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Abstract

An n-tuple π (not necessarily monotone) is graphic if there is a simple graph G with

vertex set {v1, . . . , vn} in which the degree of vi is the ith entry of π. Graphic n-tuples

(d
(1)
1 , . . . , d

(1)
n ) and (d

(2)
1 , . . . , d

(2)
n ) pack if there are edge-disjoint n-vertex graphs G1

and G2 such that dG1
(vi) = d

(1)
i and dG2

(vi) = d
(2)
i for all i. We prove that graphic

n-tuples π1 and π2 pack if ∆ ≤
√

2δn− (δ − 1), where ∆ and δ denote the largest and

smallest entries in π1 + π2 (strict inequality when δ = 1); also, the bound is sharp.

Kundu and Lovász independently proved that a graphic n-tuple π is realized by a

graph with a k-factor if the n-tuple obtained by subtracting k from each entry of π

is graphic; for even n we conjecture that in fact some realization has k edge-disjoint

1-factors. We prove the conjecture in the case where the largest entry of π is at most

n/2 + 1 and also when k ≤ 3.

Keywords: Degree sequence, graphic sequence, graph packing, k-factor, 1-factor

1 Introduction

An integer n-tuple π is graphic if there is a simple graph G with vertex set {v1, . . . , vn} such

that dG(vi) = di, where π = (d1, . . . , dn) and dG(v) denotes the degree of vertex v in graph G.

Such a graph G realizes π. Two n-vertex graphs G1 and G2 pack if they can be expressed as
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edge-disjoint subgraphs of the complete graph Kn. We study an analogue of graph packing

for graphic n-tuples. Let π1 and π2 be graphic n-tuples, with π1 = (d
(1)
1 , . . . , d

(1)
n ) and

π2 = (d
(2)
1 , . . . , d

(2)
n ) (they need not be monotone). We say that π1 and π2 pack if there

exist edge-disjoint graphs G1 and G2 with vertex set {v1, . . . , vn} such dG1
(vi) = d

(1)
i and

dG2
(vi) = d

(2)
i for all i. In graph packing, vertices may be reordered, but in packing of graphic

n-tuples no reordering of the indices is allowed. Graphic n-tuples are often called graphic

sequences; we use “n-tuple” partly to emphasize that the order of entries matters. When

not specifying the length, we use “list”.

The condition that π1 + π2 is graphic is obviously necessary for π1 and π2 to pack, but

the following small example shows that it is not sufficient.

Example 1.1. Let π1 = (3, 1, 2, 2, 0, 0) and π2 = (1, 3, 0, 0, 2, 2), with sum (4, 4, 2, 2, 2, 2).

Both π1 and π2 are graphic, and the complete bipartite graph K2,4 realizes their sum. How-

ever, in every realization of πj, the vertex vj of degree 3 has three nonisolated neighbors.

Thus v1 and v2 are adjacent in every realization of π1 or π2, and the lists do not pack.

In fact, Dürr, Guiñez, and Matamala [4] showed that determining whether two graphic

n-tuples pack is NP-complete. Hence we focus on finding sharp sufficient conditions. In

1978, Sauer and Spencer [14] published the classical result that n-vertex graphs G1 and

G2 pack if ∆(G1)∆(G2) < n/2, where ∆(G) denotes the maximum vertex degree in G. In

Section 2, we prove an analogue for n-tuples, showing that graphic n-tuples π1 and π2 pack if

∆ ≤
√

2δn− (δ−1), where ∆ and δ denote the largest and smallest values in π1 +π2, except

that strict inequality is needed when δ = 1. Furthermore, the bound is sharp; we construct

lists that do not pack when the maximum entry in the sum is larger by 1. We conjecture the

stronger statement that two graphic n-tuples pack if the product of corresponding terms is

always less than n/2; this would be a more direct analogue of the Sauer–Spencer Theorem.

Kundu’s Theorem [9], published in 1973 and proved independently by Lovász [10] at about

the same time, characterizes when a graphic n-tuple has a realization containing a spanning

subgraph that is “almost” k-regular. In the language of packing, the result states that if π1

is graphic and each term in π2 is k or k − 1, then π1 and π2 pack if π1 + π2 is graphic.

