Packing Steiner Trees:
A Cutting Plane Algorithm and
Computational Results

M. Grotschel A. Martin R. Weismantel

Abstract

In this paper we describe a cutting plane algorithm for the Steiner tree packing
problem. We use our algorithm to solve some switchbox routing problems of
VLSI-design and report on our computational experience. This includes a brief
discussion of separation algorithms, a new LP-based primal heuristic and imple-
mentation details. The paper is based on the polyhedral theory for the Steiner
tree packing polyhedron developed in our companion paper [GMW92] and meant
to turn this theory into an algoritmic tool for the solution of practical problems.

1 Introduction

Given a graph G = (V, FE) and a node set T C V, we call an edge set S C F
a Steiner tree for T if, for each pair of nodes u,v € T, S contains a [u, v]-path.
The Steiner tree packing problem, as introduced in [GMW92], can be stated as
follows. Given an undirected graph G = (V, E') with edge capacities c. € IN for
all e € E and a list of node sets N' = {Ty,..., Ty}, N € N, find Steiner trees
Sk for Ty, k =1,..., N, such that each edge e € F is contained in at most ¢, of
the edge sets Sy, ..., Sy. Every collection of Steiner trees Sy, ..., Sy with this
property is called a Steiner tree packing. If a weighting of the edges is given
in addition and a (with respect to this weighting) minimal Steiner tree packing
must be found, we call this the weighted Steiner tree packing problem.

The motivation for studying this problem arises from the design of electronic
circuits, i. e., the task of casting a given (complex) logic function in silicon.
In a first phase (logical design) it is specified which of the given basic logical
operations are combined to logical units (so-called cells) and which of these cells
must be connected via wires. The points at which wires have to contact the
cells are called terminals, and a set of terminals that must be connected is called
a net. The list of cells and the list of nets are the input of the second phase,

the physical design. The task here consists in assigning (placing) the cells to a
given area and connecting (routing) the nets via wires. The problem, in fact, is
more complicated than sketched above, since various company given design rules
and technical contraints have to be taken into account and an objective function
like the resulting area has to be minimized. Due to the inherent complexity,
the problem is usually decomposed into the placement problem and the routing
problem. We are interested in the routing problem. Roughly speaking, this
problem can be stated as follows.

Given an area (typically a rectangle with some “forbidden zones”
occupied by the cells) and a list of nets. The routing problem is to
connect (route) the terminals of each net by wires on the area such
that certain technical side constraints are satisfied and some objective
function is minimized.

The routing problem strongly depends on the used fabrication technology and the
underlying design rules. The design rules specify, for instance, the routing area
(i. e., the area that is available for connecting the nets) or the objective function
(possible choices are, for example, the wiring length or the resulting area). The
routing itself takes place on so-called layers. Each layer is divided into tracks on
which the wires run. The tracks and the wvias, the points where wires change the
layers, must meet certain distance requirements.

The routing problem in its general form is still too complex to be solved in one
step. In practice, the problem is generally decomposed into two subproblems.
In a first step, one determines how wires “maneuver around the cells” (global
routing). Here, the design rules are only partially considered. Thereafter, the
wires are assigned to the layers and tracks according to the homotopy which
was specified in the global routing phase (detailled routing). This decomposition
scheme gives rise to many variants of the routing problem.

A number of the routing problems resulting from this approach can be modelled
as a (weighted) Steiner tree packing problem. We will illustrate two examples in
the following.

For modelling the global routing problem, the routing area is subdivided into
subareas and these are represented by nodes in a graph. Of course, there are
many ways to do this. One possible way of subdividing the routing area is
illustrated in Figure 1. The enclosing rectangle represents the given area. The
rectangular units with a diagonal between their lower left and upper right corner
denote the cells. The routing area is subdivided into rectangular subareas (by
means of the additional dotted lines in Figure 1). This subdivision of the routing
area is represented by a graph as follows. We define a node for each subarea
and introduce an edge between two nodes, if the corresponding subareas are
adjacent. Let G = (V, E) denote the resulting graph. Additionally, a capacity

R

™2
* 00 o 9

~

—
¢
‘

oo
b I
o~

Figure 1:

cuw € IN is assigned to an edge uv € E limiting the number of nets that may
run between the subareas associated with the two nodes u and v. The weight
of an edge w,, corresponds to the distance between the two midpoints of the
according subareas. The terminals of a net are assigned to those nodes, whose
corresponding subareas contain the terminal or are as close as possible to the
position of the terminal. The global routing problem consists in routing all nets
in G such that the capacity constraints are satisfied and the total wiring length
is as small as possible. Obviously, this task defines an instance of the Steiner tree
packing problem.

The second example we want to mention is a variant of the detailled routing
problem, called switchbox routing problem (see Figure 2). Here, the underlying
graph is a complete rectangular grid graph and the terminal sets are located on
the four sides of the grid. Remember that the task of detailled routing is to
assign the wires to layers and tracks. Detailled routing problems, and thus also
switchbox routing problems, are classified by distinguishing whether or to which
extent the layers are taken into account while the nets are assigned to tracks.
Here, the following modells are of special interest.

Multiple layer model Given a k-dimensional grid graph (that is a graph ob-
tained by stacking k copies of a grid graph on top of each other and con-
necting related nodes by perpendicular lines), where k denotes the number
of layers. The nets have to be routed in a node disjoint fashion. The mul-
tiple layer model is well suited to reflect reality. The disadvantage is that
in general the resulting graphs are very large.

15 2 4 127 6 9 5 8 13 15 14 15 21 20 1 2 19 1 18 15

3
14 19
13 24
11
24 20
1 18
20
11
17 21
12 18
16 23
4 2
10 22
324 17 16 4 7 6 5 9 8 9 12 15 24 15 10 23 1 22 18 18
Figure 2:

Manhattan model Given a (subgraph of a) complete rectangular grid graph.
The nets must be routed in an edge disjoint fashion with the additional
restriction that nets that meet at some node are not allowed to bend at
this node, i. e., so-called knock-knees (cf. Figure 3) are not allowed. This
restriction guarantees that the resulting routing can be realized on two
layers at the possible expense of causing long detours.

Figure 3:

Knock-knee model Again, a (subgraph of a) complete rectangular grid graph
is given and the task is to find an edge disjoint routing of the nets. In
this model knock-knees are possible. Very frequently, the wiring length of
a solution in this case is smaller than in the Manhattan model. The main
drawback is that the assignment to layers is neglected. Brady and Brown
[BB84] have designed an algorithm that guarantees that any solution in
this model can be routed on four layers. It was shown in [Li84] that it is
NP-complete to decide whether a realization on three layers is possible.

As in the case of the global routing problem the weighted Steiner tree packing

4

problem is a natural mathematical model of the switchbox routing problem in
the knock-knee mode. All examples that this computational study reports on are
instances of this type of switchbox routing problems.

The paper is organized as follows. In section 2 we summarize some polyhedral
results for the Steiner tree packing polyhedron. In particular, several classes of
facet-defining inequalities are presented. In section 3 we briefly discuss the sep-
aration problem for these inequalities. Implementation issues of our branch and
cut algorithm will be mentioned in section 4. Finally, we report on computational
results for several switchbox routing instances in section 5.

Notation

We use the same graphtheoretic notation as in [GMW92]. Thus, we restrict
ourselves in this subsection to briefly summarize the main notation concerning
the (weighted) Steiner tree packing problem.

Let G = (V, E) be a graph and T C V' a node set of G. An edge set S is called
a Steiner tree for T, if the subgraph (V(S5),S) contains a path from s to ¢ for all
pairs of nodes s,t € T, s # t. A Steiner tree that is a tree and whose leaves are
terminals is called edge-minimal. We call an edge e a Steiner bridge with respect
to T, if every Steiner tree for T in G contains e.

Problem 1.1 (The weighted Steiner tree packing problem)

Instance:
A graph G = (V, E) with positive, integer capacities c. € IN and nonnegative
weights we. € R4, e € I.
A list of node sets N = {Ty,...,Tn}, N > 1, with T, C V for all k =
1,...,N.

Problem:
Find edge sets Sy,...,Sny C E such that

(i) Sk is a Steiner tree in G for Ty, for allk =1,... N,
N

(i) > |Skn{e}| <c. foralleeE,
k=1

N
(iit) > Y we is minimal.

k=1e€eSy

If requirement (iii) in Problem 1.1 is omitted we call the corresponding problem
the Steiner tree packing problem without the prefix “weighted”. The list of node
sets N is called a net list. The net list AV is called disjoint, if T; N T; = () for all
i,j€{l,...,N}, i # j. Any element Ty € N is called a set of terminals and the
nodes t € Ty, are called terminals. Instead of terminal set T} we will often simply
say net k. We call an N-tupel (Sy,...,Sy) of edge sets a Steiner tree packing

or packing of Steiner trees if the sets Sy, ..., Sy statisfy (i) and (ii) of Problem
1.1. We will refer to an instance of the weighted Steiner tree packing problem by
(G, N, c,w) and to an instance of the Steiner tree packing problem by (G, N, ¢).

