
PacketScore: A Statistics-Based Packet
Filtering Scheme against Distributed

Denial-of-Service Attacks
Yoohwan Kim, Member, IEEE, Wing Cheong Lau, Senior Member, IEEE,

Mooi Choo Chuah, Senior Member, IEEE, and H. Jonathan Chao, Fellow, IEEE

Abstract—Distributed Denial-of-Service (DDoS) attacks are a critical threat to the Internet. This paper introduces a DDoS defense

scheme that supports automated online attack characterizations and accurate attack packet discarding based on statistical processing.

The key idea is to prioritize a packet based on a score which estimates its legitimacy given the attribute values it carries. Once the

score of a packet is computed, this scheme performs score-based selective packet discarding where the dropping threshold is

dynamically adjusted based on the score distribution of recent incoming packets and the current level of system overload. This paper

describes the design and evaluation of automated attack characterizations, selective packet discarding, and an overload control

process. Special considerations are made to ensure that the scheme is amenable to high-speed hardware implementation through

scorebook generation and pipeline processing. A simulation study indicates that PacketScore is very effective in blocking several

different attack types under many different conditions.

Index Terms—Network level security and protection, performance evaluation, traffic analysis, network monitoring, security,

simulation.

�

1 BACKGROUND

ONE of the major threats to cyber security is Distributed
Denial-of-Service (DDoS) attacks in which victim

networks are bombarded with a high volume of attack
packets originating from a large number of machines. The
aim of such attacks is to overload the victim with a flood of
packets and render it incapable of performing normal
services for legitimate users. In a typical three-tier DDoS
attack, the attacker first compromises relay hosts called
agents, which in turn compromise attack machines called
zombies that transmit attack packets to the victim. Packets
sent from zombie machines may have spoofed source
IP addresses to make tracing difficult [25].

DDoS attacks can be launched by unsophisticated casual
attackers using widely available DDoS attack tools such as
trinoo, TFN2K, Stachedraht, etc. Since an attack in February
2000 [9] that targeted several high profile Web sites,
including Yahoo, CNN, eBay, etc., the frequency and
magnitude of DDoS attacks has been increasing rapidly,
making it a growing concern in our Internet-dependent

society. According to a 2003 CSI/FBI Computer Crime and
Security Survey [6], 42 percent of respondents of the survey
had suffered from DDoS attacks, 28 percent reported
financial losses due to DDoS attacks, and the average losses
due to DDoS attacks had increased 4.8 times since the year
2002. Recently, the FBI listed a suspect in the Most Wanted
list for the charge of launching a DDoS attack against a
competitor’s Web site [7].

The DDoS problem has attracted much attention from
the research community recently. In our observation, there
are three major branches of research in DDoS, namely,
1) attack detection, e.g., by monitoring protocol behavior
[30], 2) attack traceback, e.g., by packet marking [29], and
3) attack traffic filtering as described below more in detail.
The PacketScore scheme discussed in this paper belongs to
group 3) attack traffic filtering. Research in attack traffic
filtering can be roughly categorized into three areas based
on the point of protection:

. Source-initiated: Source sites are responsible for
guaranteeing that outgoing packets are attack-free.
Examples include network ingress filters [8], dis-
abling ICMP, or removing unused services to
prevent computers from becoming attack agents, or
filtering unusual traffic from the source [24]. How-
ever, the viability of these approaches hinges on
voluntary cooperation among a majority of ingress
network administrators Internet-wide, making these
approaches rather impractical given the scale and
uncontrollability of the Internet.

. Path-based: In this approach, only the packets
following the correct paths are allowed [15]. Any
packet with a wrong source IP for a particular router
port is considered a spoofed packet and dropped,
which eliminates up to 88 percent of the spoofed

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2006 1

. Y. Kim is with the School of Computer Science, University of Nevada, Las
Vegas, 4505 Maryland Parkway, Box 4019, Las Vegas, NV 89154.
E-mail: yoohwan@cs.unlv.edu.

. W.C. Lau is with the Department of Information Engineering, The Chinese
University of Hong Kong, Shatin, N.T., Hong Kong.
E-mail: wclau@ie.cuhk.edu.hk.

. M.C. Chuah is with the Department of Computer Science and Engineering,
Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015.
E-mail: chuah@cse.lehigh.edu.

. H.J. Chao is with the Department of Electrical and Computer Engineering,
Polytechnic Univerisity, 6 MetroTech Center, Brooklyn, NY 11201.
E-mail: chao@poly.edu.

Manuscript received 15 Apr. 2005; revised 17 Jan. 2006; accepted 15 Feb.
2006; published online 4 May 2006.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0048-0405.

1545-5971/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

packets [4], [28]. In another approach [11], if the
number of traveled hops is wrong for a source IP, the
packet is dropped, thereby eliminating up to
90 percent of the spoofed packets. These approaches
are considered practical, but they have a somewhat
high probability of false negatives, i.e., falsely
accepting attack packets. Apparently, when packets
use unspoofed addresses, which is an emerging
trend, none of these approaches works.

. Victim-initiated: The victim can initiate counter-
measures to reduce incoming traffic. For example, in
the pushback scheme [10], the victim starts reducing
excessive incoming traffic and requests the upstream
routers to perform rate reduction as well. There are
other methods based on an overlay network [14],
packet marking [18], [31], TCP flow filtering [17], [33]
and statistical processing [19], [20], etc. Although
victim-initiated protections are more desirable, some
methods require changes in Internet protocols or are
too expensive to implement.

The industry is adopting more practical approaches,
1) overprovisioning and 2) distributed access points [1].
However, both methods are not only expensive, but have
also proven to be vulnerable in recent attacks. More
commonly, ISPs rely on manual detection and blocking of
DDoS attacks. Once an attack is reported, an offline fine-
grain traffic analysis is performed by a subject-matter
expert to identify and characterize the attack packets. New
filtering rules on access control lists are then constructed
and installed manually on the routers. But, the need for
human intervention results in poor response time and fails
to protect the victim before severe damages are realized.
Furthermore, the expressiveness of existing rule-based
filtering is too limited, as it requires an explicit specification
of all types of packets to be discarded.

The PacketScore scheme has been proposed recently by
the authors of this paper [3], [19]. One of the key concepts in
PacketScore is the notion of “Conditional Legitimate
Probability” (CLP) based on Bayesian theorem. CLP
indicates the likelihood of a packet being legitimate by
comparing its attribute values with the values in the
baseline profile. Packets are selectively discarded by
comparing the CLP of each packet with a dynamic thresh-
old. The concept of using a baseline profile with Bayesian
theorem has been used previously in anomaly-based IDS
(Intrusion Detection System) applications [22], where the
goals are generally attack detection rather than real-time
packet filtering. In this research, we extend the basic
concept to a practical real-time packet filtering scheme
using elaborate processes. In this paper, we describe the
PacketScore operations for single-point protection, but the
fundamental concept can be extended to a distributed
implementation for core-routers.

The rest of this paper is organized as follows: In Section 2,
we describe the concept of Conditional Legitimate Prob-
ability (CLP). In Section 3, we focus on the profiling of
legitimate traffic characteristics. In Section 4, score assign-
ment to packets, selective discarding, and overload control
are described. In Section 5, an integrated process combining
Sections 2, 3, and 4 is described. In Section 6, we evaluate
the performance of the standalone packet filtering scheme.
Section 7 addresses some of the important issues related to
the PacketScore scheme. The paper concludes in Section 8
with the direction of future investigation.

