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Packetized Predictive Control over Erasure Channels
Daniel E. Quevedo, Member, IEEE, Eduardo I. Silva, and Graham C. Goodwin, Fellow, IEEE

Abstract— In digital Networked Control Systems links be-
tween controller and plant are not transparent, but are affected
by time-delays, data-dropouts and quantization. An important
observation is that, in contemporary communication networks,
such as those employing Ethernet, data is sent in large packets.
This motivates the development of networked control schemes
where signal predictions are sent as packets. In the present
work we present such a strategy. We focus on a configuration
where the controller output is connected to the plant input via
a network which we assume is prone to transmission errors.
By using methods from predictive control theory, we show how
closed loop stability can be ensured directly in the design.

I. INTRODUCTION

In a Networked Control System (NCS), plant and con-
troller are typically connected via a communication network
which may be shared with other applications. When com-
pared with direct point-to-point analog wired connections,
the sharing of a network simplifies the cabling and, thus,
increases overall system reliability. On the other hand, the
transmitted data needs to be quantized and may be affected
by time delays and data-dropouts. Thus, in a NCS, linkages
are not transparent, often constituting a significant bottleneck
in the achievable performance, see, e.g., [1], [2].

Traditionally NCS’s have relied upon special purpose
network protocols such as FIP, Profibus, CAN and variants
thereof. However, to increase portability, interoperability,
flexibility and maintainability, there has been a growing trend
to move towards general purpose protocols and technologies.
Indeed, TCP/IP over (wired) Ethernet has become the most
widely used network technology in industry. Also, wireless
protocols have been studied; see, e.g., [3].

The direct use of general purpose network platforms in
a control loop presents some serious challenges, since they
were not originally designed for real-time control, but for
data communications without critical timing requirements.
Thus, particularly in a wide area network and also in wireless
applications, time delays and data-loss will, in general be
unavoidable. Given the susceptibility of control systems to
time delays and, more significantly, to data-dropouts, the
need to design networked controllers which give adequate
performance arises.

One interesting feature of modern communication proto-
cols is that data is sent in large packets. For example, in
Ethernet the frame format allows for a data-packet of 46-
1500 bytes, the overhead being 26 bytes. For IEEE 802.11
the data-packet size in each frame is up to 2312 bytes. This
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opens the possibility to conceive control schemes which
operate at a network level and in which packets of data,
rather than individual values, are sent through the network.
In this context it makes sense to send signal predictions,
which are calculated at the transmission side, to compensate
for time delays and data-dropouts. Through buffering and
appropriate selection logic at the receiver node, only the
latest relevant value is used. This idea is related to that
used in predictive interfaces and was proposed in [4] for
the teleoperation of prestabilized systems. The concept also
underlies more recent NCS configurations described, for
instance, in [5]–[11]. We note that, within this context,
predictive control methods are a natural choice, since they
inherently provide signal predictions.

Whilst experimental results of NCS’s which use packe-
tized data are promising, see [5]–[9], there exist few sup-
porting theoretical results. For example, methods for the
stability analysis of packetized NCS’s over channels affected
by time delays have treated only the case of unconstrained
linear plants, see, e.g., [9], [11]. To the best of the authors’
knowledge, there exist no general methodologies which
ensure closed loop stability for nonlinear plants controlled
over networks affected by data-loss.

In the present work we present a packetized predictive
networked control scheme in which an optimizing sequence
of control inputs is sent over a communication network
affected by data-loss. We will show that closed loop stability
of the resulting NCS can be imposed directly in the design
through rather mild conditions on the associated tuning
parameters. A key aspect of our work lies in the fact that
we will treat general nonlinear systems, which are subject to
input and/or state constraints.

II. BRIEF REVIEW OF PREDICTIVE CONTROL

The packetized predictive control algorithm under study
uses predictive control ideas. Before presenting our results,
we will first briefly recall basic elements of predictive control
algorithms, following essentially as in [12], [13].

