
Appearing inIEEE Symposium on Field-Programmable Custom Computing Machines(FCCM 2006), April 24–26, 2006

Packet Switched vs. Time Multiplexed FPGA
Overlay Networks

Nachiket Kapre, Nikil Mehta, Michael deLorimier, Raphael Rubin,
Henry Barnor, Michael J. Wilson, Michael Wrighton, andAndré DeHon

Dept. of CS, MC 256-80
California Institute of Technology

Pasadena, CA 91125
contact: <nachiket@caltech.edu >

Abstract— Dedicated, spatially configured FPGA interconnect
is efficient for applications that require high throughput connec-
tions between processing elements (PEs) but with a limited degree
of PE interconnectivity (e.g. wiring up gates and datapaths).
Applications which virtualize PEs may require a large number
of distinct PE-to-PE connections (e.g. using one PE to simulate
100s of operators, each requiring input data from thousands of
other operators), but with each connection having low throughput
compared with the PE’s operating cycle time. In these highly in-
terconnected conditions, dedicating spatial interconnect resources
for all possible connections is costly and inefficient. Alternatively,
we can time share physical network resources by virtualizing
interconnect links, either by statically scheduling the sharing
of resources prior to runtime or by dynamically negotiating
resources at runtime. We explore the tradeoffs (e.g. area, route
latency, route quality) between time-multiplexed and packet-
switched networks overlayed on top of commodity FPGAs. We
demonstrate modular and scalable networks which operate on
a Xilinx XC2V6000-4 at 166MHz. For our applications, time-
multiplexed, offline scheduling offers up to a 63% performance
increase over online, packet-switched scheduling for equivalent
topologies. When applying designs to equivalent area, packet-
switching is up to 2× faster for small area designs while time-
multiplexing is up to 5× faster for larger area designs. When
limited to the capacity of a XC2V6000, if all communication is
known, time-multiplexed routing outperforms packet-switching;
however when the active set of links drops below 40% of the
potential links, packet-switched routing can outperform time-
multiplexing.

I. I NTRODUCTION

When implementing a computation as a simple circuit at
the gate or RTL level, we expect each gate or register output
to be conveyed to its successor gate or register input on every
cycle. Since every link in the computational graph is active on
every cycle, dedicating a physical interconnection link between
operators as a configured FPGA wire is efficient.

When a computation is described at a higher level, it is
often possible to identify cases where operators do not need
to communicate on every link for every cycle [1]. For example,
a compressor operator will output compressed data at a lower
data rate than it consumes input data. These cases provide us
with the opportunity to time share and virtualize interconnect
links (e.g. another operator can use the compressor’s output
link on idle cycles).

At even higher levels of abstraction, we may virtualize
compute elements as well [1], [2]. Physical area constraints

may dictate that a 1:1 mapping of operators to physical PEs is
infeasible. For N operators mapped onto a single PE, a single
operator may only produce data and communicate it to another
operator once every N cycles, where N can be very large.

For these sparse communication patterns on large computa-
tional graphs, dedicating spatial interconnect links on a config-
ured FPGA network for all possible communications between
operators is inefficient. Wires and switches dominate FPGA
resources [3], and dedicating spatial interconnect guarantees
that these resources will be severely underutilized. In order to
handle such problems efficiently, we explore overlaying virtual
networks on top of the physical configured FPGA network,
allowing us to reuse physical links in time. We consider two
types of networks:

1) Time-Multiplexed:In this scheme, routes for data pack-
ets sent between communicating operators are computed of-
fline prior to runtime. By taking advantage of global route
information, time-multiplexed networks promise minimal total
communication time between operators and maximal network
resource utilization. However, offline computation can be
compute intensive and must allocate resources for all pos-
sible communications among operators. The communication
schedule must be stored in memory to program the behavior
of each element in the network on every cycle at a potentially
significant area cost.

2) Packet-Switched:Opposingly, in this scheme routes for
data packets sent between operators are negotiated dynami-
cally at runtime. This promises no additional memory for stor-
ing schedules and no offline setup. Routes are only made for
operators that are actually communicating. However, switches
for these networks are typically more complex (larger, slower)
and, since routing decisions are only made locally, routes can
be less efficient.

There may be cases where each network is preferred. We
use communication workloads of varying density from Con-
ceptNet [2], [4] to help quantify the tradeoffs and understand
the situations in which one network switching scheme may
be superior to the other. The novel contributions of this work
include:
1. Demonstration of efficient and scalable static and dynamic
FPGA overlay networks operating at 166MHz.

2. Quantification of the performance difference between of-

c© 2006 IEEE 1

http://www.fccm.org/
http://www.cs.caltech.edu/~andre/
mailto:nachiket@caltech.edu

fline scheduling and online routing (SectionVIII-A).
3. Quantification of performance impacts associated with
balancing interconnect and computing resources (Sec-
tion VIII-B.1).

4. Characterization of area and performance tradeoffs be-
tween time-multiplexed and packet-switched networks (Sec-
tion VIII-B.2).

5. Quantification of the performance difference between
time-multiplexing and packet-switching under varying ap-
plication communication loads (SectionVIII-C).

II. BACKGROUND

A. Networks on Chip

Computing systems have long been designed to time share
interconnect [5]–[10]. Increasing silicon capacities have made
it possible to implement such shared networks on a single
chip. In the early days of system-on-a-chip integration, these
networks were primarily on-chip buses. However, serial buses
do not scale as chip sizes grow. To achieve higher perfor-
mance, it has become necessary to look beyond buses and
investigate scalable, high-performance, low-overhead on-chip
networks [11], [12]. FPGAs today seem to be undergoing a
similar transition. Commodity FPGAs now support several
forms of on-chip buses which could be replaced with low
overhead on-chip networks as they scale further.