2 CONDITIONAL LEGITIMATE PROBABILITY

The most challenging issue in blocking DDoS attacks is to

distinguish attack packets from legitimate ones. To resolve

this problem, we utilize the concept of Conditional Legitimate

Probability (CLP) for identifying attack packets probabilis-

tically. CLP is produced by comparing traffic characteristics

during the attack with previously measured, legitimate

traffic characteristics. The viability of this approach is based

on the premise that there are some traffic characteristics that

are inherently stable during normal network operations of a

target network.
We named this scheme PacketScore because CLP can be

viewed as a score which estimates the legitimacy of a

suspicious packet. We will use the terms CLP and score

interchangeably. By taking a score-based filtering approach,

the prioritization of different types of suspicious packets is

possible and we can avoid the problems of conventional

binary rule-based filtering discussed in Section 1. The

ability to prioritize becomes even more important when a

full characterization of attack packets is not feasible. By

dynamically adjusting the cutoff score according to the

available traffic capacity of the victim, our approach allows

the victim system to accept more potentially legitimate

traffic. In contrast, once a rule-based filtering scheme is

configured to discard specific types of packets, it does so

regardless of the victim network’s available capacity.
To formalize the concept of CLP, we consider all the

packets destined for a DDoS attack target. Each packet

would carry a set of discrete-value attributes A;B;C;

For example, A might be the protocol type, B might be the

packet size, C might be the TTL values, etc. We defined

fa1; a2; a3; . . .g as the possible values for attribute A,

fb1; b2; b3; . . .g as the possible values for attribute B, and so

on. During an attack, there are Nn legitimate packets and

Na attack packets arriving in T seconds, totaling Nm.

Nm ¼ Nn þNa;

ðm for measured; n for normal; and a for attackÞ:

We define CnðA ¼ aiÞ as the number of legitimate packets

with attribute value ai for attribute A. Therefore,

Nn ¼ CnðA ¼ a1Þ þ CnðA ¼ a2Þ þ . . .þ CnðA ¼ aiÞ þ . . .

¼ CnðB ¼ b1Þ þ CnðB ¼ b2Þ þ . . .þ CnðB ¼ biÞ þ . . .

. . . :

Likewise,

Nm ¼ CmðA ¼ a1Þ þ CmðA ¼ a2Þ þ . . .þ CmðA ¼ aiÞ þ . . .

¼ CmðB ¼ b1Þ þ CmðB ¼ b2Þ þ . . .þ CmðB ¼ biÞ þ . . .

. . .

Na ¼ CaðA ¼ a1Þ þ CaðA ¼ a2Þ þ . . .þ CaðA ¼ aiÞ þ . . .

¼ CaðB ¼ b1Þ þ CaðB ¼ b2Þ þ . . .þ CaðB ¼ biÞ þ . . .

. . .

Pn, the ratio or the probability of attribute values among

the legitimate packets, is defined as follows:

2 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2006

PnðA ¼ aiÞ ¼ CnðA ¼ aiÞ=Nn; where i ¼ 1; 2; . . .

X

i

PnðA ¼ aiÞ ¼ 1

 !

PnðB ¼ biÞ ¼ CnðB ¼ biÞ=Nn; where i ¼ 1; 2 . . .

X

i

PnðB ¼ biÞ ¼ 1

 !

. . . :

Similarly, PaðA ¼ aiÞ and PmðA ¼ aiÞ are defined as

follows:

PaðA ¼ aiÞ ¼ CaðA ¼ aiÞ=Na;

PaðB ¼ biÞ ¼ CaðB ¼ biÞ=Na; . . .

PmðA ¼ aiÞ ¼ CmðA ¼ aiÞ=Nm;

PmðB ¼ biÞ ¼ CmðB ¼ biÞ=Nm; . . . :

Joint probability of multiple attributes is defined as:

PnðA ¼ ai; B ¼ bj; . . .Þ ¼ CnðA ¼ ai; B ¼ bj; . . .Þ=Nn

PaðA ¼ ai; B ¼ bj; . . .Þ ¼ CaðA ¼ ai; B ¼ bj; . . .Þ=Na

PmðA ¼ ai; B ¼ bj; . . .Þ ¼ CmðA ¼ ai; B ¼ bj; . . .Þ=Nm:

The Conditional Legitimate Probability (CLP) is defined

as the probability of a packet being legitimate given its

attributes:

CLP ðpacket pÞCLP ðpacket pÞ ¼ P ðpacket p is legitimate j p0s attributeP ðpacket p is legitimate j p0s attribute

A ¼ ap; attribute B ¼ bp . . .A ¼ ap; attribute B ¼ bp . . .Þ:

According to Bayes’ theorem, the conditional probability of

an event E to occur given an event F is defined as:

P ðEjF Þ ¼
P ðE \ F Þ

P ðF Þ
:

Therefore, CLP can be rewritten as follows:

CLP ðpÞ ¼
P ððp ¼ legitimateÞ \ ðA ¼ ap; B ¼ bp; . . .ÞÞ

P ðA ¼ ap; B ¼ bp; . . .Þ

¼
Nn � PnðA ¼ ap; B ¼ bp; . . .Þ=Nm

Nm � PmðA ¼ ap; B ¼ bp; . . .Þ=Nm

¼
Nn � PnðA ¼ ap; B ¼ bp; . . .Þ

Nm � PmðA ¼ ap; B ¼ bp; . . .Þ
:

ð1Þ

If the attributes are independent,

P ðA ¼ ap; B ¼ bp; . . .Þ ¼ P ðA ¼ apÞ � P ðB ¼ bpÞ � . . . ;

then (1) can be further rewritten as:

CLP ðpÞ ¼
Nn � PnðA ¼ apÞ � PnðB ¼ bpÞ � . . .

Nm � PmðA ¼ apÞ � PmðB ¼ bpÞ � . . .
: ð2Þ

One of the terms in (2), e.g., PnðA ¼ apÞ=PmðA ¼ apÞ is
called a partial score. If the percentage of an attribute value
ap is the same in both attack traffic and legitimate traffic,
then PmðA ¼ apÞ ¼ PnðA ¼ apÞ and the partial score is 1.
However, if ap is found more frequent in legitimate traffic
than in attack traffic, then PmðA ¼ apÞ < PnðA ¼ apÞ, result-
ing in a partial score greater than 1. On the other hand, if ap
appears more frequently in attack traffic than in the
legitimate traffic, the partial score becomes less than 1. It

is known that some IP header fields are not evenly
distributed over all possible values; rather a unique
distribution pattern exists for a site [12], [21], [23]. If
attackers do not know the attribute value distribution in
legitimate traffic, they are likely to generate random or
wrongly guessed attribute values, which makes most of the
attack packets to have smaller scores than legitimate
packets’ scores.

In converting (1) into (2), it is assumed that the attributes
are independent. However, some packet attributes are not
independent. For example, being a TCP packet implies an
80-90 percent chance of having port 80, rather than a 1/
65,536 chance. While we leave the investigation on the
independence assumption as a future work, it seems to
work in practice because the CLP (p) in (2) is still a good
metric for packet prioritization. A large portion of DDoS
attack packets get lower CLPs because Pm becomes larger
than Pn for the dominant attribute values in the attack. As
long as we can assign lower scores to the majority of attack
packets, the assumption of independence is not essential to
PacketScore operation.

3 ESTIMATING LEGITIMATE TRAFFIC DISTRIBUTION

Equation (2) shows that we can calculate the probability of a
packet’s legitimacy by observing the probabilities of the
attribute values in legitimate traffic ðPnÞ and in total traffic
ðPmÞ. However, it is practically impossible to know how
many packets are legitimate during the attack period, let
alone the number of legitimate packets bearing a particular
attribute value. For that reason, we utilize an estimate P 0

n in
place of true Pn. The estimate P 0

n is called a nominal profile
and is collected in advance during normal operations.

A nominal traffic profile consists of single and joint
distributions of various packet attributes that are considered
unique for a site. Candidate packet attributes from IP headers
are:

1. packet size,
2. Time-to-Live (TTL) values,
3. protocol-type values, and
4. source IP prefixes.

Those from TCP headers are:

5. TCP flag patterns and
6. server port numbers, i.e., the smaller of the source

port number and the destination port number.

Server port number is more stable than sort/destination
port numbers because most of the well-known port
numbers are small numbers (e.g., below 1,024) and a large
portion of Internet traffic uses the well-known port
numbers. To increase the number of attributes, we can
employ joint distributions of the fraction of packets having
various combinations, such as:

7. <packet-size and protocol-type>,
8. <server port number and protocol-type>, and
9. <source IP prefix, TCP flags and packet size>, etc.

