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over Bit-Rate Limited Channels with Packet Loss

Daniel E. Quevedo, Member, IEEE, Jan Østergaard, Member, IEEE,
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Abstract— We study a control architecture for linear time-
invariant plants with random disturbances and where a network
is placed between the controller output and the plant input.
The network imposes a constraint on the expected bit-rate
and is affected by random i.i.d. dropouts. Dropout-rates and
acknowledgments of receipt are not available at the controller
side. To achieve robustness with respect to i.i.d. dropouts, the
controller transmits data packets containing quantized plant
input predictions. These are provided by an appropriate optimal
entropy coded dithered lattice vector quantizer. Within this
context, we derive stochastic stability results and provide a noise-
shaping model of the closed loop system. This model is employed
for performance analysis by using rate-distortion theory.

I. INTRODUCTION

The interest in closed loop control over communication

networks has increased tremendously in recent years; see, e.g.,

[1]–[4] and the many references therein. In particular, Ethernet

in its wired (hub-based and switched) and wireless forms

(IEEE 802.11) is increasingly being adopted as a low level

control network technology, see [5], [6]. The reasons for this

move towards Networked Control Systems (NCS’s) are man-

ifold, including lower cost, higher reliability, interoperability

of devices, and easier installation and maintenance.

From a control design perspective, many interesting chal-

lenges are associated with NCS’s. For example, due to the

inherent bit-rate limitations associated with digital networks,

signals need to be quantized and coded prior to transmission;

see, e.g., [2], [7], [8]. Furthermore, the network may induce

random delays and data-dropouts; see, e.g., [1], [9], [10]. It

turns out that, in a NCS, links are not transparent, often consti-

tuting a significant bottleneck in the achievable performance.

Thus, successful NCS design methods need to consider both

control and communication aspects.

For the design of NCS’s one can often take advantage of

the fact that in contemporary communication networks, data
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is sent in large time-stamped packets.1 This motivates the

development of control methods in which packets of signal

predictions are sent. These are calculated at the transmission

side to compensate for random time delays and packet-

dropouts. At the receiver node, packets are buffered and only

the latest relevant value is used. In particular, the idea of

sending packets with plant input predictions obtained via a

predictive controller (hereafter termed packetized predictive

controller (PPC)) was proposed in [11] for the teleoperation

of prestabilized constrained nonlinear plants. The concept also

underlies more recent NCS configurations described, e.g., in

[12]–[19]. Experimental results of NCS’s which use PPCs are

promising. However, only limited results on theoretic aspects

exist, specially for the case of NCS’s with disturbances, see

[12], [16], [20], [21]. In particular, in [20] we have shown that,

under suitable assumptions, the optimal cost provided by the

PPC optimizations at successful transmission instants can be

designed to constitute an ISS-Lyapunov function for the NCS.

Since with PPCs each data-packet contains a possibly large

number of plant input predictions, even if high packet bit-rates

are allowed, quantization effects may become important. Nev-

ertheless, no works on PPCs have treated bit-rate limitations or

quantization issues. One of the purposes of the present work

is to elucidate the trade-off between bit-rates and number of

predictions in each packet.

The present paper examines a NCS for discrete-time linear

time invariant plants with random disturbances. Signal trans-

mission is over a bit-rate limited network, which is affected

by random packet-dropouts and does not provide acknowledg-

ments of successful transmission, see Fig. 1. To be amenable

to practical situations where dropout-rates are unknown, the

PPC studied in the present work is designed without requiring

knowledge of the packet dropout distribution.2 The controller

explicitly incorporates bit-rate constraints of the network by

sending quantized finite-horizon plant input sequences. These

are provided by an appropriate entropy constrained lattice

vector quantizer. For Bernoulli dropouts, we combine results

from Markov Jump-Linear Systems, see, e.g., [25], [26] and

stability results for PPC presented in our recent work [20], to

develop sufficient conditions for stationarity and mean-square

stability of the NCS. We also provide analytical expressions

for the spectral densities of the signals of interest. This spectral

1For example, the frame format in IP based Ethernet allows for a data-
packet of 46-1500 bytes, the overhead being 26 bytes. Time-stamping can be
easily carried out, e.g., by invoking the Real Time Transport Protocol.

2This stands in contrast to other works, e.g., [22]–[24], where controller
design explicitly uses dropout probabilities.
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domain representation motivates the formulation of a noise-

shaping model of the NCS, which we use for rate-distortion

analysis.

The key novelty of the present work (when compared, e.g.,

with [20]) is that it examines a NCS with a communication

channel which is both bit-rate limited and unreliable, and

where the plant is affected by random disturbances with

possibly unbounded support. Furthermore, our approach goes

beyond studying stability, and gives insight into closed loop

performance in the presence of random packet dropouts and

disturbances for a given expected bit-rate. Our results show

that the use of larger prediction horizons will, in general, lead

to enhanced stability and performance properties.

The remainder of this paper is organized as follows: In

Sections II and III, we present the NCS of interest. Section IV

then establishes results on stochastic stability. In Section V,

we study closed loop performance of the NCS. Here, we

characterize spectral densities and also assess the bit-rate

required to guarantee a desired performance level. Section VI

draws conclusions. Proofs of the main technical results are

included in appendices.

Notation

I denotes the identity matrix of appropriate dimension;

the superscripts T and H refer to transpose and Hermitian

transposition, respectively. For any square matrix K, det K
denotes its determinant, trK its trace, eigs K its eigenvalues;

its spectral norm ‖K‖ is given by ‖K‖2 = max eigs (KHK);
ρ(K) = max |eigs K| denotes its spectral radius, µ(K) its

largest positive eigenvalue. We say that K is (Schur-) stable,

if and only if ρ(K) < 1. K � 0 means that K is positive

semi-definite, ≻ refers to positive-definiteness. For any vector

x and any square matrix K, we define ‖x‖2
K = xT Kx

and ‖x‖2 = xT x. The symbol ⊗ denotes the Kronecker

product. The natural numbers are denoted via N, whereas

N0 , {0, 1, 2, . . . }. We adopt the conventions 00 = 1 and∑−1
ℓ=0 aℓ = 0, for all aℓ.

For any asymptotically stationary real stochastic processes

ζ = {ζk} and η = {ηk}, we define the cross-covariance

function Rζη(ℓ) , limk→∞ E{ζk+ℓη
T
k } and the covariance

function Rζ(ℓ) , limk→∞ E{ζk+ℓζ
T
k }, where E(·) is the

expectation operator. We furthermore let Ex(·) denote con-

ditional expectation given x. Differential entropy is denoted

by h(·), conditional discrete entropy by H(·|·), mutual infor-

mation by I(·, ·) and Divergence by D(·‖·); see, e.g., [27].

(Cross-) spectra are defined as the two-sided z-Transform of

the (cross-) covariance functions. When evaluating spectra on

the unit circle, we will use the term spectral densities, see,

e.g., [28]. Finally, if ζ is zero-mean Gaussian distributed with

covariance matrix Rζ(0), then we write ζ ∼ N (0, Rζ(0)).

II. PACKETIZED CONTROL OVER ERASURE CHANNELS

We consider the following discrete-time stochastic linear

time invariant (LTI) possibly unstable dynamical plant model

with state xk ∈ R
n, n ≥ 1 and scalar input uk ∈ R:

xk+1 = Axk + B1uk + B2wk. (1)

limited Buffer PlantPPC

wk

xkuk~uk

dk

Network

Bit-rate

Fig. 1. NCS architecture with buffer at the actuator node

In (1), wk ∈ R
m, m ≥ 1, is an unmeasured disturbance,

modelled as an arbitrarily distributed (and with possibly un-

bounded support) zero-mean stochastic process with spectral

density Sw(ejω) and covariance matrix Rw(0). The initial state

x0 is arbitrarily distributed, having covariance matrix Rx(0).
We assume that the pair (A,B1) is stabilizable.

A. Network Effects

Our interest lies in clock-driven Ethernet-like networks

situated between controller output and plant input. Thus, all

data to be transmitted needs to be quantized and is sent in

large time-stamped packets. Due to transmission errors and

congestion, the network introduces packet dropouts and time-

delays. We model the network as an erasure channel, which

operates at the same sampling-rate as the plant model3. In

the sequel, we describe transmission effects via the discrete

Bernoulli process {dk} defined via:

dk ,

{
1, if packet dropout occurs at instant k,

0, if packet dropout does not occur at instant k.