We consider the discrete-time nonlinear plant model:

x(k + 1) = f(x(k), u(k)), (1)

where the plant input and state are constrained according to:

u(k) ∈ U ⊆ Rp, x(k) ∈ X ⊆ Rn, ∀k ∈ N∪{0}. (2)

In the sequel, we will assume that the constraint sets U and
X contain the origin (of their respective spaces).

Predictive control algorithms are based on the minimiza-
tion, at each time instant k and for a given plant state x(k),
of a cost function which uses predicted plant behaviour over



a finite horizon of length N . The following cost function
encompasses many alternatives:

V (x(k), !u′(k)) ! F (x′(k + N)) +
k+N−1∑

!=k

L(x′("), u′(")),

(3)where

x′(" + 1) = f(x′("), u′(")), x′(k) = x(k) (4)

describes the predicted quantities. The decision variables are
contained in

!u′(k) ! {u′(k), u′(k + 1), . . . , u′(k + N − 1)}.

Both, the predicted state trajectory and the decision variables
are constrained in accordance with (2), i.e.,

u′(") ∈ U, x′(") ∈ X, ∀" ∈ {k, k+1, . . . , k+N−1}. (5)

In addition, x′(k+N) is typically required to satisfy a given
terminal state constraint:

x′(k + N) ∈ Xf ⊆ X, (6)

where Xf is a set containing the origin. In the cost function
of (3), F (·) and L(·, ·) are assumed to satisfy:

F (x) ≥ 0, ∀x ∈ Xf , F (0) = 0, (7)
L(0, 0) = 0, L(x, u) ≥ α (‖x‖) , ∀x ∈ XN , ∀u ∈ U, (8)

where α(·) : [0,∞) → [0,∞) is a continuous, nondecreasing,
unbounded function such that α(0) = 0 and α(r) > 0, for
all r > 0. In (8),

XN ⊆ X

denotes the set of all feasible initial states, i.e., states x(k)
such that there exists !u′(k) which is compatible with (4)–(6).

Constrained minimization of V (·, ·) as in (3) gives the
optimizing control sequence at time k and for state x(k):

!u(k) ! {u(k; k), u(k + 1; k), . . . , u(k + N − 1; k)}, (9)

the associated optimizing state predictions:1

!x(k) ! {x(k + 1; k), x(k + 2; k), . . . , x(k + N ; k)},

and the optimal value function:

V "(x(k)) ! V (x(k), !u(k)). (10)

Despite the fact that !u(k) contains feasible plant inputs
over the entire horizon, in standard predictive control algo-
rithms, only the first element is used, i.e., the plant input
is set to u(k) = u(k; k). Following the receding horizon
optimization paradigm, at the next sampling step, i.e., at
time k + 1 and given x(k + 1), the horizon is shifted by
one and another optimization is carried out. This yields
u(k + 1) = u(k + 1; k + 1), etc.

The prediction horizon N , the terminal constraint set Xf ,
and the functions L(·, ·) and F (·) are design variables which
can be utilized to influence stability and performance of the
closed loop. The following theorem, adapted from [13] (see
also [12]), summarizes many existing results.

1In the sequel we will restrict our attention to state trajectories in XN .

Theorem 1: Suppose that there exists a terminal control
law κf : Xf → U such that, for all ξ ∈ Xf :

F (f(ξ, κf (ξ)))− F (ξ) + L(ξ, κf (ξ)) ≤ 0, (11)
κf (ξ) ∈ U, (12)

f(ξ, κf (ξ)) ∈ Xf . (13)

Then, the closed loop

x(k + 1) = f(x(k), u(k; k))

has a fixed point at the origin which is globally attractive in
XN . If, in addition, the origin belongs to the interior of XN

and V "(·) in (10) is continuous in a neighbourhood of the
origin, then the origin is asymptotically stable in XN .

Proof: A detailed proof can be found in [12], [13].
Predictive control methods, as described above, have been

widely used in several application areas. In particular, they
have been utilized in the context of NCS’s with different
types of communication constraints; see, e.g., [7], [14], [15].