Joint distributions often better represent the uniqueness of
the traffic distribution for a site, and are harder to guess for
the attackers. As many different combinations of single
attributes as needed may be used while the storage space
permits.

KIM ET AL.: PACKETSCORE: A STATISTICS-BASED PACKET FILTERING SCHEME AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS 3

During the nominal profiling period, the number of
packets with each attribute value is counted and the
corresponding ratio is calculated. However, if the profile
is created only once during the profiling period, temporally
localized traffic characteristics may be misrepresented. To
avoid it, the profiling period is broken into subperiods, then
the ratios are measured for each subperiod, and one value
representing all the subperiods is selected. The principle of
PacketScore is to punish the traffic whose attribute value
ratio is higher than in profile. Therefore, to accommodate an
occasional surge of particular attribute values in legitimate
traffic, the highest ratio among the periodic ratios is
selected. This strategy has little impact on blocking attack
traffic while giving the legitimate traffic a safety margin.
Table 1 illustrates this process with an example of TTL
values. The boldface values are the highest ratios observed
among the periodic values, which are then stored in the
profile. If the variance among the periodic ratios is too great
to be reliable, it is possible to include only those attribute
values with low variance to have a more stable profile.

3.1 Profile Structure

Due to the number of attributes to be incorporated in the
profile and the large number of possible attribute values of
each attribute, especially for the joint attributes, an efficient
data structure is required to implement the profile. For
example, the attribute values for TTL are 0; 1; 2; . . . 255, thus
there are 256 possible attribute values. Each attribute value
has a ratio in the profile as illustrated in Table 1 (e.g.,
1.1 percent for TTL value 1). To reduce the storage space, we
use iceberg-styleprofiles [2], inwhich only themost frequently
occurring attribute values are stored along with their ratio.

Two approaches are possible for selecting the icebergs,
i.e., by static threshold and by adaptive threshold. In the
static threshold approach, the profile only includes those
attribute values which appear more frequently than a preset
threshold ratio, say x percent. For the attribute values which
are absent from the iceberg-style profiles, we use the upper
bound (x percent) as their ratios. For example with Table 1, if
the preset threshold is 1 percent, TTL value 2 is removed
from the profile, and TTL value 2 is considered to have
1 percent share in the traffic during the scoring process
later. In the adaptive threshold approach, the most
frequently appearing attribute values that constitute a
preset coverage of the traffic, e.g., 95 percent, are selected.
The corresponding cutoff threshold y percent for the given

coverage serves as the adaptive threshold, which is also
used as the default ratio for the absent items. With such
iceberg-style profiles, the nominal profile can be kept to a
manageable size. Joint attributes experience an additional
problem of combinatorial explosion, so buckets of preset
ranges are used instead of the tuples of raw attribute values.

Typical storage requirements for storing six single
attributes and two joint attributes are shown in Table 2 for
different threshold methods. For the static threshold, we
used 0.01, 0.001, and 0.0001, respectively, for single attribute,
two-dimensional and three-dimensional joint attributes.
Although the static threshold method produces the most
space-efficient profiles, adaptive thresholds are considered
more robust against wide variations in traffic trace.

The iceberg-based profile is similar to [5] where its
unidimensional cluster and multidimensional clusters are
comparable to our single attributes and joint attributes,
respectively. However, the approaches and purposes are
different. While [5] provides valuable information for the
network administrator by identifying the dominant traffic
type in any combination of attributes within the current
traffic, our goal is to take a comprehensive snapshot of the
traffic for future reference. The iceberg approach is merely
used to reduce the storage requirement rather than traffic
aggregation. Since the profiling in PacketScore is based on
packet counting and does not require aggregation, it can be
done very rapidly, i.e., in a matter of seconds as opposed to
minutes [5] for similar size trace data.

3.2 Traffic Profile Stability

PacketScore depends on the stability of the traffic profile for
estimating Pn. It has been known that for a given subnet,
there is a distinct traffic pattern in terms of packet attribute
value distribution for a given time and/or given day [12],
[21], [23]. In general, the nominal traffic profile is believed
to be a function of time which exhibits periodic, time-of-
day, and day-of-the-week variations as well as long-term
trend changes.

To further verify traffic profile stability, we conducted an
analysis with the packet trace data available from NLANR
packet trace archives [26]. All trace data were collected for
90 seconds from 17 sites within the US with the link speed
ranging from OC-3 to OC-48. We randomly selected the
four sites in Table 3 and total of 49 trace files were
downloaded for analysis.

Table 4 shows general statistics for 10 selected traces.

4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2006

TABLE 1
An Example of a Nominal Profile

TABLE 2
Profile Storage Requirements for Different Iceberg Selection Methods

A quick examination of Table 4 revealed that each site
had a distinct traffic composition. Especially, we observed
that the traffic in AIX is mostly GRE rather than TCP or
UDP. For each trace, a profile was created using a 99 percent
adaptive coverage method over a series of 10-second
windows. We employed a joint attribute composed of three
attributes (Protocol type, server port, and packet size)
because joint attributes are believed more unique per site
than single attributes. For an objective comparison of two
profiles, we defined the stability metric S as follows:

S ¼ C �D:

C indicates how many items are common to both profiles:

C ¼
ðnumber of common items in both profiles ¼ nÞ

ðnumber of total items in both profilesÞ
:

D indicates how closely these common items are related.
For example, the two profiles may have 3 percent versus
1.7 percent, or 3.2 percent versus 2.9 percent for a given
attribute value. Obviously, the latter shows a stronger
resemblance. For an item i that is in both profiles, the
comparison ratio is defined as the smaller ðRsmallðiÞÞ of two
values divided by the larger ðRlargeðiÞÞ of two values. D is
defined as the average of the comparison ratios. When the
comparison ratio is too small, e.g., below 0.01, we may
consider it 0.

D ¼

Pn
i¼1

RsmallðiÞ

Rl arg eðiÞ

n
:

S varies between 0 and 1, from no stability to perfect
stability. When two profiles are exactly the same (C ¼ 1 and
D ¼ 1), S ¼ 1. When there are no common items (C ¼ 0) or
the comparison ratios are zero for all of the common items

(D ¼ 0), S becomes zero. For a better comparison of the
stability at low S values, we define SL as a log version of S:

SL ¼ log10 10C � log10 10D; SL ¼ 0; if C � 0:1 or D � 0:1:

For stability analysis, one reference profile was com-
pared with other profiles and the SL value is calculated.
The selected reference profile is from the MEM trace of
Tuesday, 27 September 2005, 8:49 a.m. We investigated the
following questions:

1. Are the profiles similar for the 10-second windows
within a 90-second trace?

2. Are the profiles similar between mornings and
evenings at the same site?

3. Are the profiles similar over multiple weeks at the
same time of a specific day? (e.g., 8:00 p.m. every
Tuesday)

4. Are the profiles different at different sites at the
same date and time?

The analysis results are shown in Fig. 1. In Fig. 1a, the
profile of the first 10-second window was compared with
other 10-second window profiles. It indicates that there is
strong correlation among the 10-second windows, thus
validating the SLmetric. Note that the absolute value of the
SL metric is not very useful by itself as its main purpose is
for comparison. For example, we can understand that the
stability within one trace in Fig. 1a is stronger than the
stability for multiple days in Fig. 1c.

Fig. 1b compared seven profiles from 26 September 2005
to 2 October 2005 at approximately 9:00 a.m. (morning) and
8:00 p.m. (evening) each day. It indicates that there is
moderate correlation among the daily profiles, although
weaker than within the same trace. It should be noted that
when the Tuesday profile is compared with itself, the
SL ¼ 1. It also shows that there is a higher correlation for

KIM ET AL.: PACKETSCORE: A STATISTICS-BASED PACKET FILTERING SCHEME AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS 5

TABLE 3
Trace Data Sites from NLANR

TABLE 4
Statistics of Some Download Traces

the same time of day (approximately 9:00 a.m.) than at a
different time of day (approximately 8:00 p.m.). Fig. 1c
compared the profiles for seven Tuesdays at the same time
of day (approximately 9:00AM) from 23 August 2005 to
11 October 2005. Although it spans seven weeks, it still
shows a similar correlation to the short-term profiles of 9:00
a.m. as in Fig. 1a. These seven Tuesday morning profiles are
slightly closer than the evening profiles in Fig. 1b. However,
in Fig. 1d, when compared with other sites, the SL is much
lower, showing a much weaker correlation.

