purpose is to calculate the probability of j losses in a block of n packets P( j,n),
n ≥ 1, 0 ≤ j ≤ n. We define the probability Pa

i,l( j,n),0 ≤ i ≤ rK, l = 1 . . .L,n ≥ 1,0 ≤
j ≤ n as the probability of j losses in a block of n packets, given that the remaining
number of exponential stages in the system is i just before the arrival of the first packet
in the block and the first packet of the block is generated in state l of the MMPP. As the
first packet in the block is arbitrary,

P( j,n) =
L

∑
l=1

rK

∑
i=0

Π(i, l)Pa
i,l( j,n). (1)

Π(i, l), the steady state distribution of the exponential stages in the queue as seen by an
arriving packet can be derived from the steady state distribution of the MMPP/Er/1/K
queue as

Π(i, l) =
π(i, l)λl

∑L
l=1 λl ∑rK

i=0 π(i, l)
, (2)

where π(i, l) is the steady state distribution of the MMPP/Er/1/K queue.
The probabilities Pa

i,l( j,n) can be derived according to the following recursion. The
recursion is initiated for n = 1 with the following relations

Pa
i,l( j,1) =

{

1 j = 0
0 j ≥ 1

i≤ r(K−1),

Pa
i,l( j,1) =

{

0 j = 0, j ≥ 2
1 j = 1

r(K−1) < i. (3)

Using the notation pm = λm
λm+λ and pm = λ

λm+λ , for n≥ 2 the following equations hold.

Pa
i,l( j,n) =

L

∑
m=1

i+r

∑
k=0

Qi+r,lm(k){pmPa
i+r−k,m( j,n−1)+ pmPs

i+r−k,m( j,n−1)} (4)

for 0≤ i≤ r(K−1), and for r(K−1) < i

Pa
i,l( j,n) =

L

∑
m=1

i

∑
k=0

Qi,lm(k){pmPa
i−k,m( j−1,n−1)+ pmPs

i−k,m( j−1,n−1)}. (5)

Ps
i,l( j,n) is given by

Ps
i,l( j,n) =

L

∑
m=1

i+r

∑
k=0

Qi+r,lm(k){pmPa
i+r−k,m( j,n)+ pmPs

i+r−k,m( j,n)}, (6)



for 0≤ i≤ r(K−1), and for for r(K−1) < i

Ps
i,l( j,n) =

L

∑
m=1

i

∑
k=0

Qi,lm(k){pmPa
i−k,m( j,n)+ pmPs

i−k,m( j,n)}. (7)

The probability Ps
i,l( j,n),0≤ i≤ rK, l = 1 . . .L,n≥ 1,0≤ j ≤ n is the probability of j

losses in a block of n packets, given that the remaining number of exponential stages
in the system is i just before the arrival of a packet from the background traffic and the
MMPP is in state l. Qi,lm(k) denotes the joint probability of that the next arrival will be
in state m of the MMPP and that k exponential stages out of i will be completed before
the next arrival from the joint arrival process given that the last arrival was in state l of
the MMPP. A way to calculate Qi,lm(k) is shown in the Appendix.

The procedure of computing Pa
i,l( j,n) is as follows. First we calculate Pa

i,l( j,1), i =

0 . . .rK from the initial conditions (3). Then in iteration k we first calculate Ps
i,l( j,k),k =

1 . . .n− 1 using equations (6) and (7) and the probabilities Pa
i,l( j,k), which have been

calculated during iteration k−1. Then we calculate Pa
i,l( j,k+1) using equations (4) and

(5).

4 Performance analysis

In this section we show results obtained with the MMPP+M/Er/1/K model described
in Section 3, the MMPP + M/D/1/K model described in [20] and simulations. The
average packet length of both the tagged and the background traffic is set to 454 bytes,
which is the mean packet size measured on an Internet backbone [9]. Note that increas-
ing the average packet length is equivalent to decreasing the link speed, and thus the
particular fixed value of the average packet length does not limit the generality of the
results presented here. The PDF, CoV (σ/m) and skewness (∑(X−m)3/σ3) parame-
ters of the twelve considered PSDs are shown in Table 1. The G1 distribution is the
measured PSD on a 2.5 Gbps Internet backbone link as given by the Sprint IP Moni-
toring project [9]. The considered link speeds are 10 Mbps, 22.5 Mbps and 45 Mbps.
The queuing delay is set to around 1.5 ms in all cases, resulting in queue lengths from
5 to 20 packets depending on the link speed. Both in the analytical models and in the
simulations we consider a 3 state MMPP, with an average bitrate of 540 kbps, arrival
intensities λ1 = 116/s,λ2 = 274/s,λ3 = 931/s and transition rates r12 = 0.12594,r21 =
0.25,r23 = 1.97,r32 = 2. These values were derived from an MPEG-4 encoded video
trace by matching the average arrival intensities in the three states of the MMPP with
the average frame size of the I,P and B frames. The simulations were performed in ns-2,
the simulation time was between 40 thousand and 400 thousand seconds (5-50 million
packets from the tagged source).

