
transactions of the
american mathematical society
Volume 288. Number 2. April 1985

PACKING MEASURE, AND ITS EVALUATION
FOR A BROWNIAN PATH

BY
S. JAMES TAYLOR AND CLAUDE TRICOT

Abstract. A new measure on the subsets £ c It' is constructed by packing as many
disjoint small balls as possible with centres in E. The basic properties of ^-packing
measure are obtained: many of these mirror those of </>-Hausdorff measure. For
</>(s) = í2/(loglog(l/í)), it is shown that a Brownian trajectory in R^ (d > 3) has
finite positive <¡>-packing measure.

1. Introduction. The size of sets of zero Lebesgue measure in Rd can be investi-
gated by several distinct techniques. The first of these to be extensively developed
was established by Hausdorff—for a recent account see Rogers [9]. Hausdorff
measure is defined using economical covers of a set. For a given monotone function
<f>(s), there is a sense in which Hausdorff ^-measure is the smallest outer measure
determined by <i>; there are several other measures based on <i>. In this paper we
define packing </>-measure and examine some of its basic properties. We will see that
it is larger than Hausdorff ^-measure, and many of its properties mirror those of
Hausdorff measure.

The definition of packing measure has to be given in two stages. In §3 we consider
various premeasures and eventually choose one of them to generate the «¿»-packing
measure <i> — p(E) defined in §5. In the theory of Hausdorff measures, an essential
tool used to prove <f> — m(E) finite and positive is the use of upper density, first
developed by Frostman [6] and made precise in [10]. The analogous theorem for
packing measure, using lower density, is developed in §5 and used for immediate
calculations. For example, the classical Cantor set in [0,1] has finite positive packing
measure with respect to <j>(s) = s", a = log2/log3, so that this set is regular in the
sense that the correct <j> giving finite positive measure is the same for both Hausdorff
and packing measures.

The notion of strong and weak ^-variations of a function /: [a, b] -* R** was
studied by Goffman and Loughlin in [7]. Just as the weak variation is related to
Hausdorff measure, we are able to show, in §4, that <i>-packing measure of the image
of / is bounded by the limiting strong «^-variation. The strong variation of Brownian
motion was obtained in [14], so this relationship gives an upper bound for the
packing measure of a Brownian trajectory.

In [2] it was shown that </>(s) = i2log|logj| is the correct function to give the
Hausdorff measure of a Brownian trajectory in Rd (d > 3). In §7 we show that
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680 S. J. TAYLOR AND CLAUDE TRICOT

\p(s) = 52/log|logi| is the correct function to make the ¡//-packing measure of the
trajectory finite and positive. The proof requires a new analysis of the small values
of the sojourn time in a ball for the process. This is carried out in §6 and leads to
Theorem 6.8 which describes the lower asymptotic behaviour of the sojourn time. In
order to set the scene we start in §2 by developing notation and describing the main
results for Hausdorff measure for which we can obtain analogues.

The set function <i> - p(E) was first defined for subsets of R in [17, p. 145].
Sullivan [11] used the term "packing measure" for an outer measure v which he
defined on the subsets of a fixed closed set A in R2. His measure vp depends critically
on the local structure of A and is not translation invariant. In general, <£ - p + vp
when restricted to subsets of A unless A is sufficiently regular—for example, if A
were a rectifiable Jordan arc and <j>(s) = s.

2. Measures of Hausdorff type. We restrict our attention to subsets of Euchdean
space Rd (d > 1). Some of our results extend to more general metric spaces, but we
use the structure of Rd and do not concern ourselves with the validity of extensions.
We use |is | to denote the Lebesgue outer measure of E and ||x|| to denote the
distance from 0 to x g Rd. We denote the open ball with centre at x and radius
r > Oby

Br(x)= {yczRd:\\x-y\\<r}.

Let T* stand for the class of dyadic cubes in Rd. C e T* if it has side length 2~",
n G N, and each of its projections proj,C on the /'th axis is a half-open interval of
the form [kß'", (k¡ + 1)2"") with k¡ g Z. For x g Rd, let u„(x) be the unique
dyadic cube of side 2~" containing x.

We also need the larger class T** of semidyadic cubes. CeT** if it has side
length 2~" and proj.-C = [U,2"n, (\k, + 1)2"") with k¡ g Z. Each x g Rd belongs
to 2d cubes of side 2~" in T**: of these we denote by vn(x) the unique cube in T** of
side 2~" whose complement is at distance 2""~2 from un + 2(x). The coordinate of the
centre of vn(x) is within 2""~2 of the corresponding coordinate of x.

$ denotes the class of functions <i>: (0,1) -» R which are increasing, continuous
with <t>(s) -» 0 as s j0, and satisfy a smoothness condition:

(1) There exists c0 > 0 such that <f»(2;c) < c0<p(x) for 0 < x < 1/2.

The identity function e(x) = jc, and each of its positive powers is clearly in <i>.
Suppose 3S(Rd) is the family of bounded subsets of Rd. We introduce a partial

order in the class of set functions F: SS(Rd) -> [0, + oo] = R+U ( + oo}. Put Fx < F2
if there is a finite X < 0 such that FX(E) < XF2(E) for all E g S8(Rd), and write
Fx x F2 and say Fx and F2 are equivalent if both Fx « F2 and F2^ Fx.

diam(£) denotes the diameter of £ g 3g(Rd). If ^ c 3S(Rd) put

*(#)=   L <í>(diam(£))    and    ||#|| = sup{diam(£): E g #}.
Eeá?
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PACKING MEASURE AND ITS EVALUATION 681

!F(Rd) is a covering family if, for each e > 0, there is a subfamily (% c J^with
H^ll < e and Rd c U£eáf E. Clearly this property is valid for T* or T** or 5f the
family of all open balls. For any covering family .^define

(2) Jf<i> - m(E) = liminf(<f)(^):||<#|| < e,^c &,Ecz  \J f).
eIO        I F^S'

Whenever .W= SS{Rd), &$ - m is the classical «¿»-measure defined by Hausdorff,
which we denote by <f> - m. When Jr= y we obtain spherical Hausdorff measure.
Since every bounded set is contained in a ball of double the diameter, (1) im-
mediately implies

(3) y<t> - m x <í> - m.

When J^= T* we denote r*«J» - m by <#» - m*, and again it is easy to see that

(4) <f> — m x <j> — m*.