To demonstrate why forms of interconnect other than buses
should be examined, consider how network communication
scales with the number of PEs. Figure1 shows network
I/O messages per cycle as a function of PEs on our time-
multiplexed network with no bandwidth limitations, given
a ConceptNet [2], [4] communication load. Assuming no
segmentation, a bus can only handle a single network send and
receive per cycle. In Figure1 we see that as the the number of
PEs increases, our our application could benefit from sending
and receiving significantly more than one message per cycle.
At small numbers of PEs, the bus would only require 1–2×
more cycles to route all messages than an unlimited network,
but at large PE counts (> 500) the bus would require over
100 times as many cycles. With fewer PEs a bus may be
adequate because the network is lightly loaded, with most
cycles dedicated to serialized processing at the PEs. As we
increase the number of PEs, each PE communicates more, and
we need a network capable of processing multiple messages
simultaneously to support the increased load.

B. Communication Patterns

An important choice to make in designing programmable
interconnect is the switching style. TableI rounds up the
relative strengths and weaknesses of four commonly used
communication patterns.

Selection of an appropriate communication pattern should
be based on application communication requirements and char-
acteristics. Configured switching and time-multiplexing use
static scheduling, requiring that communication be predictable
and known ahead of time. Configured switching is inefficient
for applications that underutilize physical link throughput.

 0

 50

 100

 150

 200

 250

 1 10 100 1000 10000

N
et

w
or

k
IO

 p
er

 C
yc

le
 (

m
es

sa
ge

s)

Network Size (PEs)

Network IO per Cycle vs. Network Size

unlimited network

Fig. 1. ConceptNet Network I/O per Cycle vs. Network Size

Circuit-switching is efficient for larger messages on shorter
networks, and is not an appropriate solution for the kinds of
small message applications on which we focus here.

Hardware requirements are particularly important in
comparing packet-switching and time-multiplexing. Packet-
switching typically requires larger switchboxes due to buffer-
ing and logic required for dynamic decision making. Time
multiplexed switchboxes are typically smaller in terms of raw
logic, but if the total number of communication cycles is
large, switch context memory may require significant area. To
illustrate these area and performance tradeoffs, consider the
following example. Packet-switched switchboxes may allow us
to fit an 8 PE network on a chip. With comparatively smaller
switches we could fit a 16 PE time-multiplexed network as
long as routing could be completed in 30K cycles. If routing
takes more than 30K cycles we can fit only 8 PEs, and at more
than 100K cycles we can only fit 4 PEs. Consequently, there
are operating ranges where either network my outperform the
other.

To select wisely between packet-switching and time-
multiplexing, we need to develop analytic area and time
models to generalize this example and ground the general
trends of TableI into quantitative, empirical tradeoffs.
• For equivalent topologies and communication loads, how
much better can offline, global routing solutions be com-
pared to online, local routing solutions?
• How much smaller, faster can a time-multiplexed intercon-
nect scheme support a given level of static traffic?
• For what activity factors is a packet-switched interconnect
scheme superior?

C. Packet-Switched Networks

Packet-switched networks have been researched extensively
by the networking community since the days of the early
telephone switching systems [13]. Consequently, several fla-
vors of packet-switched networks exist today,e.g.wormhole,
cut-through, store-forward. Even the NoC (Network on Chip)
community (SectionII-A) has focused on building on-chip
packet-switched networks. Surveys in on-chip packet-switched

2

TABLE I

ROLE OF VARIOUS COMMUNICATION PATTERNS

Characteristics Configured TM PS Circuit
Know communication needs early late

(compile time) (runtime)
Communication predictability high low
Communcation throughput compared to
physical link throughput

> < < <

PE-to-PE latency compared to packet length n/a n/a > <
Channel Utilization high low
Switch Logic Area low low high high
Switch Memory Area low high modest low
Relative Latency lowest low highest moderate

communication networks can be found in [10], [14], [15].
These NoC efforts have mostly targeted ASICs and only
recently have FPGAs become large enough to merit such
networks.

Nonetheless a handful of FPGA-based overlay NoCs have
appeared in recent years. We summarize a representative
sample in TableII . We improve and expand upon these prior
efforts in several ways:
• Most of the designs reported in TableII are two dimen-
sional bidirectional mesh topologies. These research efforts
typically dismiss other topologies for asymptotic scaling
concerns. Only Dimetalk allows arbitrary topologies in ad-
dition to meshes. We built and analyzed several topologies,
including meshes, but only present data for Butterfly Fat
Trees (BFTs) as we observe that they yield the best results.
Quantifying the tradeoffs between different topologies is
beyond the scope of this paper.
• Several efforts use synthetic data for understanding the
tradeoffs in building their NoCs (e.g., [16], [17]). Marescaux
et al. [18] report application performance data as a proof-
of-concept for their packet-switched NoC, but do not offer
analysis on the impacts of network design. We use real
applications and realistic PE architectures to generate the
traffic workloads for our network exploration.
• Most of these networks run at speeds between 25 and
50 MHz which is far below peak FPGA speeds. Dimetalk
routers can potentially deliver 100 MHz performance. We
deliver a high-performance FPGA implementation where
our entire network runs at 166 MHz on comparable or older
FPGA technology.

D. Time-Multiplexed Networks

Offline scheduling of communication between processing
elements has been studied extensively, particularly in the dis-
tributed parallel processing community. Several of these stud-
ies examined time-multiplexing of communication networks at
the processor level by using FSMs to moderate communication
between multiple chips [19], [20] or between PEs integrated
onto a single chip [21]. Other projects used time-multiplexing
at the logic-level for implementing circuits [22]–[25]. In these
designs the time-multiplexed support is built into the native
FPGA or simulation-engine architecture.