In Section 3, we consider extensions of the k-factor case of Kundu’s Theorem, where a k-

factor of a graph is a spanning k-regular subgraph. Kundu’s Theorem implies that a graphic

n-tuple π is realizable by a graph having a k-factor if the list obtained by subtracting k from

each entry is graphic. We conjecture the stronger statement that in fact when n is even there

is a realization containing k edge-disjoint 1-factors (that is, a k-edge-colorable k-factor). We

prove the conjecture when the largest entry is at most n/2 + 1. We also prove the more
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difficult result that the conjecture holds when k ≤ 3, by proving in general that there is a

realization containing a k-factor that has two edge-disjoint 1-factors.

2 An Analogue of the Sauer-Spencer Theorem

The Sauer–Spencer Theorem immediately implies that n-vertex graphs G1 and G2 pack

when their maximum degrees sum to less than
√

2n. Chen [2] gave a short proof of Kundu’s

Theorem; we use a similar technique to prove our result for packing of graphic n-tuples.

When the least entry in the sum is 1, the maximum allowed by the hypothesis is the same

as in the Sauer–Spencer Theorem. Note that when we prove directly that π1 and π2 pack,

it follows immediately that π1 + π2 is graphic.

Again let ∆ and δ denote the largest and smallest entries in π1 + π2. Before proving that

our condition is sufficient for π1 and π2 to pack, we present a simple construction that proves

sharpness when δ = 1 (see also Remark 2 of [10]). We later obtain sharpness for δ ≥ 2 via a

slight modification of this construction.

Example 2.1. For δ,m ∈ N with m > 1, let n = 2δm2. We construct graphic n-tuples π1

and π2 with ∆ =
√

2δn that do not pack. Let

π1 = (δm, δm, (2δm)δ(m−1), 0δ(m−1), (δm)δ−1, 0δ−1, δδ(m2−m), 0δ(m2−m))

and

π2 = (δm, δm, 0δ(m−1), (2δm)δ(m−1), 0δ−1, (δm)δ−1, 0δ(m2−m), δδ(m2−m)),

where the exponents denote multiplicity (lengths of constant sublists). The lists have length

2δm2, as desired. Also, the largest and smallest entries in π1+π2 are 2δm and δ, respectively,

so ∆ =
√

2δn. (The Erdős–Gallai conditions [6] readily imply that π1 + π2 is graphic, but

this is not important). It remains to show that π1 and π2 are graphic but do not pack.

To show that πi is graphic, start with Kδm+1, split its vertices into sets V1, . . . , Vm−1 of

size δ plus δ + 1 leftover vertices, for each i make the vertices of Vi adjacent to a set Xi of

δm new vertices, and add to these δm2 + 1 vertices a set of δm2 − 1 isolated vertices.

Given any realization of π1, let S be the set of δm + 1 vertices with degree exceeding δ.

Their degree-sum is 2δ2m2 − δm(δ − 1), which equals 2
(

δm+1
2

)

+ δ2(m2 − m). To reach this

total, S must induce a complete graph, and all other edges must join S to vertices of degree

δ. Thus v1 and v2 are adjacent in every realization of π1. The same argument applies to

π2; again v1 and v2 are adjacent in every realization. Since v1 and v2 are adjacent in all

realizations of both lists, π1 and π2 do not pack.
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Given a graph G and a set S ⊆ V (G), let G[S] denote the induced subgraph of G with

vertex set S, and let NG(S) be the set of vertices having a neighbor in S. A clique is a

pairwise adjacent set of vertices.

Theorem 2.2. Let π1 and π2 be graphic n-tuples. If

∆ ≤
√

2δn − (δ − 1),

where ∆ and δ denote the maximum and minimum values in π1 + π2, then π1 and π2 pack,

except that strict inequality is required when δ = 1.

Proof. Let π1 and π2 be graphic n-tuples. If δ = 0, then ∆ ≤
√

2δn − (δ − 1) implies

that realizations are edgeless or consist of matchings on disjoint vertex sets, so π1 and π2

pack. Therefore, we may assume δ ≥ 1. We prove that if π1 and π2 fail to pack, then

∆ ≥
√

2δn − (δ − 1), with strict inequality when δ > 1.