In summary, we observe that traffic profiles are most
similar among the traffic at the same day at the same time,
even over multiple weeks. A traffic profile is still very
similar for a different time or day within a site, although
stability is slightly lower than the same time of day. On the
other hand, there are considerable differences among
different sites, so it is necessary to keep separate profiles
for each site. By tracking S, we can determine the stability of
the profiles for different times or days and can also decide
how many profiles are needed. Unless there is a significant
difference between profiles, we may use one uniform
profile to minimize the maintenance effort. In the above
example of Fig. 1b, the morning and evening profiles are
quite similar, so it will be unnecessary to keep two profiles.
A site administrator may use a guideline such as “Keep a
single merged profile if the S values from two profiles are
within x percent for every data point.” The result in this
section provides a good intuition on profile stability, but it
is by no means comprehensive. A more exhaustive analysis
will be left as a future study.

4 SCORING PACKETS

4.1 Log-Version CLP

To make it more suitable for real-time processing, we can
convert floating-point division/multiplication operations

into subtraction/addition operations. By using the logarith-
mic version of (2) as shown below:

log½CLP ðpÞ� ¼

½logðPnðA ¼ apÞÞ � logðPmðA ¼ apÞÞ�þ
½logðPnðB ¼ bpÞÞ � logðPmðB ¼ bpÞÞ�þ
½logðPnðC ¼ cpÞÞ � logðPmðC ¼ cpÞÞ�þ
. . .

8

>

>

<

>

>

:

9

>

>

=

>

>

;

;

ð3Þ

we can construct a scorebook for each attribute that maps
different values of the attribute to a specific partial score.
For instance, the partial score of a packet with attribute A
equal to ap is given by ½logðPnðA ¼ apÞÞ � logðPmðA ¼ apÞÞ�.
Then, we can sum up the partial scores of different
attributes to yield the logarithm of the overall score of the
packet. Since Nn=Nm in (2) is constant for all packets within
the same observation period, it can be ignored when
comparing and prioritizing packets based on their CLP
values. The nominal profile P 0

n is established in advance
and used instead of the true Pn. During the attack period,
the same form of traffic profile is collected to make Pm, and
those two profiles are combined to create a CLP score table.
Table 5 gives an example of such a scorebook for one
attribute. When a value is not stored because it is under the
iceberg threshold, the threshold value is used instead.

Scoring a packet is equivalent to looking up the score-
books, e.g., the TTL scorebook, the packet size scorebook,
the protocol type scorebook, etc. After looking up the
multiple scorebooks, we add up the matching CLP entries
in a log-version scorebook. This is generally faster than
multiplying the matching entries in a regular scorebook.
The small speed improvement from converting a multi-
plication operation into an addition operation is particularly
useful because every single packet must be scored in real-
time. This speed improvement becomes more beneficial as
the number of scorebooks increases. On the other hand,

6 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2006

Fig. 1. Traffic profile stability comparisons. (a) Consecutive 10-second windows. (b) Seven consecutive days in a week. (c) Seven consecutive

Tuesdays. (d) Four different sites for seven consecutive days in a week.

generating a log-version scorebook may take longer than a
regular scorebook generation. However, the scorebook is
generated only once at the end of each period and it is not
necessary to observe every packet for scorebook generation;
thus, some processing delay can be allowed. Furthermore,
scorebook generation can be easily parallelized using two
processing lines, which allows complete sampling without
missing a packet.

4.2 Decoupling the Profile Update and Scoring

According to (3) the current packet attribute distributions
(Pm) have to be updated constantly whenever a packet
arrives. To make wire-speed per-packet score computation
possible, we decoupled the updating of packet attribute
distribution from that of score computation to allow them to
be conducted in parallel, but at different time periods. With
such decoupling, the score computation is based on a
snapshot of recently measured histograms. To be more
specific, a frozen set of recent profiles at time period T1 is
used to generate a set of scorebookswhich is used to score the
packets arriving at the next time period, T2. Packets arriving
at T2 also generate a new profile and scorebook to be used
for time period T3. The time-scale of period Ti is longer than
the per-packet arrival time-scale. It can be configured to a
fixed length or until the detection of a significant change in
the measured traffic profile.

This decoupling introduces a small challenge in catching
up with attack profile change. In most cases, the traffic
characteristics in adjacent periods are very similar, but
during a rapidly changing attack, this assumption may be
inaccurate. As a result, the scorebook at Ti does not
represent the true scorebook at Tiþ1, and the PacketScore
performance degrades. This can be resolved easily by
reducing the time-scale of Ti or by using a packet number-
based period instead of a time-based one. We will discuss
this in detail in Section 6.7.

4.3 Selective Packet Discarding

Once the score is computed for a packet, selective packet
discarding, and overload control can be performed using
the score as the differentiating metric. Since an exact
prioritization would require offline, multiple-pass opera-
tions, e.g., sorting and packet buffering, we take the
following alternative approach. First, we maintain the
cumulative distribution function (CDF) of the scores of all
incoming packets in time period Ti. Second, we calculate the
cut-off threshold score Thd as follows which is illustrated
in Fig. 2.

. Total current incoming traffic at period Ti ¼ i,

. Acceptable traffic at period Ti ¼ �i,

. The fraction of traffic permitted to pass =
1� �i ¼ �i= i, and

. The Thdiþ1 that satisfies CDF ðThdiþ1Þ ¼ �i.

Third, we discard the arriving packets in time period
Tiþ1 if its score value is below the cut-off threshold Thdiþ1.
At the same time, the packets arriving at Tiþ1 create a new
CDF, and a new Thdiþ2 is calculated for Tiþ2.

5 THE INTEGRATED PROCESS

Fig. 3 depicts the integrated operation between CLP
computation and the determination of a dynamic discard-
ing threshold for CLP. A load-shedding algorithm, such as
the one described in [13], is used to determine the amount
(�) of suspicious traffic arriving that needs to be discarded
in order to keep the utilization of the victim below a target
value. Typical inputs to a load-shedding algorithm include
current utilization of the victim, maximum (target) utiliza-
tion allowed for the victim, and the current aggregated
arrival rate of suspicious traffic. Once the required packet-
discarding percentage (�) is determined, the corresponding
CLP discarding threshold, ThdThd, is determined from a recent
snapshot of the CDF of the CLP values. The snapshot is
updated periodically or upon significant changes in the
packet score distribution. The adjustment of the CLP
discarding threshold is done on a time-scale which is
considerably longer than the packet arrival time-scale.

The entire PacketScore process can be best performed in
a pipelined approach as discussed in Section 4.2 in which
time is divided into fixed intervals, and each operation is
performed based on the snapshot of the previous period.
Specifically, the following three operations are performed in
pipeline when a packet arrives:

1. Incoming packet profiling:

. Packets are observed to update Pm.

KIM ET AL.: PACKETSCORE: A STATISTICS-BASED PACKET FILTERING SCHEME AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS 7

TABLE 5
An Example of a Partial Scorebook for One Attribute (e.g., TTL)

Fig. 2. Selective packet discarding.

. At the end of the period, P 0
n=Pm is calculated

and scorebooks are generated.
2. Scoring:

. The packets are scored according to the most
recent scorebooks.

. At the end of the period, CDF is generated and
the cut-off threshold is calculated.

3. Discarding:

. The packets are scored according to the most
recent scorebooks.

. The packet is discarded if its score is below the
cut-off threshold score.

