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Abstract. The problem of maximizing the radius ofn equal circles that can be packed
into a given square is a well-known geometrical problem. An equivalent problem is to find
the largest distanced, such thatn points can be placed into the square with all mutual
distances at leastd. Recently, all optimal packings of at most 20 circles in a square were
exactly determined. In this paper, computational methods to find good packings of more
than 20 circles are discussed. The best packings found with up to 50 circles are displayed. A
new packing of 49 circles settles the proof that whenn is a square number, the best packing
is the square lattice exactly whenn ≤ 36.

1. Introduction

The problem to be discussed in this paper is one that many of us have encountered in
everyday life: How many bottles of a given size can be packed into a square box of a
given size and how should this be done? The problem can be geometrically expressed as
follows: determinern, the maximum radius ofn nonoverlapping circles in a unit square.
By solving the latter problem, the former problem is also solved. Namely, the radius of
the bottles is divided by the side of the box and this quotient is compared with the values
in the nonincreasing seriesrn. The largestn for which rn is greater than the quotient is
the demanded solution.

There is another equivalent formulation of the problem, which we adopt in this paper:
maximize the minimum distance betweenn points in a unit square. We denote this value
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by dn, and have the following relation betweenrn anddn:

rn = dn

2(dn + 1)
.

A packing corresponding todn (or rn) is called anoptimal packing. For some small
values ofn and somen where the optimal packing has a nice structure, exact values of
dn have been proved by hand. Recently exact values ofdn were determined forn up to
20 [4] (as explicit values or as the smallest root of a polynomial equation). The proofs
involve extensive use of computers; as of today this is about as far as we can come with
that approach. However, even if we are not able to find the exact values ofdn for larger
values ofn, we can try to find as good packings as possible, thereby lower-boundingdn.
In this research we try to find such good packings by computer search.

The paper is outlined as follows. Old results on the problem are surveyed in Section
2. In Section 3 we consider how computers can be used in the search for packings. We
first discuss methods that have been mentioned in the literature; thereafter our approach
is treated in detail. The best packings found are displayed and discussed in Section 4.

2. Old Results

The problem of packing circles into different geometrical shapes has received much
attention since the seminal work of Fejes T´oth [7]. A recent survey of results and problems
still open can be found in [3]. One of the most natural and most studied of these problems
is that of packing circles in a square.

This problem was solved for up to nine circles in the 1960s by Graham, Meir and
Schaer; the proofs of these cases have been reported in [12], [18], [20], and [22]. The
proofs for n ≤ 5 are easy, whereas the cases 6≤ n ≤ 9 require more elaborate
mathematical tools. For example, forn = 5 we can divide the square into four subsquares
as indicated in Fig. 1. Now at least one square must contain two points due to the pigeon-
hole principle, so the length of the diagonals in the subsquares (

√
2/2) upper-boundsd5.

This is also a lower bound, since in the solution in Fig. 1 (which is the only possible
optimal solution), this is the smallest distance between two points. Therebyd5 =

√
2/2.

Forn ≥ 10, only the optimal packings of 14 [26], 16 [24], 25 [25], and 36 [10] circles
have been proved by hand.

Recently, de Grootet al. [5] used computers to find good packings forn ≤ 22. They

Fig. 1. Optimal packing of five points in a square.
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were later even able to give a computer proof of the best packings with up to 20 circles
[4], [15]. In particular, this ended a series of articles on packings of 10 circles (and
conjectures about the optimality of the respective packings); see [8], [19], [21], [23], and
some further references in [5]. Furthermore, forn up to 27 and for some sporadic values
of n greater than 27, good packings were given by Goldberg in [8].

3. Computer Search for Packings

Computers have certainly played a central role in many searches for packings. Unfortu-
nately, this is very seldom mentioned and even if it is, only brief details are given. It is
very natural (for a givenn) to define the problem as an optimization problem. A solution
of this optimization problem can then be a set of eithern scattered points orn centers of
circles in a unit square. We now first take a look at what can be found in the literature
and thereafter discuss our approach.

3.1. Earlier Approaches

In [5] the problem is considered as a maximizing problem. A solution is a set of centers
of circles in the unit square. The maximum possible radius for circles with these centers
that do not overlap and are within the boundaries of the square is easily calculated by
considering the distances between the points and between the points and the boundaries.
This is then the value that is maximized by moving the centers of the circles.

The optimization methods used in [5] are the simplex (polytope) algorithm and the
quasi-Newton BFGS algorithm. Further details on the implementation of these methods
are omitted in the paper. Forn ≤ 20, they fail to find optimal packings forn = 14, 15, 17.
In the papers where the optimality of packings withn ≤ 20 is proved [4], [15], the authors
report a better performance of a (stochastic) Langevin equation formalism than of the
two aforementioned methods; see also [6].

Mollard and Payan [13] found good packings of 11, 13, and 14 circles that improved
on the results in [8] by using their own Cabri-G´eomètre geometry software. They were
further able to improve the packing of 13 circles by hand.