These restricted Hausdorff measures were first defined and used by Besicovitch. For
our present purposes we make two further modifications. Given E c R**, let £fE be
the family of open balls {Br(x): r > 0, x g E} with centres in E. We again get

(5) <f» - m(E) <y£«i> - m(E) < c<j> - m(E)

for a suitable constant c. Now put

r**= K(*):kgN,xg£},

and denote T£*<p - m(E) by <i» - m**(E). It again follows that

(6) <j> — m x <|> — m**.

We note that each of the above set functions is defined on all subsets of Rd, takes
values in [0, + oo], and is a metric outer measure in the sense of Carathéodory. For
each of them there is a class of measurable subsets Jt', and the restriction of the set
function to ^ is a a-additive measure. Further, ^# contains the Borel subsets of Rd.
The rarefaction index corresponding to Hausdorff measure is usually called the
Hausdorff-Besicovitch dimension and is defined by

dim£ = inf{a > 0: e" - m(E) = 0} = sup{a > 0: ea - m(E) = +oo}.

Clearly (3)-(6) show that any of the above set functions would have given the same
value of dim E. However if dim E = «S > 0, then es — m(E) can be zero, finite and
positive, or + oo. Only if 0 < es - m(E) < + oo do we say that <j>(s) = ss is the
correct function in $ for giving the Hausdorff measure of E.

If we want to prove that <j> - m(E) < +oo,itis sufficient to find K < + oo such
that for each e > 0 there is a cover 31 of E for which ||á?|| < e and <$>(&) < K. By
using definition (2), it is harder to show that <p - m(E) > 0, for now we have to find
c > 0 such that </>(^) > c for every possible cover of E. To avoid the need to
consider all covers, the following density theorem, which is immediately deducible
from the results in [10], is a useful tool.
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682 S. J. TAYLOR AND CLAUDE TRICOT

Theorem 2.1. For a given <j> g $ there are constants cx, c2 such that, for all E c Rd
and every finite Borel measure fi in Rd,

cxn(E) inf {liminf^2
e\   «-oo    il["„(*)]

< «Í» - m(E) < c2n(Rd) sup {   liminf *(d(u))
xeE\    elOx^u H(U)       I

diam(«)<e '

where the last infimum is taken over nondegenerate rectangles u containing x with
diameter at most e.

Variants of this theorem can be obtained by using (3)-(6) to replace <£ - m by one
of the restricted measures and by replacing the lim inf by

liminf -&L?    or    hmmf^2^

A necessary tool for examining Brownian paths will be a density theorem for
packing measure. Our choice of precise definition will ensure that such a density
theorem is vahd. We would point out that, in terms of a given </> g $, there are other
measures which he between <£ - m and <f> — p. No density theorem is known for
these, and in some cases one can show that none is vahd.

We use K to denote a finite positive constant whose value is unimportant and may
change from hne to line.

3. Packing premeasures. Before defining new outer measures (§5), our first step is
to consider several ways of modifying definition (2) by changing inf to sup and
replacing covers of E by packings of disjoint sets related to E. We again assume J5"
is a covering family of bounded sets in Rd. We say !% c ¿ig(Rd) is a packing of E if,
for all F g @, Ë DF * 0 and the sets in 01 are disjoint. Put

(7)    &$ - &>(E) = limsup{<f>(^): ||^|| < e,^c J^,^is apackingof E}.
e|0

If we made no restriction on &■, this would not be a useful definition, because near
any x g E one could fit in an arbitrary number of disjoint sets of diameter e > 0
having x in their closure. This would give a value + oo even for the singleton { x}. In
[19] definition (7) was used with J^= the class of open balls. That definition is now
denoted

&4> - 0>(E) = 4> - Q(E).
Different natural choices of & yield premeasures and measures which are not
equivalent, although we will see that they all lead to the same rarefaction index A
discussed in [18].

We consider three further possibilities for^".
(i) SfE is the family of balls Br(x) r > 0, x g E. SfEcb - &>(E) is denoted by

«Í» - P(E).
(ii) T£ = {un(x): n G N, x g E} c T*. r|<f» - 0(E) is denoted by </> - P*(E).
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PACKING MEASURE AND ITS EVALUATION 683

(hi) T** = {v„(x): n g N, x g E} c T**. T**<t> - 0>(E) is denoted by $ -
P**(£).
We discard <j> — Q and (j> — P* for reasons which later become evident and show
that (¡> — P and <i> - P** are equivalent set functions. <j> - P** will be useful as an
auxiliary set function, but our final definition will be based on<p - P. The first step
is to clarify the simple properties of the set functions based on (7), which we have
defined.

Lemma 3.1. Let r = t^ be one of the set functions <f> — P,<j> - P*, <#> - P**, <f> - Q.
Then

(i) t is monotone: Ex c E2=> t(Ex) < t(E2).
(ii) t is subadditive: t(Ex U E2) < t(Ex) + r(E2), with equality holding if the

distance between Ex and E2 is positive.
(in) If<t>(s)/t(s) -* 0 as s -* 0, then t+(E) < + oo =» rA[E) = 0.
(iv) <p- m 4 Tr
(v)IfE={x},thenr¿E)=0.

(vi) // E is a bounded Lebesgue measurable subset of Rd with positive Lebesgue
measure and<$>(s) = sd, then 0 < r^(E) < + oo.

Proof. Most of these properties are immediate consequences of the definition of
t. We note that (ii) follows from the fact that any packing ¿% of Ex U E2 can be
separated into a packing of Ex and a packing of E2 with no interference when ||^|| is
smaller than half the distance between Ex and E2. (iv) is easily verified for <i> - P: if
Mr(E) denotes the maximum number of disjoint balls of radius r centered in E, then

</> - P(E) > hmsupAfr(£)«i>(2r),
r — 0

while E can be covered by Mr(E) balls of radius 2r, so that

</> - m(E) < hminf Afr(£)«i>(4r).
r-«0

The same holds for the other t^, with an analogous proof, or the use of the following
Lemma 3.4. The lower bound of (vi) derives directly from (iv). The upper bound is
evident.

Remark. All the above are true for Hausdorff measure and its variants. For
Hausdorff measure (ii) can be strengthened to T(\)f=i £,) < Hf-i T(E¡)- This is false
in the present case. Consider <í»(í) = s1/2 and E = Q n [0,1], the set of rationals in
[0,1]. Since Tq(E) = t^([0, 1]), r^(E) — + oo, but £ is a countable union of single-
tons. Thus t is not an outer measure.

Lemma 3.2. // x is as above, there exists for all E g SS(fRd) a Borel set B D E such
that t(B) = t(E). For <f> — Por(f>—Qwe can take B = E (closure of E).