The Virtual Wires project [26] examined time-multiplexing
of resources not built into a native FPGA or ASIC, but
overlayed on top of an FPGA. Virtual Wires attempts to
overcome pin limitations by time sharing each physical wire
among logical wires and pipelining these connections at a
high frequency. To route and schedule physical wires, they
developed a greedy spatial and temporal scheduler [27],
demonstrating a significant increase in usable I/O bandwidth.
Instead of time-multiplexing just chip I/O communication,
our work attempts to time-multiplex communication over an
entire network overlayed on FPGA resources. We use a similar
space-time greedy router to schedule our network.

Some prior work has begun to explore the tradeoff between
static scheduling and dynamic routing. The RAW microproces-
sor [28] utilized a static scheduler to compile streams of com-
putations across PEs, but also supported dynamic hardware
to allow for unresolvable events such as memory stalls and
interrupts. The designers discovered that a combination of
static scheduling techniques and software routines handled
dynamic events more efficiently than dedicated hardware.
The aSoC architecture [29] utilized a statically scheduled
reconfigurable communications processor to network together
PEs and compared it to dynamic routing models. They found
that static scheduling moderately increased performance, but
at an unspecified increase in area due to context memory.
aSoC supported only 16 PEs and a light traffic load where
PE processing time generally dominated communication time.
Rather than simply examining one system size or configura-
tion, this paper attempts to broadly explore the design space
tradeoff between static scheduling and dynamic routing, and
quantifies when either time-multiplexing or packet-switching
are preferred under various applications conditions. Our ex-
ploration ranges from 4–4096 PEs and includes traffic loads
which can often dominate node processing times.

III. T OPOLOGY

A. Performance Analysis

Network topology can have a large impact on the perfor-
mance of a NoC. We identify several quantitative network
characteristics which bound the number of cycles required for
communication.

1) PE Input Serialization:In our design, we assume that
the PE is capable of processing one external input message

3

TABLE II

SUMMARY OF PRIOR WORK IN FPGA NETWORK-ON-A-CHIP DESIGNS

NoC Freq Size Chip Switch
(MHz) Datawidth IO Area

IMEC 40 3× 3 Virtex2 Pro 40 16-bit 4 446 slices, 1 BRAM
Hermes 25 2× 2 Virtex2 1000 -4 8-bit 5 316 slices
LiPaR 33 3× 3 Virtex2 Pro 30 -6 8-bit 5 437 slices
Dimetalk 100 – Virtex2 -4 32-bit 4 450 slices, 1 BRAM
Our network 166 8 Virtex2 6000 -4 32-bit 4 732 slices(T), 1464 slices(π)

or self message per cycle. A bound on cycle count based on
input messages can be computed as follows:

Tinput = Ninput + Nself (1)

2) PE Output Serialization:There is a similar bound on
outgoing messages:

Toutput = Noutput + Nself (2)

3) Network Bisection:The bisection width of our network
limits the maximum number of messages that can cross from
one side to the other on a given cycle. If the number of
message bits is greater than the number of physical wires
crossing the bisection, then communication must be serialized
across the bisection.

Tcut =
⌈

Nmesssage bits

Ntopcut

⌉
(3)

The top-level bisection might not be the largest serial
bottleneck in the network. Hence, we need to recursively bisect
the network and identify the most limiting of cuts (Tcuti).

Tbw = max
all cuts i

(Tcuti) (4)

4) Network Latency:If the network is sufficiently large,
several cycles may be required to traverse the network from
one end to the other.

Tlatency = max
all routesi

(routei) (5)

We force sequentialization between the input and output
message handling in our PEs. Thus, the lower bound on
performance of a topology is follows:

Tcycles = max (Tinput + Toutput, Tbw, Tlatency) (6)

The parameters discussed here can help us analyze and
understand the performance of the topologies we consider.
These topologies also have widely different area requirements.
Thus, different topologies may be more efficient at different
chip areas. For example, a binary tree would be best if
the number of PEs in the system were small, but it may
become bandwidth limited for large PE counts due to the
increased number of messages sent into and out of the network
(Figure1).

lower
right

lower
left

upper
right

upper
left

rightleft

top

T

Fig. 2. Conceptual Diagram of T andpi Switches

PE PE PE PE PE PE PE PE

Fig. 3. Conceptual Diagram ofp=0.5 BFT

B. Butterfly Fat Trees

As noted in SectionII , most of the FPGA NoC work has
focused on building on-chip meshes. Meshes are preferred due
to their simpleSTEP-AND-REPEAT layout, asymptotic latency
properties, and the prolific research that has been conducted
in devising fair, deadlock-free routing algorithms. However, in
our analysis, we observed that Butterfly Fat Trees (BFTs) [9],
[31] achieve at least as high performance as the mesh at
equivalent chip sizes.

We choose to build BFTs of arity-2 with different values
of the Rent parameterp. Increasing the Rent parameter of
the BFT increases its bisection bandwidth (Ntopcut = c ×
np), thereby allowing more bisection traffic per cycle. Larger
values ofp also require more switches, which influences the
number of PEs that can be packed on a chip. We build these
trees as a composition ofT and π switchboxes, shown in
Figure 2 [32], [33]. Each level in the tree uses eitherT or
π switchboxes as shown in Figure3. We build both packet-
switched and time-multiplexed versions of the BFT for our
study. We build the BFT switches (Figures5–6) using basic
split and merge primitives (Figure4). We layout the network
on a Virtex-2 6000 hierarchically and pipeline the upper stages
of the tree based on layout feedback to retain high performance
even when stages cannot be placed adjacent to one another.

4

merge tm-mergesplit

Fig. 4. Conceptual Diagram of Split, Merge and TM-Merge Primitives

m m

ms

m m

ss

m

Fig. 5. Conceptual Diagram of BFT T Switch (PS & TM)

IV. PACKET SWITCHED

The packet-switched split and merge primitives (Figure4)
interface with each other using data-presence and back-
pressure based flow control. To deal with potential network
blocking, we design our primitives with input queues.