We use two measures to compare the packet loss process, the probability of loosing j
packets in a block of n packets. The first one is a commonly used measure of closeness,
the Kullback-Leibler distance [26] defined for two distributions as

d(p1, p2) =
n

∑
j=0

P1( j,n)log2
P1( j,n)

P2( j,n)
, (8)



Distribution CoV Skewness PDF Notation
General 1 1.2 1.07 b(x) taken from [9], see Figure 1 G1
General 2 1.2 1.07 b(x) = 0.74N(127,20)+0.26N(1366,20) G2
Phase type 1.2 1.07 b(x) = 0.54E(5,26)+0.46E(5,956) G3
Exponential 1 2 E(1,454) M
General 4 1

√
2 b(x) = 0.79N(219,1)+0.21N(1331,1) G4

General 5 1/
√

2 2 b(x) = 0.85N(321,1)+0.15N(1229,1) G5
Erlang-2 1/

√
2

√
2 E(2,454) E2

General 6 1/
√

2
√

0.4 b(x) = 0.65N(219,1)+0.35N(892,1) G6
General 7

√
0.1

√
2 b(x) = 0.79N(379,1)+0.21N(731,1) G7

Erlang-10
√

0.1
√

0.4 E(10,454) E10
General 8

√
0.1 0 b(x) = 0.5N(310,1)+0.5N(598,1) G8

Deterministic 0 0 b(x) = δ454(x) D
Table 1. Considered packet size distributions: coefficient of variation, skewness, PDF and nota-
tion in the figures. N(m,σ) denotes a normal distribution with mean m and variance σ2. E(r,1/µ)
denotes an r-stage Erlang distribution with mean 1/µ.

The Kullback-Leibler distance is the same as the relative entropy of p1 with respect
to p2. It is not a true metric, as it is not symmetric and does not satisfy the triangle
inequality, but it is always non-negative and equals zero only if p1 = p2.

The second measure is based on the gain that can be achieved by using FEC. Given
the probabilities P( j,n) the uncorrected loss probability for an RS(k,c+k) scheme can
be calculated as

Pk,c+k
loss =

1
c+ k

c+k

∑
j=c+1

jP( j,c+ k). (9)

Based on the uncorrected packet loss probability we define the FEC gain as the ratio of
the average loss probability without the use of FEC and the uncorrected loss probability
when using FEC: f (k,c+ k) = Ploss/Pk,c+k

loss .

4.1 Constant average load case

In this subsection we investigate the effects of the PSD on the packet loss process and
the efficiency of FEC as a function of the average load in the network. Figure 2 shows
the uncorrected packet loss probability for FEC(1,1), FEC(10,11) and FEC(20,22) on a
10 Mbps link for the G1,G2, G3, M and D distributions. Figures 3 and 4 show the same
results on a 22.5 Mbps and a 45 Mbps link. The figures show that results obtained with
the G1, G2 and G3 distributions are practically the same (the difference is less than
5%). This indicates that by matching the first three moments of a distribution one can
derive accurate results in terms of average loss probability and FEC gain even for very
low loss probabilities. In the following we will only use the G1 distribution out of these
three distributions. Figures 5 and 6 show the Kullback-Leibler distance obtained with
different PSDs on a 10 Mbps link for P( j,11) and P( j,22) respectively. Figures 7 and
8 show the FEC gain for the same scenarios. Comparing the figures we conclude that



FEC(10,11) and FEC(20,22) are qualitatively similar, and thus in the following we will
only show figures for FEC(20,22) for brevity. Comparing results obtained with PSDs
having the same CoV but different skewness we can see that even though the skewness
has an effect on the packet loss process (especially at low loss probabilities), the CoV
of the PSD has the biggest impact on the efficiency of FEC. We draw the same conclu-
sion by examining Figures 9, 10, 11 and 12 which show the Kullback-Leibler distance
and the FEC gain on a 22 Mbps and a 45 Mbps link as a function of the average load
for P( j,22) and FEC(20,22) respectively. Thus, analytically tractable PSD models (for
example phase-type, which includes both the Erlang and the hyper-exponential distri-
butions as special cases, and has an extensive literature [27–30]) can be used to derive
approximate results for FEC performance by matching the first two, and accurate re-
sults by matching the first three moments of the empirical PSD. Furthermore as the
CoV of the PSD in the network is bounded from above, applications can be given a
lower bound on the achievable gain of using FEC independent of the packet size dis-
tribution in the network. Though for some networks the exponential PSD might fit, it
is clear from the results that it does not represent a worst case scenario if the average
packet size is not equal to the center of the domain of the PSD and thus the CoV of the
PSD can exceed one. Nevertheless, the exponential PSD is a good approximation for
the considered empirical PSD G1, and for other empirical PSDs to be found at [9]. This
finding justifies the assumption of exponential service time distribution in earlier works
on the efficiency of FEC [1, 16–18, 31].

