Packing of Graphic *n*-tuples

Arthur H. Busch*, Michael J. Ferrara[†], Stephen G. Hartke[‡], Michael S. Jacobson[§], Hemanshu Kaul[¶], and Douglas B. West^{||}

January 10, 2011

Abstract

An n-tuple π (not necessarily monotone) is graphic if there is a simple graph G with vertex set $\{v_1, \ldots, v_n\}$ in which the degree of v_i is the ith entry of π . Graphic n-tuples $(d_1^{(1)}, \ldots, d_n^{(1)})$ and $(d_1^{(2)}, \ldots, d_n^{(2)})$ pack if there are edge-disjoint n-vertex graphs G_1 and G_2 such that $d_{G_1}(v_i) = d_i^{(1)}$ and $d_{G_2}(v_i) = d_i^{(2)}$ for all i. We prove that graphic n-tuples π_1 and π_2 pack if $\Delta \leq \sqrt{2\delta n} - (\delta - 1)$, where Δ and δ denote the largest and smallest entries in $\pi_1 + \pi_2$ (strict inequality when $\delta = 1$); also, the bound is sharp.

Kundu and Lovász independently proved that a graphic n-tuple π is realized by a graph with a k-factor if the n-tuple obtained by subtracting k from each entry of π is graphic; for even n we conjecture that in fact some realization has k edge-disjoint 1-factors. We prove the conjecture in the case where the largest entry of π is at most n/2 + 1 and also when k < 3.

Keywords: Degree sequence, graphic sequence, graph packing, k-factor, 1-factor

1 Introduction

An integer *n*-tuple π is *graphic* if there is a simple graph G with vertex set $\{v_1, \ldots, v_n\}$ such that $d_G(v_i) = d_i$, where $\pi = (d_1, \ldots, d_n)$ and $d_G(v)$ denotes the degree of vertex v in graph G. Such a graph G realizes π . Two *n*-vertex graphs G_1 and G_2 pack if they can be expressed as

^{*}University of Dayton, Dayton, OH, Art.Busch@notes.udayton.edu

[†]University of Colorado-Denver, Denver, CO, michael.ferrara@ucdenver.edu

[‡]University of Nebraska-Lincoln, Lincoln, NE, hartke@math.unl.edu. Supported by a Nebraska EPSCoR First Award and NSF grant DMS-0914815.

[§]University of Colorado-Denver, Denver, CO, Michael.Jacobson@ucdenver.edu. Supported by NSF grant DGE-0742434.

[¶]Illinois Institute of Technology, Chicago, IL, kaul@math.iit.edu

University of Illinois, Urbana, IL, west@math.uiuc.edu. Supported by NSA grant H98230-10-1-0363.

edge-disjoint subgraphs of the complete graph K_n . We study an analogue of graph packing for graphic n-tuples. Let π_1 and π_2 be graphic n-tuples, with $\pi_1 = (d_1^{(1)}, \ldots, d_n^{(1)})$ and $\pi_2 = (d_1^{(2)}, \ldots, d_n^{(2)})$ (they need not be monotone). We say that π_1 and π_2 pack if there exist edge-disjoint graphs G_1 and G_2 with vertex set $\{v_1, \ldots, v_n\}$ such $d_{G_1}(v_i) = d_i^{(1)}$ and $d_{G_2}(v_i) = d_i^{(2)}$ for all i. In graph packing, vertices may be reordered, but in packing of graphic n-tuples no reordering of the indices is allowed. Graphic n-tuples are often called graphic sequences; we use "n-tuple" partly to emphasize that the order of entries matters. When not specifying the length, we use "list".

The condition that $\pi_1 + \pi_2$ is graphic is obviously necessary for π_1 and π_2 to pack, but the following small example shows that it is not sufficient.