We will assume that each variable dk is i.i.d. with distribution

Prob(dk = 1) = p, Prob(dk = 0) = 1 − p, (2)

where p ∈ (0, 1) is the dropout-rate. In practical situations,

p is not known exactly. Accordingly, we will study a design

problem, where the controller does not have knowledge about

p. (Of course, closed loop stability and performance will

depend upon p, see Sections IV and V.)

As foreshadowed in the introduction, at each time instant

k, the PPC sends a control packet, say ~uk, to the plant

input node. To achieve good performance, despite unreliable

communication, ~uk contains possible control inputs for a finite

number of N future time instants. At the plant input side,

the received packets are buffered, providing the plant inputs,

see Fig. 1. We will next describe the buffering procedure. In

Section III we will then show how to design ~uk.

B. Buffering

The buffering mechanism amounts to a parallel-in serial-

out shift register, which acts as a safeguard against packet

dropouts. For that purpose, the buffer state, say bk ∈ R
N , is

overwritten whenever a valid (i.e., uncorrupted and undelayed)

control packet arrives. Actuator values are passed on to the

3 Small fixed time-delays can be included in (1). Signals, which are delayed
more, are then considered as “lost.”
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plant sequentially until the next valid control packet ~uk is

received, see Fig. 1. More formally, we have:

bk = dkMbk−1 + (1 − dk)~uk,

uk = eT
1 bk,

(3)

where

M ,




0 1 0 . . 0
...

. . .
. . .

. . .
...

0 . . . 0 1 0
0 . . . . . . . 0 1
0 . . . . . . . . . . . . 0



∈ R

N×N , e1 =




1
0
...
...

0



∈ R

N×1,

(4)

see, e.g., [20].

Remark 1: The choice of M in (4) corresponds to setting

the buffer state to zero if no data is received over N consec-

utive instants. Alternatively, if one wished to hold the latest

value, one could set the “last” element of M equal to 1. In

[22] these choices are compared for buffers with N = 1. �

For further reference, we define the augmented state θk via:

θk ,

[
xk

bk−1

]
∈ R

n+N . (5)

Equations (1) and (3) then allow us to describe the NCS via:

θk+1 =

[
A dkB1e

T
1 M

0 dkM

]
θk+

[
B1e

T
1

I

]
(1−dk)~uk+

[
B2

0

]
wk.

(6)

Thus, if ~uk depends linearly upon the state vector θk,

then the NCS architecture studied here fits into the class of

Markov jump-linear systems (MJLS’s); see, e.g., [25], [26],

[29], and also [30]–[33] for other NCS architectures which

can be characterized as MJLS’s.

A key difficulty of the situation at hand is that, since there

are no acknowledgments of receipt, the controller does not

have certainty about whether previous packets have arrived at

the plant side. Therefore, the jump variable dk and the buffer

contents bk−1 are unavailable for the calculation of ~uk.

In the following section, we will present a control packet

design method, which uses elements of quantized predictive

control and is suitable for bit-rate limited networks without

acknowledgments and where packet dropout probabilities are

unknown.

Remark 2: Whilst the absence of acknowledgments implies

that controllers studied, e.g., in [16], [19], [25], [30], [34]–

[37], cannot be employed directly, some progress on predictive

control of MJLS’s without observation of the jump variable

has been reported, e.g., in [38]–[40]. How to adapt these meth-

ods to the present situation of quantized packetized predictive

control remains the subject of further study. �

III. QUANTIZED PPC

We now turn our attention to controller design. Here, we will

assume that the controller has access to the plant state (but not

to the buffer state). Furthermore, the controller does not know

the dropout-rate p. Within this challenging scenario, control

packets ~uk are formed by adapting a quantized predictive

control approach as studied in [41] and described next.

A. Quantized Predictive Control

In the quantized predictive control formulation of [41], at

each time instant k and for a given plant state xk, the following

cost function is minimized:

J(~u ′, xk) , ‖x′
N‖2

P +

N−1∑

ℓ=0

(
‖x′

ℓ‖2
Q + λ(u′

ℓ)
2
)
. (7)

In (7), x′
ℓ are predicted plant states for inputs u′

ℓ. The horizon

length N ≥ 1 is taken equal to the buffer size, whereas the

design variables P � 0, Q � 0 and λ > 0 allow one to trade-

off control performance versus control effort. These design

parameters influence closed loop stability and performance,

see also [42]. In Section IV we will investigate how to design

these variables for the networked situation of interest.

The cost function in (7) examines a prediction of the plant

model over a finite horizon of length N . The predicted state

trajectories at time k are generated by

x′
ℓ+1 = Ax′

ℓ + B1u
′
ℓ, ℓ ∈ {0, 1, . . . , N − 1}

with x′
0 = xk, the current plant state. The entries in

~u ′ =
[
u′

0 . . . u′
N−1

]T

represent the associated predicted plant inputs.

An important aspect of the NCS studied is that the network

is bit-rate limited. This introduces a quantization constraint

into the problem of minimizing J(~u ′, xk). A closed form

solution to this problem was derived in [41]. To state the result,

we introduce Q , diag(Q, . . . , Q, P ) and:

Φ ,




B1 0 . . . 0
AB1 B1 . . . 0

...
...

. . .
...

AN−1B1 AN−2B1 . . . B1


, Υ ,




A
A2

...

AN


. (8)

Theorem 1 ([41]): Consider any finite or countably infinite

quantized set U ⊂ R
N , and define:

ξk , Γxk, Γ , −Ψ−T ΦT QΥ, (9)

where Ψ ∈ R
N×N is obtained from the factorization

ΨT Ψ = ΦT QΦ + λI.

Then the constrained optimizer ~uk = arg min
~u′∈U

J(~u ′, xk),

see (7), satisfies:

~uk = Ψ−1q(ξk), (10)

where q(·) is the nearest neighbour (Euclidean) vector quan-

tizer with alphabet ΨU.

Proof: The proof mirrors that of Theorem 1 in [41].

In [41] the quantizer alphabet was assumed given, whereas

in the present work it can be designed. In fact, in NCS’s quan-

tization constraints arise due to the need to accommodate bit-

rate limitations of the network. Thus, quantization alphabets

constitute an important design parameter.
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B. Control Packet Design

Theorem 1 shows that one can work in a domain where

nearest neighbour vector quantization of ξk is optimal. There-

fore, in addition to choosing the parameters of the cost

function in (7), designing a quantized PPC for the system (1)

encompasses choosing a vector quantizer (VQ) for ξk, i.e.,

designing the alphabet ΨU; see, e.g., [43].

Deterministic VQs, as given in (10), are generally not

amenable for analysis of the trade-off between expected bit-

rates and distortions. On the other hand, some stochastic

quantization strategies allow for analysis and design which

takes into account rate-distortion issues. In particular, in the

sequel we will focus our attention on (entropy-coded) dithered

lattice VQs, hereafter abbreviated ECDQs. This amounts to

replacing the solution in (10) by:

~uk = Ψ−1
(
qL(ξk + ηk) − ηk

)
, (11)

where qL is a nearest neighbour lattice VQ with lattice L.4

The dither ηk in (11) is taken as a (pseudo-) random zero-

mean i.i.d. vector process. The current dither vector is chosen

independent of current and past values of the input signal and

is uniformly distributed over the basic Voronoi cell of the

lattice VQ. The dither process is known to the encoder as

well as the decoder; see, e.g., [47], [48]. Hence, transmitting

~uk is equivalent to transmitting qL(ξk + ηk), which, in effect,

amounts to sending a codeword-index associated to an element

of ΨU. Since the ECDQ alphabet is given by the points of the

lattice L, the resulting alphabet (in the ~u-domain) is given by

the shaped lattice U = Ψ−1L.