Proof. Any packing of £ is a packing of E and, conversely, so that <f> - Q(E) =
4> — Q(E). Given e > 0 and a family !% of disjoint open balls of radii rk and centre
xk G E, we can always find a new family 0' of balls of radii r'k and centre x'k g E
such that Bri(x'k) c Br/fxk), and Y.<t>(2rk) < (1 + e)£<X2r¿). This gives <¡> - P(E) <
(1 + e)«i» — P(E) for all e > 0. The monotonicity of <f> — P gives the opposite
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684 S. J. TAYLOR AND CLAUDE TRICOT

inequahty: </> - P(E) < <i> - P(E). For <p - P* take the Borel set B = n„(J{u„(x):
x g E}) which contains E: since T¿ = T¡, we get </» - P*(£) = «í» - P*(E). The
same argument works for <¡> — P**.

The next lemma is the main reason we discard </> - Q as a candidate for packing
premeasure:

Lemma 3.3. Le/ <p(s) g O ¿><? ímca /Aa/ ¿/«M5) e $> a"^ let E be an infinite set
included in [0,1]. Then <¡> - Q(E) = 0 or + oo.

Functions satisfying such conditions are common: for example s", 0 < a < 1.
Proof. If |£| > 0 we use the fact that s'^(s) -> + oo and Lemmas 3.1(iii), (vi),

and 3.2 to find <i> - Q(E) = + oo.
If |£| = 0, let us write E as [0,1] - U" J¡ where the J¡ are disjoint open intervals of

decreasing lengths. There are two cases: either T.<t>(\J¡\) diverges: using packings
made up of the /, we deduce that <i> - Q(E) = +oo; or E«i>(|7,|) converges: let
s0 > 0 be such that s"1«/)^) is decreasing on ]0, s0[. For all sequences (an) of
positive reals such that £a„ < s0, we have <¡>(Lan) < H<b(an). Now let 0 < e < s0,
and let 0 be a packing of E by disjoint intervals of length < e. If u G Siï, the fact
that |£| = 0 imphes

|w| = E{|/, n u\:Jtn u± 0}

so that

<p(\u\)^I.{<?(\Jinu\):Ji nu* 0}.

Let N(e) be the largest integer n such that |/„| > e. Adding up the last inequality for
all u g 0, we see that the same J¡ is never counted more than twice, and that if
i < N(e), its contribution to the total sum is less than 2<j>(e). Therefore

1 °°
-<f>(^)<   L *(\Jt\) + N(e)<t>(e)

00 00

<   ¿ZH\Ji\)+   Z <t>(W) + N(v)He)
N(e) Af(7|)

if Tj is any number > e. Letting e -> 0 and then i\ -» 0, we see that the right member
tends to 0, and therefore <i> - Q(E) = 0.

Lemma 3.4. <f> - P x <j> - P** =<; <b - P* and </» - P =s: <i> - Q.

Proof. From the definition of v„(x) it follows that B2-„-2(x) c vn(x) c Bp2„(x),
where p = dl/2 is the diameter of a unit cube. Condition (1) now implies the first
equivalence <>-Px</>-P**. Since every semidyadic vn(x) contains the dyadic
un + x(x), we get <i> - P** =s «J» - P*. The last inequality is obvious.

Example 3.5. Let E0 be the perfect symmetric set in [0,1] with ratio 1/4. That is,

E0= [x&R:x= 2>„4-",a„ = 0or3}.

The family of all dyadic intervals u = un(x) can be divided in two classes tfj, #2,
according as it n E0 ¥= 0 or w n E0 = 0. In the last case, u has the form u„(k2~").
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PACKING MEASURE AND ITS EVALUATION 685

If 0 is any packing of E0 made up of intervals of ^x, el/2(¿%) is at most equal to 1
and actually equal to 1 in the case where !% covers all of E0 except for a countable
subset. Therefore, Vxel/2 - &(E0) = 1.

Given e < 1, x G E0, there is a u g <€x such that u c Be(x) and |w| > e/2. It
follows that

el/1 - P(E0) < c2^1/2 - &(E0) < + oo.

Since <g2 contains, for all n, 2" - 1 disjoint intervals of length 2"2", we deduce, using
these packings, that e1/2 - P*(E0) = +oo. Therefore, <f> - P and <p - P* are not
equivalent.

But if Ex is defined as E0 less the countable set of endpoints of the complementary
intervals, <€2 is empty and el/2 - P*(EX) < + oo. However, el/1 — Q(EX) = + oo.
Therefore, <j> — P* is not equivalent to $ — Q. This example also shows that
</» — P*(E) is not always equal to <j> — P**(E).

Remark 3.6. In the light of this example, the reader may feel that the definition of
<b — P* is artificial because it depends too heavily on the presence of the dyadic
points in the set. If, instead, we were to require the packing dyadic cubes to have an
interior point on E, we would get a smaller premeasure, defined only on subsets of
Rd — D, where D is the set of points with at least one coordinate of the form k2~". It
would still be rejected because of the undesirable properties of <¡> — p* (see Example
5.7). The definition given for <j> - P* yields an easy proof for the density theorem
5.4.

In [13] we noted that the gap between <¡> — m and generalised tp-capacity in the
sense of Frostman [6] was about a factor |log s|. The same phenomenon exhibits itself
concerning the maximum 'gap' between <£ — P, <p — P*, and </» — Q. We now make
this precise:

Lemma 3.7. Let g: ]0,1[ -» R+ be such that El/g(2~") < + oo and let <f> g <J) be
such that $/g = $ G <J>. Then <b - P(E) < + oo => \p - Q(E) = 0.

Proof. Let E g SS{Rd). We recall that Mr(E) denotes the maximum number of
disjoint open balls of diameter r centered in E. Since <j> - P(E) < + oo, there exists
K < + oo such that sup„ M2-»(E)<b(2~") < K. There exists also a constant Ld such
that no ball of radius 2"" is at distance < 2"" from Ld disjoint balls of radius 3* 2'".
LetN g N, and let ^be a family of disjoint balls at distance 0 from E,\\@\\ < 2'N~2.
Let kn be the number of balls in 0 of radius between 2'" and 2~"+1, n > N. Since
kn < LdM2-n(E), we have

00 00 -i

*W < LM(2-+1) < c.KLX-t—,
N N  6VZ      )

which tends to 0 as N tends to + oo. Hence, \p - Q(E) = 0.
Using any of the above definitions we could use the normal technique to obtain a

rarefaction index. The following result shows that we always get the same index:
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Corollary 3.9. There is an index A such that for all E g âè(Rd):
(i) ifO < 8 < A(E),

e8 - P(E) = es - P*(E) = es - P**(E) = es - Q(E) = +oo.