It is also important to reemphasize that, while CLP-
computation is always performed for each incoming packet,
selective packet discarding is only performed when the
system is operating beyond its safe (target) utilization level.
Otherwise, it will set � to zero.

5.1 Illustrative Example of a Defense against a SQL
Slammer Worm Attack

In an example of how a DDoS attack can be stopped by the
PacketScore scheme, Fig. 4 shows the selective discarding of
packets generated by the recent SQL Slammer attack (also
known as the Sapphire Worm). The attack is comprised of
UDP packets with a destination of port number 1434 and a
packet size ranging from 371 to 400 bytes. In Fig. 4, each
profile contains three iceberg-style histograms, that is, for
port number, protocol type, and packet size.

During the attack, there is a surge of UDP packets
with a destination port number 1434. As the fraction of
packets having this destination exceeds the preset iceberg

threshold (3 percent in this example) during the attack,
port 1434 is recorded in the attack profile. On the other
hand, this port number does not appear in the nominal
profile because 1434 is not a frequently appearing port
number. In the scorebook for the destination port number
attribute, the partial score for destination port number
1434 is given by ½logð0:03Þ � logð0:4Þ� ¼ �1:12, where the
iceberg threshold, 3 percent, i.e., 0.03, is used as a default
ratio for noniceberg items. Similarly, the partial scores of
a worm packet for the protocol-type and packet-size
attributes are given by ½logð0:1Þ � logð0:5Þ� ¼ �0:7, and
½logð0:05Þ � logð0:4Þ� ¼ �0:9, respectively. Therefore, the
score of a worm packet is given by

� ð1:12þ 0:7þ 0:9Þ ¼ �2:72:

In comparison, the score of a legitimate 1,500-byte TCP

packet carrying HTTP traffic destined for port 80 is given by

f½logð0:45Þ � logð0:25Þ� þ ½logð0:85Þ � logð0:45Þ�þ

½logð0:3Þ � logð0:2Þ�g ¼ ð0:26þ 0:28þ 0:18Þ ¼ þ0:72:

Assuming the cut-off threshold (Thd) is +0.5, all the worm

packets will be discarded because the score of the worm

packets is smaller than Thd. The legitimate 1,500-byte TCP

packets carrying HTTP traffic, however, are allowed to pass

through as their score is higher than Thd.

6 PERFORMANCE EVALUATION

We evaluated the performance of the PacketScore scheme

via simulation. The simulation programs were written in

C++. The profiler program that generated the nominal

8 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2006

Fig. 3. Packet differentiation and overload control.

profile from the packet trace consumed about 1.5 MB of
memory space. For each 10-second window comprising
about 50,000 packets, the program executed for approxi-
mately 0.5 seconds on a 1.5 GHz Intel Pentium PC. The
PacketScore filtering program read the nominal profile and
packet traces, generated the attack packets, created score-
books, and selected the packets to drop. It consumed about
40MB of memory space, and executed for approximately
0.5 seconds for each 1-second window comprising 5,000 le-
gitimate and 150,000 attack packets. This amount of traffic
was roughly equivalent to 1-2 Gbps speed. We believe that
execution time and memory requirements can be greatly
improved by optimization and hardware support.

6.1 Simulation Conditions

6.1.1 Trace Data and Profiles

All trace data was from the NLANR archives as described
in Section 3.2. The reference profile was obtained from
seven days at the MEM site between Monday, 26 September
2005, and Sunday, 2 October 2005, collected at approxi-
mately 9:00 a.m. The average pps rate (packets per second)
ranged from 861 pps to 3,618 pps and the bandwidth ranges
from 2.7 Mbps to 21.6 Mbps. Except in Section 6.5, the
Tuesday, 27 September 2005, 9:00 a.m. packet trace was
used for the legitimate packet input.

The profile was created from multiple 10-second
windows using a 99 percent coverage adaptive threshold
as described in Section 3.1. Due to IP address sanitization,
the source and destination addresses were not available.
The profiles included two single attributes (TTL, TCP flags)
and one joint attribute (protocol type + server port + packet

size). The server port was the smaller of source and

destination port numbers. For non-TCP packets, TCP flag

was not used for scoring.

6.1.2 Different Attack Types

We tested PacketScore for the following types of attacks:

. Generic attack: All attribute values of the attack
packets were uniformly randomized over their
corresponding allowable ranges.

. TCP-SYN Flood attack: All attack packets had a TCP
SYN flag set, the size was fixed to 40, and other
values were randomized.

. SQL Slammer Worm attack: Attack packets were
UDP packets sent to port 1434 with a packet size
between 371 and 400 bytes.

. Nominal attack: All attack packets resembled the
most dominant type of legitimate packets observed
in practice, i.e., 1,500-byte TCP packets with a server-
port of 80 and the TCP-flag set to ACK. TTL values
might or might not be randomized in this attack.
Both cases were examined for TTL.

. Mixed attack: An equal combination of the above
four types of attacks.

Except in Section 6.3, a generic attack was used by

default.

6.1.3 Attack Intensity and Target Load (�target)

Except in Section 6.4, where attack intensity varied, an

attack of 10 times the nominal traffic amount was applied.

The target load (�target) for outgoing traffic was read from

KIM ET AL.: PACKETSCORE: A STATISTICS-BASED PACKET FILTERING SCHEME AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS 9

Fig. 4. Discarding SQL Slammer Worm attack packets.

the profile. The profile contained the maximum observed
pps in any 10-second window period. This corresponded to
4,874 packets per second.

6.1.4 Time-Based versus Packet Number-Based

Windows

The CDF and scorebook must be updated periodically in
pipeline processing. The period can be defined as a preset
time interval or as a number of packets. The default method
was a time-based interval with a 1-second window. We
investigated PacketScore’s performance by varying the
window size from 0.01 second to 10 seconds. In the case
of fluctuating traffic volume, a time-based window may not
allow for observation of as many packets as necessary to
create meaningful profiles. In such a case, packet number-
based intervals are more suitable. This is explored in
Section 6.6. In all other sections, a time-based 10-second
window was used.

6.2 Performance Metrics

To evaluate PacketScore’s performance, we first examined
the differences in the score distribution for attack and
legitimate packets. These differences were quantified using
two metrics, namely, RA and RL as illustrated in Fig. 5.

We defined MinLðMaxAÞ as the lowest (highest) score
observed for incoming legitimate (attack) packets and
RAðRLÞ as the fraction of attack (legitimate) packets that
had a score belowMinL (aboveMaxA). The closer RA and RL

are to 100 percent, the better the score-differentiation
power. In practice, score distributions usually have long,
thin tails due to very few outlier packets with extreme
scores. To avoid the masking effect of such outliers, we took
MinLðMaxAÞ to be the first (99th) percentile of the score

distribution of legitimate (attack) packets. Since the shape of
distribution changes per period, the average of RA and RL

were taken over multiple periods.
While RA and RL can quantify the score differentiation

power, the final outcome of selective discarding also
depends on the dynamics of the threshold update. We
therefore also measured the false positive (i.e., legitimate
packets getting falsely discarded), and false negative (i.e.,
attack packets getting falsely admitted) ratios. To check the
effectiveness of the overload control scheme, we compared
the actual output utilization �out against the target utiliza-
tion �target.

A typical set of score distributions for attack and
legitimate packets is shown in Fig. 6a in log-scale. The
scores of attack packets and legitimate packets show a clear
separation with a slightly overlapping region. Fig. 6b shows
the cumulative score distribution in linear-scale, illustrating
that the majority of attack packets are concentrated in the
low-score region.

Fig. 7 shows a typical score distribution trend over
25 periods under a DDoS attack. The attack packets (high
peaks on the upper left side) are concentrated in the lower-
score region while legitimate packets (lower right side) have
higher scores. The black bar between the two groups
represents the cutoff threshold scores for the discard
decision, which removes the majority of the attack traffic.
PacketScore tracks the score distribution change in each
period and adjusts the cutoff threshold accordingly.