The split primitive has one input, two outputs and a routing
function which selects one of the two outputs for the incoming
packet. The split primitive computes the routing decision in
a single cycle based on the destination address of the packet.
This routing function determines the path packets will take on
the topology. We use an adaptive routing algorithm for packets
climbing up the BFT. A single address bit is used to make a
routing decision at each switchbox during descent.

The merge primitive has two inputs and one output. Packets
arriving on the two inputs must compete for a single output. A
simple scheme of arbitration would be to select from the two
input ports in a round robin fashion. We use a more adaptive
scheme that selects a packet based on FIFO occupancies of
the input queues.

Area and latency figures for packet-switched primitives are
shown in TableIII , assuming a 32-bit datapath (16-bits data,

mm

m m

m m

s s

m m

m m

s s

s s

Fig. 6. Conceptual Diagram of BFTπ Switch (PS & TM)

TABLE III

AREA, LATENCY AND SPEED OF32-BIT PACKET-SWITCHED SWITCHING

PRIMITIVES WITH 16-ENTRY BUFFERS

Primitive Area (Slices) Latency Speed
Queue Total (Cycles) (MHz)

Ctrl Buffer

Split 30 33 79 2 218
Merge 60 66 165 2 200

TABLE IV

AREA, LATENCY AND SPEED OF16-BIT, 1024-DEEPTIME-MULTIPLEXED

SWITCHING PRIMITIVES

Primitive Area (Slices) Latency Speed
Context Total (Cycles) (MHz)

Merge2 32 41 1 219
Merge3 64 80 1 204

16-bits destination address) and a buffer depth of 16. We
implement buffers in the input queues using SRL16s [34]
that allow a compact implementation of storage. The queue
controller that we implement around the buffers forms a large
portion of the area of the split and merge (TableIII). The
entire packet-switched network can run at 166MHz limited by
the speed of the ConceptNet PE.

V. T IME MULTIPLEXED

The time-multiplexed network statically schedules all com-
munication between PEs over the physical network. It is
composed solely from the time-multiplexed merge primitive
(Figure 4). Each merge primitive contains context memory
which stores the routing decisions that have been computed
offline. For a given cycle, data in the context memory indicates
which merge input is routed on that cycle. Since primitives
need to store routing decisions for every cycle, context mem-
ory can dominate the area of the merge primitive for large
cycle counts. The following equations describe the area in
slices required for time-multiplexed merge primitives as a
function of datawidth and context depth:

AreaMerge2 =
ContextDepth

32
+

DataWidth

2
(7)

AreaMerge3 = 2× ContextDepth

32
+ DataWidth (8)

Table IV shows the area and latency of 16-bit time-
multiplexed primitives for 1024 cycles of context. Context
memories are implemented with SRL16s for compact storage.
The entire time-multiplexed network is capable of running at
166 MHz.

The static scheduling of the network is performed prior to
runtime by a spatial and temporal router. The router is capable
of computing schedules using two different algorithms: greedy
(similar to that of [27]) and Pathfinder [35]. The greedy router
simply allocates paths for messages on the shortest available
path in space and earliest possible slot in time, avoiding
congested resources. Pseudocode for the greedy algorithm is

5

GREEDYROUTE

foreach route
// start search with source’s wires
foreach wire in source.outputWires

if (!wire.occupied)
priorityQueue.push(wire)

// spread on wires until touch node that is sink
while network elementnode != sink

// wires closer to sink sorted first
// wires earlier in time sorted next
cur wire← priorityQueue.pop()
node← cur wire.sink
foreach wire in node.outputWires

if (!wire.occupied)
priorityQueue.push(wire)

Fig. 7. Greedy Algorithm for Space-Time Routing

shown in Figure7. The Pathfinder router allows routes to be
allocated on congested resources and attempts to negotiate
congestion through rerouting. Resources which are congested
or have a history of congestion become more costly to use and
therefore over time uncongested paths are found. Both routers
utilize a fast A* algorithm (e.g. [36]) to find shortest paths.
Additionally, the router is capable of bounding the quality
of the computed schedules by computing lower bounds on
total cycle time due to physical latency, bandwidth, and PE
IO limitations (SectionIII-A). Our greedy router empirically
performs within 15% of all lowerbounds (representative ex-
amples can be seen in Figures14–15). Due to the speed and
efficiency of the greedy router we avoided using Pathfinder to
route communication.

VI. A PPLICATION

We map ConceptNet: Spreading Activation Step with di-
verse communication requirements onto our networks:

ConceptNet [4] is common-sense reasoning knowledge base
represented as a graph. Nodes represent nouns or noun-
verb pairs (e.g. “cookie”, “eat cookie”) and edges represent
semantic relationships (e.g. “used for”, “is a”). Applications of
ConceptNet include topic-jisting, analogy-making, text sum-
marization, and semantic prediction.

A key step in the ConceptNet algorithm is spreading acti-
vation. In spreading activation, an initial set of graph nodes
(corresponding to the set of keywords for a particular query)
are activated. More details on our FPGA implementation
of spreading activation in ConceptNet are provided in [2].
A single step of spreading activation involves sending an
activation potential from each node to its neighbors along its
edges, weighted by the edge coefficient. The percentage of
active edges (activity factor) over the whole graph depends
on the initial query and what step of the spreading activation
is being performed. As the time-multiplexed network must
compute schedules allowing for all possible communication
taking place, we performed our time-multiplexed experiments
at 100% activity. The packet-switched experiments were run
at 100% activity and for a range of activity factors between

1%–100% which correspond to consecutive steps in selected
queries.