We assume throughout the paper that every terminal set of the net list A has at
least cardinality two and that N > 1.

Note that the Steiner tree packing problem as well as its weighted variant are
NP-complete or NP-hard, respectively (see, for example, [K72], [GJ77], [KL84]).
The problem remains hard in the case of switchbox routing problems in the
knock-knee modell (see [S87]).

2 Polyhedral Results: A Short Review

In this section we give a short summary on some of the results of our companion
paper [GMW92]. We use the notation of that paper. The Steiner tree packing
polyhedron is defined as follows:

STP (G, N, ¢) :=conv{ (x*', ..., x*) e RV*F |

(1) Sk is a Steiner tree for T}, in G

(2.1) fork=1,...,N;
N
() > |Sen{e}| <c, foralle € E}.
k=1

IRV *¥ denotes the N - |E| - dimensional vector space IR” x ... x IR¥, where the
components of each vector 2 € IRV*F are indexed by z* for k € {1,...,N}, e €
E. Moreover, for a vector x € RV*F and k € {1,..., N}, we denote by z* €
IR the vector (z¥).cp, and we simply write z = (z,...,2") instead of z =
((zHT, ..., (z™)T)T. For an edge set F' C E, x!" denotes the incidence vector of

F. Tt is easy to see that the following relation holds.

STP (G, N, ¢) = conv {x eRV*¥ |

i) Y af>1forall WV, WNTy #0,
ecd(W)
VAW)NT #0, k=1,...,N;

(2.2) N
(i) Y af<ec., foralleeE;

k=1
(i) 0<z¥ <1, forallec E, k=1,...,N;
(iv) 2¥ €{0,1}, forallec E, k=1,...,N}.

The constraints (2.2) (ii) are called capacity constraints and the inequalities
(2.2) (iil) trivial inequalities. It is NP-hard to determine the dimension of

STP (G, N, c). Due to this fact we decided to investigate the facial structure
of instances where the underlying graph is complete and the net list is disjoint.
By applying the following two lemmas we can (partially) carry over results ob-
tained for that special case to arbitrary instances.

Lemma 2.3 (Deleting an edge)

Let (G,N,c) be an instance of the Steiner tree packing problem. Let a’x > «
be a wvalid inequality of STP(G,N,c) and suppose [€ E is deleted from G.
Then 4"z > « is a valid inequality of STP(G \ f,N,c) where a¥ = aF for all
ec E\{f}, ke{l,...,N} (where G\ f denotes the graph that is obtained by
deleting edge f).

Lemma 2.4 (Splitting a node)

Let (G,N,c) be an instance of the Steiner tree packing polyhedron. Let f € E
with c; = 1 and let 'z > « be a valid inequality of STP(G | f,N,c) (G] f
denotes the graph that is obtained by shrinking edge f). Then, a’x > « defines a
valid inequality for STP (G, N, c) with a¥ = a* for alle € E\{f}, k€ {1,...,N}
anda’}:()for allk=1,...,N.

These two lemmas state that the validity of an inequality is preserved under
applying graph operations like deleting an edge or splitting a node. In section 3
we will consider this issue in more detail.

Let us now summarize some results for the case that G is complete and the net
list is disjoint.

First, the trivial inequalities % > 0 of (2.2) (iii) are facet-defining if and only
if [V] > 5 ore¢ E(T:), whereas the trivial inequalities 2% < 1 of (2.2) (iii) are
facet-defining if and only if ¢. > 2. Moreover, the capacity constraints (2.2) (ii)
are facet-defining if and only if ¢, < N — 1.

We have also shown that each nontrivial facet-defining inequality of the Steiner
tree polyhedron can be lifted to yield a facet-defining inequality of the Steiner
tree packing polyhedron. More precisely, if a”x > « defines a facet of the Steiner
tree polyhedron STP (G, {T},c) for some k € {1,..., N}, then a”x > « defines
a facet of STP (G, N, c), where a, = 0 for [# k and a* = a. for all e € E. This
theorem offers the opportunity to apply results for the Steiner tree polyhedron
from the literature, see for instance Grotschel and Monma [GM90] and Chopra
and Rao [CR88a], [CR88b]. Ball, Liu and Pulleyblank [BLP87] and Fischetti
[F91], among others, studied the Steiner tree polyhedron for directed graphs.

We focus here on one class of facet-defining inequalities that was characterized
in [GM90]. Let G be a graph and 7' C V be a terminal set. We call a partition
Viyoo oty Vo, 0 > 2, of V' a Steiner partition with respect to T, if V; N T #) for
i = 1,...,p. Grotschel and Monma have shown that if G is connected and

7

contains no Steiner bridge the following system is a non-redundant facet-defining
system of inequalities for STP (G, {T'}, 1I).

x(6(Vy,...,Vp) >p—1, Vi,...,V,, p>2,is a Steiner partition of V'
with respect to T" such that
o (V;, E(V;)) is connected for i = 1,...,p,
e (V;, E(V;)) contains no Steiner bridge
with respect to V; T (i =1,...,p), and

e G(Vy,...,V,) is 2-node connected;

(2.5)

where G(V7,...,V},) is the graph obtained from G by contracting each element
of the partition to a single node. Each inequality that is induced by a Steiner
partition V7, ..., V, is called a Steiner partition inequality. 1f p = 2, the inequality
is also called a Steiner cut inequality.

Let us now describe some results concerning joint inequalities, i. e., inequalities
that combine two or more nets.

We consider the class of so-called alternating cycle inequalities. Let G = (V, E)
be a graph and N = {T}, T} a net list. We call a cycle F' an alternating cycle
with respect to Ty, Te, it F C [Ty : To] and V(F)NT; N Ty = (). Moreover, let
F; C E(T,) and Fy C E(T;) be two sets of diagonals of the alternating cycle
F with respect to Ty, Ts. The inequality (x"\FUR) N EANEURNT g > LIF) —] s
called an alternating cycle inequality.

Before stating the next theorem let us recall the definition of cross free. We say
that two diagonals uv and rs of a cycle F' cross if they appear on F' in the sequence
u,r,v,8 or u, s, v, r; otherwise uv and rs are called cross free. For an alternating
cycle F' with respect to T, Ts, we call two sets of diagonals F; C FE(T%) and
Fy C E(Ty) mazimal cross free if F; and Fs are cross free (that is each pair of
edges e; € F; and eg € Fy is cross free), each diagonal e; € E(T)) \ Fs crosses F
and each diagonal ey € E(T5) \ F; crosses Fj.

Theorem 2.6 Let G = (V, E) be the complete graph with node set V' and let
N = {Ty,Ts} be a disjoint net list with Ty UTe, =V and |T;| = |To| = 1,1 > 2.
Furthermore, let F' be an alternating cycle with respect to Ty, To with V(F) =V
and F; C E(Ty), Fo C E(Ty). Then the alternating cycle inequality

(XE\(FUF1)7 XE\(FUFQ))Tx >1—1

defines a facet of STP (G, N,) if and only if F; and Fy are mazimal cross free.

We have also considered some extensions of the alternating cycle inequalities,
which will be of interest in the subsequent section. First, let us focus on the case
in which the underlying graph may contain parallel edges in addition. Here, each

8

coefficient of an edge that is not parallel to an edge of the alternating cycle F,
obtains the value of the “original edge”. The coefficients of the edges that are
parallel to an edge of F' obtain the value 1. This results in the following theorem.

Theorem 2.7 Let G = (V, E) be a graph that contains the complete graph on
node set V' as a subgraph and let N = {T;,Ts} be a disjoint net list with T; U
Ty =V and |Ty| = |Te| = 1,1 > 2. Furthermore let F' be an alternating cycle
with respect to Ty, Ty with V(F) =V and F; C E(Ts), Fo C E(T;). Then the
alternating cycle inequality

(><E'\(F'UF'1)7 XE\(FUFQ))Tx 2 l _ 1

defines a facet of STP (G, N,) if and only if F; and Fy are mazimal cross free.

Another extension of the alternating cycle inequalities is obtained if an additional
node z is added to the complete graph in Theorem 2.6. In our companion pa-
per we have pointed out that there exist several alternatives how to choose the
coefficients of the edges incident to the extra node z in order to obtain a facet-
defining inequality for the corresponding Steiner tree packing polyhedron. In the
following we give a selection of those alternatives that are taken into account by
our separation algorithm (see the next section).