A key property is that ECDQs satisfy:

Assumption 1: The following linear additive noise model

holds:

qL(ξk + ηk) − ηk = ξk + nk, (12)

where nk is distributed as −ηk, which gives that E{‖nk‖2} =
E{‖ηk‖2}. In addition, each nk is a zero-mean white vector

with variance

σ2
n = trRn(0) (13)

and is independent of ξk−ℓ, ∀ℓ ≥ 0. �

Given Assumption 1, for a given dimension N and lattice

L, designing an ECDQ reduces to finding an appropriate value

of the quantization noise variance σ2
n. In fact, we have:

σ2
n = N GV2/N , (14)

where V is the volume of the Voronoi cell and G is its dimen-

sionless normalized second moment of inertia. Thus, the noise

variance σ2
n determines V and thereby completely specifies

the VQ. In general, to achieve lower values of σ2
n, larger bit-

rates are required. In Section V-B we will further elucidate

4For any finite dimension N and (expected) bit-rate, it is known that,
optimal entropy-constrained VQs minimize the expected distortion. These
VQs can be designed, e.g., via the LBG algorithm [43]. Unfortunately, the
resultant quantizers usually lack structure and, thus, search complexity is
substantial. Furthermore, redesign is required for different bit-rates. On the
contrary, lattice VQs have fast implementations and often give near optimal
performance; see, e.g., [44]. This makes ECDQs a practical alternative for
closed loop control, where computations should be kept bounded, see also
discussions in [45]. Rate-distortion optimal lattice VQs in various dimensions
(including fast encoding strategies) are specified in [46].

the tradeoff between average bit-rates of the quantized signal

transmitted and the achieved closed loop performance.

Following the ideas underlying PPCs, see, e.g., [17], at each

time instant k, and for current state xk, the controller sends

the entire sequence ~uk to the actuator node. As explained in

Section II-B, depending upon future packet dropout scenarios,

a subsequence of ~uk will be applied at the plant input, or not.

As in the receding horizon paradigm, at the next time instant,

xk+1 is used to calculate ~uk+1, etc.

Remark 3: It is well-known that it is often useful to include

pre- and post-filtering around the quantizer. How to design

optimal pre- and post-filters for closed loop applications has

been treated partially in [49]–[51]. We note that any causal

LTI filtering can be easily incorporated into our framework

by augmenting the plant model (1) with the post-filter. The

pre-filter is implicit in the controller. �

IV. STOCHASTIC STABILITY OF QUANTIZED PACKETIZED

PREDICTIVE CONTROL

To investigate closed loop stability of the NCS, we will

exploit the fact that the system under study constitutes a

MJLS. In fact, given (5), (6), (11) and (12), the NCS with

quantization, dropouts and disturbances can be described via:

θk+1 = Ā(dk)θk + B̄(dk)νk, (15)

where νT
k =

[
wT

k nT
k

]
and where

Ā(0) =

[
A + B1e

T
1 Ψ−1Γ 0

Ψ−1Γ 0

]
, Ā(1) =

[
A B1e

T
1 M

0 M

]
,

B̄(0) =

[
B2 B1e

T
1 Ψ−1

0 Ψ−1

]
, B̄(1) =

[
B2 0
0 0

]
. (16)

A. Basic Definitions and Results

Several works have studied stability of MJLS’s; see, e.g.,

[25], [26], [29], [52]. In particular, from [25], [52], we will

adopt the following notions of stationarity and stability:5

Definition 1 (AWSS): System (15) is asymptotically wide-

sense stationary (AWSS), if for all initial conditions d0 ∈
{0, 1} and θ0 with bounded variance, there exist bounded µ
and Rθ(ℓ) independent of (θ0, d0) such that

lim
k→∞

E{θk} = µ

lim
k→∞

E{θk+ℓθ
T
k } = Rθ(ℓ), ∀ℓ ≥ 0.

Definition 2 (MSS): System (15) is mean-square stable, if

for all d0 ∈ {0, 1} and θ0 with bounded variance, there exist

bounded µ and Rθ(0) independent of (θ0, d0) such that

lim
k→∞

E{θk} = µ

lim
k→∞

E{θkθT
k } = Rθ(0).

Theorem 2 included below gives necessary and sufficient

conditions for AWSS and MSS of MJLS’s. It encompasses

various results documented in the literature.

5It was shown in [26] that for the homogeneous MJLS (17), MSS is
equivalent to stochastic stability and exponential MSS, and that MSS is also
sufficient for almost sure stability. Clearly, AWSS implies MSS.
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Theorem 2 (Adapted from [25]): Consider (15) and its ho-

mogeneous counterpart:

θ̃k+1 = Ā(dk)θ̃k, θ̃k ,

[
x̃k

b̃k−1

]
, (17)

see (5). Then the following assertions are equivalent:

1) System (15) is MSS.

2) System (15) is AWSS.

3) System (17) is MSS.

4) For all initial conditions d0 ∈ {0, 1} and θ̃0 with

bounded variance, it holds that

∞∑

k=0

E
{
‖θ̃k‖2

}
< ∞. (18)

5) There exists Λ(p) ≻ 0 which satisfies the Linear Matrix

Inequality:

Λ(p)−(1−p) Ā(0)Λ(p)ĀT (0)−p Ā(1)Λ(p)ĀT (1) ≻ 0.
(19)

6) The following matrix is Schur:

(1 − p) Ā(0) ⊗ Ā(0) + p Ā(1) ⊗ Ā(1). (20)

Proof: In the i.i.d. dropout case (2), (15) constitutes an

MJLS with transition probability matrix
[ 1−p p

1−p p

]
. The result

now follows from Theorems 3.9, 3.26 and 3.33 in [25].

It is worth noting that, provided Assumption 1 holds,

stationarity and stability of the NCS is independent of external

disturbances and quantization noise with bounded variance.

Whilst the latter is linked to the bit-rate of the quantizer, MSS

and AWSS cannot be guaranteed for arbitrary bit-rates, see

also [2]. This issue will be further discussed in Section V-B.

Lemma 1 stated below gives a necessary condition for MSS

(see Definition 2) of MJLS’s of the form (15). It gives a bound

on the packet dropout-rate which only depends on the plant

model (1) and not on how the control packet ~uk is designed.6

Lemma 1: If the system (15) is MSS, then the dropout-rate

is bounded by the spectral radius of the plant model A via:

p <
1

ρ(A)2
. (21)

Proof: By [54, Theorem 2.1] (see also [29, Remark 2]), a

necessary condition for MSS of (17) is that
√

pĀ(1) be stable.

Equation (16) gives that det
(
zI − √

pA(1)
)

= det
(
zI −√

pM
)
det
(
zI − √

pA
)

= zN det
(
zI − √

pA
)
. The result

now follows from using Theorem 2.

In the sequel we will build upon the above results to

study MSS and AWSS of the packetized predictive NCS with

dropouts, disturbances and quantization. For that purpose, we

will first investigate expressions (19) and (20). Then, in Sec-

tion IV-C, we will present an analysis method which exploits

the fact that the controller minimizes the cost function (7).

6As shown in [22] (and compare to [23], [53]), in some situations, the
bound in (21) can be achieved by a stochastic control formulation, which
uses knowledge of the dropout-rate p. In contrast, in the present work we are
interested in situations where the controller does not have knowledge of p.

B. Stability Analysis via Expressions (19) and (20)

If we assume that the cost function (7) is chosen such

that the closed loop system without dropouts is MSS, then

stability analysis can be cast as identifying dropout-rates which

preserve stability. In terms of the model (16) and in view

of Theorem 2, requiring MSS when there are no dropouts

amounts to making the following assumption:

Assumption 2: The controller is such that Ā(0) is Schur. �

Remark 4: It is worth noting that Assumption 2 will hold,

for example, if P in (7) is chosen as the positive definite

solution to the algebraic Riccati equation

P = AT PA + Q − KT (λI + BT
1 PB1)K, (22)

where K = −(λI + BT
1 PB1)

−1BT
1 PA; see, e.g., [42]. �

Perhaps not surprisingly, the buffered NCS architecture

under study preserves stability if dropout-rates are small, as

stated in the following lemma:

Lemma 2: Suppose that Assumptions 1 and 2 hold. Then

there exists a dropout-rate p⋆ > 0 such that the NCS (15) is

MSS and AWSS for all dropout-rates p ∈ (0, p⋆).
Proof: By Assumption 2, for any S ≻ 0 there exists

Ω ≻ 0, such that Ω − Ā(0)ΩĀT (0) = S. In particular, we

can set S = I and replace the associated solution Ω in (19) to

obtain the following sufficient condition for MSS and AWSS:

Ω − (1 − p)Ā(0)ΩĀT (0) − p Ā(1)ΩĀT (1)

= I − p
(
Ā(1)ΩĀT (1) − Ā(0)ΩĀT (0)

)
≻ 0.