Nodes in our ConceptNet graph are limited to 128 edges
of fanout or fanin in order to bound the node size and serial
processing time. As we can only process a single edge per
cycle in a PE (Eq.1, 2), the node with the maximum number
of fanout or fanin edges imposes a limit on overall system
performance.

VII. M ETHODOLOGY

To evaluate the performance of our networks, we con-
structed a Java-based infrastructure to simulate the packet-
switched network with cycle accuracy and to compute sched-
ules for the time-multiplexed network. We mapped applica-
tions to our networks using a partioner and placer based on
MLPart v5.2.14 which is part of the UMPack [37] package.
While we ensure that single chip logic and interconnect
resources are sufficient to map our applications, we assume
that application graphs can be mapped to the available on-chip
BRAMs. We also assume that the required instruction memory
for the time-multiplexed PEs can fit in BRAMs. This allows
us to select a message order which optimizes communication
time for static scheduling.

ConceptNet consists of four distinct sets of predicates, each
of differing breadth and accuracy. The experiments described
here were performed on the smallest, highest quality subset
consisting of 14,000 nodes and 27,000 edges. This minimal
subset exercises the core algorithm while containing simula-
tion run times.

We use our Java infrastructure to generate a structural
VHDL netlist for a given network configuration. We wrote
VHDL for the ConceptNet PEs, implementing the 3 phase
algorithm of the GraphStep system architecture [2]. We im-
plement multipliers required in the PE using pipelined LUT-
level logic instead of the on-chip 18x18 multipliers for speed.
Since we decompose our switchboxes into split and merge
primitives, we can pipeline and optimize at the level of these
individual primitives for high performance (see TablesIII
and IV). FIFO logic within the split and merge blocks is
also internally pipelined. We synthesize, place, and route this
entire VHDL design using the Synplicity Compiler v8.0 and
the Xilinx ISE v8.1i to obtain hardware operating frequency
and slice count results. Based on post place-and-route timing
analysis, any long wires that constrain performance are further
pipelined.

VIII. R ESULTS

We present three quantitative comparisons to help char-
acterize the tradeoffs between packet-switching and time-
multiplexing. First, we compare the performance difference
between offline and online scheduling by routing identical
topologies for identical 100% activity communication loads.
Second, we consider the impact of area and compare the
performance difference between packet-switching and time-
multiplexing for identical areas. To introduce this comparison
we examine the balance of compute and interconnect in order

6

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 10 100 1000 10000

 50

 100

 150

 200

 250

P
S

/T
M

 C
om

m
un

ic
at

io
n

T
im

e
R

at
io

N
et

w
or

k
IO

 p
er

 C
yc

le
 (

m
es

sa
ge

s)

PEs

Ratio of PS/TM Communication Time vs. PEs

Communication Ratio (bft c=1 p=0.5)
Network IO (bft c=1 p=0.5)

Fig. 8. Ratio of Time-Multiplexed/Packet-Switched Communication Time
for Identical Topologies

to determine the correct topologies to compare across area.
Third, for given area capacities we examine performance while
varying the activity factor of our communication loads.

A. Identical Topologies

To characterize the inherent performance difference be-
tween offline and online routing, we routed 100% activity
communication loads on equivalent topologies, measuring the
total number of communication cycles required to route. We
collected data for BFTs over a range of channel widths
(c = 1, 2) and Rent parameters (p = 0, 0.5, 0.67, 1). The
ratio of packet-switched to time-multiplexed communication
time as a function of PEs for a representative BFT with
c = 1 and p = 0.5 is shown in Figure8. Network I/O per
cycle (as in Figure1) is also shown on the same graph. At
low numbers of PEs (<100) we see that offline and online
routing produce equivalent cycle counts. Small numbers of
PEs induce a light communication load (1-20 messages per
cycle) and little offline/online differentiation. As the number
of PEs increase (>100) the communication load increases
(100s of messages per cycle), and we begin to see offline
routing outperform online routing. Offline routing is able to
take advantage of global information to make optimal routing
decisions on larger networks, while online routing is limited
to making local decisions which affect the overall quality of
route. As a result, online routing requires up to 63% more
cycles than offline routing to route larger networks.

B. Identical Area Constraints

To fully characterize the performance difference between
our packet-switched and time-multiplexed networks we must
also consider the area they consume. Before comparing area-
time curves for time-multiplexing and packet-switching, we
first examine the curves separately to determine the correct
BFT configurations for comparison.

1) PE vs. Interconnect Tradeoff:Choosing the best network
configuration for a given area for either time-multiplexing or
packet-switching relies on balancing compute and intercon-
nect. Trading compute (PEs) for interconnect (largerc or p)

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
(c

yc
le

s)

Area (slices)

Packet-Switched Communication Time vs. Area

bft c=1 p=0
bft c=1 p=0.5

bft c=1 p=0.67
bft c=1 p=1
bft c=2 p=0

bft c=2 p=0.5
bft c=2 p=0.67

bft c=2 p=1

Fig. 9. Packet-Switched Communication Cycles vs. Area

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07

C
om

m
un

ic
at

io
n

T
im

e
(c

yc
le

s)

Area (slices)

Time-Multiplexed Communication Time vs. Area

bft c=1 p=0
bft c=1 p=0.5

bft c=1 p=0.67
bft c=1 p=1
bft c=2 p=0

bft c=2 p=0.5
bft c=2 p=0.67

bft c=2 p=1

Fig. 10. Time-Multiplexed Communication Cycles vs. Area

may actually increase performance for a given area. Consider
the following example. Given a XC2V6000 with an area of
32K slices, we fit 32 packet-switched PEs in a BFTc = 1,
p = 0 configuration. The smaller number of switches atc = 1,
p = 0 allows us to pack more PEs into the chip area, providing
the optimal performance in that area (1800 cycles, as shown
in Figure 9). In a XC4VLX200 with 100K slices we can fit
64 PEs, but since the number of messages scales quickly as
we increase PEs (Figure1), a c = 1, p = 0 configuration does
not provide enough bandwidth to maintain high performance.
Although a c = 2, p = 0 network can fit only 32 PEs, the
extra bandwidth actually increases performance (1000 cycles
vs. 1500 cycles, as shown in Figure9).