Example 1.1. Let $\pi_1 = (3, 1, 2, 2, 0, 0)$ and $\pi_2 = (1, 3, 0, 0, 2, 2)$, with sum (4, 4, 2, 2, 2, 2). Both π_1 and π_2 are graphic, and the complete bipartite graph $K_{2,4}$ realizes their sum. However, in every realization of π_j , the vertex v_j of degree 3 has three nonisolated neighbors. Thus v_1 and v_2 are adjacent in every realization of π_1 or π_2 , and the lists do not pack. \square

In fact, Dürr, Guiñez, and Matamala [4] showed that determining whether two graphic n-tuples pack is NP-complete. Hence we focus on finding sharp sufficient conditions. In 1978, Sauer and Spencer [14] published the classical result that n-vertex graphs G_1 and G_2 pack if $\Delta(G_1)\Delta(G_2) < n/2$, where $\Delta(G)$ denotes the maximum vertex degree in G. In Section 2, we prove an analogue for n-tuples, showing that graphic n-tuples π_1 and π_2 pack if $\Delta \leq \sqrt{2\delta n} - (\delta - 1)$, where Δ and δ denote the largest and smallest values in $\pi_1 + \pi_2$, except that strict inequality is needed when $\delta = 1$. Furthermore, the bound is sharp; we construct lists that do not pack when the maximum entry in the sum is larger by 1. We conjecture the stronger statement that two graphic n-tuples pack if the product of corresponding terms is always less than n/2; this would be a more direct analogue of the Sauer-Spencer Theorem.

Kundu's Theorem [9], published in 1973 and proved independently by Lovász [10] at about the same time, characterizes when a graphic n-tuple has a realization containing a spanning subgraph that is "almost" k-regular. In the language of packing, the result states that if π_1 is graphic and each term in π_2 is k or k-1, then π_1 and π_2 pack if $\pi_1 + \pi_2$ is graphic.

In Section 3, we consider extensions of the k-factor case of Kundu's Theorem, where a k-factor of a graph is a spanning k-regular subgraph. Kundu's Theorem implies that a graphic n-tuple π is realizable by a graph having a k-factor if the list obtained by subtracting k from each entry is graphic. We conjecture the stronger statement that in fact when n is even there is a realization containing k edge-disjoint 1-factors (that is, a k-edge-colorable k-factor). We prove the conjecture when the largest entry is at most n/2 + 1. We also prove the more

difficult result that the conjecture holds when $k \leq 3$, by proving in general that there is a realization containing a k-factor that has two edge-disjoint 1-factors.

2 An Analogue of the Sauer-Spencer Theorem

The Sauer–Spencer Theorem immediately implies that n-vertex graphs G_1 and G_2 pack when their maximum degrees sum to less than $\sqrt{2n}$. Chen [2] gave a short proof of Kundu's Theorem; we use a similar technique to prove our result for packing of graphic n-tuples. When the least entry in the sum is 1, the maximum allowed by the hypothesis is the same as in the Sauer–Spencer Theorem. Note that when we prove directly that π_1 and π_2 pack, it follows immediately that $\pi_1 + \pi_2$ is graphic.

Again let Δ and δ denote the largest and smallest entries in $\pi_1 + \pi_2$. Before proving that our condition is sufficient for π_1 and π_2 to pack, we present a simple construction that proves sharpness when $\delta = 1$ (see also Remark 2 of [10]). We later obtain sharpness for $\delta \geq 2$ via a slight modification of this construction.

Example 2.1. For $\delta, m \in \mathbb{N}$ with m > 1, let $n = 2\delta m^2$. We construct graphic *n*-tuples π_1 and π_2 with $\Delta = \sqrt{2\delta n}$ that do not pack. Let

$$\pi_1 = (\delta m, \delta m, (2\delta m)^{\delta(m-1)}, 0^{\delta(m-1)}, (\delta m)^{\delta-1}, 0^{\delta-1}, \delta^{\delta(m^2-m)}, 0^{\delta(m^2-m)})$$

and

$$\pi_2 = (\delta m, \delta m, 0^{\delta(m-1)}, (2\delta m)^{\delta(m-1)}, 0^{\delta-1}, (\delta m)^{\delta-1}, 0^{\delta(m^2-m)}, \delta^{\delta(m^2-m)}),$$

where the exponents denote multiplicity (lengths of constant sublists). The lists have length $2\delta m^2$, as desired. Also, the largest and smallest entries in $\pi_1 + \pi_2$ are $2\delta m$ and δ , respectively, so $\Delta = \sqrt{2\delta n}$. (The Erdős–Gallai conditions [6] readily imply that $\pi_1 + \pi_2$ is graphic, but this is not important). It remains to show that π_1 and π_2 are graphic but do not pack.