Suppose we have given a complete graph G = (V U {z}, E) and a net list N’ =
{T;,To} such that T, N VT, NV is a partition of V with [T, N V| = [Tz N
V| = % Furthermore, let F' be an alternating cycle with respect to Ty, T%
with V(F) = V and let F; C E(V NTy) and F, C E(V NT;) be maximal
cross free. In order to obtain a facet-defining inequality a’x > o with alpw) =
(xEOVNEUR) \EVINEUR)) for STP (G, N,) the remaining coefficients a*, e €
d(z) can be independently chosen from the following list of alternatives for each
net k.

Definition 2.8 (Possible choices for the new coefficients by adding an
additional node z)

Letk € {1,2} withk=1, ifk =2, and k=2, ifk = 1.
(1) If z is a terminal of net k (z € Ty), all coefficients obtain value 1, that is
ak =1, foralle € d(z).
(2) If z is not a terminal of net k (z ¢ Ty), there are the following possibilities.
(i) ak =0, foronet e Ty;
ak =1, foralle € d(2)\ {zt}.

(ii) a* =0, foronete Ty,
ak, =0, for allt' € Ty with tt' € Fy;
a¥ =1, for all remaining edges e € §(z2).

9

The following theorem is presented in a form that is convenient for the explanation
of the separation algorithm in section 3. It can easily be checked that this theorem
immediately follows from the related theorem in [GMW92].

Theorem 2.9 Suppose Z = {z1,...,24}, ¢ > 1, is a set of nodes and G =
(Vu Z,E) is the complete graph on node set VU Z where VN Z = (). Set
E:=FE\E(Z) and G := (VUZ,E) and let N = {Ty, T}, Ty, T2 C VUZ be a net
list such that TNV, ToNV is a partition of V with |T/ NV | =|TeNV| =1,1> 2.
Furthermore, let F' be an alternating cycle with respect to Ty, Te with V(F) =V
and let Fy C E(TeNV), Fy C E(T;NV) be mazimal cross free. Let a € RV *E
be a vector such that a|s.,) satisfies one of the alternatives of 2.8 fori=1,...,q
and such that a|p\s.z) = (XEVNEVE) NEVNEVR)) - Finally, set of = |{z;} N Ty
fork=1,2,1=1,...,q. Then

q
o' > 11+ (af +af)
i=1

defines a facet of STP (G, N, 1).

The next type of inequalities to be considered here are the so-called grid inequal-
ities.

Let G = (V, E) be a graph and N = {T, T»} be a net list. Furthermore, let G =
(V E) be a subgraph of G such that Gisa complete rectangular h x 2 grid graph
with > 3. Assume that the nodes of V are numbered such that V = {(i,) |
i=1,...,h, j=1,2}. Moreover, let (1,1), (h,2) € Ty and (1,2),(h,1) € Ts. We
call the inequality (YZ\E, yZ\E)T
For ease of notation we assume that, if we consider a complete rectangular h x 2
grid graph which is a subgraph of a given graph G = (V, E), the node set V is
numbered such that the nodes of the grid graph have a numbering as assumed in
the above definition.

x> 1an h x 2 grid inequality.

In [GMWO92| we derived (very technical) conditions for an h x 2 grid inequality
to define a facet. Since our goal is to solve switchbox routing problems, and
since the problem of determing the dimension of the corresponding polytope is
NP-hard (cf. [S87]), we mainly focus on the validity of the inequalities. In this
case we can neglect most of the technical conditions. This yields the following
theorem.

Theorem 2.10 Let G = (V, E) be a complete rectangular h X 2 grid graph with
h > 3. Let N = {T;,Ts} be a net list where T; = {(1,1),(h,2)} and Ty =
{(1,2), (h,1)}. Furthermore, let G = (V, E) be a graph with V C V, E C E such
that {uv € E | u = (i,1) and v = (i,2) for some i € {1,...,h}} is a cut in G.
Set F := E and let F;,Fy C E\ F, then the inequality

10

(XE\(FUF1)7 XE\(FUFQ))Tx >1

is valid for STP (G, N, 1) if and only if F; and Fs satisfy the following properties:
(i) For all u,v € V(F), u # v there does not exist a path from u to v in (V, Fy,)
for k=1,2.
(ii) F; and Fs are mazimal with respect to property (i).

Note that the graph G in Theorem 2.10 is not necessarily complete. Especially,
this type of inequalities is of interest for instances where the underlying graph
is a grid graph. This is due to the fact that the corresponding subgraph G is
automatically a grid graph in this case.

Finally, let us recall the so-called critical cut inequalities. Let G = (V| E) be a
graph with edge capacities c. € IN, e € E. Moreover, let N' = {T},...,Tn} be a
net list. For a node set W C V we define S(W) :={k e {l,..., N} | T, "W #
0, TeNn(V\W) # 0}. We call a cut induced by a node set W critical for (G,N, ¢)
if s(W):=c(6(W))—|S(W)| < 1.

Suppose that Vi, V, V3 is a partition of V' such that §(V;) is a critical cut. More-
over, assume that T; NV, = 0 and T; NV; # 0 for i = 2,3. Then, the inequality
x!([Ve: V]) > 1 is called a critical cut inequality with respect to T;.

In [GMW92] two types of critical cut inequalities were exposed. The graph of
the first type includes solely edges whose capacities are equal to one. The graph
of the second type contains as few parallel edges as possible at the expense of
higher capacities. Since we want to solve problem instances arising in switchbox
routing, where ¢ = 1 is given, we decided to concentrate on the first type.

Theorem 2.11 Let G = (V, E) be a graph with V = {u,v,w} and let N =
{T,....Tn} be a net list with Ty = {u,v}. Set E;; :=={e € E | e is incident to i
and j} fori,j €V and N;:={k € {l,...,N} | i€ Ty} fori e V. Assume that
|Euws| > 2, |Ny| = N=1, [Ny|+|N,| = N+1, |Eyp| > |Nu| =1, |EBpw| > |Ny| -1
and |Eyw| + |Evw| = |Nu| + | Ny| — 1. Then, the inequalilty

.TI(EM,) >1

defines a facet of STP (G, N, 1).

3 The Separation Problem for Several Classes
of Inequalities
In this section we will briefly summarize the main ideas for separating the classes

of inequalities presented in section 2. The separation algorithms and the asso-
ciated correctness proofs are quite complicated. In order not to be beyond the

11

scope of this paper, we despense with the proofs and refer the reader to [M92]
and [GMW93] for a detailled discussion of this issue. Formally, the separation
problem for a given class of inequalities can be stated as follows.

Given an instance (G, N, c) of the Steiner tree packing problem, a vector y €
IRNXE, y > 0, and a class of valid inequalities for STP (G, N, ¢). Decide, whether
y satisfies all inequalities of the given class and, if not, find an inequality of this
class violated by y.

Separation of the Steiner Partition Inequalities

Let us consider the class of Steiner partition inequalities introduced in (2.5).
Unfortunately, the corresponding separation problem is A/P-complete in general.
This result is due to [GMS90]. However, there exist special cases for which it can
be solved in polynomial time. One of these special cases is obtained if we restrict
the graph G to be planar and the set of terminal nodes T to lie on the outer face
of GG. This special case is of particular practical interest, because it includes the
switchbox routing problem. In the following we describe the main idea of the
algorithm for solving the separation problem in this case.

First of all, we know from [DW71] that a minimal (with respect to a weighting
of the edges w : E +— IR) Steiner tree for T' can be calculated via a dynamic
program. The idea of this procedure is based on the observation that for every
minimal Steiner tree S there exists a node v and a subset J C T such that S
can be split up into two subtrees S; and S,. Here, S; is an optimal Steiner
tree with respect to J U {v} and Sz is an optimal Steiner tree with respect to
(T'\ J)U{v}. This observation leads to a recursion formula. For arbitrary graphs
G and terminal sets T' the running time of the algorithm is exponential in the
number of terminals. However, in the particular case that G is planar and all
terminals lie on the outer face of G Erickson, Monma and Veinott (cf. [EMV8T7))
showed that it is sufficient to consider subsets J C T where the terminals of J are
located consecutively on the outer face. Since there are no more than quadratic
many of these subsets, a minimal Steiner tree can be computed in polynomial
time using this recursion.

We modify this algorithm to solve the separation problem for the Steiner partition
inequalities provided G is planar and all terminals lie on the outer face of G.
Without loss of generality we can assume that G is 2-edge connected. Thus,
the edge set that encloses the outer face of G is a cycle. Suppose the terminal
set T' = {ts,...,t,} is numbered in a clockwise fashion along this cycle. Now,
consider the dual graph G* = (V*, F) of G and subdivide the node representing
the outer face in z nodes dy, ..., d, such that every edge belonging to a path in
G from t; to t;,; on the outer face is now incident to d;,.; for ¢ = 1,... 2. Let
Gp = (Vp, E) denote the resulting graph and set D = {d;,...,d.} (cf. Figure
4 (a) and (b)).