Among realizations of π1 and π2 on vertices v1, . . . , vn that have the required degrees at

each vertex, choose G1 and G2 to minimize the number of edges that appear in both graphs.

Since π1 and π2 do not pack, we may consider an edge xy in E(G1) ∩ E(G2).

Let G = G1 ∪ G2, and let I = V (G) − (NG(x) ∪ NG(y)). With δ ≥ 1, we have ∆ <
√

n,

so I 6= ∅. Let Q = NG(I). Suppose that G1 or G2 has an edge uv such that u ∈ I

and {x, y} 6⊆ NG(v); by symmetry, we may assume yv /∈ E(G). Replacing {xy, uv} with

{xu, yv} in that graph reduces the number of shared edges without changing any vertex

degrees, contradicting the choice of G1 and G2 (see Figure 1a). Thus Q ⊆ NG(x) ∩ NG(y).

• •

•
•

x yG

NG(x) NG(y)

Iu

v ∈ Q

(a)

• •x yG

Q

• •

• •

• •

w w′

z z′

(b)

NG(x) NG(y)

I

Figure 1: Properties of Q

For j ∈ {1, 2}, let Qj = NGj
(I); we claim that Qj is a clique in G. Otherwise, choose

w,w′ ∈ Qj with ww′ /∈ E(G). Let z and z′ be (not necessarily distinct) vertices in I such

that zw, z′w′ ∈ E(Gj). Since ww′ /∈ E(Gj), replacing {z′w′, wz, xy} with {w′w, zx, yz′} in

E(Gj) reduces the number of shared edges without changing vertex degrees (see Figure 1b).
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Since Q = Q1 ∪Q2, and Q1 and Q2 are cliques in G, the complement of G[Q] is bipartite.

Letting r be the number of edges in G[Q], we obtain

r ≥
(|Q|

2

)

− |Q|2
4

=
|Q|2
4

− |Q|
2

. (1)

Next, note that |I| = n − |NG(x) ∪ NG(y)| = n − |NG(x)| − |NG(y)| + |NG(x) ∩ NG(y)|.
Since xy is a shared edge, |NG(x)| and |NG(y)| are at most ∆−1. With Q ⊆ NG(x)∩NG(y)),

|I| ≥ n − 2∆ + 2 + |Q|. (2)

Each vertex v ∈ I has at least δ incident edges in G1 and G2 together, and each neighbor is

in Q. Since Q ⊆ NG(x)∩NG(y), at most (∆− 2)|Q| − 2r edges of G1 and G2 together have

endpoints in I and Q. Therefore,

|I| ≤ (∆ − 2)|Q| − 2r

δ
. (3)

Together, (2) and (3) yield

(∆ − 2)|Q| − 2r ≥ δ(n − 2∆ + 2 + |Q|). (4)

Using (1) to substitute for r, letting q = |Q|, and simplifying brings us to

q(∆ − 1 − δ − q/2) ≥ δ(n − 2∆ + 2). (5)

The left side is maximized when q = ∆ − 1 − δ. Since the inequality must hold there,

(∆− 1− δ)2 ≥ 2δ(n− 2∆+2). Adding 4δ(∆− 1) to both sides yields (∆− 1+ δ)2 ≥ 2δn, or

∆ ≥
√

2δn − (δ − 1). (6)

To complete the sufficiency proof, we show that equality cannot hold in (6) when δ ≥ 2.

Equality in (6) requires equality in the inequalities that produced it. Equality holds in (5)

only when q = ∆− 1− δ. Equality in (4) (equivalent to (5)) requires equality in (3) and (2).

Thus δ|I| equals both sides of (4), and also Q = NG(x) ∩ NG(y) and |NG(x)| = |NG(y)| =

∆ − 1. By this last equality, G1 and G2 share no edges incident to x or y except xy.