(23)

By [55, Lemma 8.4.1], the condition (23) is satisfied if and

only if 0 < p ≤ p⋆, where 1/p⋆ > max eigs
(
Ā(1)ΩĀT (1) −

Ā(0)ΩĀT (0)
)
. With this choice, ∀p ∈ (0, p⋆) there exists a

solution to (19). The result now follows from Theorem 2.

Given Lemma 2, the question arises of finding the largest

dropout-rate such that the NCS is MSS and AWSS. The MJLS

description (17) allows us to use results in [32] to obtain the

following characterization of the maximum dropout-rate which

preserves MSS and AWSS:

Lemma 3: Suppose that Assumption 2 holds and define

W ,

[(
U ⊗ Ũ + Ũ ⊗ U

)(
I − U ⊗ U

)−1 Ũ ⊗ Ũ(
I − U ⊗ U

)−1
0

]
,

where

U , Ā(0) ⊗ Ā(0), Ũ , Ā(1) ⊗ Ā(1) − Ā(0) ⊗ Ā(0).

Then the NCS (15) is MSS and AWSS ∀p ∈ [0, p⋆), iff

p⋆ ≤ 1/µ(W). (24)

Proof: Follows from [32, Lemma 2 and Theorem 6].

The above lemma gives maximum dropout-rates which pre-

serve stability in terms of Kronecker products. Unfortunately,

for large horizon lengths N or plant orders n, evaluating (24)

becomes computationally infeasible, due to the need to invert

and find eigenvalues of matrices of large dimensions, which

often are ill-conditioned. (The matrix U ⊗ U has (N + n)4

rows and columns.) The analysis included in the sequel gives

stability characterizations, which involve only matrices of

moderate dimensions.
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We begin by introducing the expected system matrices:

A(p) , E{Ā(dk)} = (1 − p)Ā(0) + pĀ(1)

B(p) , E{B̄(dk)} = (1 − p)B̄(0) + pB̄(1),
(25)

where we have used (15) and conditioning on dk. Equa-

tion (16) gives that

A(p) =

[
A + (1 − p)B1e

T
1 Ψ−1Γ pB1e

T
1 M

(1 − p)Ψ−1Γ pM

]
, (26)

whereas B(p) =
[
Bw Bn(p)

]
with

Bw ,

[
B2

0

]
, Bn(p) ,

[
(1 − p)B1e

T
1 Ψ−1

(1 − p)Ψ−1

]
. (27)

The following properties of A(p) are easy to prove:

Lemma 4: If (15) is MSS, then p is such that A(p) is Schur.

Proof: By conditioning on dk, we can use (15) to form

the recursion

E{θk+1} = (1− p)Ā(0)E{θk}+ pĀ(1)E{θk} = A(p)E{θk},
which converges, if and only if ρ(A(p)) < 1.

Lemma 5: Suppose that Assumption 2 holds. Then there

exists a dropout-rate p♯ > 0 such that A(p) is Schur for all

p ∈ (0, p♯).
Proof: Uses a similar perturbation argument to that used

in the proof of Lemma 1.
Motivated by Statement 5) of Theorem 2 and the approach

used in [24] and [56] for NCS’s with scalar transmission, we

can derive sufficient conditions for stability of the NCS as

stated in Lemma 7. To state this result, we first require a

more general characterization which gives sufficient (but not

necessary) conditions of MSS and AWSS of the NCS.

Lemma 6: Suppose that the dropout-rate p is such that A(p)
is Schur and define:

Ã , Ā(1) − Ā(0) =

[
−B1e

T
1 Ψ−1Γ B1e

T
1 M

−Ψ−1Γ M

]
. (28)

If there exist Θ � 0 and Ξ(p) � 0 which satisfy:7

p(1 − p)ÃΞ(p)ÃT ≺ Θ, (29)

A(p)Ξ(p)A(p)T − Ξ(p) + Θ = 0, (30)

then the MJLS (15) is MSS and AWSS.

Proof: See Appendix A.
Lemma 7: If p is such that A(p) is Schur-stable and

p−1 > 1 +
∥∥∥
[
Γ −ΨM

]
Ξn(p)

[
Γ −ΨM

]T∥∥∥ , (31)

where Ξn(p) solves the Lyapunov equation

A(p)Ξn(p)A(p)T − Ξn(p) + Bn(p)Bn(p)T = 0, (32)

then the MJLS (15) is MSS and AWSS.

Proof: By (26)–(28), we can write Ã = Ã1Ã2 with

Ã1 = Bn(p) whereas Ã2 = (1 − p)−1
[
−Γ ΨM

]
. We next

use Lemma 6 and set Θ = Ã1ÃT
1 � 0. If we now write

Ξ(p) = Ξn(p), then (30) becomes (32) and (29) amounts to

0 ≺ Ã1

(
I − p(1 − p)Ã2Ξn(p)ÃT

2

)
ÃT

1 ,

7Since A(p) is assumed Schur-stable, (30) has a unique positive definite
solution, namely Ξ(p) =

P

∞

i=0
A(p)iΘ(A(p)T )i.

which holds if I − p(1− p)Ã2Ξn(p)ÃT
2 ≻ 0. By [55, Lemma

8.4.1], the latter condition holds if and only if

p(1 − p) max eigs
(
Ã2Ξn(p)ÃT

2

)
< 1,

which is equivalent to (31).

Lemma 7 gives insight into the stability issue of packetized

NCS with quantization, disturbances and Bernoulli dropouts.

Interestingly, as we will see in Section V-A, the matrix Ξn(p)
introduced in (32) also plays a role in quantifying the impact

of the quantization noise {nk} on NCS performance.

C. Stochastic Stability via the Optimal Value Function

The stability characterizations of Section IV-B are applica-

ble to any packetized NCS which can be described by (15)

and (16), where Γ, Ψ and M are arbitrary matrices of

appropriate dimensions. We will next derive more specific

results. These exploit the fact that the packetized predictive

control algorithm minimizes the cost function (7).

By Theorem 2, we only need to examine the NCS without

quantization effects and disturbances. Motivated by our anal-

ysis in [20], we will denote the time instants where there are

no packet dropouts, i.e., where dk = 0, as

T = {ki}i∈N0
⊆ N0, ki+1 > ki, ∀i ∈ N0 (33)

and examine the sequence of optimal costs of the uncon-

strained optimization problem at the instants of successful

transmission, namely

V (x̃ki
) , min

~u′∈RN

J(~u ′, x̃ki
), ki ∈ T , (34)

see (7) and (17). The quadratic program (34) has been exten-

sively studied; see, e.g., [57]. In particular, it holds that:

V (x̃ki
) = ‖x̃ki

‖2
P0

, (35)

where P0 is obtained by iterating the discrete-time Riccati

Equation:

Pℓ = A
(
Pℓ+1−Pℓ+1B1(B

T
1 Pℓ+1B1 +λI)−1BT

1 Pℓ+1

)
A+Q,

(36)

where ℓ ∈ {0, 1, . . . , N − 1} and starting from PN = P .

Lemma 8 stated below gives a closed form expression for

the expected value of the optimal cost function at time k1 for

given state x̃k0
. To state our result, we introduce the mappings

φℓ : R
n 7→ R

n, where ℓ ∈ {1, 2, . . . , N} and which are defined

recursively via

φℓ+1 =
(
A + B1Kℓ

)
φℓ, ℓ ∈ {1, 2, . . . , N − 1}

φ1 = A + B1K0

(37)

where

Kℓ , −(BT
1 Pℓ+1B1+λI)−1B1Pℓ+1A, ℓ ∈ {0, 1, . . . , N−1}.

(38)

We will assume that p satisfies (21), denote via Ω(p) � 0 the

solution of the Lyapunov equation

Ω(p) = pAT Ω(p)A + P0 (39)
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and also define:

Π(p, N) , (1 − p)

(
pN−1φT

NΩ(p)φN +

N−1∑

i=1

pi−1φT
i P0φi

)
.

(40)

Lemma 8: Consider k0, k1 ∈ T and suppose that p satis-

fies (21). We then have

Ex̃k0
V (x̃k1

) = x̃T
k0

Π(p, N) x̃k0
. (41)

Proof: See Appendix B.