12

dy ds
t1 t2 t1 t2
r—%¥--r—---%-9 rT®¥|-rq4a-
L

Wl

»
bbbt P
I V[[[[
t®#---r-a--r-1 ts®t--rt-|~r10
IR T T B |
Lod__L_g —L_J [S I I |
t4 t4
de dy
@ (b)
dz

]

d1 d3
t, Vo t1 tp
--%-n 14 f-|w
1 1 1 +
Gttt PR
r

dg dy
(© (d)

C J_i_

Figure 4:

It turns out that for every Steiner partition Vi, ..., V; such that (Vi, E(V})) is
connected (k = 1,...,4) and such that the graph obtained by contracting every
element of the partition to a single node is 2-node connected, the following holds.

S = 0(Vy,...,V;) is an edge-minimal Steiner tree in Gp with respect to some
subset J C D with |J| =i such that dg(j) = 1 for all j € J and dg(t) = 0 for all
te D\ J.

Also conversely, every edge-minimal Steiner tree in Gp with these properties
corresponds to a Steiner partition satisfying the above conditions (see Figure
4 (c) and (d)).

This equivalence yields, that the problem of separating the class of Steiner par-
tition inequalities reduces to the problem of finding a subset J of D and an
edge-minimal Steiner tree in Gp with respect to J. Clearly, given J, we can de-
termine an optimal Steiner tree in G p with respect to J by applying the dynamic
programming approach discussed before. Thus, the crucial point is to find the
subset J C D. Here, we could show that we can locally decide which terminal
belongs to an optimal solution. This observation can be taken into account by
modifying the recursion formula appropriately.

The algorithm for separating the Steiner partition inequalities gives rise to several
heuristic procedures. Instead of calculating the optimal Steiner tree in Gp we
heuristically determine Steiner trees. For more details, we again refer to our
paper [GMW93].

13

Separation of the Alternating Cycle Inequalities

Given an instance (G, N, ¢) of a Steiner tree packing problem with N" = {T, T}
and a vector y € RNV *F , y > 0, decide, whether y satisfies all alternating cycle
inequalities. If this is not the case, find an alternating cycle inequality that is
violated by .

Yet not proved, we strongly conjecture that, in general, this problem is not solv-
able in polynomial time. Instead, we restrict our attention to the case where GG
is planar and all terminals lie on the outer face of G. Here, in order to find an
alternating cycle inequality, we proceed as follows.

Find a partition V,..., Vi of the node set V' such that G(Vy,..., Vi), (the graph
obtained by contracting every element of the partition to a single node) is, up to
parallel edges, a subgraph of the one described in Theorem 2.9 or Theorem 2.6,
respectively. Suppose for a moment that G(V, ..., V}) does not contain parallel
edges. Due to Lemma 2.3 and Lemma 2.4 the deletion of edges and the splitting of
nodes preserves validity of an inequality. Thus, by choosing the coefficients of the
edges in G(V7y, ..., Vi) according to Theorem 2.9 (resp. Theorem 2.6), we obtain
an inequality that is valid for STP (G, N, ¢). Since G(V,..., V) is obtained by
contracting nodes in (G, we can not avoid in general that there are some edges in
parallel. In this case, however, we lift these parallel edges by applying Theorem
2.7. We call inequalities obtained by this procedure extended alternating cycle
imequalities.

The crucial point of this separation algorithm is of course, how to find a con-
traction minor, such that the resulting extended alternating cycle inequality is
violated.

Here, our idea was to apply dynamic programming techniques in a similar way as
was done for finding Steiner partition inequalities. Set T'= T, UTy = {t,...,t.}
such that t; and ¢;,; are two subsequent terminals on the outer face of G. First,
we construct the dual graph of G by splitting up the node representing the outer
face of GG into z nodes djy, ..., d, such that every edge belonging to a path in G
from t; to t;,; on the outer face is now incident to d;,; for ¢ = 1,... 2. Let
Gp denote the resulting graph and set D = {d;,...,d.}. Here, every partition
Vi, ..., Vi yielding an extended alternating cycle inequality in G' corresponds to
a Steiner tree in Gp with respect to a subset of the set of terminals {d;,...,d.}.
However, this Steiner tree has to satisfy many technical conditions in this case.

In particular, these technical conditions cause that some edges are evaluated
differently for the nets T; and T,. This is due to the fact that for the alternating
cycle inequality, edge sets F' (edges which have a zero coefficient for both nets), F
(edges which have a zero coefficient just for net 1) and F (edges which have a zero
coeflicient just for net 2) are involved as well (cf. Theorem 2.6 and Theorem 2.9).
Unfortunately, taking all these constraints into account we obtain a recursion
formula, which does not necessarily correspond to the most violated extended

14

alternating cycle inequality. Rather, the value produced by the recursion provides
just a lower bound for the most violated extended alternating cycle inequality. If
this value is nonnegative, we can guarantee that there does not exist a violated
inequality of this type. Otherwise, there may exist a violated extended alternating
cycle inequality, but the algorithm terminates with an edge set that does not
correspond to an extended alternating cycle inequality (see [GMW93]).

Beyond that the relationship between extended alternating cycle inequalities and
certain Steiner trees in Gp that have to satisfy some technical conditions gives rise
to many heuristics. Indeed, we have implemented an algorithm that determines
heuristically such Steiner trees and checks whether the corresponding extended
alternating cycle inequalities are violated.

Separation of the Grid Inequalities

For the separation problem for the grid inequalities described in Theorem 2.10, we
could neither prove that this problem is A/P-complete nor that it is polynomially
solvable. Therefore, we concentrate on heuristic algorithms. Suppose we are
given a graph G = (V, E) and a net list N' = {T, To}. Though we restrict our
attention to valid (not necessarily facet-defining) inequalities the conditions in
Theorem 2.10 are still quite restrictive. Especially the conditions that we have
to find a subgraph G = (V, E) that is a complete rectangular A x 2 grid graph
and that 77 = {(1,1), (h,2)} and T» = {(1,2), (h, 1)} are usually not satisfied by
practical problem instances. Our idea was to relax these conditions such that the
corresponding inequality (xZ\(EUF) \E\EVENT g > 1 (where Fy, Fy C E\ E are
chosen apropriately) remains valid. The heuristic for separating this (new) class
of inequalities works in a greedy like fashion. Again, for a detailled description
of this algorithm we refer the interested reader to [GMW93].

Finding Critical Cuts

We consider now the problem of finding critical cuts. Remember that a cut
induced by a set of nodes W' is critical, if s(W) = ¢(6(W)) — |S(W)| < 1, where
SW)y=A{ke{l,...,.N} | T, "W #£0, Ty n(V\W) #0}. In the following we
briefly explain why we concentrate on the problem of finding critical cuts rather
than on the separation problem for the critical cut inequalities itself.

First, let us point out that, from a practical point of view, we are interested
in Steiner tree packings where each of the single Steiner trees is edge-minimal.
Since a positive objective function is minimized, we know in advance that the
weight-minimal Steiner trees are also edge-minimal, and we exploit this property
to reduce the problem size.

Suppose W C V is a node set and T} is a set of terminals with T, C W or
T, € V\W. Then any edge-minimal Steiner tree for T}, that uses one edge of

15

d(W) has to contain at least two of these edges. But, if §(1¥) is a critical cut
then at most one edge of 6(W) can be used by the Steiner tree for T). Hence,
the following variables can be fixed accordingly, i. e.,

=0, forallke{l,....N}\S(W), T, CW,ec E(V\W)UsW);
—0, forallke{l,...,N}\S(W), T, CV\W,ee E(W)U§W).

Of course, instead of fixing these variables explicitly, we remove them from the
linear program.

Let us now point out the relationship to the critical cut inequality. In Theorem
2.11 we made several assumptions. Given a graph G = (V, E) where V' = {u, v, w}
and a net list N' = {T7, ..., Txn} such that T; = {u,v}. Moreover, we require that
1Bl > 2,| Nl = N — 1,|Nu| + |[Ny| = N + 1, |Ep| > [Nu| = 1, | Ep| > [No] — 1
and |Eyw| + |Evw| = |Nu| + |Ny| — 1 (cf. Theorem 2.11 for the definition of
E;j for i,j € V). These assumptions imply that §(w) defines a cut satisfying
|ISHw})] = N — 1 and |§(w)| = |Nu| + |Ny] — 1 = N. Since ¢ = 1, we obtain
s({w}) = c(d(w)) = |S{w})| = [0(w)| = [SHw})| = (N +1) = N = 1. Therefore,
the cut induced by W = {w} is critical. Due to the above discussions, edge-
minimal solutions satisfy

vl =0, foralleed(W).

e

Thus, by fixing these variables we can separate the critical cut inequalities im-
plicitly by separating the Steiner cut inequalities. For example, a Steiner cut in-
equality for T’ of the instance described in Theorem 2.11 is 2/(§(u)) = 2 (Eyuw) +
r!(E,,) > 1. By taking the fixed variables into account we obtain the critical cut
inequality z7(E,,) > 1.