6.3 Performance under Different Attack Types

The results are described in Table 6. Inmost cases,RA andRL

were above 99 percent and false positives were kept low. The
result was substantially better than random packet dropping
ofwhich the false positive ratio is expected to be 90.7 percent,
and better than some of previous methods surveyed in
Section 1. Furthermore, �out was successfully kept close to its
target value in most cases. The false negative ratios were
mainly due to the gap between �targetand �legitimate, i.e., the
extra capacity left by the legitimate packets that allowed
some attack packets to slip through.

It is noteworthy that the false positive probability for the
TCP-SYN flood attack was kept at a very low level
(0 percent). Although the signature of the TCP-SYN flood
packets can easily be derived by any filtering scheme, the

10 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2006

Fig. 5. Score differentiation between legitimate and attack packets.

Fig. 6. Score distribution example: (a) Raw score distribution and (b) cumulative score distribution.

ability of PacketScore to prioritize legitimate TCP-SYN

packets over attack packets based on other packet attributes

is an essential feature. Without such prioritization, e.g., in

the case of stateless rule/signature-based filtering, all TCP-

SYN packets would be discarded and, thus, ensure the

success of the DDoS attack on the victim.
PacketScore did show some degradation under nominal

attack when the TTL values were randomized. Legitimate

packets having the same characteristics as attack packets

were penalized, but such chances were still quite small, and

the false positive ratio was kept to 3.30 percent. The

distribution of TTL value in the profile is shown in Fig. 8.

When the TTL values were fixed, the performance was

better. The TTL value 118 accounted for the largest portion

of traffic (29.86 percent) and 100 had a ratio under the

adaptive threshold (0.29 percent) for 99 percent coverage.
As PacketScore utilizes more attributes, the performance

should become better. While we used only one joint

attribute in this experiment, numerous combinations of

attributes are possible to increase the number of attributes,

and the performance under nominal attack can be further

improved. Fig. 9 shows the actual score distribution under

mixed attack. It is interesting to see how the scores of each

attack type are distributed.

6.4 Performance under Different Attack Intensities

Table 7 shows that the proposed scheme can effectively
provide overload control as attack intensifies. Even when
the volume of attack packets increased from one time to
20 times the nominal load, the scheme still consistently
allowed more than 99.9 percent of legitimate packets to pass
through unaffected. The attack packets were admitted only

because of the extra capacity (�rmtarget � �legitimate), as

discussed before.
By design, the differentiation power of PacketScore

improves as the DDoS attack intensifies. This is because

as attack traffic volume increases, the difference between

the current traffic profile and the nominal one also

increases.

6.5 Nominal Profile Sensitivity

We studied the effect of different nominal profiles using the

following:

. Monday profile (25 September 2005, 8:00 p.m.).

. Weekly profile (8:00 p.m. for seven days from 26
September 2005 to 2 October 2005): This is the
default profile used previously.

KIM ET AL.: PACKETSCORE: A STATISTICS-BASED PACKET FILTERING SCHEME AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS 11

Fig. 7. Score distribution over time.

TABLE 6
Performance against Different Types of Attack (Average �legitimate ¼ 3; 618 pps, �t arg et ¼ 4)

Fig. 8. TTL value ratio distribution in the profile.

. Monthly profile (8:00 p.m. on Tuesdays for the seven
weeks).

. Different site (8:00 a.m. on Tuesday, 27 September
2005, from AMP).

The results are depicted in Table 8. The weekly profile

reflected the traffic characteristics best and showed the best

performance, followed by the monthly profile. However,

the Monday profile and other site profiles were somewhat

different from the Tuesday traffic profile and resulted in

poor performance.

6.6 Performance under Different Window Scales

Table 9 shows PacketScore performance under different

CDF update time scales. The time scale was 1-second. We

observed that most of the time scales performed similarly,

but performance started to degrade when the time scale

became too small because there were not enough packets

within the window to build an accurate scorebook.
Packet number-based windows showed a similar per-

formance as Table 10. With an excessively low number of

packets (e.g., 500 packets), we observed PacketScore

performance degraded. However, with a sufficiently large

number of packets (> 1,000 packets), the packet number-

based window could be safely applied to a network with

fluctuating traffic volume.

6.7 Performance under Changing Attacks

As mentioned in Section 4.2, changing attacks are more
challenging due to their time-varying attack packet char-
acteristics. When a change occurs, two measurement
periods are required for PacketScore to establish new
profiles and scorebooks due to the nature of pipeline
processing. During these adjustment periods, the Packet-
Score scheme can be misled to defend against no-longer-
existing attack packets. The effect becomes worse if the
attack type changes rapidly compared with the measure-
ment period time scale. The effectiveness of PacketScore can
be improved by shortening the CDF update window time.

We observed the effects of changing attack types by
alternating the four primary attack types. An attack type
was randomly selected and continued for an exponentially
distributed period with the average duration as indicated in
the results table. Table 11 shows the effects of different
window time scales under changing attacks.

As we reduced the measurement window time from
5 seconds to 0.1 second, PacketScore tracked the attack
changes very closely, showing as good a performance as in
constant attacks. Similar to the false positive ratios, the
outgoing traffic amount was better controlled. The Packet-
Score scheme was effective with very short measurement
windows, for example, 0.01 second, as long as the number
of packets within a window is meaningful for statistical
processing. It is difficult for an attacker to launch a precisely

12 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2006

Fig. 9. Score distribution under different types of attack. (a) Packet distribution and (b) cumulative packet distribution.

TABLE 7
Peformance under Different Attack Intensities

TABLE 8
Performance by Different Profiles

time-coordinated attack at such a resolution due to the
nature of the Internet. This allows PacketScore to block
nearly all types of changing attacks. A more thorough study
on changing attacks has been done in [3].

7 DISCUSSIONS

7.1 Need for Clean Nominal Profiles

One challenging issue of the PacketScore scheme is the need
for a clean baseline profile as in other profile-based systems.
This is because DDoS attack traffic is already prevalent on
the Internet and a quiet attack-free period may be hard to
find. As a result, the constructed nominal profile may be
biased by the DDoS traffic and may force PacketScore to
accept DDoS traffic that has been reflected in the profile.
However, PacketScore is designed to accept specific traffic
only up to the maximum ratio that was observed in the past.
Therefore, DDoS traffic beyond this ratio will be properly
filtered by PacketScore and, thus, cannot succeed in a
massive attack. Nevertheless, accepting DDoS traffic is not
desirable as it wastes bandwidth. This situation can be
improved by constructing a cleaner nominal profile that
contains less DDoS traffic.

A cleaner profile can be made one of two ways. First, the
packet trace data can be analyzed to identify legitimate
flows that show proper two-way communication behavior.
The packets from the legitimate flows are used for
constructing the profile. Although some traffic flows that
do not have continuous packet exchange, such as ICMP,
may be left out, PacketScore filtering is already based on an
iceberg-style histogram with default value assignment for
noniceberg items. The impact on performance of missing
some of the packets should be minimal.

Second, we can first use a generic profile to remove those
packets that are more likely to be attack packets, and use the
remaining packets to create the final nominal profile. The
generic profile reflects overall Internet traffic characteristics,
e.g., TCP versus UDP ratio, common packet size, common
TCP flags, etc. Our preliminary research shows that this
two-step profiling is very effective to fight generic attacks.
Further study is needed on these methods.

7.2 Attacker’s Pretraining

A clever attacker may send a small amount of attack traffic
in advance to misconfigure the baseline profile (P 0

n) and
later bombard victims with similar attack packets. Packet-
Score can block this type of attack successfully. The score of
a packet depends on the volume of the specific traffic
characteristics during the actual attack, not on the existence
of the specific traffic characteristics in the nominal profile.
During an attack, the attacker must significantly increase
the amount of attack traffic to create a DoS condition,
making the attack traffic distribution (Pm) substantially
different from the baseline profile (P 0

n). In other words, the
attack traffic attribute ratio in P 0

n is relatively low because
the amount of pretraining traffic is relatively small
compared with legitimate traffic, but the ratio is increased
during an attack due to large attack volume compared with
legitimate traffic volume. This defeats the attackers’
purpose to make P 0

n equal to Pm. Equation (2) can be
rewritten with a pretrained nominal profile (P 0

n).