Despite the fact that the state of the NCS is θk and not x̃k,

see (5), Lemma 8 can be used for the design of the cost

function parameters in (7) such that the NCS (with dropouts

and non-zero wk and nk) is MSS and AWSS. Our main

stability result is stated as follows:

Theorem 3: Suppose that Assumption 1 holds and that the

dropout-rate p satisfies (21). If

P0 − Π(p, N) � 0, (42)

then the NCS in (15)–(16) is MSS and AWSS.

Proof: See Appendix C.

As a consequence of this theorem, MSS of the NCS is

closely linked to the matrix Π(p, N). The following two

lemmas are easy to prove and characterize important properties

of Π(p, N):
Lemma 9: Suppose that p satisfies (21) and that P in (7) is

chosen as the positive definite solution to (22). We then have:

1) For any N ≥ 1, we have Π(0, N) = φT
1 Pφ1.

2) For any 0 < p ≤ 1/ρ(A)2, we have

Π(p, 1) = (1 − p)φT
1 Ω(p)φ1

Π(p, N + 1) = Π(p, N) − (1 − p)pN (φN
1 )TS(p)φN

1 ,

where

S(p) , AT Ω(p)A − φT
1 Ω(p)φ1. (43)

Proof: With P as in (22), it holds that φi = (φ1)
i, for all

i ≥ 1. The statements now follow directly from the definition

of Π(p, N), see (40).

Lemma 10: Suppose that A ∈ R, that p satisfies (21) and

that P in (7) is chosen as the positive definite solution to (22).

We then have:

S(p) = A2

(
1 −

(
λ

B2
1P + λ

)2)
Ω(p) ≥ 0, (44)

P0 − lim
N→∞

Π(p, N) =

(
1 − φ2

1

1 − pφ2
1

)
P ≥ 0. (45)

Proof: With A ∈ R and P as in (22), direct calculations

give that

φi = Ai
(
λ/(B2

1 + P )
)i

, ∀i ≥ 1,

Ω(p) = P/(1 − pA2), ∀p ∈ (0, 1/A2].

Expression (44) then follows directly from (43), whereas (45)

can be proven by realizing that (40) is a geometric series.

As a consequence of Statement 1) in Lemma 9 and Theorem 3,

we have that the NCS with quantization is MSS if there are

no dropouts (and provided σ2
n < ∞). On the other hand,

Statement 2) in Lemma 9 gives that if S(p) � 0, then choosing

TABLE I

DROPOUT BOUNDS p♯ WHICH ENSURE MSS AND AWSS OF (46) WHEN

QUANTIZED PPC WITH HORIZON N IS USED.

N 1 2 3 4 5 6

p♯ 4.883
×10−5

8.823
×10−3

8.793
×10−2

1.512
×10−1

1.626
×10−1

1.628
×10−1

larger horizons will make it easier to satisfy (42) and hence

guarantee MSS and AWSS of the NCS. The beneficial effect

of choosing large horizons is certainly not surprising since, as

described in Section II-B, the buffering mechanism is aimed

at achieving robustness with respect to packet dropouts.

Lemma 10 shows that for scalar plants, it always holds

that S(p) � 0 and that if horizons are chosen large enough,

then the bound on dropout-rates in (21) can be achieved with

the packetized control method studied. As documented in

Section IV-D below, these properties will often also be satisfied

with higher order plants.

Remark 5: A key difference between Theorem 3 and the

results of [20] is that in the latter work (as in other works, e.g.,

[9]) we assumed that the maximum number of consecutive

packet dropouts was bounded. This allowed us to adopt in

[20] a deterministic notion of stability, namely input-to-state

stability (ISS). On the contrary, in the present setting, packet

dropouts are assumed i.i.d., so that the maximum number of

consecutive packet dropouts becomes unbounded. This makes

deterministic stability notions unsuitable and the results of [20]

are not directly applicable here. �

D. Numerical Example

To illustrate our stability results, we consider a system of

the form (1) where B1 = B2 =
[
1 1 1 1 1

]T
and where

the matrix A is randomly chosen:

A =




−0.1331 −0.5412 −0.0008 −1.0290 −1.1746
−1.2705 −1.3335 −0.2494 0.2431 −1.0211
−1.6636 1.0727 0.3966 −1.2566 −0.4017
−0.7036 −0.7121 −0.2640 −0.3472 0.1737
0.2809 −0.0113 −1.6640 −0.9414 −0.1161



.

(46)

We synthesize Quantized PPCs with different horizon lengths.

All PPCs are nominally stabilizing and are designed according

to (22), with Q = I , and λ = 1/20.

The system in (46) is open-loop unstable, with ρ(A) =
2.4786. Lemma 1 gives that a necessary condition for MSS of

the closed loop system is p ≤ 0.1628. Unfortunately, due to

numerical issues, we could not use Lemma 3 to conclude upon

necessary and sufficient conditions for MSS and AWSS of this

system. In fact, for horizon lengths N > 2 the conditioning

number of I − U ⊗ U is larger than 105. On the other hand,

Theorem 3 allows us to conclude that if the dropout-rate p is

smaller than the bounds shown in Table I, then the NCS is

MSS and AWSS. We can see that, despite the fact that the

PPC does not require knowledge of p,the necessary condition

for MSS (21) is achieved by the PPCs if the horizon length is

chosen sufficiently large.
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V. CLOSED LOOP PERFORMANCE

Having studied AWSS and MSS of the NCS, we will next

pursue our analysis further and tackle performance issues. For

that purpose, we will first represent the NCS with dropouts,

quantization and disturbances in the spectral domain. We will

then investigate the effect of bit- and dropout-rates on the

variance of the control error.

A. Spectral Domain Representation

To characterize spectral densities of the closed loop signals,

we recall (26) and (27) and introduce the MIMO transfer

functions:

Fw(z) ,
(
zI −A(p)

)−1Bw,

Fn(z) ,
(
zI −A(p)

)−1Bn(p).
(47)

As shown in Theorem 4 given below, Fw(z) and Fn(z) play a

fundamental role for characterizing performance of the NCS.

Theorem 4: If the MJLS (15) is MSS and AWSS, then the

spectral density of {θk} is given by:

Sθ(e
jω) = Fw(ejω)SH

w (ejω)FH
w (ejω)+

σ2
n

N
Fn(ejω)FH

n (ejω).

(48)

Proof: See Appendix D.

The above result allows us to quantify the performance of

the packetized NCS in Fig. 1 in the presence of quantization,

random data dropouts and disturbances. In particular, (5) gives

Sθ(e
jω) =

[
Sx(ejω) Sxb(e

jω)
Sbx(ejω) Sb(e

jω)

]
,

so that the spectral densities of {xk} and of {uk} are:

Sx(ejω) =
[
I 0

]
Sθ(e

jω)

[
I
0

]
,

Su(ejω) =
[
0 eT

1

]
Sθ(e

jω)

[
0
e1

]
.

(49)

Parseval’s theorem then provides an explicit expression for

the covariance matrix of x, namely:

Rx(0) =
[
I 0

](σ2
n

N
Ξn(p) + Ξw(p)

)[
I
0

]
, (50)

where Ξn(p) solves (32), whereas

Ξw(p) ,
1

2π

∫ 2π

0

Fw(ejω)SH
w (ejω)FH

w (ejω)dω. (51)

Remark 6: Lemma 7 and Theorem 4 generalize results of

[24], [50], [56]. To be more precise, whereas in the papers

mentioned above only NCS’s with a packet-dropping network

carrying scalar signals are considered, the results in the present

work are applicable to PPCs with N ≥ 1, i.e., where sequences

of plant inputs are transmitted. �

B. Rate-Distortion Analysis

The quantization noise variance σ2
n, see (14), is a user de-

fined parameter, which affects bit-rate and achieved distortion.

ECDQs use variable-length coding. We will study the expected

length (in bits) of the codewords associated with the signal

transmitted [27]. If the NCS is AWSS, then the expected bit-

rate satisfies

R = lim
k→∞

E{υk},

where the process υk represents the length (in bits) of the

codewords associated with qL(ξk + ηk), see (11).

As mentioned in Section II, we are interested in the so-

called UDP-like case where there are no receipt acknowl-

edgments. In order to guarantee that at the plant input side

successful decoding of qL(ξk +ηk), see (11), can be achieved

despite random data-loss, we will use memoryless source

coders. Thus, consecutive source vectors, ξk+ηk, are quantized

independently.