We note that, when dealing with NCS’s, the plant
model (1) is to be controlled over a digital network. Thus,
the set U will typically be finite; see, e.g. [14]. However,
if the network allows for a sufficiently large data-packet,
then quantization effects will often be negligible. In this
situation, U can be regarded as a polytope, or, depending
on the situation, even as U = Rp.

III. PACKETIZED PREDICTIVE NETWORKED CONTROL

A shortcoming of applying predictive control (as described
in the previous section) to NCS’s lies in the fact that the
resulting closed loop is susceptible to time delays and,
especially, data-loss. These are inevitable in a NCS which
uses general purpose network technology.

In the sequel, we will present a NCS strategy aimed
at overcoming this deficiency. The method consists of two
modules: a Packetized Predictive Controller (PPC) which
generates data-packets; and, at the plant input side, appro-
priate selection logic. We will assume that the plant state is
available to the controller and, thus, focus our attention on an
architecture where the network is located between controller
output and plant input, see Fig. 1.

Selection

Logic
Plant

!u µ u x
PPC Network

Fig. 1. Packetized Predictive Networked Control System.

A. Packetized Predictive Controller
The PPC embellishes the predictive control idea described

in Section II. As before, at each sampling instant k and given
x(k), V (·, ·) in (3) is minimized subject to (5) and (6).
The main novelty lies in that, in PPC not only u(k; k) is
used, but the entire optimizing sequence !u(k), see (9). As
depicted in Fig. 1, this sequence is sent through the network



to the actuator node at each time instant k. At time k + 1,
the horizon is shifted by one and the sequence !u(k + 1) is
transmitted. This procedure is repeated ad infinitum.

B. Network Model
In the present work we are interested in wired and wireless

Ethernet-like channels, where data-packets are large, so that
quantization is less of an issue. However, time-delays and
transmission errors are likely to occur.

From a closed loop control perspective, transmission errors
are the most serious network effect. This motivates us to
model the network as an erasure channel, see also [7], [16].
To be more precise, we utilize a Gilbert-Elliot model; see,
e.g., [17], [18]. In this model, network congestion is modeled
by a two state Markov chain with states HIGH and LOW,
corresponding to high and low congestion conditions, respec-
tively. Associated with each state are data-drop probabilities,
say, pH for the HIGH state and pL for the LOW state. Within
each state, data-dropouts are independent and identically
distributed (i.i.d.). The state transition probabilities are:

pHL ! P {p(k + 1) = LOW | p(k) = HIGH} ,

pLH ! P {p(k + 1) = HIGH | p(k) = LOW} ,

where p(k) is the Markov chain state at time instant k.
If we define the discrete random process {dr(k)}k∈N0 via

dr(k) =
{

1 if data-dropout occurs at instant k,
0 if data dropout does not occur at instant k,

then this network congestion model implies that, within each
Markov chain state, {dr(k)}k∈N0 is i.i.d. Bernoulli.

The channel output at time k is given by:

µ(k) = (1− dr(k))!u(k) (14)

For further reference, we will denote the time instants
where no data-dropouts occur via {ki}i∈N0 and define

mi ! ki+1 − ki, i ∈ N. (15)

Note that mi ≥ 1, ∀i ∈ N, with equality if and only if no
data-dropouts occur between ki and ki+1.

When data is lost, the NCS operates in open-loop. Thus,
it is reasonable to expect that, to ensure desirable properties
of the NCS, the number of consecutive data-dropouts should
be limited. This will become apparent in Section IV.

C. Selection Logic
At the actuator node, the latest control value from the

received data sequence, i.e., µ, is selected, see Fig. 1. This
is achieved through buffering, where old data is overwritten
by new data.

For example, if at some time instant k, µ(k) = !u(k),
then u(k; k) is implemented, i.e., u(k) = u(k; k), as in
standard predictive control. However, if !u(k) is lost, then
the latest data-packet which contains a possible control input
corresponding to time k is used. That is, if u(k; k − 1)
is available, then u(k) = u(k; k − 1); otherwise, u(k) =
u(k; k − 2), etc. Finally, if no u(k; ") is available, then the
current plant input is held.