The difference between the results obtained at a particular average load with distri-
butions having different CoV values is significant, up to one order of magnitude in terms
of FEC gain in the considered scenarios, a lower CoV value yielding a less bursty loss
process. The difference however is partly due to the different average loss probabilities.
We eliminate the effects of the average loss probability in the following subsection.

4.2 Constant average packet loss case

In this subsection we consider results with different PSDs as a function of the average
loss probability. This enables us to investigate what an application (unaware of the net-
work PSD) can expect from FEC given that it experiences a certain end-to-end average
packet loss probability. In order to be able to compare the packet loss process at a cer-
tain average loss probability we take the results from simulations with the G1 PSD and
increase the background traffic of the mathematical models to match the average packet
loss probability given by the simulations.

Figure 13 shows the Kullback-Leibler distance between the results obtained with
the different distributions as a function of the average loss probability on a 10 Mbps
link for P( j,22). The figure shows that the distance between the results obtained with
different distributions decreased significantly (three orders of magnitude). Figure 14
shows the FEC gain for the same scenario. The effects of the PSD are significantly
smaller compared to Figure 8.

Figures 15 and 16 show the FEC gain on a 22.5 Mbps and a 45 Mbps link respec-
tively. Comparing the figures we can see that the difference between results with differ-
ent PSDs in terms of FEC gain decreases as the link speed increases (from 10 Mbps to
45 Mbps). The reason for this is that the higher the link speed the less the background



traffic has to be changed to keep the average loss probability constant, and thus the
change in the level of statistical multiplexing decreases.

The observed difference in FEC gain can be due to the difference in the level of
statistical multiplexing (the background traffic intensity was increased to maintain the
average loss probability constant and as a result the packet loss process became more
independent) and to the difference between the packet size distributions.

4.3 Isolating the effects of the packet size distribution

In this subsection we separate the effects of the level of statistical multiplexing and the
PSD. We do it by changing the arrival intensity of both the background traffic and the
tagged stream in the mathematical models in order to match the average loss proba-
bility given by the simulations with the G1 PSD, thus we keep the level of statistical
multiplexing constant (doing so is equivalent to matching the average loss probability
through decreasing the link speed). Figure 17 shows the Kullback-Leibler distance as a
function of the average loss probability on a 10 Mbps link for P( j,22). Comparing this
to Figure 13 we can see a further significant decrease in the distance of the distributions.
The same effect can be seen in Figure 18, which shows the FEC gain on a 10 Mbps link
as a function of the average loss probability for FEC(20,22). Thus the difference in the
FEC gain considering a fixed average loss (Section 4.2) is mainly due to the different
levels of statistical multiplexing and in a lower extent to the different PSD. This is in
accordance with the observation in Section 4.2 that the difference between the results
with different PSDs decreases as the link speed increases.