In the remainder of this subsection we briefly sketch the ideas, how to find crit-
ical cuts. We restrict ourselves to instances (G, N, 1), where G is a complete

rectangular grid graph and all terminal sets of the net list A/ lie on the outer face
of G.

Theorem 3.1 Let G = (V, E) be a complete rectangular h x b grid graph and
N a net list such that all terminal sets of N lie on the outer face of G. Let
W CcV,0 #W, be a set of nodes and let the cut induced by W be critical with
respect to the given instance (G, N,). Then, one of the following statements is
true.

(i) There exists a node w € V' such that 6(w) is a critical cut with respect to

(G, N, TD).

(11) There exists a horizontal or vertical critical cut with respect to (G,N,).
(A cut F is called horizontal if there exists some i € {1,...,h — 1} such
that F ={uv € E |u=(i,7) and v = (i +1,j) for some j € {1,...,b}}; a
vertical cut is defined accordingly).

16

Based on this lemma we can now develop an algorithm for finding critical cuts.
We check, for all nodes v € V| whether §(v) is a critical cut. In addition, we
also check this for the set of vertical and horizontal cuts. If we do not succeed in
finding a critical cut, we can conclude that none exists. This is due to Lemma 3.1.
Otherwise, we fix the corresponding variables. In order to find further critical
cuts, we inductively enlarge the node set W = {v} in all four possible directions
of the grid in a greedy like fashion. The variables of the critical cuts found this
way are fixed accordingly.

We want to point out that this algorithm is not really a separation algorithm.
The input depends on the problem instance only and not on a given vector y.
Thus, this algorithm is applied only once. However, critical cut inequalities are
separated implicitly through the separation of the Steiner cut inequalities.

4 Implementation of the Cutting Plane Algo-
rithm

In this section we develop a cutting plane algorithm for the (weighted) Steiner
tree packing problem. After giving a short outline of the general procedure, we
introduce a primal heuristic for the switchbox routing problem. It turns out
that this heuristic plays an important role in our algorithm. Thereafter, we
discuss some implementation details that are indespensable in solving practical
problem instances. In particular, some of the implemetation issues are adapted
to switchbox routing problem instances.

4.1 An Outline of the Cutting Plane Procedure

Our goal is to solve the following problem
N
min Z w’ "
k=1
r € STP (G, N, 1),

via a cutting plane algorithm, where (G, N, I, w) defines a weighted instance of
the switchbox routing problem. The idea of a cutting plane algorithm is the
following.

Start with a small set of valid inequalities, for example the trivial and capacity in-
equalities. These inequalities define a polyhedron P’ that contains STP (G, N, 1).
Optimize the linear objective function over P’ and let y be an optimal solution.
Obviously, y yields a lower bound for the optimum value of the weighted Stei-
ner tree packing problem. If y is also feasible, y is an optimal solution for the
weighted Steiner tree packing problem. Otherwise, there exists a valid inequal-
ity for STP (G, N, 1) that is violated by y. Thus, we must solve the separation

17

problem, i. e., find a valid inequality that is violated by y. If such an inequality
is found, we add it to the linear program and solve it again. The procedure of
iteratively solving linear programs and adding violated constraints is commonly
called a cutting plane algorithm.

A cutting plane algorithm ends with an optimal solution or (at least) with a
lower bound for the weighted Steiner tree packing problem. The latter case is
not avoidable in general, since we do not know a complete description of the
Steiner tree packing polyhedron, and exact separation routines are not available
for all known classes of facet-defining inequalities. If we intend to find an opti-
mal solution of the problem we must embed the procedure into an enumeration
scheme. Here, the overall problem is divided into two subproblems by fixing
some variable to zero in the first subproblem and the same variable to one in the
other subproblem. This process can be visualized by a binary tree (the so-called
branching tree), where each subproblem is represented by a node. The whole
method is commonly known as a branch and cut algorithm.

For the sake of efficiency the branching tree is to be kept as small as possible. In
order to achieve this, the following issues are of special importance. First, we need
a good description of the Steiner tree packing polyhedron by means of inequalities.
This is the contents of our paper [GMW92]. Second, exact separation algorithms
or at least good separation heuristics are necessary. This issue was considered in
the preceeding section. Third, for the practical success of the total algorithm a
procedure for finding a “good” feasible solution is of particular importance. This
is due to the following reasons. A subproblem of the branching tree is solved if
the value of the lower bound equals (up to rounding) that of the best feasible
solution. In addition, for practical purposes it often suffices to find a provably
good solution, i. e.; a solution that differs from the optimal solution value only
by a given percentage. Unfortunately, in our case it is MP-complete to find a
feasible solution for the Steiner tree packing problem, even if the instance defines
a switchbox routing problem (see [S87]). So, we concentrated on developing a
heuristic, which we introduce in the next section.

A Primal Heuristic

This section is devoted to describing our primal heuristic. The idea of our heuris-
tic is to make use of the information given by the actual solution of the cutting
plane phase.

We have developed a sequential algorithm. We consider each terminal of a net
to be an (isolated) component. We iteratively connect two components of a net
according to an a-priori determined sequence. However, we do not apply this
scheme by routing one net completely after another, but we connect only two
components in each iteration. The success of such a procedure strongly depends
on the predefined sequence. In our algorithm this sequence is mainly determined

18

by the solution y of the actual linear program. More precisely, we define a function
f depending on y according to which the subsequent two components are selected.
(A detailed explanation of the function f is given after the algorithmic description
of the heuristic.) We try to connect the two selected components via a shortest
path. Since in a complete rectangular grid graph a shortest path is not unique
in general, we have implemented further criteria according to which the choice
is made. Besides others, these criteria depend on the location of the terminals
of the other nets, the position of the not yet connected terminals of the same
net and, again, on the solution y. For a detailed description of these criteria
we refer the reader to [M92]. If it is possible to connect the two components
on a shortest path by taking the mentioned criterion into account, we connect
these two components and choose the next pair of components. Otherwise, we
recompute the function f and the sequence by taking the already connected
components into account. This iterative procedure is continued until all nets are
connected or no further components can be connected. In detail, the algorithm
can be described as follows.

Algorithm 4.1 (A Primal Heuristic)
Input:
A complete rectangular h x b grid graph G = (V| E) with edge capacities

ce = 1 and edge weights w, € IR,, e € E. Furthermore, a net list NV =
{T;,...,Tx} and a vector y € RN*F, 4 > 0.

Output:
A feasible solution of the weighted Steiner tree packing problem (G, N, T, w)
or the message “No feasible solution found”.

(1) Set Sy, :=0for k=1,...,N.
(2) Determine the graph G = (V, E) with £ :={e € E | ¢, > 0}.
(3) Compute shortest paths for all pairs of nodes in G.
(4) For k=1,..., N perform the following steps:
(5) If Sy =0, then
determine sy, t; € T} such that
Jyr (8k, tk) = min foe(s,t);

s,teTk
s#t

set T]g = Tk \ {tk}
(6) Else
determine sy, € T}, t,, € V(Sk) such that

fyk (sk7 tk) = SET];I,?EH‘}(SU fyk (87 t)

(7) As long as further connections are possible perform the following steps:
(8) Determine ky € {1,..., N} with

19

fyko (Sko, tk‘o) = min{fyk (Sk, tk) ’ k= 1, Ce ,N}.
(9) Try to connect sg, with ¢, via a shortest path by taking the above
criteria into account.
(10) If the connection via a shortest path is possible, then
let W be the chosen path;
set Sk, 1= Sk UW, Ty := T} \ {sk,} and c. := 0 for all e € W;
if Ty, =0, set fro (Sky, try) 1= 00;
else determine another pair (s, tg,) similar to (6).
(11) Else goto (2);
(12) If all terminal sets are connected, return the feasible solution (S, ..., Sy).
(13) Otherwise, print the message “No feasible solution found”.
(14) STOP.

Let us now define the function f,r : V' x V = IR, for some k € {1,...,N}. We
give a formal definition first and explain the underlying heuristic idea afterwards.
For the ease of exposition let the nodes be numbered such that V = {(i,7) | i =
L...,h,7 =1,...;b} and let Vi, 14 := {(i,5) | i =1,...,r, 7 = t,...,d} for
Lre{l,...;b},l <randtde{l,...,h},t < d. Suppose we want to execute
step (5) (resp. (6)) in Algorithm 4.1. Let Si be the edge set that was already
determined for connecting T}, T}, the set of not yet connected terminals and G
the underlying graph.