It is intuitively clear that the (time-varying and nonlinear)
control algorithm which results from combining PPC and
the selection logic has the potential to make the resulting
NCS robust with respect to packet loss. Indeed, as we will
see in Section IV, closed loop stability can be ensured by
appropriate selection of tuning parameters.

D. Relationship to Previous Schemes
The idea of sending sequences rather than individual

values is not new. For example, it has been used in [8],
[11] for the networked control of unconstrained single-input
single-output linear time invariant (LTI) systems, i.e., where

f(x, u) = Ax + Bu, u ∈ R, x ∈ Rn, (16)

via an unconstrained LTI controller.
Also, the authors of [6], [7], [9] consider reference track-

ing for unconstrained LTI systems with a packetized opti-
mization based predictive controller. Here, for zero reference
signal, a quadratic cost function of the form

L(x, u) = xT Qx + uT Ru (17)

is utilized with no terminal constraints, i.e., Xf = X = Rn

and F (·) = 0. Also, particular choices of Q > 0 and R ≥ 0
are used.

The early paper [4] considers reference tracking for a
(prestabilized) general constrained nonlinear system and
proposes the use of a packetized predictive controller with
a quadratic cost function. More recently, in [5], this idea
was applied to the teleoperation of LTI systems affected by
bounded disturbances. Moreover, additional intelligence was
proposed at the actuator side to ensure closed loop stability.

The main focus of the above work has been on demonstrat-
ing experimental performance of packetized controllers for
NCS’s affected by time-delays. Stabilizing properties have
been studied only for given designs, i.e., a posteriori. Indeed,
save for the approach presented in [5], there seem not to exist
simple guidelines for choosing the tuning parameters so as
to ensure closed loop stability of the resulting NCS.

In the following section, we will use tools from the
predictive control framework to show how one can choose
the design parameters in the PPC so as to ensure closed loop
stability.

IV. STABILITY OF PACKETIZED PREDICTIVE NCS’S
WITH ERASURE CHANNELS

Our first observation is that, if there are no data-dropouts,
i.e., if mi = 1, for all i ∈ N, see (15), then u(k) = u(k; k)
and the PPNCS reduces to a standard (i.e, non-networked)
predictive control loop, whose stabilizing properties have
already been characterized in Theorem 1.

We will next analyze the networked situation. For that
purpose, we will assume that the number of consecutive data-
dropouts is uniformly bounded such that mi in (15) satisfies:

mi ≤ mmax, ∀i ∈ N. (18)

Our main result is stated in Theorem 2 given below. It
uses the following technical lemma:



Lemma 1: Suppose that there exists a terminal control law
κf (·) : Xf → U, such that, for all ξ ∈ Xf , conditions (11)–
(13) of Theorem 1 are satisfied. Then, for every m ∈ N and
for every ξ ∈ Xf , the sequence

!v = {v(0), v(1), . . . , v(m− 1)} ∈ Um

defined via:

v(") = κf (ξ(")), " ∈ {0, 1, . . . ,m− 1}, (19)
ξ(" + 1) = f(ξ("), v(")), ξ(0) = ξ (20)

yields:

ξ(") ∈ Xf , ∀" ∈ {1, 2, . . . ,m}, and (21)

Ω(ξ,!v) ! F (ξ(m))− F (ξ(0)) +
m−1∑

!=0

L(ξ("), v(")) ≤ 0.

(22)
Conversely, if, for every m ∈ N and for every ξ ∈ Xf ,

there exists !v ∈ Um which satisfies (19)–(22), then there
exists κf (·) : Xf → U such that conditions (11)–(13) of
Theorem 1 are fulfilled.

Proof: The proof follows using induction.
Theorem 2: Suppose that N in (3) is chosen according to:

N ≥ mmax (23)

and that there exists κf (·) : Xf → U, such that, for all ξ ∈
Xf , conditions (11)–(13) of Theorem 1 are satisfied.