(ii) if 8 > A(£),
es - P(E) = es - P*(E) = es - P**(E) = es - Q(E) = 0.

From Lemma 3.1, A is such that

(8) dim(£) < A(£) < d.

For subsets of R there are many other equivalent definitions of A (see Tricot [18]).

4. Relation with strong variation. Suppose /: / = [0,1] -» Rd and it is a dissection
of [0,1],

0 = x0 < xx < ■ ■ ■ < xn = 1,       o(it) = max(x, — x¡_x).

Define the strong ep-variation W^(f) and limiting strong «/»-variation V^(f) by

(9) %(/) = sup t <Kll/(*,) -/(jti-i)lO.
n

(10) V„(f) = Urn    sup    I>(ll/U)-/U-i)ll)-
£1°   o(w)<e   ; = 1

There is an easy connection between V^(f) and </» - P(f(I)). The following proof
is due to the referee—it replaces our earlier more complicated version.

Theorem 4.1. Suppose f: I -» Rd is continuous and <j> g <I>. 77ien </> - P(f(I)) <
2c0^(/).

Proof. Given 17 > 0, choose e > 0 such that

(11) sup ¿<Kll/U)-/U-i)ll)< v+(f) + v.
o(ir)<e      1

Now choose 5 > 0 such that <¡>(8) = e2. Let 0be a finite disjoint family of balls Bi of
diameter less than <5 and centres f(x¡) with xi < xi+1, x{ G ]0,1[. Together with 0
and 1 the points x¡, 0 < / < n, form a dissection tt of [0,1]. Form the subcollection
0tx of balls centered at f(x¡) such that x¡ - x¡_x ^ e and 0t2 = <%\9lx. Since the
number of balls in @¿x is at most e"1, we get

<¡>(&¿x) < e_V(S) = £•

Add further division points to the dissection tt2 formed from the x¡ such that/(x,)
is a centre of a ball in í%2, to give a new dissection 77-3, with o(tt3) < e, containing no
extra division point in ]x,_v x¡[ if x, G w2. Now

diamB,<2\\f(xi)-f(xi_x)\\,
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PACKING MEASURE AND ITS EVALUATION 687

so, by (1),

4>(diamB,) < 2c0</>(||/(*,) -/(*,-i)ll)

and

«i»(^2)<2c0 £ <Kii/U)-/U-i)ii)
*,€E7r3

<2c0(V^f) + v)   by (11).

Therefore, <j>(@) < e + 2c0(V<t,(f) + 17). If r\ and e tend to 0, 5 tends also to 0, so
that the theorem is proved.

This theorem is not, in general, sharp. The gap between critical functions </> for
</> — P(f(I)) and VA\f) can be arbitrarily large.

Example 4.2. Suppose </> is any strictly increasing continuous function. Define /:
/^Rby

/(0) = 0,   f(x) = <¡>-1(x)sin(l/x)       for0<x<l.

Take zk = 2/ktr, k = 1, 2,..., to see that V^(f) = +00. However, /(/) is a
bounded interval so e - P (/(/)) < +00.

If we want/to be bijective we could take the graph of the above/in R2.

5. Packing measure. We now return to the premeasures t which are the subject of
Lemma 3.1 and use Method I of Munroe [8, Theorem 11.3] to define an outer
measure

(12) u(£) = inf{ It(£„): E„ g ®(Rd), E c U£„}

defined for all subsets £ of Rd. Let us first summarize some of the properties of fi:

Lemma 5.1. // t is one of the premeasures <p - P, <f> - P*, <j> — P**, <#> - Q, the
outer measure ¡x defined by (12) is such that:

(i) ¡x is metric: dist(£, £) > 0 => ¡i(E U £) = ju.(£) + ju(£).
(h) All Borel sets in Rd are ^.-measurable.

(hi) jti is Borel regular: for all E C Rd there is a Borel set B 3 £ such that
u(5) = JU(£).

(iv)//£G^(R''),u(£)<T(£).
(v) For any sequence of sets £„ Î £, ju(£„) -» /*(£).

(vi) If E is ¡x-measurable, 0 < ¡u(£) < 00 and e > 0, there exists a closed set F c £
such that n(F) > u(£) - e.

(vii) For any E,

(13) /*(£) = inf{hmT(£j: £„ g ®(Rd), EJE).

Proof, (i) comes from the fact that for any e > 0 we can take the sets £„ in (12) to
be included in (JxEEBc(x). Then apply Lemma 3.1(h). Property (ii) of Lemma 5.1 is
true for any metric outer measure [8]. (hi) comes from Lemma 3.2: we can assume
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that the £„ in (12) are Borel sets without changing n(E). Then construct B by
countable unions and intersections of Borel sets, (iv) follows directly from (11). (v)
obtains from the monotonicity of \i: lim fi(En) exists and is < p(E). By (hi) we can
find Borel sets B„ D £„ with n(Bn) = n(En). But Bn î B and \i(Bn) -» ¡i(B), so that
limju(£„)> n(E).

(vi) Let £ be ¡u-measurable and choose a Borel set B D £ with fi(B) = ju,(£). Since
ju(5 \ £) = 0, we can find a Borel set^D^Vf with p.(Bx) = 0. Now 52 = 5 \ 5t
is Borel, B2 c £, and }i(B2) = jtt(£). The set function nx(F) = /x(£ O 2?2), £ Borel,
defines a finite Borel measure in Rd. fix is therefore inner regular, so there exists a
closed set F cz B2 with ¡ix(F) > nx(B2) — e. This gives ¡i(F) > ¡x(E) — e.

(vii) We denote the right side of (13) by ¡i*(E). (iv) and (v) imply that [i(E) =
lim n(E„) < lim t(£„) for all £„ î £, £„ g ^(R'). This gives ¡i(E) < /i*(£). Con-
versely, given e > 0 we can cover £ by sets Fn g <%(Rd) with E^=1 t(£„) < n(E) + e.
Take £„ = £ n (U,"_! £,)• By Lemma 3.1(i) and (ii),

t(£J< 2>(£,)<M(£) + e,
i = i

so

M*(£)<,i(£) + £.

Notation 5.2. The outer measures generated by the premeasures </> - P, </> - P*,
^ _ p** (p — Q will be denoted by <p — p,<j> — p*, <|> - />**, <f> — q, respectively.

It follows from Lemma 3.1 that countable sets have zero measure and from
Lemma 3.4 that

(14) <¡>-p>i^-p** ^4>-p*,        Ç-p^ï-q.