We consider the case Sy # 0 (in the case Sp = 0 the function f,. is defined
similarly) and let s, = (is,js) € T}, and t, = (iy, j¢) € V(Sk) be given. Determine
Lre{l,...;b},l <randt,de {1,...,h},t < dsuch that s, V(Sk) € V|, +4 and
[Viriq| is minimal. Set B,y q = {e € E(Virra) | y¥ > 0} and suppose (V;, E,) is
the component in (Vi +4, Ei,ta) with s € Vi. Set

fyre (skstr) == |w(W (sg, tx)) — Z we YY),

EEES

where W (s, tx) is a shortest path from sj to ¢ in G (with respect to w).

The heuristic idea of this function is the following. We determine a graph
(Virt.d, Eirt.a) which is the smallest rectangular grid graph containing both com-
ponents (often designated as the “minimal enclosing rectangle”). Inside the min-
imal enclosing rectangle we compute the weighted sum (= w) of those edges that
are in the same component as s, where only edges with y* > 0 are considered.
The value w is compared to the length (= A) of a shortest path between the two
nodes. If w is smaller than A\, we assume that the information from y* is too
poor to decide how to connect the two nodes. The smaller the difference, the less
information and the greater the value of f. On the other hand, if w is greater
than A\ the two nodes will be probably connected via a detour. The greater the
difference, the greater the value of f. Thus, we choose the components with value
w close to A first.

20

Obviously all ideas mentioned so far are of heuristic nature and there is no guar-
antee that we will obtain good results. However, due to many tests we have
performed this strategy seems to be reasonable.

Implementation Details

In this section we want to focus on some little “tricks” that enter into our cutting
plane algorithm. The underlying ideas might appear easy and not very deep to the
reader. However, it turns out that these ideas are very effective and indespensible
for solving practical problems. We want to illustrate the effects of the ideas on
an example called “difficult switchbox” (for the data of this problem see the next
section).

Let us mention here that we use the code CPLEX of R. E. Bixby (Rice University,
Houston, Texas) for solving the linear programs that come up. Without such a
fast and robust code we would not have been able to solve the given problem
instances. The linear programs we encountered appeared to be quite difficult.
One of the reasons for this is probably that our linear programs have many
alternative optimum solutions and are simultaneously primally and dually highly
degenerate.

A frequently used method to overcome such difficulties is to perturbe the right
hand side of the linear program. Since we are solving the problems with the
dual simplex method we must perturbe the objective function of the weighted
Steiner tree packing problem. After many experiments and discussions with
R. E. Bixby we decided to proceed as follows. Let w € RV*E with w? = w,
foralle € £, k=1,..., N be the original objective function. For each terminal
set Ty, we compute a Steiner tree Sy by applying a heuristic procedure and
determine random numbers ¥ € [0, 1]. Then we use the objective function vector
w € RV*F defined by

wf =Wk —beb—n, ifee Sy, fork=1,...,N;
(4.2) ‘ ‘ ¢
Wt =Wk —bek, if e ¢ Sy, for k=1,...,N.
where 7 = m and b = min{107?, m} in the actual implementation. It is

easy to see that, if the given objective function is integer, an optimal Steiner tree
packing with respect to w is also optimal with respect to w and vice versa.

Table 1 demonstrates the success of the perturbation trick for the “difficult
switchbox” routing problem. Column 1 gives the number of cutting plane it-
erations, column 2, 3 and 4 (resp. 5, 6 and 7) contain the LP objective value,
the number of pivots and the accumulated CPU-time by using the perturbed
(resp. original) objective function. The numbers are very impressive, in particu-
lar if one considers the last rows. The running time is reduced to less than one
tenth of the original time.

21

iter. perturbed objective function original objective function
LP value | pivots | CPU-time | LP value | pivots | CPU-time
1 0.000 0 0:53 0.000 0 0:52
2 456.562 1163 3:25 456.850 2646 5:35
3 457.571 420 5:07 457.100 4656 19:49
4 457.589 548 7:28 457.350 5995 40:39
5 457.746 800 10:25 457.417 7001 67:37
6 457.793 1224 14:36 457.417 7657 97:55
7 458.014 3175 24:03 457.515 11367 149:21
8 458.314 2007 31:07 457.748 23718 244:11
9 458.625 2554 40:19 458.149 49393 456:26
Table 1:

Another (poyhedral) preprocessing trick helped to increase the lower bounds and
to decrease the running time considerably. After “solving” the trivial initial linear
program by setting all variables to zero we do not call our general separation
routines; rather, we generate a particular class of Steiner cut and Steiner partition
inequalities for which we have heuristic reasons to believe that they form a sensible
set of “good” initial cutting planes.

Since the underlying graph is a complete rectangular grid graph, we add all
Steiner cut inequalities that are induced by a horizontal or vertical cut. The
advantage is that these inequalities have pairwise different support. In addition,
for multiterminal nets we extend each Steiner cut inequality to a Steiner partition
inequality with right hand side greater than two. For example, let |T}| = p > 3,
F=46(W), W CV be a vertical cut that induces a Steiner cut inequality. First,
we determine a Steiner partition Wy, ..., W, of W such that [W; : W] is a
horizontal cut in (W, E(W)) fori =1,...,¢—1 and ¢ is maximal. The only node
sets of Wy, ..., W, that possibly contain more than one terminal are W; and W,,.
For these two node sets we again determine a Steiner partition W72, ... W' for
r =1 and r = ¢ such that [W/ : W/*!] is a vertical cut in (W,, E(W,)) and
[, is maximal. The same procedure is applied to the node set V' \ W. Taking
both together we obtain (after renumbering) a Steiner partition Wy, ..., W with
s = p, and z(§(Wy,...,Wy)) > p — 1 defines a Steiner partition inequality. We
extend each horizontal and vertical cut that defines a Steiner cut inequality in
this way. Obviously, the resulting inequalities do not necessarily have different
support, but the right hand side is quite large. Let us denote all inequalities
constructed this way and the Steiner cut inequalities induced by a horizontal or

22

iter. with special without special
Steiner part. inequ. Steiner part. inequ.
LP-value | CPU-time | LP-value | CPU-time
1 0.000 0:52 0.000 0:52
2 456.562 3:24 394.725 3:29
3 457.574 5:38 397.335 6:23
4 457.741 10:21 401.075 17:05
5 457.862 22:39 407.586 43:05
6 458.070 45:53 416.256 67:43
7 458.551 76:13 423.642 103:58
8 458.983 107:28 428.051 158:42
9 459.615 142:39 431.740 203:22
Table 2:

vertical cut by special Steiner partition inequalities.

Table 2 illustrates the progress we obtain by using the special Steiner partition in-
equalities after solving the initial linear program. Column 1 presents the number
of cutting plane iterations. Column 2 and 3 (resp. 4 and 5) give the LP objective
value and the accumulated CPU-time by using (resp. not using) the special Stei-
ner partition inequalities after the first iteration. The results are impressive. The
lower bound we obtain within three minutes after the second iteration by adding
the special Steiner partition inequalities is much better than after running the
algorithm with the separation algorithms for the Steiner partition inequalities
discussed in section 3 for more than three hours.

Next, we want to deal with the separation of the extended alternating cycle in-
equalities. The separation algorithms we have outlined in section 3 (the dynamic
program as well as the heuristics) need a pair of nets as input. The problem we
are concerned with is to choose one (or several) “good” pairs of terminal sets
for which we want to execute the separation algorithms. If we would call one
of these algorithms for all net pairs, we would obtain a non-acceptable running
time, because the number of calls is quadratic in the number of nets.

In order to overcome this problem, we try to exploit the information given by the
primal heuristic 4.1. Remember that two components are gradually connected in
this heuristic. More precisely, in step (9) it is tried to connect two components
via a shortest path. If this is not possible, another net must block this path.
Obviously the two nets concurrently prefer certain edges in this case. Moreover,
this situation indicates that the information provided by the linear programming
solution is too poor to decide which of the nets is forced to make a detour. Hence,

23

we conclude that more inequalities combining these nets are necessary. Thus, we
call the separation algorithms for the extended alternating cycle inequalities for
nets that are in conflict due to the information of the primal heuristic. Practical
experiments have shown that the number of such conflicts is sublinear in the
number of nets and that strongly violated extended alternating cycle inequalities
can be obtained for such conflicting net pairs.

We want to point out that not only the linear program solution supplies important
information for the primal heuristic. But also conversely, the primal heuristic
indicates which type of inequalities are promissing for a further execution of
the cutting plane algorithm. In our opinion this interplay of the methods for
determing the lower and upper bound is essential in order to solve large scaled
problems.

Let us now summarize the overall algorithm.

Algorithm 4.3 (Branch and Cut Algorithm for the Switchbox Routing
Problem)

Input:
A complete rectangular grid graph G = (V, E) with edge capacities ¢, = 1
and edge weights w, € INy, e € F; a net list N' = {Ty,..., Ty} where the
terminal sets are on the outer face of G.

Output:
An optimal solution of the weighted Steiner tree packing problem.

Initialization

(1) Determine the perturbed objective function vector @ according to (4.2).