KIM ET AL.: PACKETSCORE: A STATISTICS-BASED PACKET FILTERING SCHEME AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS 13

TABLE 9
Performance under Different Time Scales

TABLE 10
Performance under Different Packet Number Windows (Average Legitimate pps = 3,618, Attack pps = 48,740)

TABLE 11
Performance under Changing Attack Types

(a) Scorebook update interval = 5 seconds. (b) Scorebook update
interval = 1 second. (c) Scorebook update interval = 0.1 second.

CLP ðpÞ ¼
N 0
n � P 0

nðA ¼ apÞ � P 0
nðB ¼ bpÞ � . . .

Nm � PmðA ¼ apÞ � PmðB ¼ bpÞ � . . .
: ð4Þ

During an attack, Pm for dominant attack attribute values
increases; thus, the CLP of an attack packet becomes smaller.

A successful attack can only be launched by simulating
the precise attribute value distribution as in the nominal
profile (Pn). If the Pm values are the same as the Pn values
for all attribute values, the CLP becomes a constant value
for all packets; thus, PacketScore loses its attack-distin-
guishing power. Therefore, securing the nominal profile
(Pn) from the attackers is very important.

7.3 DDoS Attacks with Unspoofed Addresses

Not all DDoS attacks spoof the source addresses. Packet-
Score can successfully defeat this kind of attack because it
does not depend on the assumption of spoofed source
addresses. Of course, including source addresses or
IP prefixes will allow more useful profiles. But, as we have
seen in the simulation results, PacketScore utilizes many
other IP header fields and can perform well even without
examining the source addresses. Attack packets with live
addresses still create a change in the operational profile
(Pm) and the scorebook, unless they generate the exact same
distribution as in the nominal profile, thus allowing
PacketScore to distinguish attack packets.

Beyond using live addresses, legitimate-looking attacks
are nowadays increasing, i.e., legitimate TCP sessions from
zombie machines. As explained in Section 7.2, the traffic
from zombie machines will have to increase significantly
during an attack, which changes the scorebook and makes
PacketScore able to distinguish those attack packets.

7.4 Flash Crowds

Flash crowds are indistinguishable from DDoS attacks to
PacketScore. However, PacketScore does not affect flash
crowds negatively. As long as the flash crowd capacity does
not exceed the acceptable link capacity, the packets are not
dropped because PacketScore starts operation only when
the incoming traffic exceeds the acceptable capacity. If it
does, however, the excessive packets are forced to be
dropped anyway with or without PacketScore, so the
priority change by PacketScore does not change the amount
of dropped packets in a flash crowd.

7.5 Human Intervention

PacketScore does not need human intervention once the
profile is established. The only parameter that may need
human intervention is �target, which is by default set to the
maximum observed traffic amount. When there is network
capacity available beyond it, the �target can be increased
manually to accept more potentially legitimate packets.

8 CONCLUSIONS AND FUTURE WORK

Wehave outlined the process the PacketScore scheme uses to
defend against DDoS attacks. The key concept in PacketScore
is the Conditional Legitimate Probability (CLP) produced by
comparison of legitimate traffic and attack traffic character-
istics, which indicates the likelihood of legitimacy of a
packet. As a result, packets following a legitimate traffic
profile have higher scores, while attack packets have lower
scores. This scheme can tackle never-before-seen DDoS
attack types by providing a statistics-based adaptive differ-
entiation between attack and legitimate packets to drive

selective packet discarding and overload control at high-
speed. Thus, PacketScore is capable of blocking virtually all
kinds of attacks as long as the attackers do not precisely
mimic the sites’ traffic characteristics. We have studied the
performance and design tradeoffs of the proposed packet
scoring scheme in the context of a stand-alone implementa-
tion. The newer simulation results in this paper are
consistent with our previous research [19]. By exploiting
the measurement/scorebook generation process, an attacker
may try to mislead PacketScore by changing the attack types
and/or intensities. We can easily overcome such an attempt
by using a smaller measurement period to track the attack
traffic pattern more closely.

We are currently investigating the generalized imple-
mentation of PacketScore for core networks. PacketScore is
suitable for the operation at the core network at high speed,
and we are working on an enhanced scheme for core
network operation in a distributed manner. In particular,
we plan to investigate the effects of update and feedback
delays in a distributed implementation, and implement the
scheme in hardware using network processors. Second,
PacketScore is designed to work best for a large volume
attack and it does not work well with low-volume attacks.
We intend to explore and improve PacketScore perfor-
mance in the presence of such attack types, e.g., bandwidth
soaking attacks described in [31] or low-rate attacks [15].
Finally, a thorough investigation on the stability of traffic
characteristics shall be performed as mentioned in Section 3.

ACKNOWLEDGMENTS

W.C. Lau’s work was supported by a CUHK/RGC Direct

Grant # 2050368.

REFERENCES

[1] Akamai Technologies, Inc., http://www.akamai.com, 2006.
[2] B. Babcock et al., “Models and Issues in DataStream Systems,”

ACM Symp. Principles of Database Systems, June 2002.
[3] M.C. Chuah, W. Lau, Y. Kim, and H.J. Chao, “Transient

Performance of PacketScore for Blocking DDoS Attack,” Proc.
IEEE Int’l Conf. Comm., 2004.

[4] Cisco IOS Security Configuration Guide, Release 12.2 “Configuring
Unicast Reverse Path Forwarding,” pp. SC-431-SC-446, http://
www.cisco.com/univercd/cc/td/doc/product/software/
ios122/122cgcr/fsecur_c/fothersf/scfrpf.pdf. 2006, 2006.

[5] C. Estan, S. Savage, and G. Varghese, “Automatically Inferring
Patterns of Resource Consumption in Network Traffic,” Proc. 2003
ACM SIGCOMM, pp 137-148, 2003.

[6] CSI/FBI Survey, http://www.gocsi.com/forms/fbi/csi_fbi_
survey.jhtml, 2006.

[7] FBI Fugitive, http://www.fbi.gov/wanted/fugitives/cyber/
echouafni_s.htm, 2006.

[8] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating
Denial of Service Attacks which Employ IP Source Address
Spoofing,” RFC 2827, 2000.

[9] L. Garber, “Denial-of-Service Attacks Rip the Internet,” Computer,
pp. 12-17, Apr. 2000.

[10] J. Ioannidis and S.M. Bellovin, “Implementing Pushback: Router-
Based Defense against DDoS Attacks,” Proc. Network and
Distributed System Security Symp., Feb. 2002.

[11] C. Jin, H. Wang, and K.G. Shin, “Hop-Count Filtering: An
Effective Defense against Spoofed Traffic,” Proc. ACM Conf.
Computer and Comm. Security (CCS ’03), Oct. 2003.

[12] J. Jung, B. Krishnamurthy, and M. Rabinovich, “Flash Crowds and
Denial of Service Attacks: Characterization and Implications for
CDNs and Web Sites,” Proc. Int’l World Wide Web Conf., May 2002.

[13] S. Kasera et al., “Fast and Robust Signaling Overload Control,”
Proc. Int’l Conf. Network Protocols, Nov. 2001.

14 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO. 2, APRIL-JUNE 2006

[14] A.D. Keromytis, V. Misra, and D. Rubenstein, “SOS: An
Architecture for Mitigating DDoS Attacks,” IEEE J. Selected Areas
in Comm., vol. 22, no. 1, pp. 176-188, Jan. 2004.

[15] A. Kuzmanovic and E.W. Knightly, “Low-Rate TCP-Targeted
Denial of Service Attacks (The Shrew vs. the Mice and
Elephants),” Proc. ACM SIGCOMM 2003, Aug. 2003.

[16] H. Kim and I. Kang, “On the Effectiveness of Martian Address
Filtering and Its Extensions,” Proc. IEEE GLOBECOM, Dec. 2003.