Let us prove a result which applies to </> — p and </» — q by Lemma 3.2.

Lemma 5.3. Suppose t: £%(Rd) -* R+ is monotone subadditive and satisfies t(A) =
t(A) for all A, and let ¡u be defined by (13). // £ is a compact set such that
t(£ n F) = +00 /or a// F Wh'c/í are open and meet E, then /i(£) = + oo.

Proof. Suppose £„ î £. Since £ is closed we must have EN somewhere dense in £
(Baire's Theorem) for some N. Then take an open set V such that EN Ci V = E n V
# 0 to get

r(EN) > ri^n V) = T(EnD V)  = r(EC\ V)  = r(En V) = +00.

Using (13) gives ¡i(E) = +oo.
We now state the main density theorem which has a similar structure to Theorem

2.1 for Hausdorff measure.

Theorem 5.4. Suppose fi is a Borel measure in Rd with 0 < ||/t|| = ¡x(Rd) < + oo.
un(x) and vn(x) denote the dyadic and semidyadic cubes, respectively, containing x.
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For each «/> G <J) there are finite constants X, > 0 such that, for all E c R^,

0(2r)V(£) inf    hmsup
*^E\      riO      nBr(x))

<t>(d1/22->)
X2n(E) inf { lim sup —-,—     ,

x^e\   n^x     n(un(x))

é( d1/'22~n')
X3n(E) inf <! limsup—-,—     .

xee\    n^x       ll(Vn(x))

<<#>-/>(£)

sup < hm sup
*(2r)

xeE\    no    ß(Br(x)) j

« 4> -p*(E)

I,.      «/»(¿1/22-")
< llMll SUP   hmsup —-—-—-

x*E\    „-oo       **("«(*))

<</>-/>**(£)

f é(dl/22-")\
< ||u|| sup   hm sup — .

xeE\    «-oo       nv„(x))    j

Proof. Each of the above results can be proved by similar arguments. We give the
details for </> — p(E) which is the hardest case. The right inequality is trivial unless
there is a finite K such that, for all x g £,

<t>(2r)hm sup < K.
-10     MW*))

In  this  case put £„ = {x G £:   r < 1/n => </>(2r) < Kfi(Br(x))}.  Since £„ î £,
</>—/>(£)< sup </> — p(En). But if ^ is a disjoint family of open balls centred in £„
with ||á?|| < 1/n, we get </>(^) < K\\ii\\, so </» - /?(£„) < AT||/x||. Hence, <f> - p(E) <
A"|ImII for every such K, and the right inequahty is established.

Now assume there exists K > 0 such that, for all x g £,
<t>(2r)lim sup > Ä".

r-.0     H(BÁX))
For the left inequahty it suffices to prove that

(15) XxKp(E) *i <j> - P(E)
(then use (13) and the a-additivity of ju). We assume </> - P(E) < + oo. For all e > 0
there exists 5 such that for each packing 91 of £ by centered balls, ||á?|| < 8, we have
<p(9t) ^ <p — P(E) + e. For any ball B denote by B* the ball with the same center
and with diameter 5 diam B. The family of all balls B centered in £ and verifying
the inequality Kp(B*) < </>(diam B*) is a Vitali covering of £: a standard argument
allows us to select a packing 92 = {J5,}  of £, ||^|| < «5, such that for all n,
E c Uf 5*. Therefore,

00

/*(£) < !>(*,*) < *-1E*(diam 5*)
i

<clK-fy(a)   from(l)
<cu^-1(«^-P(£)+e).

This proves (15) with Xx = Cq.
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Remark 5.5. It is clear from the argument used that if the lim sup is attained
uniformly over £, the right inequality is vahd for <j> - P as well as <p -p.

Example 5.6. Consider the set £0 introduced in Example 3.5. We take the uniform
measure ju defined on £0 by giving to each u G <€x the mass |w|1/2. Every interval u
verifies
(16) u(M)<M1/2,

so that, for «/»(s) = s1/2, Theorem 5.4 implies <j> - p(E0) > 0. For an upper bound
we already know that </> - p(£0) < <i> - P(£0) < + oo.

Taking away the countable set of endpoints of the complementary intervals, we
get Ex such that

0 < </> - p*(E0) = </> - p*(Ex) < «/> - P*(EX) < + oo.

Now let us consider </> - q: the uniform structure of £0 tells us that for all V open,
V n £0 =£ 0, we have

«/> - ß(£0n V)>$- P*(EQC\ V) = +00.

This shows that </>-<? and </>-/>* are not equivalent and the conclusion of
Lemma 5.3 does not hold for </> — p*.

Example 5.7. Clearly, <f> — p is invariant for translations. However, the following
argument shows that, for the set £0 of Examples 3.5 and 5.6 and </>(j) = s1/2, we can
find a real number a such that
(17) <p-p*(E0 + a)= + oo.

This shows that <|> - p and </» - p* are not equivalent and, moreover, <¡> — p* is not
invariant for translations even in a weak sense.

w is the uniform measure on £0 defined above. We choose a = E°lx 2~2'. Let us fix
an integer k > 1. Let x = Y.™ an(x)4~", an(x) = 0 or 3, be a typical element of £0.
The event

A„(x):ar_k+l(x)= ■■■  =av = 3

occurs infinitely often for /¿-almost all x: this can be proved by a Borel-Cantelli
argument. Now put y = x + a, bn the right endpoint of un(x), b'n the left endpoint of
un(y)- We want to show that, provided An(x), the distance between b'2n_k and
b2r_k + a is small, which gives a small measure to ur_k(y).

If An(x) is true, then 0 < b2._k - x < 2~2", so that 0 < br^k + a - y < 2"2".
Butb2„_k + a can be written z • 2_2" + A: + 17, where z g Zandrj = E"2"2' < 2"2" + 1.
Therefore b'2,_k = z ■ 2~2" + k and 0 < br_k + a - b'T_k < 2"2" + 1. Let us take for
measure ¡x* on £0 + a the translate of /i. This last inequahty implies

M*(«2"-*(J')) = M*([o2--*> br-k + «0>
so that, using (16) for p.*,

*»•(«!.-*(>)) < 2<-2" + 1>/2.

This gives

*(\ur-¿y)\)/fi*(uTJy))>2«-W
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infinitely often for ju*-almost all y in £0 + a. Theorem 5.4 implies that

<?-p*(E0 + a)>X22«-^2,

where k is arbitrarily large, hence (17) holds.
Example 5.8. It is easy to check that the triadic Cantor set C c [0,1] satisfies

0 < ea -p(C) < +00    fora = log2/log3.