Figures9–10 illustrate this tradeoff more generally, plotting
communication time at 100% activity as a function of area
over several BFT configurations for both networks. We see
characteristic network performance bounds (SectionIII) begin
to emerge for each topology. As network sizes increase for
both packet-switching and time-multiplexing, we see that
BFTs with low Rent parameters become bisection limited
(Eq.3), while BFTs with higher Rent parameters are preferred.
At low areas we are serialization bottlenecked, and therefore

7

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 10 100 1000 10000 100000

A
re

a/
P

E
 (

sl
ic

es
/P

E
)

Communication Time (cycles)

Area/PE vs. Communication Time

Packet-Switched
Time-Multiplexed

Fig. 11. Normalized Area vs. Communication Cycles

topologies with minimal switch area that allow us to pack the
most PEs require fewer cycles to route. At larger areas those
topologies become bandwidth bottlenecked, and topologies
with more bisection bandwidth and hence more switch area
are preferred.

One important performance characteristic to note is that
beyond 200K slices, time-multiplexed performance remains
constant at around 100 cycles. As ConceptNet nodes are
limited to 128 edges of fanout or fanin, at large areas and PE
counts total communication time is limited by PEs processing
the edges of high fanout or fanin nodes (Eq.1, 2). Communica-
tion time could be further reduced by fanout or fanin reduction
and node decomposition.

2) Area-Time Tradeoff:For equivalent topologies at the
same PE count, packet-switched and time-multiplexed net-
works may use significantly different amounts of area due to
differences in switch sizes and the amount time-multiplexed
context memory needed. Figure11 shows normalized area as
a function of communication cycles for a BFT withc = 1
p = 0.5. At low cycle counts time-multiplexing requires a
factor of 5 less area/PE than packet-switching due to smaller
switches and negligible context memory area. As cycle counts
increase, however, context memory area increases and time-
multiplexing becomes costly. Beyond 8K cycles the BFT time-
multiplexed implementation occupies more area/PE than its
packet-switched counterpart.

To fairly compare this area-time tradeoff between time-
multiplexing and packet-switching, we examine the best BFT
configurations from Figures9–10 over all area points in
our comparison. The composite area-time curves for packet-
switched and time-multiplexed are shown in Figure12. At
smaller areas (<12K slices) time-multiplexing requires more
cycles to route than packet-switching. Smaller areas fit fewer
PEs, resulting in higher cycle counts. As area increases,
however, time-multiplexing can fit more PEs, decreasing seri-
alization and reducing cycle counts.

To quantify this tradeoff, the ratio of packet-switched to
time-multiplexed communication time as a function of area
over these optimal topology points is shown in Figure13. We

 100

 1000

 10000

 100000

 1000 10000 100000 1e+06 1e+07 1e+08

C
om

m
un

ic
at

io
n

T
im

e
(c

yc
le

s)

Area (slices)

PS + TM Communication Time vs. Area (Best Topologies)

PS bft c=1 p=0
PS bft c=2 p=0

PS bft c=1 p=0.5
PS bft c=1 p=0.67
PS bft c=2 p=0.67

TM bft c=1 p=0
TM bft c=2 p=0

TM bft c=1 p=0.5
TM bft c=2 p=0.67

Fig. 12. Communication Cycles vs. Area for Best Topologies

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 10000 100000 1e+06 1e+07

P
S

/T
M

 C
om

m
un

ic
at

io
n

T
im

e
R

at
io

Area (slices)

Ratio of PS/TM Communication Time vs. Area (Best Topologies)

PS/TM

Fig. 13. Ratio of Time-Multiplexed/Packet-Switched Communication Time
for Identical Area

see that at smaller areas (1K–12K slices) time-multiplexing is
inefficient and requires around 2× as many cycles to route as
packet-switching. At larger areas (12K–200K slices) packet-
switching requires 1-5× as many cycles to route as time-
multiplexing. However, at the largest area values (200K–
600M slices), time-multiplexing’s 5× advantage begins to
shrink down to around 2×. This is due to time-multiplexed
performance being limited by ConceptNet’s 128 edge fanout
or fanin limit. During this interval the packet-switched network
is able to close the performance gap.

C. Activity Factors

Thus far we have compared packet-switching and time-
multiplexing assuming 100% communication loads. For activ-
ity factors less than 100% time-multiplexing must still route
all possible communication, but packet-switching only needs
to route those edges that are active. At some activity factor
less than 100% packet-switching should be able to outperform
time-multiplexing when both are given the same amount of
area. Figures14–15 plot communication time vs. activity for
the best time-multiplexed and packet-switched topologies at
areas corresponding to the capacities of a XC2V6000 and

8

 0

 500

 1000

 1500

 2000

 0 10 20 30 40 50 60 70 80 90 100

C
om

m
un

ic
at

io
n

T
im

e
(c

yc
le

s)

Communication Activity (%)

Communication Time vs. Activity (XC2V6000)

Packet-Switched (bft c=1 p=0)
Time-Multiplexed (bft c=1 p=0)

Lowerbound (bft c=1 p=0)

Fig. 14. Communication Cycles vs. Activity on XC2V6000 (32K slices)

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

C
om

m
un

ic
at

io
n

T
im

e
(c

yc
le

s)

Communication Activity (%)

Communication Time vs. Activity (XC4VLX400)

Packet-Switched (bft c=2 p=0)
Time-Multiplexed (bft c=1 p=0.5)

Lowerbound (bft c=1 p=0.5)

Fig. 15. Communication Cycles vs. Activity on XC4VLX200 (100K slices)

a XC4VLX200. At 32K slices packet-switching outperforms
time-multiplexing for activity factors under 40%. As area
increases and time-multiplexing becomes more area efficient;
at 100K slices packet-switching’s advantage is limited to under
5% activity.