Then, the PPNCS has a fixed point at the origin which
is globally attractive in XN . If, in addition, the origin
belongs to the interior of XN and V "(·) is continuous in a
neighbourhood of the origin, then it is asymptotically stable.

Proof: The proof is included in the appendix.
Thus, we can directly design the PPNCS such that stability

can be ensured, provided that the number of consecutive
packet dropouts is bounded. This stands in contrast to
existing results on packetized predictive NCSs, where closed
loop stability has been studied only for given designs.

Remark 1: One might have expected that the conditions
for stability of PPNCS would be stronger than those needed
for standard non-networked predictive control. However, the
above theorem shows that having a stable non-networked
predictive control loop is generally sufficient to ensure sta-
bility of the associated PPNCS.

Remark 2: It is worth emphasizing that κf (·) in Theo-
rem 2 (as well as in Theorem (1)) can be regarded as a
locally stabilizing control law. A key point here is that it is
not really implemented on the plant. It is simply a construct
needed in the proof of stability.

Remark 3: It would be useful to remove the restriction on
the horizon N , see (23). However dropping this requirement
is not trivial. Indeed, since, during periods of data-loss, the
plant is operated in open-loop, one cannot ensure stability for
unbounded mmax in a general case. One particular exception
corresponds to the case, where there exists κf (·) : Xf → U,
which satisfies (11)–(13) for all ξ ∈ Xf and which can be
computed at the plant input side without explicit knowledge
of the current plant state. Here one can conceive a networked

control scheme, where, if ki+1 > ki + N , the values
κf (x(ki + N + ")), " ≥ 0, are actually implemented at the
plant input. Stability can then be ensured even for unbounded
mi. In particular, if f(·, 0) has a stable equilibrium point at
the origin and Xf lies within its basin of attraction, then one
can simply set κf (ξ) = 0, ∀ξ ∈ Xf .

V. EXAMPLE

Consider a stabilizable LTI plant with convex constraint
sets X and U and a quadratic cost function, i.e.,

f(x, u) = Ax + Bu,

L(x, u) = xT Qx + uT Ru, F (x) = xT Px, P,Q,R > 0.
(24)

To ensure stability of the PPNCS, one can choose:

κf (ξ) = −Kξ, K ! (R + BT PB)−1BT PA,

where P satisfies the algebraic Riccati equation:

P = AT PA + Q−KT (R + BT PB)K. (25)

Inequality (11) now becomes:

ξT
(
(A−BK)T P (A−BK)− P + Q + KT RK

)
ξ ≤ 0,

which, given (25), holds for every ξ ∈ Rn with equality.
If one chooses:

Xf =
{
x ∈ X : K(A−BK)!x ∈ U, ∀" ∈ N0

}

∩
{
x ∈ X : (A−BK)!x ∈ X, ∀" ∈ N0

}
,

then (12) and (13) are also satisfied. Theorem 2 now yields
that, in the PPNCS, the origin is attractive, provided that
N ≥ mmax. The corresponding result for non-networked
predictive control can be found, e.g., in [12], [19], [20].

As an illustration, consider the plant model:

x(k + 1) =
[
1.5357 −1.9171
0.4344 0.4699

]
x(k) +

[
1
1

]
u(k), (26)

where |u(k)| ≤ 0.2. Note that (26) has unstable oscillatory
modes located at 1.2468 e±0.6363j . The network is char-
acterized via the model of Section III-B with parameters
pH = 80%, pL = 0%, pLH = 5% and pHL = 50%.

We use L(x, u) as in (24) and synthesize a PPC with
horizon N = 3, and weighting matrices R = 0.5, Q = I2.
Following Theorem 2, P is chosen as in (25). In addition,
we synthesize a PPC with F (x) = 0, ∀x.

Time-domain simulations were carried out, including zero-
mean Gaussian i.i.d. state measurement noise with covari-
ance matrix 0.08 · I2. The initial plant state was randomly
chosen as x(0) =

[
0.723 0.040

]T and the simulation
length was 1000 samples.