In accordance with the control objective in (7), if the NCS

is MSS (and thus AWSS, see Theorem 2), then we adopt the

distortion measure D given below as a figure of merit of the

PPC quantization system:

D , lim
k→∞

E
{
‖xk‖2

Q + λ(uk)2
}

= tr
(
Q1/2Rx(0)QT/2

)
+ λRu(0),

(52)

where Q = QT/2Q1/2. The distortion D quantifies loss of

performance of the NCS due to quantization, disturbances, and

packet dropouts. Interestingly, we have the following result:

Lemma 11: Suppose that Assumption 1 holds, that the

NCS is AWSS and MSS. Furthermore, consider Ξn(p) which

solves (32), and Ξw(p) defined in (51). Then D satisfies:

D = ασ2
n + β, (53)

where:

α ,
1

N
tr
( [

Q1/2 0
]
Ξn(p)

[
Q1/2 0

]T )

+
λ

N

[
0 eT

1

]
Ξn(p)

[
0 eT

1

]T
> 0

β , tr
( [

Q1/2 0
]
Ξw(p)

[
Q1/2 0

]T )

+ λ
[
0 eT

1

]
Ξw(p)

[
0 eT

1

]T
> 0.

(54)

Proof: Follows directly from (49)–(51) and Parseval’s

theorem.

As a consequence of Lemma 11, the minimal distortion

level achievable is β. This quantity depends upon the plant,

controller parameters and dropout-rates. To achieve a small

distortion level, we require the quantizer to introduce noise

with a small variance σ2
n. Unfortunately, this necessitates the

use of large bit-rates R. In what follows, we will further

elucidate this rate-distortion trade-off governing the design of

the VQ. For that purpose, the characterization of the spectral

densities obtained in Theorem 4, which is summarized in the

following corollary, is of fundamental importance.

Corollary 1: Suppose that Assumption 1 holds, that the

NCS is AWSS and MSS, and define

H(z) ,
[
I 0

] (
zI −A(p)

)−1
. (55)
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ξ̄k
BwBw +

+

++

nk

−

ECDQ

nk

ΓH(z)
wk

Bn(p)

x̄k

Fig. 2. Noise-Shaping Model of the NCS

Then the spectral density of x̄k in the noise-shaping model in

Fig. 2 is equal to the spectral density of the plant state xk in

Fig. 1.

Proof: Follows directly from (9), (12), (48) and (49).

The equivalent noise-shaping structure provided by Fig. 2

allows us to analyze coding for the NCS by adapting tech-

niques for LTI source coding systems.

Theorem 5 included below establishes an upper bound on

the expected bit-rate of ~uk. Our result is valid at all rates and,

thus, does not require high-rate approximations.

Theorem 5: Suppose that Assumption 1 holds, that the NCS

is AWSS and MSS, and define the matrix

Y ,
[
Γ 0

] (
Ξn(p)+

(
αN/(D−β)

)
Ξw(p)

) [
Γ 0

]T
. (56)

Then, for any 1 ≤ N ∈ N, the bit-rate R of ~uk satisfies:

R(D) ≤ 1

2
log2

(
det(I + Y)

)
+

N

2
log2

(
πe

6

)
+ 1

=
1

2

∑

i

log2(1 + νi) +
N

2
log2

(
πe

6

)
+ 1,

(57)

where {νi} = eigs Y .

Proof: See Appendix E.

Theorem 5 provides an analytical upper bound on expected

bit-rates which guarantee a certain performance level when

the PPC is used over channels with packet dropouts, when no

acknowledgments are available.

We note that bounding the expected bit-rate R will, in gen-

eral, not guarantee that the instantaneous bit-rate is bounded.

However, it can be shown that if ξk has bounded support, then

the cardinality of the codebook is finite [58] and, thus, also

the instantaneous bit-rate is finite.

If we let D → ∞, then the bound (57) becomes:

lim
D→∞

R(D) ≤ 1

2
log2 det

(
I +

[
Γ 0

]
Ξn(p)

[
Γ 0

]T )

+
N

2
log2

(
πe

6

)
+ 1. (58)

It is interesting to note that the upper bound on the bit-rate

is positively bounded away from zero, which is in agreement

with the fact that, for stabilization, bit-rates cannot be made

arbitrarily small; see, e.g., [2].

Conversely, if σ2
n → 0, so that quantization effects are

negligible, then R → ∞. In this case, the distortion D → β
which depends only on the exogenous disturbance w, see (54).
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Fig. 3. Bound on D(R) in (57) for different horizon lengths N , and for
p = 0.05. The asymptotics correspond to β in (54) and the bound in (58).

Remark 7: Even in the simpler case of open-loop systems

without dropouts, characterizing rate-distortion functions when

limited delay is required, is a long standing open problem

in source coding, formally known as causal source coding

[59]. Thus, obtaining a complete characterization of distortion

in closed-loop systems with bit-rate limitations is inherently

difficult. Whilst achievable lower bounds on bit-rates which

are required to guarantee MSS for NCS without losses are

known [2], finding non-trivial lower bounds on bit-rates for

performance remains an unsolved problem. Our results in

Theorem 5 give upper-bounds on bit-rates which guarantee

a certain performance level. �

C. Numerical Example

To illustrate the performance bounds obtained, we use the

example of Section IV-D. Fig. 3 shows the upper bound of

the distortion D as a function of R which follows from (57).

As can be seen in that figure, in the case examined, if a low

distortion is desired and bit-rates are allowed to be moderate to

high, then a larger horizon length should be chosen. However,

at low bit-rates, shorter horizons may be preferable.

In Fig. 4 we examine the high-rate regime, in which case

D = β, amounting to an unquantized system with packet

dropouts. Again, choosing larger horizons leads to smaller

distortions. It is worth recalling that, as seen in Section IV, the

use of large horizons is also desirable from a stability point

of view.

VI. CONCLUSIONS

The present work has studied a control strategy for an

architecture comprising an LTI plant with disturbances, and

a bit-rate limited digital network affected by random packet

dropouts. By using tools from stochastic control theory and

Markov jump-linear systems, we have established results on

stationarity and MSS of the resultant closed loop, when

dropouts are Bernoulli distributed. It turns out that, if an

entropy-coded dithered lattice vector quantizer is used, then

the loop can be designed to be MSS for any bounded
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Fig. 4. High-rate analysis: β as a function of dropout-rate p for different
horizon lengths N . The maximum dropout-rate examined is p = 1/ρ(A)2 =
0.1628. The circles correspond to the dropout-rates in Table I.

quantization noise variance. (For unstable plant models bit-

rates cannot be assigned arbitrarily.) Numerical results suggest

that, if prediction horizons are chosen large enough, then

MSS can be guaranteed provided dropout-rates are smaller

than the inverse of the square of the spectral radius of the

system matrix. The latter bound is a fundamental limit on

stabilizability of networked control systems with dropouts.

We have also characterized spectral densities of key signals

in the loop and have developed an equivalent noise-shaping

model. The spectral representation obtained has allowed us to

bound the distortion as a function of disturbances, expected

bit-rates, dropout-rates, and horizon-length. In general, better

performance can be achieved if horizon-lengths and bit-rates

are large and dropout-rates are small.
Future work includes adapting the method to use delayed

packets, allowing for a network in the link from plant output

to controller, and also investigating non-linear plant models.

Preliminary results on the latter topic have been recently

reported in [60].

APPENDIX

A. Proof of Lemma 6

Direct calculation shows that, for any Λ, it holds that:

(1 − p) Ā(0)ΛĀT (0) + p Ā(1)ΛĀT (1)

= A(p)ΛA(p)T + p(1 − p)ÃΛÃT .