To show that π_i is graphic, start with $K_{\delta m+1}$, split its vertices into sets V_1, \ldots, V_{m-1} of size δ plus $\delta + 1$ leftover vertices, for each i make the vertices of V_i adjacent to a set X_i of δm new vertices, and add to these $\delta m^2 + 1$ vertices a set of $\delta m^2 - 1$ isolated vertices.

Given any realization of π_1 , let S be the set of $\delta m + 1$ vertices with degree exceeding δ . Their degree-sum is $2\delta^2 m^2 - \delta m(\delta - 1)$, which equals $2\binom{\delta m + 1}{2} + \delta^2(m^2 - m)$. To reach this total, S must induce a complete graph, and all other edges must join S to vertices of degree δ . Thus v_1 and v_2 are adjacent in every realization of π_1 . The same argument applies to π_2 ; again v_1 and v_2 are adjacent in every realization. Since v_1 and v_2 are adjacent in all realizations of both lists, π_1 and π_2 do not pack.

Given a graph G and a set $S \subseteq V(G)$, let G[S] denote the induced subgraph of G with vertex set S, and let $N_G(S)$ be the set of vertices having a neighbor in S. A *clique* is a pairwise adjacent set of vertices.

Theorem 2.2. Let π_1 and π_2 be graphic n-tuples. If

$$\Delta \le \sqrt{2\delta n} - (\delta - 1),$$

where Δ and δ denote the maximum and minimum values in $\pi_1 + \pi_2$, then π_1 and π_2 pack, except that strict inequality is required when $\delta = 1$.

Proof. Let π_1 and π_2 be graphic *n*-tuples. If $\delta = 0$, then $\Delta \leq \sqrt{2\delta n} - (\delta - 1)$ implies that realizations are edgeless or consist of matchings on disjoint vertex sets, so π_1 and π_2 pack. Therefore, we may assume $\delta \geq 1$. We prove that if π_1 and π_2 fail to pack, then $\Delta \geq \sqrt{2\delta n} - (\delta - 1)$, with strict inequality when $\delta > 1$.

Among realizations of π_1 and π_2 on vertices v_1, \ldots, v_n that have the required degrees at each vertex, choose G_1 and G_2 to minimize the number of edges that appear in both graphs. Since π_1 and π_2 do not pack, we may consider an edge xy in $E(G_1) \cap E(G_2)$.

Let $G = G_1 \cup G_2$, and let $I = V(G) - (N_G(x) \cup N_G(y))$. With $\delta \geq 1$, we have $\Delta < \sqrt{n}$, so $I \neq \emptyset$. Let $Q = N_G(I)$. Suppose that G_1 or G_2 has an edge uv such that $u \in I$ and $\{x,y\} \not\subseteq N_G(v)$; by symmetry, we may assume $yv \notin E(G)$. Replacing $\{xy,uv\}$ with $\{xu,yv\}$ in that graph reduces the number of shared edges without changing any vertex degrees, contradicting the choice of G_1 and G_2 (see Figure 1a). Thus $Q \subseteq N_G(x) \cap N_G(y)$.

Figure 1: Properties of Q

For $j \in \{1, 2\}$, let $Q_j = N_{G_j}(I)$; we claim that Q_j is a clique in G. Otherwise, choose $w, w' \in Q_j$ with $ww' \notin E(G)$. Let z and z' be (not necessarily distinct) vertices in I such that $zw, z'w' \in E(G_j)$. Since $ww' \notin E(G_j)$, replacing $\{z'w', wz, xy\}$ with $\{w'w, zx, yz'\}$ in $E(G_j)$ reduces the number of shared edges without changing vertex degrees (see Figure 1b).

Since $Q = Q_1 \cup Q_2$, and Q_1 and Q_2 are cliques in G, the complement of G[Q] is bipartite. Letting r be the number of edges in G[Q], we obtain

$$r \ge {|Q| \choose 2} - \frac{|Q|^2}{4} = \frac{|Q|^2}{4} - \frac{|Q|}{2}.$$
 (1)