Fig. 2 shows typical trajectories of the plant input and
norm of the state. For comparison purposes, we have also
included trajectories corresponding to the non-networked
case, i.e., when the associated standard predictive controller
(see Section II) is used with an error free (perfect) down-link.
As can be seen in this figure, the PPNCS with stabilizing P
matrix yields performance which is close to that achievable
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Fig. 2. Performance of the PPNCS: ideal non-networked situation (dashed),
with Erasure channel and P = 0 (dash-dotted), and with Erasure channel
and stabilizing P which solves (25) (solid).

if no data-dropouts occur. Indeed, in the present situation, the
sample variance of ‖x(k)‖2 for the PPNCS with stabilizing
P matrix is 0.0851, whilst in the non-networked case it is
0.0796. In contrast, the PPNCS with F (·) = 0 (and also the
associated standard predictive controller) fail to stabilize the
plant over the network model used.

It is interesting to note that our results, namely Theorem 2,
only guarantee closed loop stability in the noise free case and
provided N is larger than the maximum number of consec-
utive data-dropouts. Despite the fact that these conditions
were not satisfied in the simulation2, the PPNCS designed
according to Theorem 2 gave a stable closed loop.

VI. CONCLUSIONS

This paper has established sufficient conditions for stabil-
ity of a packetized predictive controller used with erasure
channels. It has been shown that, provided the number of
consecutive packet losses is bounded, closed loop stability
can be ensured by appropriate choice of tuning parameters.

An example has been given where, although the sufficient
conditions for stability are not satisfied, the packetized net-
worked control scheme is nonetheless stable for tuning pa-
rameters recommended by the results. Thus, the scheme may
have additional robustness properties beyond those studied
here. The latter topic is the subject of current research.

APPENDIX
PROOF OF THEOREM 2

The key element of the proof is to show that the sequence
of optimal value functions at the time instants {ki}, namely
{V "(x(ki))}i∈N constitutes a Lyapunov function for the PP-
NCS. For sake of clarity, we distinguish two cases, namely,
mi ≤ N − 1 and mi = N .

2The maximum number of consecutive dropouts was mmax = 6.

1) mi ≤ N−1: This is equivalent to ki+1 ≤ ki +N−1.3
In the PPNCS, and provided the plant model (1) is exact,
then, beginning at time ki the first mi elements of !u(ki)
are implemented. To be more precise, it follows that the
optimizing sequence at time ki (see (9)) satisfies:

!u(ki) =
{
u(ki), u(ki + 1), . . . , u(ki+1 − 1),

u(ki+1; ki), u(ki+1 + 1; ki) . . . , u(ki + N − 1; ki)
}
,

where, in accordance with (1), u(k) denotes the actual plant
input at time instant k. Similarly,

!x(ki) =
{
x(ki + 1), x(ki + 2), . . . , x(ki+1),

x(ki+1 + 1; ki), x(ki+1 + 2; ki) . . . , x(ki + N ; ki)
}
.

The corresponding optimal value function at time ki is:4

V "(x(ki)) = F (x(ki + N ; ki)) +
ki+1−1∑

!=ki

L(x("), u("))

+L(x(ki+1), u(ki+1; ki))+
ki+N−1∑

!=ki+1+1

L(x("; ki), u("; ki)).

(27)

We next consider ki+1 and the feasible control sequence:

!u# !
{
u(ki+1; ki), u(ki+1 +1; ki), . . . , u(ki +N − 1; ki),

u#(ki + N), u#(ki + N + 1), . . . , u#(ki+1 + N − 1)
}
.