Conjecture. This set C is such that ea - p*(C) = +ao. In order to prove this,
one seems to need a strong independence result concerning the expansions of a real
to bases 2 and 3.

Corollary 5.9. Each of the outer measures </>—/>,</> — p*, </> — q defines the same
dimensional index.

Proof. This follows from Corollary 3.9. This index is denoted Dim or Â—see
Tricot [19].

Since </> — m=s«Z>-/7aí<í>-P, we have

(18) dim < Dim < A.
We now have to make a choice for "packing measure". We discard <#> - q because

there are no infinite sets of finite positive measure in R. The above examples show
that <t> — p* is not translation invariant. We could take either </> - p or </> — p**, as
both satisfy the density theorem and are equivalent. However, </>—/>** involves the
use of a particular net, and it is unlikely to be invariant for translations so we make

Definition 5.10. Given </> g <i>, the outer measure </> — p is called the «/»-packing
measure.

We now compare <f> — p with the Hausdorff measure </» - m:

Lemma 5.11. For all E cR^- m(E) < </> - />(£).

Proof. Let us assume first that £ is a bounded, Borel set. It is enough to prove
that
(19) <t>-m(E)^<j>- P(E).
Assume </> — P(£) < + oo. Let e > 0 and px = px(E, e) be small enough to ensure
that for each family (U¡) of Borel sets with diam U,< px, we have

</> - m(E n(Ut/,)) < XXdiamC/.) + e
(see [1, §7]). Let p2 be small enough to ensure that for each packing of £ by open
balls Bi of diameter < p2 centered in £ we have

£</>(diam B¡) < </> - P(£) + e.

By a classical Vitali argument we can choose a packing (B¡) of such balls, with
diam B¡ < Tmn(px/5, p2), and such that for all n, E - (J"B¡ c U^+1 B*, where B* is
the ball with the same center as Bi and with radius multiphed by a factor of 5.
Therefore,

<b-m   £-Û*,U<?>-»2 Un    \JB*\\,
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and given diam B* < px,
(n        \ oo oo

£ - \JBi   <  L «/»(diam B*) + e < c;> £ </>(diam 5,) + e,
1        /'      n+l n+1

where E^+1 «/»(diam £,) tends to 0 as n -» oo since the series converges. Therefore,

</»- /*(£)<</>-m   £n   IM      +e
00

< 2^</>(diam B¡) + 2e < </> - P(£) + 3e.
i

This proves (19) for bounded, Borel sets. But both measures are Borel regular so the
result follows for any bounded subset of R^. The extension of Lemma 5.11 to
unbounded sets is immediate.

Remark 5.12. It will usually be the case that </> - m(E) < </> — p(E) unless they
are both 0 or + oo. The condition 0 < </» — m(E) = </> — p(E) < + oo is a very
strong regularity condition which will be studied in a subsequent paper [16].

6. Sojourn time for Brownian motion. Before we can attack the problem of packing
measure for sample paths we need precise information about the small tail of the
distribution of the total time spent in a ball. We restrict attention to Brownian
motion in Rd (d > 3) where the process is transient and, therefore, the total sojourn
time is finite. The case d = 1 is trivial, and a solution for d = 2 will require some
additional techniques.

X, = X,(u), -oo < t < + oo, is a standard version of the Wiener process in Rd.
P = P° is the Wiener measure for X0 - 0. We need several associated random
variables. Let

Md=sup{||X,-*0||,0<r<l}.
For r > 0, Pd(r) denotes the first passage time out of the ball Br(0), given X0 = 0:

Pd(r) = inf{t>0:X,£Br(0)}.

The total time spent in Br(0) after 0, given X0 = 0, is

(7,(r) = |{i>0:^6Är(0)}|,
while the corresponding time before 0 is

Vd(r) = \{t<0:X,<=Br(0)}\,
and the sojourn time in Br(0), given X0 = 0, is

Td(r) = Ud(r) + Vd(r).
We are interested in the small values of Td(r) as r [0. Ud(r) and Vd(r) are

independent positive random variables with the same distribution, so Td is small only
if Ud and Vd are small. It is for this reason that our argument is more comphcated
than that in [2], for there the large values of Td were relevant and these are the same
size as the large values of Ud or Vd.

The trajectory of the process on [0,1] is denoted

£(«) = [x g Rd. x = X, for some t g [0,1]}.
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Since X, is continuous a.s. £(w) is a compact set. For n g N we put

Nn(u) = number of dyadic cubes of side 2"" containing a point of £(w).

We can now state some elementary results.

Lemma 6.1. Suppose \\x\\ > r; then

P{Br(x) is hit by X, for t> 0} = (r/||x||)''"2.

This is well known: it follows from the fact that the hitting probability of a ball
starting from y is a harmonic function of y with boundary value 1 on the surface of
Br(x).

Lemma 6.2. There are positive constants cx, c2 such that, for r > 1,

cxrd-2e-r2/2 ^P{Md>r} < c^-V'2/2.

Proof. The reflection principle gives
P{\\XX\\> r} < P{Md> r} <2P{\\XX\\> r}.

The result now follows using the large tail of the normal distribution.

Lemma 6.3. There is a positive constant c3 such that
E(Nn(u>)) < c322"   /ora//«GN.

This can be deduced from Lemmas 6.1 and 6.2 by a standard calculation, or we
can obtain it as a corollary of the results in [2].

Lemma 6.4. For 0 < t < 1,
Cit2-d/2e-l/2, ^ P[Ud(l) ^ ,}  ^ ^l-d/2^1/2,

Proof. It was proved in [2] that Ud(l) has the same distribution as Pd_2(l).
Hence,

P{Ud(l) <t}= P{Pd_2(l) < t} = P{Pd_2(t^2) < 1} = P{Md_2 > t^2},
using the scahng property for Brownian motion for the third term. The result now
follows from Lemma 6.2.

Lemma 6.5. For each e > 0 there is a tx = tx(e) > 0 such that
e-(2+«)// ^ P{Td(l) < t} < e-<2-£)/'   forO<t< tx.