Next, note that $|I| = n - |N_G(x) \cup N_G(y)| = n - |N_G(x)| - |N_G(y)| + |N_G(x) \cap N_G(y)|$. Since xy is a shared edge, $|N_G(x)|$ and $|N_G(y)|$ are at most $\Delta - 1$. With $Q \subseteq N_G(x) \cap N_G(y)$,

$$|I| \ge n - 2\Delta + 2 + |Q|. \tag{2}$$

Each vertex $v \in I$ has at least δ incident edges in G_1 and G_2 together, and each neighbor is in Q. Since $Q \subseteq N_G(x) \cap N_G(y)$, at most $(\Delta - 2)|Q| - 2r$ edges of G_1 and G_2 together have endpoints in I and Q. Therefore,

$$|I| \le \frac{(\Delta - 2)|Q| - 2r}{\delta}.\tag{3}$$

Together, (2) and (3) yield

$$(\Delta - 2)|Q| - 2r \ge \delta(n - 2\Delta + 2 + |Q|). \tag{4}$$

Using (1) to substitute for r, letting q = |Q|, and simplifying brings us to

$$q(\Delta - 1 - \delta - q/2) \ge \delta(n - 2\Delta + 2). \tag{5}$$

The left side is maximized when $q = \Delta - 1 - \delta$. Since the inequality must hold there, $(\Delta - 1 - \delta)^2 \ge 2\delta(n - 2\Delta + 2)$. Adding $4\delta(\Delta - 1)$ to both sides yields $(\Delta - 1 + \delta)^2 \ge 2\delta n$, or

$$\Delta \ge \sqrt{2\delta n} - (\delta - 1). \tag{6}$$

To complete the sufficiency proof, we show that equality cannot hold in (6) when $\delta \geq 2$. Equality in (6) requires equality in the inequalities that produced it. Equality holds in (5) only when $q = \Delta - 1 - \delta$. Equality in (4) (equivalent to (5)) requires equality in (3) and (2). Thus $\delta |I|$ equals both sides of (4), and also $Q = N_G(x) \cap N_G(y)$ and $|N_G(x)| = |N_G(y)| = \Delta - 1$. By this last equality, G_1 and G_2 share no edges incident to x or y except xy.

Equality in (3) requires $N_G(w) = Q$ whenever $w \in I$. Since exactly $(\Delta - 2)|Q| - 2r$ edges have endpoints in Q and I, and by definition G[Q] has r edges, the edges joining Q to $I \cup \{x, y\}$ and within Q exhaust the total degree sum available to vertices of Q. We conclude that in G each vertex of Q has degree Δ and has no neighbor in $N_G(x) \cup N_G(y)$ outside Q.

Figure 2: $Q = N_G(I) \subseteq N_G(x) \cap N_G(y)$

Let $X = N_G(x) - N_G(y) - \{y\}$, and let $Y = N_G(y) - N_G(x) - \{x\}$ (see Figure 2). Since $|N_G(x)| = |N_G(y)| = \Delta - 1$ and $|N_G(x) \cap N_G(y)| = q = \Delta - 1 - \delta$, we have $|X| = |Y| = \delta - 1$. If G_j has edges within both X and Y, say $uu' \in G_j[X]$ and $vv' \in G_j[Y]$, then consider whether $uv \in E(G_j)$. If so, then replacing $\{xy, uv\}$ with $\{yu, vx\}$ in G_j reduces the number of shared edges; if not, then replacing $\{vv', xy, u'u\}$ with $\{v'x, yu', uv\}$ does so. Hence by symmetry we may assume that edges of G[X] lie only in G_1 and edges of G[Y] lie only in G_2 . Now vertices of X are isolated in G_2 and have at most $\delta - 1$ neighbors in G_1 (including x). If X is nonempty, then this contradicts the definition of δ . Hence equality in (6) requires $X = \emptyset$ and $\delta = 1$.

Theorem 2.3. The result of Theorem 2.2 is sharp: for $\delta, m \in \mathbb{N}$ with $m \geq \delta \geq 2$, there exist π_1 and π_2 with $n = 2\delta m^2$ such that $\Delta = \sqrt{2\delta n} - (\delta - 2)$ but π_1 and π_2 do not pack.

Proof. We consider only $\delta \geq 2$ since the construction in Example 2.1 proves sharpness for $\delta = 1$. Choose $m \in \mathbb{N}$ with $m \geq \delta$, and let $n = 2\delta m^2$. Let G be the construction using these parameters in Example 2.1. We modify G to reduce the maximum degree by $\delta - 1$. This will also reduce Δ by $\delta - 1$ in the sum of two specified orderings of the vertex degrees.