(2) Determine critical cuts by applying the algorithm based on Lemma 3.1 (see
section 3) and fix the corresponding variables.

(3) Initialize the branching tree with the whole problem.

(4) Solve the following (trivial) linear program

min W'
N
fogce, for all e € E.
k=1
z*>0, forallec E, k=1,...,N.

(5) Try to determine a feasible solution by applying primal heuristic 4.1.
(6) If a feasible solution was found
set b to the objective function value of the solution.
Else
set b = 0.
(7) Add the special Steiner partition inequalities to the linear program.

24

Solution and evaluation of the linear program

(8) Determine an optimal solution y of the actual linear program.
(9) If y is the incidence vector of a Steiner tree packing, then
set b=w'y.
(10) Else
try to improve the upper bound b by applying primal heuristic 4.1.
(11) If [wTy] = [b], then perform the following step:
If there still exists an unsolved subproblem in the branching tree, choose
one and goto (8).
Else print the optimal solution corresponding to b, STOP.
(12) Eliminate all inequalities a’z > a with a’y > « from the actual linear
program.

Separation

(13) Determine violated constraints from the “pool” (for an explanation of the
pool see below) as well as by applying the separation heuristics mentioned
in section 3.

(14) If violated constraints are found, add them to the linear program and goto
(8).

(15) Try to find violated Steiner partition inequalities and extended alternating
cycle inequalities by using the dynamic programs.

(16) If violated constraints are found, add them to the linear program and goto
(8).

Branching

(17) Determine a variable index (e, k) with y* ¢ {0, 1}.

(18) Generate two subproblems, one by adding the constraint x¥ = 0 and the
other by adding the constraint =% = 1.

(19) Add both subproblems to the branching tree.

(20) Choose a subproblem from the branching tree and goto (8).

The cutting plane algorithm itself encloses (up to the initialization) steps (8) to
(16). We have embedded this method into a general branch and cut framework
developed by M. Jinger (Universitdt zu Kéln). The enumeration scheme is only
sketched in steps (4) and (17) to (20). In fact, an efficient implementation of such
a scheme is a very difficult and complex task. For more details concerning the
branch and cut framework the interested reader is refered to the software package
of M. Jiinger.

In step (12) we delete all inequalities (up to the capacity and trivial inequalities)
that are not satisfied with equality from the linear program, in order to keep
the size of the linear program small. The eliminated constraints are stored in a
so-called “pool”, which is checked during the separation phase.

25

name h | b | N | distribution of the nets ref.
2 3 4 5 6
difficult switchbox [15(23|24| 15 | 3 4 1 1 | [BP83]
more difficult 15(122(124| 15 | 3 5 1 | [CHS8g]
switchbox
terminal intensive |16|23 (24| 8 7 5 4 [Lu85]
switchbox
dense switchbox |17[15|19| 3 | 11 | 5 [Lu85]
augmented dense |18|16(19| 3 | 11 | 5 [Lu85]
switchbox
modified dense 17116119 3 | 11 | 5 [CHS8S]
switchbox
pedagogical 161522 | 14 | 4 4 [CHS8S]
switchbox
Table 3:

If step (17) is executed, we are sure that there exists an index such that 0 < y* <
1. This is true, because y is not the incidence vector of a Steiner tree packing and
in step (13) the Steiner cut inequalities are exactly separated by our separation
algorithms. According to (2.2) the existence of such an index is guaranteed.

Algorithm 4.3 can be used, in principle, to determine an optimal solution of a
given switchbox routing problem or to detect that no feasible solution exists.
However, it may not be possible to guarantee this in acceptable time. For that
reason we povide an option in our algorithm to limit the running time. If this
limit is exceeded, the algorithm stops and prints the best lower and upper bound.

5 Computational Results

In this section we report on our computational experiences with the algorithm
introduced in section 4. We have tested our algorithm on switchbox routing prob-
lems that are discussed in literature. Table 3 summarizes the data. Column 1
presents the name used in literature. In column 2 and 3 the height and width
of the underlying grid graph is given. Column 4 contains the number of nets.
Columns 5 to 9 provide information about the distribution of the nets; more pre-
cisely, column 5 gives the number of 2-terminal nets, column 6 gives the number
of 3-terminal nets and so on. Finally, the last column states the reference to the
paper the example is taken from.

26

In all examples as they were originally introduced in literature, the underlying
graph is given as follows. The graph is obtained from a complete rectangular grid
graph by removing the outer cycle, see Figure 5 (a). Hence, every terminal is
incident to a unique edge, and obviously, every Steiner tree must contain this edge.
It is easy to see that by contracting all pending edges an equivalent problem is
obtained, see Figure 5 (b). The graph resulting this way is a complete rectangular
grid graph with terminals on the outer face. This instance is the input to our
problem.

The first example “difficult switchbox” was introduced by Burstein and Pelavin.
The second one “more difficult switchbox” is derived from the first one by deleting
the last column. (More precisely, the edges [(4,23), (i,24)] of the first grid graph
are contracted for i = 1,..., 15 and parallel edges are deleted.) The net list is the
same. The difference in the distribution occurs (see column 7 and 8), because an
edge whose endpoints belong to the same net is contracted. The third problem
instance was introduced by Luk, here each outer face node is occupied by a
terminal. The fourth switchbox routing problem is again due to Luk. Up to
now it is not known whether a solution for this example exists, if the Manhattan
or 2-layer model is used. Based on this example two variants can be obtained.
One, called “augmented dense switchbox”, has an additional column on the right,
the other, called “modified dense switchbox”, has an additional column near the
middle and an additional row on the buttom. The last example was introduced
by Cohoon and Heck. They illustrated their algorithm on this problem.

1 3 1 2
6 3 6,1 3 1 23
1 1 1 1
2 2 2 2
4 4 4 4
° ° 51 2 4 5 65

1 2 4 5 6

@ (b)
Figure 5:

In all examples the edge weights as well as the edge capacities are equal to one.
Unfortunately, the problem instances do not fix the routing model (Manhattan,
knock-knee or multiple layer model). To our knowledge all methods from the
literature use the Manhattan model or the 2-layer model. The choice of the
underlying model strongly influences the solvability of the problems. For example,
there may exist a solution in the 2-layer model, whereas it does not in the knock-
knee model. Figure 5 illustrates such an example (this example is taken from
[CHS88]). Moreover, there exist problem instances where shorter connections are
possible in the 2-layer model than in the knock-knee model. The same is true

27

example variables | fixed variables | remaining variables
difficult switchbox 15648 2224 13424
more difficult 14952 2450 12502
switchbox
terminal intensive 16728 4913 11815
switchbox
dense switchbox 9082 4831 4251
augmented dense 10298 2678 7620
switchbox
modified dense 9709 4057 5652
switchbox
pedagogical switchbox 9878 2039 7839
Table 4:

for a comparison of the knock-knee model with the Manhattan model. Thus, a
comparison of algorithms for the different models is not possible. So we confine
ourselves to report on the results we have obtained by applying our algorithm.

Table 4 informs about the size of the problems and about the success of fixing
variables with the algorithm discussed in the last subsection of section 3. Column
2 states the total number of 0/1 variables, column 3 gives the number of fixed
variables and the last column contains the number of remaining variables. Table
4 illustrates that many variables can be fixed, for example more than one half
of the variables for problem “dense switchbox”. Nevertheless, the number of
remaining variables is still large (see the last column).

In Table 5 the results we have obtained with our branch and cut algorithm are
summarized. Column 2 gives the best feasible solution. The values are not
integer due to the perturbed objective function. To obtain the real value with
respect to the original objective function the entries must be rounded up. The
entries in column 3 are the objective function values of the linear program when
no further violated constraints are found, i. e., when branching (steps (17) to
(20) in Algorithm 4.3) is performed for the first time. This values are obviously
lower bounds for the whole problem. In column 4 the percental derivation of the
best solution from the lower bound is given; more precisely, column 4 contains
[wa]—[ws]

the value , where Wy (resp. wg) is the corresponding value of column

2 (resp. 3). Column 5 (resp. 6) gives the number of cutting plane iterations
(resp. the number of nodes in the branching tree). Finally, the last column reports

28

example best sol. | LP value | gap | iter. | B&C | CPU-time

difficult switchbox | 463.711 | 463.709 | 0.0% | 69 3 1564:15

more difficult 451.712 | 451.708 | 0.0% 53 1 983:23
switchbox

terminal intensive | 536.694 | 535.196 | 0.2% | 163 13 3755:44
switchbox

dense switchbox™ 440.601 | 437.579 | 0.7% | 119 4 1017:43

augmented dense 468.600 | 466.006 | 0.4% | 105 1 4561:41
switchbox*

modified dense 451.585 | 451.009 | 0.0% 51 1 387:03
switchbox
pedagogical 330.770 | 330.760 | 0.0% 77 5 251:58
switchbox

Table 5:

on the running times. The values are stated in minutes obtained on a SUN 4/50.
The two examples “dense switchbox” and “augmented dense switchbox” marked
with a footnote are stopped after the time given in the last column, because no
further progress could be achieved. We claim that the values given in column 2 are
optimal, but we are yet not able to prove this with the cutting plane algorithm.
All other problem instances are solved to optimality.