Proof. Since Ud(T) and Vd(l) are independent with the same distribution, we get

P{Td(l)^t}>[p{Ud(l)<\t}\2

>Krd+Ae-2/'   by Lemma 6.4

> <?"<2+e)/'   if / is small enough.
A fairly crude method gives the right inequality. Put G(s) = P{Ud(l) < s} and fix
an integer k. Then

P{Td(l) < t) = f'G(t - s) dG(s) = L   [U/k     G(t - s) dG(s)
J0 , = 1  J(i-l)t/k

k      ..      .     -   .     ...,E6(i4±!()G(¿,).
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G(íHrlt)G(it) < c(kv-d**p
Now use Lemma 6.4 with distinct arguments for d > 4 and d = 3 to give

J_      k2 + k
2/ i(k- / + 1)

where C(k) = 6(kd-3) as k -» oo. But, for 1 < i < Ä;, (A:2 + £)//(*: - i + 1) >
4(1 - 1/Jfc), so

P{Td(l) < i} < A:C(A)i4-dexp[-(2/r)(l - 1/k)].
Given e > 0 choose k > 3/e and t small enough to give

P{Td(l)< t} <e-(2"E>/'   forO </</!•
Remark 6.6. It is clear that we could tighten up the above argument considerably

but not enough to give an exact asymptotic value for P{Td(l) < t} as t J,0. If we
could have proved the following, it would have simphfied our task in the next
section.

Conjecture 6.7. There are constants K = K(d), X = X(d), such that
P{Tä(l)<t} - Kt\-2/t   as 110.

It seems likely that this should follow from a general result on the small tail of the
distribution of the sum of two positive independent random variables, but the
existing techniques are not good enough.

Theorem 6.8. Suppose Td(r) is the total time spent in the ball Br(0) by a Brownian
motion process in Rd (d > 3), X„ -oo < t < + oo, with X0 = 0. Then

T í    \
liminf   d       =2   a.s.,

rio    ip(r)

where \f/(r) = r2/log|logr|.

Proof. We fix d throughout the proof and omit it. In the easier direction a
standard Borel-Cantelh argument will work. Fix y < 2. For k = 2, 3,... let ak =
exp(-A:/log k), Ek= {co: T(ak) < y\¡/(ak)}. Let 0 < e < 1. Using the scaling prop-
erty,

P(Ek) = P{T(1) < y/log|loga,|} < P{T(1) < y/(l - e)logA:}
< k~",   where a = (1 - e)(2 - e)/y

by Lemma 6.5, when k is large enough. Taking e small enough to make a > 1, we
have YLP(Ek) converges, so, with probability 1, there exists kx = kx(u) for which
k>kx=> T(ak) > yUak). Thus

,.    ■ , T(ak)hminf > y    a.s.
*-oo   i(ak)

But Td(r) and \¡/(r) are monotone for small r and

Hence,

hm4H = l-
*-°° ÏKVk+i)

r'   •  t T(r)hminf—tt > y   a.s.
/•lo    t//(r)
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Since y can be chosen arbitrarily close to 2, we get

(20) liminf^T>2    a.s.
no   ip(r)

In the other direction we require precise estimates of probabilities, so we have to use
the fact that T(r) is the sum of two independent random variables T(r) = U(r) +
V(r). We now fix y > 2 and show that, for bk = exp(-k(logk)2), k = 2, 3,...,
infinitely many of the events

(21) Dk={u:T(ak)<yt(ak)}

occur with probability 1. This is enough to give

T(r)
hminf—rT<2    a.s.,

rio    \p(r)

which with (20) will complete the proof of the theorem. The first step uses the
minimum 'rate of escape' to show that there is no contribution to T(bk) from values
of t with |f | much greater than b\. To be precise put t = k3b\ and

T(bk,rk) = \{t g R: |i] < Ttand||*,|| « bk}\.

Then the event T(bk, Tk) ¥= T(bk) is contained in

{ w: t > Tk with \\Xt\\ < bk} U { w: t < -Tk with \\X,\\ <bk}.

The estimates for delayed hitting probabihty in [3] give

P{T(bk,rk)*T(bk)} = 0(k-3/2),

so that a.s. there exists k7 = k>,(<¿) for which

(22) k>k2~T(bk) = T(bk,rk).

Using the large tail of the normal distribution to estimate PfJIA',. || > k2bk}, we can
show that a.s. there exists k3 = k3(u) for which

(23) k > k3 - \\XJ « k2bk    and    \\X_J < k2bk.

Now put ek = bk + (k + 1)2(\+1 and note that

(24) k>k3=>Bbk(0)czBek(X7kJ.

Define new sections of sojourn time

tf('o> r, t) = |{ t: t0 < t < t0 + t and ||JrT, - XJ < r ) \,

H>o, r,r) = \{t: t0 - r < / < i0and||*, - Jf,o|| < r}\.

By (24), for k > k3,

(25) .7(0, bk, rk) < rk+1 + U(tk+1, ek, rk - rk+x).

But now the events

Ak= (u- í/(T*+i.^»^-Ti + 1)<iy>í'(^)-T(t+1}

are independent, and

P(Ak) > P{U(ek) < \-y4,(bk) - rk + x} = P{U(l)^yk},
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where

yk= (h^(bk) - -rk + i)/el - h/ïog/c    as k ^ oo.

It follows from Lemma 6.4 that, for each e > 0, whenever k is large enough,

P(Ak) > k-(1+*V\

The same result holds for the symmetrical event

Bk= {w: v(-Tk+i,ek,Tk - T*+i) < iV\>(bk) -rk+1).

The events Ak,Bk are independent, so we get

P(AkC\Bk)> Ar2<1 + e>/?.

But for k = 2, 3,..., the events Ak n Bk depend on disjoint time intervals and are,
therefore, independent. It follows that, with probability 1, for each y > 2, Ak n Bk
happens infinitely often. We now combine (22) and (25) to deduce that Dk defined
by (21) happens infinitely often a.s.

Remark 6.9. There are two differences between the result of Theorem 6.8 and the
corresponding hm sup law obtained in [2]. Firstly, the asymptotic value does not
depend on d > 3. Secondly, the constant is different for a one-sided law. A
simplified version of the above argument shows that

hminf = -    a.s.
r-o    y(r)       ¿

Corollary 6.10. For fixed t0 let Td(t0, r) denote the total time spent in Br(X, ) by
a Brownian motion process in Rd (d > 3). Then

y    ■   c Td(tp,r)hminf-—— = 2   a.s.
rio       rp(r)

Proof. Y= X, ., — X,, -co < s < oo, defines a version of the Brownian motion
process for which Y0 = 0. Apply the theorem to Y.

7. The exact packing measure of Brownian motion. Our object in this section is to
prove that

i(r) = r2/log|logr|

is the correct function in <ï> to give a finite positive »/»-packing measure for a piece of
Brownian trajectory in Rd (d > 3). To obtain an upper bound we use a result which
may be more general than we need.