Recall that the construction of G begins with a complete graph $K_{\delta m+1}$ whose vertex set is composed of sets V_1, \ldots, V_{m-1} of size δ plus $\delta+1$ additional vertices. For each i the set V_i is adjacent to a set X_i of δm new vertices, and there are δm^2-1 additional isolated vertices. Each vertex in $\bigcup_i V_i$ has degree $2\delta m$, each extra vertex in the clique has degree δm , and $\delta m(m-1)$ vertices outside the clique have degree δ .

Modify G by removing $\delta-1$ of the extra vertices from the clique, reducing the degrees of the other vertices by $\delta-1$. For $1 \leq i \leq \delta-1$, put one of the removed vertices into X_i . Hence the number of vertices remains $2\delta m^2$, the vertices of $V_1, \ldots, V_{\delta-1}$ have degree $2\delta m - \delta + 2$, those of $V_{\delta}, \ldots, V_{m-1}$ have degree $2\delta m - \delta + 1$, the two unmoved extra vertices have degree $\delta m - \delta + 1$, and the remaining vertices have degree δ . The new graph G' realizes the n-tuples

 π'_1 and π'_2 given by

$$((\delta m - \delta + 1)^2, (2\delta m - \delta + 2)^{\delta(\delta - 1)}, 0^{\delta(\delta - 1)}, (2\delta m - \delta + 1)^{\delta(m - \delta)}, 0^{\delta(m - \delta)}, \delta^{\delta(m^2 - m) + \delta - 1}, 0^{\delta(m^2 - m) + \delta - 1})$$

and

$$((\delta m - \delta + 1)^2, 0^{\delta(\delta - 1)}, (2\delta m - \delta + 2)^{\delta(\delta - 1)}, 0^{\delta(m - \delta)}, (2\delta m - \delta + 1)^{\delta(m - \delta)}, 0^{\delta(m^2 - m) + \delta - 1}, \delta^{\delta(m^2 - m) + \delta - 1}).$$

By construction, π'_1 and π'_2 are graphic. To show that they do not pack, we argue as in Example 2.1. In any realization of π'_1 , let S be the set of $\delta m - \delta + 2$ vertices with degrees exceeding δ . Their degrees sum to

$$2\delta m\delta(m-1) - (\delta-1)\delta(m-1) + \delta(\delta-1) + 2\delta m - 2(\delta-1),$$

which equals $2\binom{\delta m - \delta + 2}{2} + \delta^2(m^2 - m) + \delta(\delta - 1)$. To achieve this total, again S must be a clique. As in Example 2.1, v_1 and v_2 must be adjacent in all realizations of both graphs; hence π_1 and π_2 do not pack.

If $a+b < \sqrt{2n}$, then also ab < n/2. Hence the conjecture below would strengthen Theorem 2.2 when $\delta = 1$ and provide a more direct analogue to the Sauer-Spencer Theorem.

Conjecture 2.4. Let π_1 and π_2 be graphic n-tuples, with δ the least entry in $\pi_1 + \pi_2$. If $\delta \geq 1$ and the product of corresponding entries in π_1 and π_2 is always less than n/2, then π_1 and π_2 pack.

For fixed δ , a suitable bound on the product of corresponding entries to guarantee packing may be something like $\delta n/2 - O(\delta \sqrt{\delta n})$.

3 Extensions of Kundu's Theorem

Let $D_k(\pi)$ denote the *n*-tuple obtained from an *n*-tuple π by subtracting k from each entry. The "regular" case of Kundu's Theorem states that if π and $D_k(\pi)$ are graphic, then some realization of π has a k-factor. To extend the theorem, one could try to guarantee that some realization of π has edge-disjoint regular factors of degrees k_1, \ldots, k_t , where $\sum_{i=1}^t k_i = k$.

When n is odd, no regular n-vertex graph has odd degree, so existence requires all k_1, \ldots, k_t even. In that case, existence then follows immediately from Kundu's Theorem and Petersen's 2-Factor Theorem [12]; the latter states that every 2r-regular graph decomposes into 2-factors. It remains to consider even n.

Conjecture 3.1. Let n be an even integer. If π is a graphic n-tuple such that $D_k(\pi)$ is also graphic, and k_1, \ldots, k_t are positive integers with sum k, then some realization of π has edge-disjoint regular factors with degrees k_1, \ldots, k_t .

Conjecture 3.1 is immediately equivalent to the following conjecture.