The numbers in Table 5 are quite encouraging. For all problem instances the
lower bound in column 3 guarantees that the best feasible solution deviates at
most 0.7% from the optimal solution. In our opinion the main advantage of
our algorithm is that the quality of an heuristically determined solution can
be evaluated with the lower bound. Especially, for problem instances arising
in VLSI-Design, where in general only heuristics are at hand, a cutting plane
algorithm helps in analyzing the heuristics and simultanously delivers a lot of
knowledge about the problem itself.

Nevertheless, one major problem with our algorithm is its running time. The
numbers in the last column of Table 5 are very high. One reason is that we are
interested in an optimal solution or at least in the best lower and upper bound
for each of the problems that we can achieve with our approach. This is time
consuming. In practice, it often suffices to find a solution of a predefined quality
guarantee. From this point of view, we have analyzed our results also. Table 6
presents the time (measured in minutes), after which the lower bound deviates

29

example 5% 2% 1% 0%
difficult switchbox 3:24 3:24 | 90:12 | 688:49
more difficult 3:20 3:20 | 3R:19 | 530:11
switchbox
terminal intensive 5:44 | 83:24 | 239:10 —
switchbox
dense switchbox* 2:00 2:00 | 103:07 -
augmented dense 2:04 2:04 | 269:20 -
switchbox*
modified dense 2:04 2:04 2:04 | 387:03
switchbox
pedagogical switchbox | 1:46 2:27 | 15:04 | 117:55

Table 6:

at most 5, 2, 1 and, if obtained, 0 percent from the best feasible solution.

It can be seen from column 2 that, for all problem instances, the lower bound
deviates from the best feasible solution by at most 5% percent after no more
than 6 minutes. Table 6 illustrates in addition that the amount of time increases
strongly to obtain a quality below one percent.

In our opinion the times in column 1 of Table 6 are acceptable. However, we
would like to point out that these examples are quite small in comparison to
problem sizes arising in other practical applications for the design of electronic
circuits. Our long-term goal is to apply the branch and cut algorithm to large
scale problem instances, too. In order to achieve this, we surely must reduce the
running times. We have analyzed our algorithm concerning the question where
most of the time is spent. It turns out that about 90% percent of the time is used
to solve the linear programs. To our present knowledge two possibilities arise to
overcome this problem.

1. Reducing the number of variables.

We consider the problem only on a subset of the set of variables, solve
the problem on this subset and check whether this solution is also optimal
for the whole problem. If not, we add some variables and solve the ex-
tended problem again. This method is commonly used to solve large scaled
practical problems by a cutting plane algorithm (see, for instance, [GH91],
[PRI1)).

30

2. Decompose the linear programs.

The constraint matrices of our problems are of very special structure. Due
to this structure it seems to be promising to decompose the linear program.
Methods for deomposing linear programs were suggested by Dantzig and
Wolfe [DaW60] or by Benders [B62]. Up to now these methods are not used
in practice, because the problems can be solved faster directly. However,
with the help of parallel computers these methods may get competitive,
especially for our problem instances.

Conclusion

In this paper we have developed a cutting plane algorithm for the Steiner tree
packing problem. We have introduced some separation methods for special prob-
lem instances where the underlying graph is planar and all terminal sets lie on the
outer face of the graph. This special instances include an important subproblem
in VLSI-Design, the so-called switchbox routing problem. We have reported on
computational results we have obtained with our branch and cut algorithm for
this type of problems. The results are encouraging. Most of the problems dis-
cussed in literature are solved to optimality. Thus, we have good hopes that this
approach may also be applicable to large scale problem instances as they occur
in practice. To achieve this long-term goal there surely remain a lot of problems
to be solved.

References

[B62] J. F. Benders: Partitioning procedures for solving mixed-variables pro-
grammang problems, Numerische Mathematik 4, 1962, 238 — 252.

[BB84| M. L. Brady, D. J. Brown: VLSI routing: Four layers suffice, in:
F. P. Preparata (ed.): “Advances in Computing Research”, Bd. 2:
VLSI theory, Jai Press, London, 1984, 245 — 258.

[BP83] M. Burstein, R. Pelavin: Hierarchical wire routing, IEEE Transactions
on Computer-Aided-Design CAD-2, 1983, 223 — 234.

[BLP87] M. O. Ball, W. Liu, W. R. Pulleyblank: Two terminal Steiner tree
polyhedra, Report No. 87466-OR, Institut fiir Okonometrie und Oper-
ations Research, Universitat Bonn, Bonn, 1987.

[CHS8S] J. P. Cohoon, P. L. Heck: BEAVER: A computational-geometry-based
tool for switchbox routing, IEEE Transactions on Computer-Aided-
Design CAD-7, 1988, 684 — 697.

31

[CR88a]

[CRSSb)

[DW71]

[DaW60]

[EMVS7]

[F91]

[GHO1]

(GITT]

[GMO0]

[GMS90]

[GMW92]

[GMWO3]

K72

S. Chopra, M. R. Rao: The Steiner tree problem I: Formulations,
compositions and extension of facets, Technical Report No. 88-82,

Graduate School of Business Administration, New York University,
New York, 1988.

S. Chopra, M. R. Rao: The Steiner tree problem II: Properties and
classes of facets, Technical Report No. 88-83, Graduate School of Busi-
ness Administration, New York University, New York, 1988.

S. E. Dreyfus, R. A. Wagner: The Steiner problem in graphs, Networks
1, 1971, 195 — 207.

G. B. Dantzig, P. Wolfe: Decomposition principle for linear programs,
Operations Research 8, 1960, 101 — 111.

R. E. Erickson, C. L. Monma, A. F. Veinott: Send-and-split method
for minimum concave-cost network flows, Mathematics of Operations
Research 12, 1987, 634 — 664.

M. Fischetti: Facets of two Steiner arborescence polyhedra, Mathemat-
ical Programming 51, 1991, 401 — 419.

M. Grotschel, O. Holland: Solution of large-scale symmetric travelling
salesman problems, Mathematical Programming 51, 1991, 141 — 202.

M.R. Garey, D.S. Johnson: The rectilinear Steiner tree problem is
NP-complete, STAM J. Appl. Math. 32, 1977, 826 — 834.

M. Grotschel, C. L. Monma: Integer polyhedra associated with certain
network design problems with connectivity constraints, STAM Journal
on Discrete Mathematics 3, 1990, 502 — 523.

M. Grotschel, C. L. Monma, M. Stoer: Computational results with
a cutting plane algorithm for designing communication networks with
low-connectivity constraints, Operations Research 40, 1992, 309 — 330.

M. Grotschel, A. Martin, R. Weismantel: Packing Steiner trees: poly-
hedral investigations, Konrad-Zuse-Zentrum fiir Informationstechnik
Berlin, Preprint SC 92-8, 1992.

M. Grotschel, A. Martin, R. Weismantel: Packing Steiner trees:
separation algorithms, Konrad-Zuse-Zentrum fiir Informationstechnik
Berlin, Preprint SC 93-2, 1993.

R.M. Karp: Reducibility among combinatorial problems, in: R.E.
Miller, J.W. Thatcher (eds.), “Complexity of Computer Computa-
tions”, Plenum Press, New York, 1972, 85 — 103.

32

[KL84]

[Lus5]
[Lis4]

[M92]

[PRO1]

(987]

M.R. Kramer, J. van Leeuwen: The complexity of wire-routing
and finding minimum area layouts for arbitrary VLSI circuits, F.P.
Preparata (ed.), “Advances in Computing Research”, Bd. 2: VLSI
theory, Jai Press, London, 1984, 129 — 146.

W. K. Luk: A greedy switch-box router, Integration 3, 1985, 129 — 149.

W. Lipski: On the structure of three-layer wireable layouts, F. P.
Preparata (ed.): “Advances in Computing Research”, Bd. 2: VLSI
theory, Jai Press, London, 1984, 231 — 244.

A. Martin: Packen von Steinerbdumen: Polyedrische Studien und An-
wendung, Ph.D. Thesis, Technische Universitat Berlin, 1992.

M. Padberg, G. Rinaldi: A branch and cut algorithm for the resolution
of large-scale symmetric traveling salesman problems, SIAM Review
33, 1991, 60 — 100.

M. Sarrafzadeh: Channel-routing problem in the knock-knee mode is
NP-complete, IEEE Transactions on Computer-Aided-Design CAD-6,
1987, 503 — 506.

33