Equality in (3) requires NG(w) = Q whenever w ∈ I. Since exactly (∆ − 2)|Q| − 2r

edges have endpoints in Q and I, and by definition G[Q] has r edges, the edges joining Q to

I ∪{x, y} and within Q exhaust the total degree sum available to vertices of Q. We conclude

that in G each vertex of Q has degree ∆ and has no neighbor in NG(x) ∪ NG(y) outside Q.
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• •x yG

X YQ

• •

• • • •
u′ u v v′

?

Figure 2: Q = NG(I) ⊆ NG(x) ∩ NG(y)

Let X = NG(x) − NG(y) − {y}, and let Y = NG(y) − NG(x) − {x} (see Figure 2). Since

|NG(x)| = |NG(y)| = ∆−1 and |NG(x)∩NG(y)| = q = ∆−1−δ, we have |X| = |Y | = δ−1.

If Gj has edges within both X and Y , say uu′ ∈ Gj[X] and vv′ ∈ Gj[Y ], then consider

whether uv ∈ E(Gj). If so, then replacing {xy, uv} with {yu, vx} in Gj reduces the number

of shared edges; if not, then replacing {vv′, xy, u′u} with {v′x, yu′, uv} does so. Hence by

symmetry we may assume that edges of G[X] lie only in G1 and edges of G[Y ] lie only in

G2. Now vertices of X are isolated in G2 and have at most δ − 1 neighbors in G1 (including

x). If X is nonempty, then this contradicts the definition of δ. Hence equality in (6) requires

X = ∅ and δ = 1.

Theorem 2.3. The result of Theorem 2.2 is sharp: for δ,m ∈ N with m ≥ δ ≥ 2, there

exist π1 and π2 with n = 2δm2 such that ∆ =
√

2δn − (δ − 2) but π1 and π2 do not pack.

Proof. We consider only δ ≥ 2 since the construction in Example 2.1 proves sharpness for

δ = 1. Choose m ∈ N with m ≥ δ, and let n = 2δm2. Let G be the construction using these

parameters in Example 2.1. We modify G to reduce the maximum degree by δ − 1. This

will also reduce ∆ by δ − 1 in the sum of two specified orderings of the vertex degrees.

Recall that the construction of G begins with a complete graph Kδm+1 whose vertex set

is composed of sets V1, . . . , Vm−1 of size δ plus δ + 1 additional vertices. For each i the set Vi

is adjacent to a set Xi of δm new vertices, and there are δm2−1 additional isolated vertices.

Each vertex in
⋃

i Vi has degree 2δm, each extra vertex in the clique has degree δm, and

δm(m − 1) vertices outside the clique have degree δ.

Modify G by removing δ − 1 of the extra vertices from the clique, reducing the degrees of

the other vertices by δ−1. For 1 ≤ i ≤ δ−1, put one of the removed vertices into Xi. Hence

the number of vertices remains 2δm2, the vertices of V1, . . . , Vδ−1 have degree 2δm − δ + 2,

those of Vδ, . . . , Vm−1 have degree 2δm − δ + 1, the two unmoved extra vertices have degree

δm−δ+1, and the remaining vertices have degree δ. The new graph G′ realizes the n-tuples
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π′
1 and π′

2 given by

((δm−δ+1)2, (2δm−δ+2)δ(δ−1), 0δ(δ−1), (2δm−δ+1)δ(m−δ), 0δ(m−δ), δδ(m2−m)+δ−1, 0δ(m2−m)+δ−1)

and

((δm−δ+1)2, 0δ(δ−1), (2δm−δ+2)δ(δ−1), 0δ(m−δ), (2δm−δ+1)δ(m−δ), 0δ(m2−m)+δ−1, δδ(m2−m)+δ−1).

By construction, π′
1 and π′

2 are graphic. To show that they do not pack, we argue as in

Example 2.1. In any realization of π′
1, let S be the set of δm − δ + 2 vertices with degrees

exceeding δ. Their degrees sum to

2δmδ(m − 1) − (δ − 1)δ(m − 1) + δ(δ − 1) + 2δm − 2(δ − 1),

which equals 2
(

δm−δ+2
2

)

+ δ2(m2 − m) + δ(δ − 1). To achieve this total, again S must be a

clique. As in Example 2.1, v1 and v2 must be adjacent in all realizations of both graphs;

hence π1 and π2 do not pack.