Conjecture 3.2. Let n be an even integer. If π is a graphic n-tuple such that $D_k(\pi)$ is also graphic, then some realization of π has k edge-disjoint 1-factors.

Our main result (Theorem 3.9) toward Conjecture 3.2 combines with Petersen's Theorem to yield Conjecture 3.1 when k is even and at most two of k_1, \ldots, k_t are odd, and when k is odd and at most one of k_1, \ldots, k_t is odd.

We have proved several special cases of Conjecture 3.2. The first uses a lemma proved by A.R. Rao and S.B. Rao [13] in their study of what was called the "k-Factor Conjecture" before it became Kundu's Theorem.

Lemma 3.3. Fix $k \in \mathbb{N}$, and let π be a graphic n-tuple such that $D_k(\pi)$ is also graphic. If r is a positive integer such that $r \leq k$ and rn is even, then $D_r(\pi)$ is also graphic.

Let $\Delta(G)$ and $\delta(G)$ denote the largest and smallest vertex degrees in a graph G.

Theorem 3.4. Fix $k, n \in \mathbb{N}$ with n even, and let π be a graphic n-tuple such that $D_k(\pi)$ is also graphic. If every entry in π is at most n/2 + 1, then some realization of π has k edge-disjoint 1-factors.

Proof. The proof is by induction on k. For k=0, the statement is vacuous, and the case k=1 is a special case of Kundu's Theorem. Suppose then that $k \geq 2$ and that $D_k(\pi)$ is graphic. By Lemma 3.3, $D_2(\pi)$ is graphic, and since $D_k(\pi)$ is graphic the induction hypothesis implies that there is a realization G of $D_2(\pi)$ having k-2 disjoint 1-factors.

The hypothesis on π yields $\Delta(G) \leq n/2 - 1$, so $\delta(\overline{G}) \geq n/2$. Dirac's Theorem [3] now implies that \overline{G} has a spanning cycle C. Since n is even, C decomposes into two edge-disjoint 1-factors. Therefore, $G \cup C$ is a realization of π having k edge-disjoint 1-factors. \square

We also obtain Conjecture 3.2 in those cases where every entry in π is large, by applying Theorem 3.4 to the *n*-tuple obtained by subtracting every entry of $D_k(\pi)$ from n-1.

Corollary 3.5. Fix $k, n \in \mathbb{N}$ with n even, and let π be a graphic n-tuple such that $D_k(\pi)$ is also graphic. If every entry in π is at least n/2 + k - 2, then some realization of π has k edge-disjoint 1-factors.

Our main result in this section is that, under the conditions of Conjecture 3.2, there is a realization of π having edge-disjoint factors M_1, M_2, F that are regular of degrees 1, 1, and k-2. This implies Conjecture 3.2 for $k \leq 3$; for Conjecture 3.1, it allows one or two of k_1, \ldots, k_t to be odd when k is odd or even, respectively.

We use a well-known description of the maximum matchings in a graph. Say that a matching M avoids a vertex x if M has no edge incident to x. The Gallai–Edmonds decomposition of a graph G is a partition of V(G) into three sets defined as follows (the presentation by Lovász and Plummer [11] uses (D, A, C) instead of our (A, B, C)):

```
A = \{x \in V(G) : \text{ some maximum matching avoids } x\},

B = \{x \in V(G) - A : x \text{ has a neighbor in } A\},

C = V(G) - (A \cup B).
```

A near-perfect matching in G is a matching that avoids exactly one vertex. A graph is factor-critical if each vertex is avoided by some near-perfect matching. The deficiency def(G) of a graph G is defined to be $\max_{X\subseteq V(G)}(o(G-X)-|X|)$, where o(H) is the number of odd components (odd number of vertices) in H. It is immediate that every matching in G avoids at least def(G) vertices, and the Berge-Tutte Formula [1] states that equality holds for a maximum matching.

The Gallai–Edmonds Structure Theorem [5, 7, 8] describes the maximum matchings in a graph in terms of its Gallai–Edmonds Decomposition. We state only the parts we need.

Theorem 3.6. If (A, B, C) is the Gallai–Edmonds Decomposition of a graph G, then (a) the components of G[A] are factor-critical, and (b) every maximum matching in G consists of a near-perfect matching in each component of G[A], a perfect matching in G[C], and a matching of G[A] into vertices in distinct components of G[A].