Graham and Lubachevsky [9] used an event-driven simulation algorithm to pack
circles in an equilateral triangle. The algorithm simulates the idealized movement of
billiard balls inside a triangular box; the size of the balls is increased slowly until the
movement is blocked.

Clare and Kepert [2] and Kottwitz [11] found good packings of circles on a sphere
by computer. They did not consider the minimum pairwise distance between points, but
minimized the total potential energy of repulsion. The optimization methods used were
variants of the Fletcher–Powell–Davidon quasi-Newton method [17] and a simple gra-
dient method combined with Newton’s method, respectively. The approximate solutions
then found were refined by identifying the points at minimum pairwise distance and
solving iteratively a system of equations using Newton–Raphson methods. This method
was recently generalized for searching for higher-dimensional spherical codes in [14],
where some packings of [11] were also improved by using simple packing heuristics
combined with simulated annealing.
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3.2. Our Approach

Our approach is closely related to that of [2] and [11]. It is based on the minimization
of the energy function

E =
∑

1≤i< j≤n

(
λ

d2
i j

)m

, (1)

wheredi j is the distance between pointsi and j representing the centers of the circles,
λ is a scaling factor to prevent numerical overflows, andm is a positive integer.

We transform the constrained optimization problem into an unconstrained one by
using the simple coordinate transformation defined as follows:

Let (xi , yi ) be the center of circlei . Define

xi = sin(x̃i ),

yi = sin(ỹi ),

wherex̃i and ỹi range overR. We now have an unconstrained optimization problem in
variablesx̃i , ỹi (1 ≤ i ≤ n), where the coordinates of the centers of the circles fulfill
−1≤ xi ≤ 1,−1≤ yi ≤ 1 as required (the square, of course, need not be a unit square).

The energy function (1) is twice continuously differentiable (except where two points
coincide). In the optimization we use (for each value ofm) a hybrid algorithm that
consists of a simple steepest-descent algorithm with Goldstein–Armijo backtracking
line search in the beginning and a modified Newton method in the end.

We start with a moderately small value ofm (in the range 10≤ m ≤ 100) and find
a local optimum of the energy function. Then we double the value ofm and repeat the
optimization step. Asm tends to infinity, only the smallest distances between the centers
of the circles have an effect on the energy of the configuration. In some cases in this
work we used as large final values form as 1050, although optimization can usually be
ended whenm reaches 106. For eachn, at least 50 optimization runs were performed
with random initial solutions.

The scaling factorλ needs to be recalculated from time to time during the optimization
run, because otherwise the cost becomes impractically small, especially with largem.
We adjustλ after each optimization step by setting it equal to the square of the length of
the shortest distance between two points of the packing.

The packing resulting from the optimization run can be further improved by con-
structing a system of nonlinear equations corresponding to the contacts between the
circles and between the circles and the boundary and by solving that system numeri-
cally. We first sort all the distances between the points into increasing order and find the
location where the distance shows a sudden increase. The distances up to this location
are assumed to be equal, and points very close to the boundary are assumed to be on the
boundary. We then form a system of equations from these assumptions. This procedure
can be done automatically by giving two threshold values, one for the largest admitted
difference between a candidate distance and the shortest distance of the configuration,
and the other for the largest admitted distance between a point and the boundary.

In most cases the system of equations has a solution, which can be found numerically
using, for example, a modified Newton–Raphson method [1]. However, in a few cases the



Packing up to 50 Equal Circles in a Square 115

Fig. 2. Poor local optimum.

gaps between the circles or between the circles and the boundary are so narrow that this
method results in a system of equations for which no solution exists, indicating that one or
more equations should be removed from the system. On the other hand, if some contacts
between circles are not included in the system, the solution of the system may have
circles overlapping. In such cases we can try to make the set of shortest distances more
clearly visible by continuing the optimization to locate the optimum more accurately. If
this strategy fails, we finally remove and add equations through trial and error until a
solvable system representing a nonoverlapping packing is found.

Sometimes the packing resulting from an optimization run has a circle that is in
contact with the boundary and that can be moved toward the center of the square without
causing overlap with any other circles. In Fig. 2 this situation occurs with the circle
marked with a star. The arrangement, which is a local optimum of the energy function
(1), can be further improved by moving the circle away from the boundary slightly and
then continuing the optimization with a relatively largem.

Starting with a random initial solution, our implementation of the optimization algo-
rithm performs an optimization run for 50 circles in about 20 minutes of CPU-time on a
current workstation. After the structure of the packing has been detected, the numerical
solution to the corresponding system of equations can be found in a few seconds with a
mathematical software supporting arbitrary-precision numbers.

4. Best Packings Found

The best packings found for 21≤ n ≤ 50 are displayed in Fig. 3. The nine packings for
n = 22, 23, 24(a), 25, 27, 30, 36, 39, and 42 are old [5], [8], [10]—all other packings are
new. The packing forn = 21 improves on the results in [5], and several packings improve
on the results in [8]; see also [3]. There are three different best known packings of 24
circles and three packings of 35 circles. (A similar situation occurs with 17 circles—there
are two different optimal such packings [15].) Only the packings of 25 and 36 circles
have been proved optimal [10], [25].