If a+b <
√

2n, then also ab < n/2. Hence the conjecture below would strengthen Theorem

2.2 when δ = 1 and provide a more direct analogue to the Sauer-Spencer Theorem.

Conjecture 2.4. Let π1 and π2 be graphic n-tuples, with δ the least entry in π1 + π2. If

δ ≥ 1 and the product of corresponding entries in π1 and π2 is always less than n/2, then π1

and π2 pack.

For fixed δ, a suitable bound on the product of corresponding entries to guarantee packing

may be something like δn/2 − O(δ
√

δn).

3 Extensions of Kundu’s Theorem

Let Dk(π) denote the n-tuple obtained from an n-tuple π by subtracting k from each entry.

The “regular” case of Kundu’s Theorem states that if π and Dk(π) are graphic, then some

realization of π has a k-factor. To extend the theorem, one could try to guarantee that some

realization of π has edge-disjoint regular factors of degrees k1, . . . , kt, where
∑t

i=1 ki = k.

When n is odd, no regular n-vertex graph has odd degree, so existence requires all

k1, . . . , kt even. In that case, existence then follows immediately from Kundu’s Theorem

and Petersen’s 2-Factor Theorem [12]; the latter states that every 2r-regular graph decom-

poses into 2-factors. It remains to consider even n.
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Conjecture 3.1. Let n be an even integer. If π is a graphic n-tuple such that Dk(π) is

also graphic, and k1, . . . , kt are positive integers with sum k, then some realization of π has

edge-disjoint regular factors with degrees k1, . . . , kt.

Conjecture 3.1 is immediately equivalent to the following conjecture.

Conjecture 3.2. Let n be an even integer. If π is a graphic n-tuple such that Dk(π) is also

graphic, then some realization of π has k edge-disjoint 1-factors.

Our main result (Theorem 3.9) toward Conjecture 3.2 combines with Petersen’s Theorem

to yield Conjecture 3.1 when k is even and at most two of k1, . . . , kt are odd, and when k is

odd and at most one of k1, . . . , kt is odd.

We have proved several special cases of Conjecture 3.2. The first uses a lemma proved

by A.R. Rao and S.B. Rao [13] in their study of what was called the “k-Factor Conjecture”

before it became Kundu’s Theorem.

Lemma 3.3. Fix k ∈ N, and let π be a graphic n-tuple such that Dk(π) is also graphic. If

r is a positive integer such that r ≤ k and rn is even, then Dr(π) is also graphic.

Let ∆(G) and δ(G) denote the largest and smallest vertex degrees in a graph G.

Theorem 3.4. Fix k, n ∈ N with n even, and let π be a graphic n-tuple such that Dk(π)

is also graphic. If every entry in π is at most n/2 + 1, then some realization of π has k

edge-disjoint 1-factors.

Proof. The proof is by induction on k. For k = 0, the statement is vacuous, and the case

k = 1 is a special case of Kundu’s Theorem. Suppose then that k ≥ 2 and that Dk(π)

is graphic. By Lemma 3.3, D2(π) is graphic, and since Dk(π) is graphic the induction

hypothesis implies that there is a realization G of D2(π) having k − 2 disjoint 1-factors.

The hypothesis on π yields ∆(G) ≤ n/2 − 1, so δ(G) ≥ n/2. Dirac’s Theorem [3] now

implies that G has a spanning cycle C. Since n is even, C decomposes into two edge-disjoint

1-factors. Therefore, G ∪ C is a realization of π having k edge-disjoint 1-factors.

We also obtain Conjecture 3.2 in those cases where every entry in π is large, by applying

Theorem 3.4 to the n-tuple obtained by subtracting every entry of Dk(π) from n − 1.

Corollary 3.5. Fix k, n ∈ N with n even, and let π be a graphic n-tuple such that Dk(π) is

also graphic. If every entry in π is at least n/2 + k − 2, then some realization of π has k

edge-disjoint 1-factors.
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Our main result in this section is that, under the conditions of Conjecture 3.2, there is a

realization of π having edge-disjoint factors M1,M2, F that are regular of degrees 1, 1, and

k − 2. This implies Conjecture 3.2 for k ≤ 3; for Conjecture 3.1, it allows one or two of

k1, . . . , kt to be odd when k is odd or even, respectively.