IX. CONCLUSIONS

We demonstrate scalable, high performance implementa-
tions of packet-switched and time-multiplexed FPGA overlay
networks operating at 166MHz. To aid designers in choos-
ing the appropriate communication pattern between time-
multiplexing and packet-switching, we characterize the trade-
offs associated with these networks and quantify the appli-
cation conditions under which each is preferred. For our
set of applications, offline scheduling offers up to a 63%
performance increase over online scheduling for equivalent
topologies. When applying designs to equivalent area, packet-
switching is up to 2× faster for small areas while time-
multiplexing is up to 5× faster for larger areas. For activity
factors less than 40% or 5%, packet switching offers better
performance at 32K slices and 100K slices respectively.

X. FUTURE WORK

Communication patterns and densities can vary greatly be-
tween different applications. Exploration of more applications
would help us to better characterize the tradeoffs between
packet-switching and time-multiplexing for any given general
application. We are particularly interested in mapping larger
communication graphs with smaller fanout limitations in order
to increase network communication and test the capabilities of
our networks.

Time-multiplexing currently stores context memory as un-
encoded data, and significant area savings could be achieved
through compression. The efficiency of packet-switching could
also be increased through improved routing algorithms and
hardware designs. Finally, our network design space explo-
ration has thus far been limited to single chip networks. We
hope to extend this work to multiple-chip networks, examining
similar area-time tradeoffs.

ACKNOWLEDGMENTS

This work was supported in part by DARPA under grant
FA8750-05-C-0011, the NSF CAREER program under grant
CCR-0133102, and the Microelectronics Advanced Research
Consortium (MARCO) as part of the efforts of the Gigascale
Systems Research Center (GSRC).

REFERENCES

[1] E. Caspi, M. Chu, R. Huang, N. Weaver, J. Yeh, J. Wawrzynek, and
A. DeHon, “Stream computations organized for reconfigurable execu-
tion (SCORE): Extended abstract,” inProceedings of the International
Conference on Field-Programmable Logic and Applications, ser. LNCS.
Springer-Verlag, August 28–30 2000, pp. 605–614.

[2] M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin,
T. E. Uribe, T. F. Knight, Jr., and A. DeHon, “Graphstep: A sys-
tem architecture for sparse-graph algorithms,” inProceedings of the
IEEE Symposium on Field-Programmable Custom Computing Machines.
IEEE, 2006.

[3] A. DeHon, “Balancing Interconnect and Computation in a Reconfig-
urable Computing Array (or, why you don’t really want 100% LUT
utilization),” in Proceedings of the International Symposium on Field-
Programmable Gate Arrays, February 1999, pp. 69–78.

[4] H. Liu and P. Singh, “ConceptNet – A Practical Commonsense Rea-
soning Tool-Kit,” BT Technical Journal, vol. 22, no. 4, p. 211, October
2004.

[5] C. L. Seitz, “The cosmic cube,”Communications of the ACM, pp. 22–33,
January 1985.

[6] V. Beněs, Mathematical Theory of Connecting Networks and Telephone
Traffic. New York, NY: Academic Press, 1965.

[7] H. Siegel,Interconnection Networks for Large-Scale Parallel Process-
ing. Lexington, MA: Lexington Books, 1985.

[8] C. P. Kruskal and M. Snir, “The performance of multistage interconnec-
tion networks for multiprocessors,”IEEE Transactions on Computers,
vol. C-32, no. 12, pp. 1091–1098, Dec. 1983.

[9] C. E. Leiserson, “Fat-trees: Universal networks for hardware efficient
supercomputing,”IEEE Transactions on Computers, vol. C-34, no. 10,
pp. 892–901, Oct. 1985.

[10] J. Duato, S. Yalamanchili, and L. Ni,Interconnection Networks: An
Engineering Approach. San Francisco: Morgan Kaufmann Publishers,
2003.

[11] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” inDesign Automation Conference, 2001, pp. 684–
689.

[12] L. Benini and G. D. Micheli, “Networks on chips: A new soc paradigm,”
IEEE Computer, vol. 35, no. 1, pp. 70–78, 2002.

[13] R. J. Chapuis,100 Years of Telephone Switching: Electronics, Computers
and Telephone Switching, 1960-1985. IOS Press, 2003.

9

http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/fixedws_fpga99.html
http://web.media.mit.edu/~hugo/publications/papers/BTTJ-ConceptNet.pdf
http://web.media.mit.edu/~hugo/publications/papers/BTTJ-ConceptNet.pdf

[14] W. J. Dally and B. Towles,Principles and Practices of Interconnection
Networks. Morgan Kauffman, 2004.

[15] P. P. Pande, C. Grecu, A. Ivanov, R. Saleh, and G. D. Micheli, “Design,
synthesis and test of networks on chips,”IEEE Design and Test of
Computers, vol. 22, no. 5, pp. 404–413, 2005.

[16] F. Moraes, N. Calazans, A. Mello, L. M̈oller, and L. Ost, “Hermes: an
infrastructure for low area overhead packet-switching networks on chip,”
INTEGRATION, The VLSI Journal, vol. 38, no. 1, pp. 69–93, 2004.

[17] B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri, “Lipar:
A lightweight parallel router for fpga based networks on chip,” in
Proceedings of the Great Lakes Symposium on VLSI, 2005.