Consider the decomposition (A, B, C) of a graph G having an even number of vertices but no 1-factor. Say that a component of G[A] is *missed* by a matching M if it has no vertex matched with a vertex of B in M. By Theorem 3.6, a maximum matching in G misses at least two components of G[A]. Our structural lemma, which may be of independent interest, is that when G is regular we can ensure that two such components will be nontrivial, where a graph is *nontrivial* if it has at least one edge.

Lemma 3.7. Let (A, B, C) be the Gallai–Edmonds decomposition of a regular graph F with an even number of vertices. If F does not have a 1-factor, then some maximum matching in F misses two nontrivial components of F[A].

Proof. When F has no 1-factor, the set A is nonempty. Let S be the set of isolated vertices in F[A]. By Theorem 3.6, every maximum matching in F pairs B with vertices of distinct components of F[A]. Since the number of vertices is even, every maximum matching misses at least two components of F[A].

Among the maximum matchings in F, choose M to miss the most nontrivial components of F[A]. If M does not miss two such components, then $|S| \ge 1$ and M misses at least one vertex a of S. Let B_S be the subset of B matched into S by M, and let $B'_S = B - B_S$.

Let R be the set of vertices reachable from a by M-alternating paths in F. Since M matches B into A, such paths move from A to B by edges not in M and return to A via M. If a, \ldots, b, a' are the vertices of such a path with $b \in B'_S$, then exchanging membership between M and E(F) - M along the path produces a new matching M' that misses one more nontrivial component of F[A] than M. The choice of M thus implies $R \subseteq S \cup B_S$.

As we explore M-augmenting paths from a, reaching a vertex in B_S also immediately adds a new vertex of S. Thus $|R \cap S| = |R \cap B_S| + 1$. This contradicts k-regularity, since $N(R \cap S) \subseteq R \cap B_S$. We conclude that a maximum matching missing the most nontrivial components must miss at least two.

Our second lemma concerns an auxiliary graph used in the proof of the theorem.

Lemma 3.8. Let l and m be positive odd integers. Let H be the graph with vertices $v_{i,j}$ for $i \in \mathbb{Z}_l$ and $j \in \mathbb{Z}_m$ such that each $v_{i,j}$ is adjacent to the four vertices of the form $v_{i\pm 1,j\pm 1}$. Let S be an independent set in H. If the first coordinates of the vertices in S are distinct, and the second coordinates of the vertices in S are distinct, then H - S contains an odd cycle.

Proof. When we arrange the vertices in the natural l-by-m grid, the condition on S implies each row and column has at most one vertex of S. It suffices to find an odd closed walk avoiding S. The vertices $v_{1,1}, \ldots, v_{lm,lm}$ form an odd closed walk; it suffices unless $v_{r,r} \in S$ for some r. Since S is independent, $v_{r-1,r+1} \notin S$. Also, $v_{r-2,r}, v_{r,r+2} \notin S$. Replacing $v_{r,r}$ with $v_{r-2,r}, v_{r-1,r+1}, v_{r,r+2}$ increases the length of the walk by 2 but decreases the number of vertices of S on it by 1. Doing this independently for each vertex of S on it yields an odd closed walk avoiding S.

We can now prove the main result of this section.

Theorem 3.9. Fix $n, k \in \mathbb{N}$ with n even and $k \geq 2$. If π is a graphic n-tuple such that $D_k(\pi)$ is also graphic, then some realization of π has a k-factor with two edge-disjoint 1-factors.

Proof. Since $D_k(\pi)$ is graphic, Kundu's Theorem provides a realization of π with a k-factor. Among all such realizations, choose a realization G and k-factor F in it to lexicographically maximize (r, s), where r is the maximum number of edge-disjoint 1-factors in F and s is the maximum size of a maximum matching in the graph \hat{F} left by deleting r 1-factors from F.

If $r \geq 2$, then the claim holds. Otherwise, $r \leq 1$ and 0 < s < n/2. If r = 1, let \hat{M} be the specified matching; if r = 0, then $\hat{M} = \emptyset$. View \overline{G} , \hat{M} , \hat{F} , and G - E(F) as a decomposition of K_n into edge-disjoint subgraphs.

Let (A, B, C) be the Gallai–Edmonds decomposition of \hat{F} . By Lemma 3.7, \hat{F} has a maximum matching M that misses two nontrivial components of $\hat{F}[A]$; call them Q and Q'. Since Q and Q' are components of $\hat{F}[A]$, each edge of K_n joining them is not in \hat{F} .