We use a well-known description of the maximum matchings in a graph. Say that a match-

ing M avoids a vertex x if M has no edge incident to x. The Gallai–Edmonds decomposition

of a graph G is a partition of V (G) into three sets defined as follows (the presentation by

Lovász and Plummer [11] uses (D,A,C) instead of our (A,B,C)):

A = {x ∈ V (G) : some maximum matching avoids x},
B = {x ∈ V (G) − A : x has a neighbor in A},
C = V (G) − (A ∪ B).

A near-perfect matching in G is a matching that avoids exactly one vertex. A graph is

factor-critical if each vertex is avoided by some near-perfect matching. The deficiency def(G)

of a graph G is defined to be maxX⊆V (G) (o(G − X) − |X|), where o(H) is the number of

odd components (odd number of vertices) in H. It is immediate that every matching in G

avoids at least def(G) vertices, and the Berge–Tutte Formula [1] states that equality holds

for a maximum matching.

The Gallai–Edmonds Structure Theorem [5, 7, 8] describes the maximum matchings in a

graph in terms of its Gallai–Edmonds Decomposition. We state only the parts we need.

Theorem 3.6. If (A,B,C) is the Gallai–Edmonds Decomposition of a graph G, then (a)

the components of G[A] are factor-critical, and (b) every maximum matching in G consists

of a near-perfect matching in each component of G[A], a perfect matching in G[C], and a

matching of B into vertices in distinct components of G[A].

Consider the decomposition (A,B,C) of a graph G having an even number of vertices but

no 1-factor. Say that a component of G[A] is missed by a matching M if it has no vertex

matched with a vertex of B in M . By Theorem 3.6, a maximum matching in G misses at

least two components of G[A]. Our structural lemma, which may be of independent interest,

is that when G is regular we can ensure that two such components will be nontrivial, where

a graph is nontrivial if it has at least one edge.

Lemma 3.7. Let (A,B,C) be the Gallai–Edmonds decomposition of a regular graph F with

an even number of vertices. If F does not have a 1-factor, then some maximum matching

in F misses two nontrivial components of F [A].
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Proof. When F has no 1-factor, the set A is nonempty. Let S be the set of isolated vertices

in F [A]. By Theorem 3.6, every maximum matching in F pairs B with vertices of distinct

components of F [A]. Since the number of vertices is even, every maximum matching misses

at least two components of F [A].

Among the maximum matchings in F , choose M to miss the most nontrivial components

of F [A]. If M does not miss two such components, then |S| ≥ 1 and M misses at least one

vertex a of S. Let BS be the subset of B matched into S by M , and let B′
S = B − BS.

Let R be the set of vertices reachable from a by M -alternating paths in F . Since M

matches B into A, such paths move from A to B by edges not in M and return to A via

M . If a, . . . , b, a′ are the vertices of such a path with b ∈ B′
S, then exchanging membership

between M and E(F ) − M along the path produces a new matching M ′ that misses one

more nontrivial component of F [A] than M . The choice of M thus implies R ⊆ S ∪ BS.

As we explore M -augmenting paths from a, reaching a vertex in BS also immediately

adds a new vertex of S. Thus |R ∩ S| = |R ∩ BS| + 1. This contradicts k-regularity, since

N(R ∩ S) ⊆ R ∩ BS. We conclude that a maximum matching missing the most nontrivial

components must miss at least two.

Our second lemma concerns an auxiliary graph used in the proof of the theorem.

Lemma 3.8. Let l and m be positive odd integers. Let H be the graph with vertices vi,j for

i ∈ Zl and j ∈ Zm such that each vi,j is adjacent to the four vertices of the form vi±1,j±1. Let

S be an independent set in H. If the first coordinates of the vertices in S are distinct, and

the second coordinates of the vertices in S are distinct, then H − S contains an odd cycle.