Lemma 7.1. Suppose Yt(co) is any standard process in Rd (d > 1) and E(u>) = {x:
x = YJor some t g [0,1]}. Let Nn(u) be the number of dyadic cubes of side 2~" which
meet E(u), fi = fi(u) be a finite Borel measure in R, and write, for X > 0,

</„,,=    sup   P{ii(B2-„(x))<X<j>(2-n)}.
je£(»)

If Z.™_1[q„ x<t>(2-")E(Nn(u))]1/2 < +00 for some X > 0, then </» - P(E(a)) < + oo
a.s.
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Proof. Using (1) and the trivial inequahty Nn < N„+2, we see that the hypothesis
of Lemma 7.1 implies

(26) L[<¡n+2,M2-n)E(Nn(o>))]1/2<+cc.

A semidyadic cube v of side 2'" is called 'good' if ¡i(v) > X<¡>(2~"~2); otherwise it is
'bad'. If v = v„(x) then v contains B2-n-i(x) so that, for x G £(«),

P(v„(x)ísbad)<iqn+2X.

There are less than KNn such cubes vn(x)(K = K(d)), so if Mn is the number of bad
cubes,

£(M„(W)) < Kqn + 2¡xE(Nn(<o)).

Hence,

P{Mn> [qn+2¡xE(N„)M2-")]1/2} < K[qn + 2,M2-")E(Nn)]1/2-

Using Borel-Cantelli and (26) a.s., we obtain that there is nx = nx(u) such that

Mn < [qn + 2,xE(Nn)M2-")]1/2   torn > nx.

Now it 91 is a family of disjoint cubes of T** with ||^|| < 2~N, N > nx, the
contribution of the 'bad' cubes to the sum (j>(92) becomes negligible, for

oo

£{<f»(¿(i;)):(;G<£,í;isbad} <   £ M„<j>(d2-")
n = N

< c £ l?„+2,^(2-")£(iv;)l1/2,
n = N

and this converges to 0 as N -» oo by (26). Also

£ [<t>(d(V)): ve9?,vis good} < cS£$(i side of p) < ^||/i||,

where  r  is   an   integer  such  that  2r~2 > d1/2.   Thus,   we  have  proved   that
</> - P**(£(to)) < cx < +00. By Lemma 3.4 this tells us that there is a Kx s.t.

</> - P(£(co)) < Ä-! < +00    a.s.

Corollary 7.2. // X, is a standard Brownian motion in Rd (d > 3), then
\p — p(E(u)) < Kx < +00, where i//(r) = r2/log|log r\.

Proof. We define ¡x = ix(u>) by the projecting Lebesgue measure from [0,1] onto
£(«). Thus for Borel A, fi(A) = |{i g [0,1]: X,eA}\. Clearly, n(Rd) = ft(£(io)) =
1. Now suppose 0 < X < 1/4. For t g [0,1],

P{vl(B2-.(X,)) < a^(2-")} < P{i/(2-) < \^(2-")}

< P{i/(1) < A22"tH2-")} < P{U(1) < A/logn}.
Using Lemma 6.4 gives

qn,x<c2X2-d^(\ogn)-2 + d/2n-^2\

Using Lemma 6.3 satisfies the hypothesis of Lemma 7.1 for X < 1/4. Thus we have

\f> -p(E(u)) < t//- P(£(w)) < Kx < +00    a.s.
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Remark 7.3. There is an alternative proof of the result \p - p(E(u)) < Kx. If we
use Theorem 4.1 and the result about strong variation proved in [14], V^(X(I)) = 2
a.s., we get an immediate upper bound.

Lemma 7.4. // X, is a standard Brownian motion in Rd (d > 3), there is a constant
K2 such that ip - p(E(u)) > K2 > 0 a.s.

Proof. We apply the density theorem to the measure ¡x defined above. By
Corollary 6.10, for each fixed t0 g (0,1), almost surely

(27) hmsup    ,   *(r>   m-i
noP n(Br(X(t0)))     2

By a Fubini argument the set of /0 g (0,1) for which (27) is true has full measure, so
the corresponding Ex c £(<o) satisfies \x(Ex) = 1. Apply Theorem 5.4 to the set Ex
to get

4>-p(E)> i// - p(Ex) > Xx/2 > 0   a.s.
We can now state our main result.

Theorem 7.5. Suppose X, (-oo < / < oo) is a standard Brownian motion in Rd
(d > 3). Almost surely there are finite positive constants pd such that \p — p(X(A)) =
pd\A\for every Borel set A C R, where

X(A)= [x G Rd: t <=Awith X, = x).

Proof. Corollary 7.2 and Lemma 7.3 ensure that
(28) 0< K2t *í4>-p(X(0, t))^Kxt
for each fixed t > 0. Let Yt = \p ~ p(X(0, t)). Let us show that Yt is an independent
increment process, that is, for any fixed times 0 < tx < t2, putting Z = X(0, tx) Pi
XOx, t2):
(29) x¡,-p(Z) = 0   a.s.
(In fact if d > 4, Z is empty a.s.; see [4].) From Lemmas 3.4 and 5.1(iv), it suffices to
show that ip — P*(Z) = 0, or rather the stronger result

Ve > 0,   e1 + e - P*(Z) = 0.

Let Dn be the number of dyadic cubes of side 2'" hit by Z, that is, by both ^(0, tx)
and X(tx, t2). A calculation of the first moment of D„ and an apphcation of
Borel-Cantelh shows that a.s. there exists n0 = n0(a>, e) such that n > n0 => Dn <
2«(i+e/2) por any /v" > «0 and for any packing 92 of Z by dyadic cubes of side
< 2" N containing a point of Z, we get

el+'(9l) < Y,(dl/22-"f+eDn < +00.
N

Letting N -» oo it follows that </> - P*(Z) = 0 (actually this proves that A(Z) < 1,
and since dim(Z) = 1 [5], we get dim(Z) = Dim(Z) = A(Z) = 1).

(29) being proved, it follows that Yt is a Levy process. Using (28) and an argument
in [15], we deduce that there is a constant pdAuch that

«// - p(X(0, t)) = pd   for all t > 0 a.s.
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A similar argument works for \p - p(X(-t, 0)). It is now immediate that
^-p(X(tx,t2)) = pd(t2-tl)

for all rational tv t2 and, therefore, for all tx, t2 by monotonicity. The result now
follows for any Borel set A since we can approximate A by a union of intervals.

Remark 7.6. We have seen that (27) and V^(Xt) do not depend on the dimension
d > 3. It seems likely that the constants pd in Theorem 7.5 are the same for each
d > 3. It would be interesting to find pd.
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