(28)

The first mi elements of !u# are equal to the last elements of
!u(ki). The sequence of remaining elements, i.e.,

!ur ! {u#(ki + N), . . . , u#(ki+1 + N − 1)} ∈ Umi

satisfies (recall the notation in (22)):

Ω(x(ki + N ; ki), !ur) ≤ 0, (29)

where:
x#(" + 1) = f(x#("), u#(")) ∈ Xf ,

" ∈ {ki + N, . . . , ki+1 + N − 1},
x#(ki + N) = x(ki + N ; ki),

but is otherwise arbitrary.5
The cost associated to !u# is given by:

V (x(ki+1), !u#) = F (x#(ki+1 + N))

+ L(x(ki+1), u(ki+1; ki)) +
ki+N−1∑

!=ki+1+1

L(x("; ki), u("; ki))

+L(x(ki+N ; ki), u#(ki+N))+
ki+1+N−1∑

!=ki+N+1

L(x#("), u#(")).

(30)

3Note that, due to (15), this also restricts N ≥ 2.
4In the sequel we use the convention

Pp2
!=p1

g(!) = 0, whenever p2 <
p1 and irrespective of g(·).

5Note that x(ki + N ; ki) ∈ Xf , since it arises from the constrained
minimization at time ki. Thus, existence of "ur is guaranteed by virtue of
Lemma 1; e.g., set "u"(ki + N + !) = κf (x"(ki + N + !)), ∀!.



We note that the incremental costs from " = ki+1 to " =
ki +N − 1 in (30) coincide with the corresponding terms in
V "(x(ki)), see (27). Thus, we can rewrite (30) as:

V (x(ki+1), !u#) = V "(x(ki))−




ki+1−1∑

!=ki

L(x("), u("))





+ Ω(x(ki + N ; ki), !ur). (31)

On the other hand, the candidate !u#, though feasible by
construction, is not necessarily the optimizing sequence at
time ki+1. Thus, V "(x(ki+1)) ≤ V (x(ki+1), !u#) and (31)
leads to:

V "(x(ki+1)) ≤ V "(x(ki))

−




ki+1−1∑

!=ki

L(x("), u("))



 + Ω(x(ki + N ; ki), !ur).

Since (29) holds, we have:

V "(x(ki+1))− V "(x(ki)) ≤ −




ki+1−1∑

!=ki

L(x("), u("))





≤ −




ki+1−1∑

!=ki

α (‖x(")‖)



 ≤ 0, ∀i ∈ N,

where we have used (8) and (29). Since V "(x(ki)) ≥ 0 for
all i, the sequence {V "(x(ki))}i∈N is convergent and

lim
i→∞

ki+1−1∑

!=ki

α (‖x(")‖) = 0 =⇒ lim
k→∞

α (‖x(k)‖) = 0,

from where attractiveness of the origin follows. Asymptotic
stability of the origin can be proved mirroring the method
described in Chapter 4 of [12].

2) mi = N : Here, ki+1 = ki+N and the sequences !u(ki)
and !x(ki) contain only plant inputs and states, respectively.
Furthermore, we have:

V "(x(ki)) = F (x(ki + N)) +
ki+N−1∑

!=ki

L(x("), u(")).

Similarly to the previous case, we consider a sequence:

!u# !
{
u#(ki+1), u#(ki+1+1), . . . , u#(ki+1+N−1)

}
∈ UN ,

which satisfies Ω(x(ki+1), u#) ≤ 0, and provides

!x# !
{
x#(ki+1 + 1), x#(ki+1 + 2), . . . , x#(ki+1 + N)

}
,

where:
x#(" + 1) = f(x#("), u#(")) ∈ Xf ,

" ∈ {ki+1, . . . , ki+1 + N − 1},
x#(ki+1) = x(ki+1).

Direct calculation now gives:

V (x(ki+1), !u#) = F (x#(ki+1+N))+L(x(ki+1), u#(ki+1))

+
ki+1+N−1∑

!=ki+1+1

L(x#("), u#(")).

As before, V (x(ki+1), !u#) is related to V "(x(ki)). Indeed,
ki + N = ki+1 and, therefore:

V (x(ki+1), !u#) = V "(x(ki))

−
(

ki+N−1∑

!=ki

L(x("), u("))

)
+ Ω(x(ki+1), u#).

The remainder of the proof now follows as in the previous
case.
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