Thus, by (19) we have that the MJLS (15) is MSS and AWSS,

iff there exists Λ ≻ 0:

A(p)ΛA(p)T − Λ + p(1 − p)ÃΛÃT ≺ 0. (59)

If in (29) we restrict Θ ≻ 0, then also Ξ(p) ≻ 0. The result

then follows directly from solving for Θ in (30), substituting

into (29) and setting Λ = Ξ(p).
In the semi-definite case Θ � 0, sufficiency of (29) can be

proven following an idea akin to that used, e.g., in [24]. We

first recall that A(p) is Schur, iff for some Ω ≻ 0 it holds that:

A(p)ΩA(p)T − Ω ≺ 0. (60)

We next set

Λ = Ξ(p) + δΩ ≻ 0, (61)

where Ω is as in (60), Ξ(p) � 0 is the solution to (30), and

where δ > 0. Hence, by taking δ > 0 sufficiently small,

Condition (29) implies that:

p(1 − p)ÃΛÃT = p(1 − p)Ã
(
Ξ(p) + δΩ

)
ÃT ≺ Θ. (62)

With Λ as in (61) and by using (60) and (62), the left-hand

side of (59) becomes:

A(p)
(
Ξ(p) + δΩ

)
A(p)T −

(
Ξ(p) + δΩ

)

+ p(1 − p)Ã
(
Ξ(p) + δΩ

)
ÃT

≺ A(p)
(
Ξ(p) + δΩ

)
A(p)T −

(
Ξ(p) + δΩ

)
+ Θ

= A(p)Ξ(p)A(p)T − Ξ(p) + Θ + δ
(
A(p)ΩA(p)T − Ω

)

= δ
(
A(p)ΩA(p)T − Ω

)
≺ 0,

which proves the result.

B. Proof of Lemma 8

It follows directly from (2) and (33), that

∆ , k1 − k0. (63)

is geometrically distributed according to

Prob(∆ = i) = (1 − p)pi−1, ∀i ∈ N.

Thus, the total probability formula gives:

Ex̃k0
V (x̃k1

) = E
{
Ex̃k0

{
V (x̃k1

) |∆
}}

= (1 − p)

∞∑

i=1

pi−1
Ex̃k0

{
V (x̃k1

) |∆ = i
}

= (1 − p)

N∑

i=1

pi−1
Ex̃k0

{
V (x̃k1

) |∆ = i
}

+ (1 − p)

∞∑

i=N+1

pi−1
Ex̃k0

{
V (x̃k1

) |∆ = i
}
.

(64)

If ∆ ≤ N , then we have x̃k1
= φ∆x̃k0

(see, e.g., [57]). On

the other hand, since the packets transmitted have only N
elements and with the choice of M made in (4), we have that

if ∆ > N , then

uℓ = 0, ∀ℓ ∈ {k0 + N, k0 + N + 1, . . . , k1 − 1},
so that, in this case,

x̃k1
= Ak1−k0−N x̃k0+N = Ak1−k0−NφN x̃k0

.

Equations (35) and (64) then yield:

Ex̃k0
V (x̃k1

) = (1 − p)

N∑

i=1

pi−1‖φix̃k0
‖2

P0

+ (1 − p)

∞∑

i=N+1

pi−1‖Ai−NφN x̃k0
‖2

P0

= (1 − p)

N∑

i=1

pi−1‖φix̃k0
‖2

P0

+ (1 − p)pN−1
(
‖φN x̃k0

‖2
Ω(p) − ‖φN x̃k0

‖2
P0

)
,

which gives (41).



11

C. Proof of Theorem 3

We will first state, and prove, Corollary 2 and Lemma 12.

Corollary 2: System (15) is AWSS if and only if for all

d0 ∈ {0, 1} and θ̃0 with bounded variance, it holds that

∞∑

k=0

E
{
‖x̃k‖2

}
< ∞.

Proof: [Corollary 2] By (17), we have that

∞∑

k=0

E
{
‖θ̃k‖2

}
=

∞∑

k=0

E
{
‖x̃k‖2 + ‖b̃k−1‖2

}
.

On the other hand, the buffering mechanism adopted allows

one to bound:

∞∑

k=0

‖b̃k−1‖2 ≤ N‖b̃−1‖2 + N
∑

ki∈T

‖b̃ki
‖2

= N‖b̃−1‖2 + N
∑

ki∈T

‖Ψ−1Γx̃ki
‖2.

The result now follows from noting that T ⊆ N and applying

Theorem 2.

Lemma 12: Suppose that p satisfies (21) and consider (17).

Then for all initial conditions d0 ∈ {0, 1} and θ̃0 with bounded

variance there exist finite C1(θ̃0, d0) and C2(θ̃0, d0) such that

E(θ̃0,d0)

{
k0∑

ℓ=0

‖x̃ℓ‖2

}
≤ C1(θ̃0, d0)

E(θ̃0,d0)

{
V (x̃k0

)
}
≤ C2(θ̃0, d0).

(65)

Proof: [Lemma 12] For d0 = 0, then k0 = 0 and (65)

follows directly from the assumptions made and recalling that

V (x̃k0
) = ‖x̃k0

‖2
P0

, see (35).

If d0 = 1, then k0 has geometric distribution

Prob(k0 = i) = (1 − p)pi−1, ∀i ∈ N, so that

E(θ̃0,d0=1)

{
k0∑

ℓ=0

‖x̃ℓ‖2

}

= (1 − p)

N∑

i=1

pi−1
E(θ̃0,d0=1)

{
k0∑

ℓ=0

‖x̃ℓ‖2
∣∣∣ k0 = i

}

+ (1 − p)

∞∑

i=N+1

pi−1
E(θ̃0,d0=1)

{
N−1∑

ℓ=0

‖x̃ℓ‖2
∣∣∣ k0 = i

}

+ (1 − p)

∞∑

i=N+1

pi−1
E(θ̃0,d0=1)

{
k0∑

ℓ=N

‖x̃ℓ‖2
∣∣∣ k0 = i

}
.

The buffering mechanism employed and some algebraic ma-

nipulations then provide

E(θ̃0,d0=1)

{
k0∑

ℓ=0

‖x̃ℓ‖2

}

≤ (1 − p)

∞∑

i=1

pi−1
E(θ̃0,d0=1)

{
N∑

ℓ=0

‖x̃ℓ‖2
∣∣∣ k0 ≥ N

}

+ (1 − p)

∞∑

i=N+1

pi−1
E(θ̃0,d0=1)

{
i∑

ℓ=N

‖x̃ℓ‖2
∣∣∣ k0 = i

}

= E(θ̃0,d0=1)

{
N∑

ℓ=0

‖x̃ℓ‖2
∣∣∣ k0 ≥ N

}

+ (1 − p)

∞∑

i=N+1

pi−1
E(θ̃0,d0=1)

{
i∑

ℓ=N

‖Aℓ−N x̃N‖2
∣∣∣ k0 ≥ N

}

= E(θ̃0,d0=1)

{
N∑

ℓ=0

‖x̃ℓ‖2
∣∣∣ k0 ≥ N

}

+ pN
E(θ̃0,d0=1)

{
‖x̃N‖2 +

∞∑

j=0

pj‖Aj+1x̃N‖2
∣∣∣ k0 ≥ N

}
.

(66)

If we now introduce Ξ(p) ≻ 0 via the Lyapunov equation

Ξ(p) = pAT Ξ(p)A + I, (67)

then
∞∑

j=0

pj‖Aj+1x̃N‖2 = ‖Ax̃N‖2
Ξ(p),

so that (66) gives:

E(θ̃0,d0=1)

{
k0∑

ℓ=0

‖x̃ℓ‖2

}
≤ E(θ̃0,d0=1)

{
pN‖x̃N‖2

AT Ξ(p)A+I

+

N∑

ℓ=0

‖x̃ℓ‖2
∣∣∣ k0 ≥ N

}
≤ C1(θ̃0, d0 = 1),

for some C1(θ̃0, d0 = 1) < ∞. The bound C1(θ̃0, d0 = 1)
is finite since, by assumption, the variances of x̃0 and b̃−1

are bounded and, given k0 ≥ N , the plant inputs at instants

ℓ ∈ {0, 1, . . . , N−1} are taken from b̃−1. Existence of a finite

bound C2(θ̃0, d0 = 1) now follows from (35).

Proof: [Theorem 3] By Lemma 8, V (x̃ki
) constitutes a

stochastic Lyapunov function for the NCS at the time instants

ki ∈ T ; see, e.g., [61]. In fact, since V (x̃k0
) = ‖x̃k0

‖2
P0

,

Expression (42) gives that, for any given x̃k0
, there exists a

fixed α ∈ (0, 1], such that:8

Ex̃k0
{V (x̃k1

)} − V (x̃k0
) = x̃T

k0

(
Π(p, N) − P0

)
x̃k0

≤ −αV (x̃k0
).