Proof. When we arrange the vertices in the natural l-by-m grid, the condition on S implies

each row and column has at most one vertex of S. It suffices to find an odd closed walk

avoiding S. The vertices v1,1, . . . , vlm,lm form an odd closed walk; it suffices unless vr,r ∈ S

for some r. Since S is independent, vr−1,r+1 /∈ S. Also, vr−2,r, vr,r+2 /∈ S. Replacing vr,r

with vr−2,r, vr−1,r+1, vr,r+2 increases the length of the walk by 2 but decreases the number of

vertices of S on it by 1. Doing this independently for each vertex of S on it yields an odd

closed walk avoiding S.

We can now prove the main result of this section.

Theorem 3.9. Fix n, k ∈ N with n even and k ≥ 2. If π is a graphic n-tuple such that Dk(π)

is also graphic, then some realization of π has a k-factor with two edge-disjoint 1-factors.
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Proof. Since Dk(π) is graphic, Kundu’s Theorem provides a realization of π with a k-factor.

Among all such realizations, choose a realization G and k-factor F in it to lexicographically

maximize (r, s), where r is the maximum number of edge-disjoint 1-factors in F and s is the

maximum size of a maximum matching in the graph F̂ left by deleting r 1-factors from F .

If r ≥ 2, then the claim holds. Otherwise, r ≤ 1 and 0 < s < n/2. If r = 1, let M̂ be the

specified matching; if r = 0, then M̂ = ∅. View G, M̂ , F̂ , and G−E(F ) as a decomposition

of Kn into edge-disjoint subgraphs.

Let (A,B,C) be the Gallai–Edmonds decomposition of F̂ . By Lemma 3.7, F̂ has a

maximum matching M that misses two nontrivial components of F̂ [A]; call them Q and Q′.

Since Q and Q′ are components of F̂ [A], each edge of Kn joining them is not in F̂ .

If edges xy in Q and x′y′ in Q′ exist such that xx′ and yy′ lie in the same graph among

{G, M̂,G−E(F )}, then switching {xy, x′y′} into it and {xx′, yy′} into F̂ yields a realization

G′ of π with a k-factor F ′ (having a 1-factor if r = 1). Since Q and Q′ are factor-critical (by

Theorem 3.6), Q − x and Q′ − x′ have 1-factors. Since M misses Q and Q′, replacing the

edges of M in Q and Q′ with xx′ and 1-factors of Q − x and Q′ − x′ yields a matching M ′

in F ′ that is larger than M . By the choice of G and F , no such xx′ and yy′ exist.

Being factor-critical and nontrivial, Q and Q′ are nonbipartite; hence each contains an

odd cycle. Let {u1, . . . , ul} and {w1, . . . , wm} be the vertices along odd cycles chosen in Q

and Q′, respectively. Form the auxiliary graph H of Lemma 3.8, with vertices vi,j for i ∈ Zl

and j ∈ Zm. Let S be the subset of V (H) corresponding to edges of the form uiwj that

belong to M̂ . If r = 0, then S is empty; if r = 1, then S has at most one vertex in each row

and column, because M̂ is a matching.

The vertices of H − S correspond to other edges uiwj in Kn, each belonging to G or to

G − E(F ). By Lemma 3.8, H − S contains an odd cycle, and hence two adjacent vertices

in H − S correspond to edges from the same subgraph. These edges have the form xx′ and

yy′ previously forbidden. We conclude that r ≥ 2, as desired.

Corollary 3.10. Conjecture 3.2 is true for k ≤ 3.

We believe that the conclusion of Lemma 3.8 remains true when two such independent sets

S and S ′ are deleted. This would improve Theorem 3.9 to produce a realization having a k-

factor with three edge-disjoint 1-factors, yielding Conjecture 3.2 for k ≤ 4 and Conjecture 3.1

with one more odd value in k1, . . . , kt than allowed by Theorem 3.9. The method cannot

extend beyond that, because when l = m = 3 there may be three independent sets of size 1

in H that together occupy one column, and then what remains is bipartite.
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[12] J. Petersen, Die Theorie der regulären graphs. (German) Acta Math. 15 (1891), 193–220.

[13] A.R. Rao and S.B. Rao, On factorable degree sequences, J. Combin. Theory Ser. B 13

(1972), 185-191.

[14] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B

25 (1978), 295-302.

12