[18] T. Marescaux, V. Nollet, J.-Y. Mignolet, A. B. W. Moffat, P. Avasare,
P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins, “Run-time support
for heterogeneous multitasking on reconfigurable socs,”INTEGRATION,
The VLSI Journal, vol. 38, no. 1, pp. 107–130, 2004.

[19] S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. Kung, M. Lam,
B. Moore, C. Peterson, J. Pieper, L. Rankin, P. Tseng, J. Sutton, J. Urban-
ski, and J. Webb, “iwarp: an integrated solution to high-speed parallel
computing,” in Proceedings of Supercomputing, November 1988, pp.
330–339.

[20] D. Shoemaker, F. Honore, C. Metcalf, and S. Ward, “Numesh: An
architecture optimized for scheduled communication,”Journal of Su-
percomputing, vol. 10, no. 3, pp. 285–302, 1996.

[21] J. Oliver, R. Rao, P. Sultana, J. Crandall, E. Czernikowski, L. W. J. IV,
V. Akella, and F. T. Chong, “Synchroscalar: A multiple clock domain,
power-aware, tile-based embedded processor,” inProceedings of the
International Symposium on Computer Architecture, 2004.

[22] M. Denneau, “The yorktown simulation engine,” in19th Design Au-
tomation Conference. IEEE, 1982, pp. 55–59.

[23] N. B. Bhat, K. Chaudhary, and E. S. Kuh, “Performance-oriented fully
routable dynamic architecture for a field programmable logic device,”
University of California, Berkeley, UCB/ERL M93/42, June 1993.

[24] D. Jones and D. Lewis, “A time-multiplexed fpga architecture for logic
emulation,” in Proceedings of the IEEE Custom Integrated Circuits
Conference. IEEE, May 1995, pp. 495–498.

[25] A. DeHon, “Reconfigurable Architectures for General-Purpose
Computing,” MIT Artificial Intelligence Laboratory, 545 Technology
Sq., Cambridge, MA 02139, AI Technical Report 1586, October
1996. [Online]. Available:http://www.cs.caltech.edu/∼andre/abstracts/
dehonphd.html

[26] J. Babb, R. Tessier, and A. Agarwal, “Virtual wires: Overcoming pin

limitations in fpga-based logic emulators,” inProceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines, April 1993, pp.
142–151.

[27] C. Selvidge, A. Agarwal, M. Dahl, and J. Babb, “Tiers: Topology
independent pipelined routing and scheduling for virtualwiretm com-
pilation,” in Proceedings of the International Symposium on Field-
Programmable Gate Arrays, 1995, pp. 25–31.

[28] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal,
“Baring it all to software: Raw machines,”IEEE Micro, vol. 30, no. 9,
pp. 86–93, September 1997.

[29] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, “An Architecture and
Compiler for Scalable On-Chip Communication,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 12, no. 7, p. 711, 726
2004.

[30] “Simplifying communication across dsp networks,” Programmable
World, 2003, <http://www.mactivity.com/xilinx/pw2003/workshops/
presos/wsa3nallatech.pdf> .

[31] R. I. Greenberg and C. E. Leiserson,Randomness in Computation,
ser. Advances in Computing Research. JAI Press, 1988, vol. 5, ch.
Randomized Routing on Fat-Trees, earlier version MIT/LCS/TM-307.

[32] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O. Rowhani,
V. George, J. Wawrzynek, and A. DeHon, “HSRA: High-Speed, Hi-
erarchical Synchronous Reconfigurable Array,” in Proceedings of the
International Symposium on Field-Programmable Gate Arrays, February
1999, pp. 125–134.

[33] A. DeHon, R. Huang, and J. Wawrzynek, “Hardware-Assisted Fast Rout-
ing,” in Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines, April 2002, pp. 205–215.

[34] The Programmable Logic Data Book-CD, Xilinx, Inc., 2100 Logic
Drive, San Jose, CA 95124, 2005.

[35] L. McMurchie and C. Ebling, “PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs,” in Proceedings of the Inter-
national Symposium on Field-Programmable Gate Arrays. ACM,
February 1995, pp. 111–117.

[36] R. Tessier, “Negotiated A* Routing for FPGAs,” in Proceedings of the
5th Canadian Workshop on Field Programmable Devices, June 1998.

[37] A. Caldwell, A. Kahng, and I. Markov, “Improved Algorithms for
Hypergraph Bipartitioning,” in Proceedings of the Asia and South Pacific
Design Automation Conference, January 2000, pp. 661–666.

Web links for this document:<http://www.cs.caltech.edu/research/ic/abstracts/ps tm networks fccm2006.html >

http://www.cs.caltech.edu/~andre/abstracts/dehon_phd.html
http://www.cs.caltech.edu/~andre/abstracts/dehon_phd.html
http://www.cs.caltech.edu/~andre/abstracts/dehon_phd.html
http://www.cs.caltech.edu/~andre/abstracts/dehon_phd.html
http://www.ecs.umass.edu/ece/tessier/tvlsi-asoc.pdf
http://www.ecs.umass.edu/ece/tessier/tvlsi-asoc.pdf
http://www.mactivity.com/xilinx/pw2003/workshops/presos/wsa3_nallatech.pdf
http://www.mactivity.com/xilinx/pw2003/workshops/presos/wsa3_nallatech.pdf
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.cs.berkeley.edu/projects/brass/documents/hsra_fpga99.html
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fccm2002.html
http://www.cs.caltech.edu/research/ic/abstracts/fastroute_fccm2002.html
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.cs.washington.edu/research/projects/lis/www/papers/postscript/mcmurchie-FPGA95.ps
http://www.ecs.umass.edu/ece/tessier/fpd98.pdf
http://doi.acm.org/10.1145/368434.368864
http://doi.acm.org/10.1145/368434.368864
http://www.cs.caltech.edu/research/ic/abstracts/ps_tm_networks_fccm2006.html