Since {x̃ki
}ki∈T is a Markov chain, we can use Theorem 2

of [61, Ch. 8.4.2], which gives:

Ex̃k0
{V (x̃ki

)} ≤ (1 − α)iV (x̃k0
), ∀i ≥ 1. (68)

8Recall that V (x̃ki
) ≥ 0, ∀ki ∈ T .
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To complete the proof, we use Corollary 2 and examine

instants k /∈ T , k > k0. Here we condition upon ∆ defined

in (63) and proceed along the same lines as in the proof of

Lemma 12 to obtain:

Ex̃k0

{
k1−1∑

ℓ=k0

‖x̃ℓ‖2

}

≤ (1 − p)

∞∑

i=1

pi−1
Ex̃k0

{
k0+N−1∑

ℓ=k0

‖x̃ℓ‖2
∣∣∣∆ ≥ N

}

+ (1 − p)

∞∑

i=N+1

pi−1
Ex̃k0

{
k1−1∑

ℓ=k0+N

‖x̃ℓ‖2
∣∣∣∆ = i

}

= Ex̃k0

{
pN‖x̃k0+N‖2

Ξ(p) +

k0+N−1∑

ℓ=k0

‖x̃ℓ‖2
∣∣∣∆ ≥ N

}
,

where Ξ(p) ≻ 0 is as in (67). Thus, there exists γ ∈ (0,∞),
such that

Ex̃k0

{
k1−1∑

ℓ=k0

‖x̃ℓ‖2

}
≤ γ Ex̃k0

{
‖x̃k0+N‖2

P

+

k0+N−1∑

ℓ=k0

(
‖x̃ℓ‖2

Q + λ(uℓ)
2
) ∣∣∣∆ ≥ N

}
= γ Ex̃k0

{V (x̃k0
)},

In a similar way, it can be shown that

Ex̃ki

{
ki+1−1∑

ℓ=ki

‖x̃ℓ‖2

}
≤ γ Ex̃ki

{
V (x̃ki

)
}
, ∀ki ∈ T

so that (68) gives:

Ex̃k0

{
ki+1−1∑

ℓ=ki

‖x̃ℓ‖2

}
≤ γ Ex̃k0

{
V (x̃ki

)
}

≤ γ(1 − α)iV (x̃k0
), ∀i ≥ 1.

We can now use Lemma 12 to bound:

E(θ̃0,d0)

{
km+1−1∑

ℓ=0

‖x̃ℓ‖2

}

≤ C1(θ̃0, d0) + γ E(θ̃0,d0)

{
m∑

i=0

V (x̃ki
)

}

≤ C1(θ̃0, d0) + γ
1 − (1 − α)m

α
E(θ̃0,d0)

{
V (x̃k0

)
}

= C1(θ̃0, d0) + γ
1 − (1 − α)m

α
C2(θ̃0, d0), ∀m ∈ N,

expression, which upon taking the limit m → ∞, provides:

E(θ̃0,d0)

{
∞∑

ℓ=0

‖x̃ℓ‖2

}
≤ C1(θ̃0, d0) +

γC2(θ̃0, d0)

α
< ∞.

MSS and AWSS then follows from using the law of total

expectation and Corollary 2.

D. Proof of Theorem 4

By conditioning upon the dropout process dk, Equation (15)

provides that the cross-covariance function of the processes νk

and θk is given by:9

Rνθ(ℓ) = E
{
νk+ℓθ

T
k

}
= pE

{
νk+ℓ(Ā(1)θk−1 + B̄(1)νk−1)

T
}

+ (1 − p)E
{
νk+ℓ(Ā(0)θk−1 + B̄(0)νk−1)

T
}

= E{νk+ℓθ
T
k−1}A(p)T + E{νk+ℓν

T
k−1}B(p)T

= Rνθ(ℓ + 1)A(p)T + Rν(ℓ + 1)B(p)T ,

where Rν(ℓ) is the covariance function of νk, and A(p) and

B(p) are as in (25).

By taking two-sided z-Transform, we obtain that the cross-

spectrum satisfies:

Sνθ(z) = Sν(z)B(p)T z
(
I − zA(p)T

)−1
. (69)

Similarly, the covariance function of θk is given by:

Rθ(ℓ) = E
{
θk+ℓθ

T
k

}
= pE

{
θk+ℓ(Ā(1)θk−1 + B̄(1)νk−1)

T
}

+ (1 − p)E
{
θk+ℓ(Ā(0)θk−1 + B̄(0)νk−1)

T
}

= E{θk+ℓθ
T
k−1}A(p)T + E{θk+ℓν

T
k−1}B(p)T

= Rθ(ℓ + 1)A(p)T + Rθν(ℓ + 1)B(p)T .

Since Rθν(ℓ) = RT
νθ(−ℓ), we obtain that:

Sθ(z) = ST
νθ(z

−1)B(p)T z
(
I − zA(p)T

)−1

=
(
zI −A(p)

)−1B(p)ST
ν (z−1)

((
z−1I −A(p)

)−1B(p)
)T

after replacing (69). On the other hand, the processes wk and

nk are uncorrelated. It therefore holds that:

B(p)ST
ν (z−1)B(p)T = B(p)

[
ST

w(z−1) 0
0 ST

n (z−1)

]
B(p)T

= BwST
w(z−1)BT

w + Bn(p)ST
n (z−1)Bn(p)T ,

where Bn(p) is as in (27). The result now follows from setting

z = ejω and noting that, by (13), we have Sn(ejω) = σ2
n/N .

E. Proof of Theorem 5

By assumption, the loop is AWSS. Thus, results of [48]

and [47] give that the coding rate of the ECDQ in Fig. 2

is related to the conditional entropy of the quantized signal,

where conditioning is with respect to the dither signal as

follows:10

R ≤ H(qL(ξk + ηk) | ηk) + 1 = I(ξk; ξk + nk) + 1. (70)

By following as in, e.g., [64, Lemma 2], one can show that

I(ξk; ξk+nk) can be upper bounded by replacing the variables

in play with their Gaussian counterparts according to:

I(ξk; ξk + nk) ≤ I(ξ̄k; ξ̄k + n̄k) + D(nk‖n̄k), (71)

9Note that all processes are zero-mean. Furthermore, since the MJLS is
assumed MSS, by Lemma 4, A(p) is Schur.

10Massey showed in [62] that an appropriate concept for studying minimum
bit-rates in feedback systems is the directed mutual information. However,
its achievability requires that the decoder have access to all previous trans-
missions. Thus results in [62], and also in [63] and other works, are not
immediately applicable in the situation under study in the present work.
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where the processes n̄k, w̄k and ξ̄k are given by:

n̄k ∼ N (0, (σ2
n/N)I), w̄k ∼ N (0, Rw(0)),

ξ̄k =
[
Γ 0

]
Fw(z)w̄k +

[
Γ 0

]
Fn(z)(ξ̄k + n̄k).

The divergence in (71) describes a distance of quantization

noise from Gaussianity. For ECDQs, it is bounded by [48]

D(nk‖n̄k) ≤ N

2
log2(2πeG). (72)

By definition, I(ξ̄k; ξ̄k + n̄k) = h(ξ̄k + n̄k) − h(ξ̄k + n̄k|ξ̄k),
which can be simplified to

I(ξ̄k; ξ̄k + n̄k) = h(ξ̄k + n̄k) − h(n̄k)

=
1

2
log2

(
(2πe)N det

(
Rξ(0) + Rn(0)

))

− 1

2
log2

(
(2πe)N det

(
Rn(0)

))

=
1

2
log2

(
det
(
(σ2

n/N)I + Rξ(0)
)

(σ2
n/N)N

)

=
1

2
log2

(
det
(
I + (N/σ2

n)Rξ(0)
))

,

(73)

where we have used the fact that ξ̄k and n̄k are Gaussian

and independent (recall Assumption 1). The inequality in (57)

now follows from (70)–(73), the fact that G ≤ 1/12 for any

lattice [46], by noting that Rξ̄(0) = Rξ(0) = ΓRx(0)ΓT and

using (50) and (53). Finally, the right hand side equality in (57)

can be easily verified.
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Raimondo, and F. Allgöwer, Eds. Berlin Heidelberg: Springer-Verlag,
2009, vol. 384, pp. 167–179.

[19] D. E. Quevedo, E. I. Silva, and G. C. Goodwin, “Control over unreliable
networks affected by packet erasures and variable transmission delays,”
IEEE J. Select. Areas Commun., vol. 26, no. 4, pp. 672–685, May 2008.
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