In Table 1 we tabulate some properties of the packings. In addition to the diameterd
of the circles, we show the density of the packing (that is, the area of the circles divided
by the area of the square), the number of loose circles in the structure, the total number
of contacts between the circles and between the circles and the boundary, and the order
of the symmetry group [16].
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Fig. 3. Best known packings for 21≤ n ≤ 50.
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Fig. 3 (continued)

Some similarities can be found among the best known packings. Forn = k2 − 1,
best known packings of 8, 15, 24, and 35 (but not 48) circles have similar structure. For
n = k2 − 3, that is also the case for packings of 22, 33, and 46 (but not 13) circles.
Other examples are the casesn = k2 + k, andn = (2k2 + k)/2 for k even. Forn = k2,
the optimal packing forn ≤ 36 is the square lattice. The new packing forn = 49
found in this work concludes the proof that, forn = k2, the square lattice packings are
optimal exactly forn ≤ 36. This disproves a conjecture of Wengerodt (who found denser
packings forn ≥ 64) that the square lattice packings are optimal forn ≤ 49; see [3] and
its references.

Some packings in Fig. 3 are almost symmetric (for example, the packings of 22, 33,
and 46 circles); the packings are obtained by breaking the symmetry slightly. Two more
examples where an almost symmetric packing is better than the nearby symmetric one
can be found in the packings of 37 and 44 circles in this work. The packing of 37 circles
is interesting for two reasons: it does not contain any corner circles, and 37 is the largest
number of circles for which the best known packing has lower density than that of a
square lattice packing. The packing of 44 circles very much resembles that of 31 circles
and is possibly not optimal.

In some packings there are very narrow gaps between the circles or between the circles
and the boundary. In the packing of 40 circles, the gap between one of the circles and
the boundary is about 3· 10−15 times the diameter of the circles. The width of some of
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Table 1. Properties of packings.

Loose Order of
n d Density circles Contacts symmetry group

21 0.271811687 0.753355227 2 40 1
22 0.267958402 0.771680112 1 43 1
23 0.258819045 0.763631032 0 56 4
24 0.254333095 0.774963260 0 56 8(a), 2(b), 2(c)
25 0.250000000 0.785398163 0 60 8
26 0.238734757 0.758469090 2 56 1
27 0.235849528 0.772311456 0 55 2
28 0.230534597 0.771849233 2 53 1
29 0.226882901 0.778906242 1 65 1
30 0.224502965 0.792019026 0 65 2
31 0.217547292 0.777297479 4 55 2
32 0.213082353 0.775450816 2 61 1
33 0.211328384 0.788852304 1 65 1
34 0.205021908 0.772999930 1 71 1
35 0.202763601 0.781227213 0 80 2(a), 2(b), 1(c)
36 0.200000000 0.785398163 0 84 8
37 0.196238101 0.782029274 1 73 1
38 0.195342304 0.797042557 0 77 2
39 0.194365063 0.811179027 0 80 4
40 0.188175077 0.787976383 2 79 1
41 0.186099512 0.792723899 1 100 1
42 0.184277072 0.798684279 0 90 2
43 0.180132785 0.786832179 2 83 1
44 0.178639224 0.793842645 4 82 1
45 0.175515450 0.787909640 2 87 1
46 0.174459361 0.797187132 1 91 1
47 0.171107017 0.788007250 2 95 1
48 0.169382110 0.790957782 0 101 1
49 0.167386077 0.791216990 1 120 1
50 0.166454626 0.799679429 0 104 1

the gaps between the circles in the packing of 47 circles is less than 3· 10−11 times the
diameter of the circles.

The system of equations corresponding to the structure of a packing can be reduced
to a polynomial equation—of one variable—that has a zero at the diameter of the circles.
In some cases the polynomials have been constructed [4], but large irregular packings
have so complex polynomials that there is little hope of constructing them. The diameter
of the circles of a large packing can be solved exactly only in special cases.

Finding a numerical solution to the system of equations corresponding to the proposed
structure of the packing does not guarantee that the structure exists, because of the finite
precision in calculations. The systems of equations in this work were solved numerically
so that the overlaps of, or gaps between, contacting circles in the conjectured structure
are less than 10−33; it is thus highly improbable that any of these structures turns out to
be nonexistent.

The densities of the best known packings of 1–50 circles are plotted in Fig. 4. The
densities of hexagonal and square lattice packings are also shown by dotted lines. The
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Fig. 4. Densities of best known packings.

density shows a clear tendency to increase as the number of circles increases, although
the densities of all the packings in this work still remain clearly below the density of the
hexagonal lattice packing—which the density approaches asn tends to infinity [7]. An
open question stated in [3] is whether there are any values ofn such thatdn = dn+1. We
conclude this paper by conjecturing that there are no suchn.
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