5 Conclusion

In this paper we investigated the effects of the packet size distribution on the packet
loss process and the related FEC performance in a single server queue with a finite
buffer. We presented a mathematical model for the analysis of the packet loss process
of the MMPP + M/Er/1/K queue and compared the results of simulations and math-
ematical models in different scenarios. Our results show that analytical models of the
PSD matching the first three moments of the empirical PSD can be used to evaluate
the performance of FEC in real networks, while the exponential PSD is a reasonable
approximation for the PSD of today’s Internet to evaluate FEC performance. Neverthe-
less the exponential PSD is not a worst case scenario, the PSD in today’s networks has a
higher CoV and thus shows slightly worse queueing performance. However, as the CoV
of the packet size distribution in a real network is bounded from above, one can give
a lower bound on the efficiency of FEC and thus predict its performance. The results
show that the effects of the packet size distribution decrease as the link speed increases
if one considers a particular average packet loss probability. Thus at a given average
loss probability the actual network PSD does not influence the efficiency of FEC on
a backbone link, however it has a big influence on it in access networks. At the same
time applications can have a bigger influence on the packet size distribution in access
networks and thus have an impact on the packet loss process of their traffic. The results
presented here can serve as a basis for future research on the performance of end-to-end
error control and facilitate the use of FEC in tomorrow’s applications.
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Fig. 1. Cumulative density functions of the
considered packet size distributions.
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Fig. 3. Average loss probability with and
without FEC vs average load on a 22.5 Mbps
link.
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without FEC vs average load on a 45 Mbps
link.
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Fig. 5. Kullback-Leibler distance vs average
load for P(j,11) on a 10 Mbps link
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Fig. 6. Kullback-Leibler distance vs average
load for P(j,22) on a 10 Mbps link
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Fig. 7. FEC gain vs average load for
FEC(10,11) on a 10 Mbps link
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Fig. 8. FEC gain vs average load for
FEC(20,22) on a 10 Mbps link
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Fig. 9. Kullback-Leibler distance vs average
load for P(j,22) on a 22.5 Mbps link
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Fig. 10. FEC gain vs average load for
FEC(20,22) on a 22.5 Mbps link
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Fig. 11. Kullback-Leibler distance vs average
load for P(j,22) on a 45 Mbps link
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Fig. 12. FEC gain vs average load for
FEC(20,22) on a 45 Mbps link



10
−5

10
−4

10
−3

10
−2

10
−1

0

0.5

1

1.5

2

2.5
x 10

−3

Average loss probability

K
ul

lb
ac

k−
Le

ib
le

r 
di

st
an

ce

d(G1,M)
d(G1,E2)
d(G1,E10)
d(G1,D)
d(G4,M)
d(G5,E2)
d(G6,E2)
d(G7,E10)
d(G8,E10)

Fig. 13. Kullback-Leibler distance vs average
loss probability for P(j,22) on a 10 Mbps link
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Fig. 14. FEC gain vs average loss probability
for FEC(20,22) on a 10 Mbps link
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Fig. 15. FEC gain vs average loss probability
for FEC(20,22) on a 22.5 Mbps link
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Fig. 16. FEC gain vs average loss probability
for FEC(20,22) on a 45 Mbps link
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Fig. 17. Kullback-Leibler distance vs average
loss probability for P(j,22) on a 10 Mbps link
(same level of statistical multiplexing)
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Fig. 18. FEC gain vs average loss probability
for FEC(20,22) on a 10 Mbps link (same level
of statistical multiplexing)



6 Appendix

The probability Qi,lm(k) denotes the joint conditional probability that between two ar-
rivals from the joint arrival stream there are k exponential stage completions out of i
and the state of the MMPP at the moment of the arrival is m given that at the time of the
last arrival the MMPP was in state l. Qi,lm(k) can be expressed as

Ql,m
i (k) = Pl,m(k) i f k < i

Ql,m
i (k) = ∑∞

j=i Pl,m( j) i f k = i,
(10)

where Pl,m(k) denotes the joint probability of having k exponential stage completions
between two arrivals and the next arrival coming in state m of the MMPP given that the
last arrival came in state l.

The z-transform Pl,m(z) of Pl,m(k) is given by

Pl,m(z) =
∞

∑
k=0

(

Z ∞

0

(rµt)k

k!
e−rµt f l,m(t)dt

)

zk = f l,m∗(rµ− rµz), (11)

where f l,m(t) is the joint distribution of the interarrival-time and the probability that
the next arrival is in state m given that the last arrival was in state l of the MMPP. The
Laplace transform of f l,m(t) is denoted with f l,m∗(s) and is given by

f l,m∗(s) = L
{

e(Q̂−Λ̂)xΛ̂
}

= (sI− Q̂+ Λ̂)−1Λ̂. (12)

The inverse Laplace-transform of (12) and thus the inverse z-transform of (11) can be
expressed analytically by partial fraction decomposition as long as L ≤ 4, and has the
form

f l,m(t) =
L

∑
j=1

Bl,m
j eβ jt , (13)

where β j are the roots of t(s) = det[sI− Q̂ + Λ̂]. Using the substitution α j = 1 + β j/µ

and Al,m
j = Bl,m

j /(µα j) one can calculate Pl,m(k) based on (11)

Pl,m(k) =
L

∑
j=1

Al,m
j

1

αk
j

. (14)

Given the probability Pl,m(k) one can express Qi(k) as

Qi(k) =











∑L
j=1 Alm

j

(

1
α j

)k
0≤ k < i

∑L
j=1

Alm
j

1−1/α j

(

1
α j

)i
k = i.

(15)

A more detailed description of the calculation of Qi,lm(k) can be found in [32].
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