If edges xy in Q and x'y' in Q' exist such that xx' and yy' lie in the same graph among $\{\overline{G}, \hat{M}, G - E(F)\}$, then switching $\{xy, x'y'\}$ into it and $\{xx', yy'\}$ into \hat{F} yields a realization G' of π with a k-factor F' (having a 1-factor if r=1). Since Q and Q' are factor-critical (by Theorem 3.6), Q-x and Q'-x' have 1-factors. Since M misses Q and Q', replacing the edges of M in Q and Q' with xx' and 1-factors of Q-x and Q'-x' yields a matching M' in F' that is larger than M. By the choice of G and F, no such xx' and yy' exist.

Being factor-critical and nontrivial, Q and Q' are nonbipartite; hence each contains an odd cycle. Let $\{u_1, \ldots, u_l\}$ and $\{w_1, \ldots, w_m\}$ be the vertices along odd cycles chosen in Q and Q', respectively. Form the auxiliary graph H of Lemma 3.8, with vertices $v_{i,j}$ for $i \in \mathbb{Z}_l$ and $j \in \mathbb{Z}_m$. Let S be the subset of V(H) corresponding to edges of the form $u_i w_j$ that belong to \hat{M} . If r = 0, then S is empty; if r = 1, then S has at most one vertex in each row and column, because \hat{M} is a matching.

The vertices of H-S correspond to other edges u_iw_j in K_n , each belonging to \overline{G} or to G-E(F). By Lemma 3.8, H-S contains an odd cycle, and hence two adjacent vertices in H-S correspond to edges from the same subgraph. These edges have the form xx' and yy' previously forbidden. We conclude that $r \geq 2$, as desired.

Corollary 3.10. Conjecture 3.2 is true for $k \leq 3$.

We believe that the conclusion of Lemma 3.8 remains true when two such independent sets S and S' are deleted. This would improve Theorem 3.9 to produce a realization having a k-factor with three edge-disjoint 1-factors, yielding Conjecture 3.2 for $k \leq 4$ and Conjecture 3.1 with one more odd value in k_1, \ldots, k_t than allowed by Theorem 3.9. The method cannot extend beyond that, because when l = m = 3 there may be three independent sets of size 1 in H that together occupy one column, and then what remains is bipartite.

References

- [1] C. Berge, Sur le couplage maximum d'un graphe. (French) C. R. Acad. Sci. Paris 247 (1958), 258–259.
- [2] Y. Chen, A short proof of Kundu's k-factor theorem, Discrete Math. 71 (1988), 177-179.
- [3] G. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
- [4] C. Dürr, F. Guiñez, and M. Matamala, Reconstructing 3-colored grids from horizontal and vertical projections is NP-hard, Annual European Symposium (ESA 2009), Lect. Notes Comp. Sci. 5757 (2009), 776-787.
- [5] J. Edmonds, Paths, trees, and flowers. Canad. J. Math. 17 (1965), 449-467.
- [6] P. Erdős and T. Gallai, Graphs with prescribed degrees. (Hungarian) Matematiki Lapor
 11 (1960), 264-274.
- [7] T. Gallai, Kritische Graphen II. (German) Magyar Tud. Akad. Mat. Kutató Int. Közl. 8 (1963), 373-395.
- [8] T. Gallai, Maximale Systeme unabhängiger Kanten. (German) Magyar Tud. Akad. Mat. Kutató Int. Közl. 9 (1964), 401-413.
- [9] S. Kundu, The k-factor conjecture is true, Discrete Math. 6 (1973), 367-376.
- [10] L. Lovász, Valencies of graphs with 1-factors, Periodica Math. Hung. 5 (1974), 149-151.
- [11] L. Lovász and M. D. Plummer, Matching Theory. Ann. Discrete Math. Vol. 29, (North-Holland, Amsterdam), 1986.
- [12] J. Petersen, Die Theorie der regulären graphs. (German) Acta Math. 15 (1891), 193–220.
- [13] A.R. Rao and S.B. Rao, On factorable degree sequences, *J. Combin. Theory Ser. B* **13** (1972), 185-191.
- [14] N. Sauer and J. Spencer, Edge disjoint placement of graphs, *J. Combin. Theory Ser. B* **25** (1978), 295-302.