[17] Y. Kim, J.Y. Jo, H.J. Chao, and F. Merat, “High-Speed Router Filter
for Blocking TCP Flooding under Distributed Denial-of-service
Attack,” Proc. IEEE Int’l Performance, Computing, and Comm. Conf.,
Apr. 2003.

[18] Y. Kim, J.Y. Jo, and F. Merat, “Defeating Distributed Denial-of-
Service Attack with Deterministic Bit Marking,” Proc. IEEE
GLOBECOM, Dec. 2003.

[19] Y. Kim, W.C. Lau, M.C. Chuah, and H.J. Chao, “PacketScore:
Statistics-Based Overload Control against Distributed Denial-of-
Service Attacks,” Proc. IEEE INFOCOM, Mar. 2004.

[20] Q. Li, E.C. Chang, and M.C. Chan, “On the Effectiveness of DDoS
Attacks on Statistical Filtering,” Proc. 2005 IEEE INFOCOM, 2005.

[21] D. Liu and F. Huebner, “Application Profiling of IP Traffic,” Proc.
27th Ann. IEEE Conf. Local Computer Networks (LCN), 2002.

[22] M. Mahoney and P.K. Chan, “Learning Nonstationary Models of
Normal Network Traffic for Detecting Novel Attacks,” Proc. ACM
2002 SIGKDD, pp 376-385, 2002.

[23] D. Marchette, “A Statistical Method for Profiling Network
Traffic,” Proc. First USENIX Workshop Intrusion Detection and
Network Monitoring, Apr. 1999.

[24] J. Mirkovic, G. Prier, and P. Reiher, “Attacking DDoS at the
Source,” Proc. 10th IEEE Int’l Conf. Network Protocols, Nov. 2002.

[25] D. Moore, G.M. Voelker, and S. Savage, “Inferring Internet Denial-
of-Service Activity,” Proc. 10th USENIX Security Symp., Aug. 2001.

[26] NLANR PMA Packet Trace Data, http://pma.nlanr.net/Traces,
2006.

[27] K. Park and H. Lee, “On the Effectiveness of Probabilistic Packet
Marking for IP Traceback under Denial of Service Attack,” Proc.
IEEE INFOCOM, pp. 338-347, 2001.

[28] K. Park and H. Lee, “On the Effectiveness of Route-Based Packet
Filtering for Distributed DoS Attack Prevention in Power-Law
Internets,” Proc. ACM SIGCOMM, pp. 15-26, 2001.

[29] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network
Support for IP Traceback,” IEEE/ACM Trans. Networking, vol. 9,
no. 3, June 2001.

[30] H. Wang, D. Zhang, and K.G. Shin, “Change-Point Monitoring for
the Detection of DoS Attacks,” IEEE Trans. Dependable and Secure
Computing, vol. 1, no. 4, Oct.-Dec. 2004.

[31] Y. Xu and R. Guérin, “On the Robustness of Router-Based Denial-
of-Service (DoS) Defense Systems,” ACM SIGCOMM Computer
Comm. Rev., vol. 35, no. 3, July 2005.

[32] A. Yaar and D. Song, “Pi: A Path Identification Mechanism to
Defend against DDoS Attacks,” Proc. IEEE Symp. Security and
Privacy, 2003.

[33] A. Yaar and D. Song, “SIFF: A Stateless Internet Flow Filter to
Mitigate DDoS Flooding Attacks,” Proc. 2004 IEEE Symp. Security
and Privacy, 2004.

Yoohwan Kim received the bachelor’s degree in
economics from Seoul National University, Kor-
ea, in 1989 and the master’s and PhD degrees in
computer engineering from Case Western Re-
serve University, Cleveland, Ohio, in 1994 and
2004, respectively. He is an assistant professor
of computer science at the University of Nevada,
Las Vegas (UNLV). Before joining UNLV in
2004, he worked in software and communication
networking industry for several years. He was a

member of technical staff at Lucent Technologies, Whippany, New
Jersey, developing software for wireless networking equipment between
1997 and 1999. In 2000, he cofounded and managed a New Jersey-
based software company that developed technologies for delivering and
customizing video advertising over the Internet. His current research
interests include network security, Internet traffic analysis, software
architecture, and real-time embedded software design. He is a member
of the IEEE and the IEEE Computer Society.

Wing Cheong Lau received the BS degree in
engineering from The University of Hong Kong
and the MS and PhD degrees in electrical and
computer engineering from The University of
Texas at Austin. He is an associate professor
with the Department of Information Engineering
at The Chinese University of Hong Kong
(CUHK), where he also serves as the director
of the Mobile Technologies Center (MobiTeC).
From 1995 to 1997, he was with Southwestern

Bell Technology Resources (now AT&T Labs), Austin, Texas, respon-
sible for broadband network architectural design and performance
analysis. From 1997 to 2004, he was with the Performance Analysis
Department, Bell Laboratories, Lucent Technologies, Holmdel, New
Jersey, where he served as a performance consultant and system
architect. Prior to joining CUHK, he was with Qualcomm, San Diego,
actively contributing to the design and standardization of IETF and
3G Mobility Management protocols and architecture. His research
interest includes networking protocol design and performance analysis,
traffic characterization, system modeling and network security for high-
speed wired and wireless networks. He is a senior member of the IEEE
and the IEEE Computer Society.

Mooi Choo Chuah received the first class
honors bachelor’s degree electrical engineering
from University of Malaya, Malaysia, and the
master’s and PhD degree’s from the University of
California, San Diego. She is the director of
Wireless Infrastructure and Network Security
Laboratory (WiNS Labs) and an associate
professor of Computer Science and Engineering
Department at Lehigh University. Prior to joining
Lehigh, she spent 12 years at Bell Laboratories,

Lucent Technologies, Holmdel, New Jersey, where she conducted
researches in future wireless system design, network security, resource,
andmobility management design. She has been awarded 35 US patents,
one Canadian patent, and has 20 more pending in various areas, e.g.,
wireless MAC, IP protocol design, mobility management, etc. Her current
research interests include Internet and wireless security, protocol,
system design for disruption tolerant networks, and ad hoc and sensor
networks design. She is a senior member of the IEEE and a member of
Sigma Xi society.

H. Jonathan Chao received the BS and
MS degrees in electrical engineering from
National Chiao Tung University, Taiwan, and
the PhD degree in electrical engineering from
The Ohio State University. He is department
head and a professor of electrical and computer
engineering at Polytechnic University, New
York, where he joined in January 1992. He
has been doing research in the areas of
network security, terabit switches/routers, qual-

ity of service control, and optical networking/switching. He holds more
than 20 patents and has published more than 150 journal and
conference papers in the above areas. He has also served as a
consultant for various companies, such as Lucent, NEC, and Telcordia.
During 2000-2001, he was cofounder and CTO of Coree Networks,
New Jersey, where he led a team to implement a multiterabit MPLS
(Multi-Protocol Label Switching) switch router with carrier-class
reliability. From 1985 to 1992, he was a member of technical staff at
Telcordia, where he was involved in transport and switching system
architecture designs and ASIC implementations. From 1977 to 1981, he
was a senior engineer at Telecommunication Labs of Taiwan
performing circuit designs for a digital telephone switching system.
Professor Chao is a fellow of the IEEE for his contributions to the
architecture and application of VLSI circuits in high-speed packet
networks. He received the Telcordia Excellence Award in 1987. He is a
corecipient of the 2001 Best Paper Award from the IEEE Transaction
on Circuits and Systems for Video Technology. He coauthored two
networking books, Broadband Packet Switching Technologies—A
Practical Guide to ATM Switches and IP Routers (New York: Wiley,
2001) and Quality of Service Control in High-Speed Networks (New
York: Wiley, 2001). He has served as a guest editor for the IEEE
Journal On Selected Areas in Communications (JSAC) and the IEEE/
ACM Transactions on Networking from 1997-2000.

KIM ET AL.: PACKETSCORE: A STATISTICS-BASED PACKET FILTERING SCHEME AGAINST DISTRIBUTED DENIAL-OF-SERVICE ATTACKS 15

