
Packrat Parsing:
Simple, Powerful, Lazy, Linear Time

Functional Pearl

Bryan Ford
Massachusetts Institute of Technology

Cambridge, MA

baford@lcs.mit.edu

Abstract

Packrat parsing is a novel technique for implementing parsers in a
lazy functional programming language. A packrat parser provides
the power and flexibility of top-down parsing with backtracking and
unlimited lookahead, but nevertheless guarantees linear parse time.
Any language defined by an LL(k) or LR(k) grammar can be rec-
ognized by a packrat parser, in addition to many languages that
conventional linear-time algorithms do not support. This additional
power simplifies the handling of common syntactic idioms such as
the widespread but troublesome longest-match rule, enables the use
of sophisticated disambiguation strategies such as syntactic and se-
mantic predicates, provides better grammar composition properties,
and allows lexical analysis to be integrated seamlessly into parsing.
Yet despite its power, packrat parsing shares the same simplicity
and elegance as recursive descent parsing; in fact converting a back-
tracking recursive descent parser into a linear-time packrat parser
often involves only a fairly straightforward structural change. This
paper describes packrat parsing informally with emphasis on its use
in practical applications, and explores its advantages and disadvan-
tages with respect to the more conventional alternatives.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Parsing; D.1.1
[Programming Techniques]: Applicative (Functional) Program-
ming; F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems—Parsing

General Terms

Languages, Algorithms, Design, Performance

Keywords

Haskell, memoization, top-down parsing, backtracking, lexical
analysis, scannerless parsing, parser combinators

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’02, October 4-6, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-487-8/02/0010 ...$5.00

1 Introduction

There are many ways to implement a parser in a functional pro-
gramming language. The simplest and most direct approach is
top-downor recursive descent parsing, in which the components
of a language grammar are translated more-or-less directly into a
set of mutually recursive functions. Top-down parsers can in turn
be divided into two categories.Predictive parsersattempt to pre-
dict what type of language construct to expect at a given point by
“looking ahead” a limited number of symbols in the input stream.
Backtracking parsersinstead make decisions speculatively by try-
ing different alternatives in succession: if one alternative fails to
match, then the parser “backtracks” to the original input position
and tries another. Predictive parsers are fast and guarantee linear-
time parsing, while backtracking parsers are both conceptually sim-
pler and more powerful but can exhibit exponential runtime.

This paper presents a top-down parsing strategy that sidesteps the
choice between prediction and backtracking.Packrat parsingpro-
vides the simplicity, elegance, and generality of the backtracking
model, but eliminates the risk of super-linear parse time, by sav-
ing all intermediate parsing results as they are computed and en-
suring that no result is evaluated more than once. The theoretical
foundations of this algorithm were worked out in the 1970s [3, 4],
but the linear-time version was apparently never put in practice due
to the limited memory sizes of computers at that time. However,
on modern machines the storage cost of this algorithm is reason-
able for many applications. Furthermore, this specialized form of
memoization can be implemented very elegantly and efficiently in
modern lazy functional programming languages, requiring no hash
tables or other explicit lookup structures. This marriage of a classic
but neglected linear-time parsing algorithm with modern functional
programming is the primary technical contribution of this paper.

Packrat parsing is unusually powerful despite its linear time guar-
antee. A packrat parser can easily be constructed for any language
described by an LL(k) or LR(k) grammar, as well as for many lan-
guages that require unlimited lookahead and therefore are not LR.
This flexibility eliminates many of the troublesome restrictions im-
posed by parser generators of the YACC lineage. Packrat parsers
are also much simpler to construct than bottom-up LR parsers, mak-
ing it practical to build them by hand. This paper explores the
manual construction approach, although automatic construction of
packrat parsers is a promising direction for future work.

A packrat parser can directly and efficiently implement common
disambiguation rules such aslongest-match, followed-by, andnot-
followed-by, which are difficult to express unambiguously in a
context-free grammar or implement in conventional linear-time

Additive ← Multitive ‘ +’ Additive |Multitive
Multitive ← Primary ‘*’ Multitive | Primary
Primary ← ‘(’ Additive ‘)’ | Decimal
Decimal ← ‘0’ | . . . | ‘9’

Figure 1. Grammar for a trivial language

parsers. For example, recognizing identifiers or numbers during
lexical analysis, parsingif-then-else statements in C-like lan-
guages, and handlingdo, let, and lambda expressions in Haskell
inherently involve longest-match disambiguation. Packrat parsers
are also more easily and naturally composable than LR parsers,
making them a more suitable substrate for dynamic or extensible
syntax [1]. Finally, both lexical and hierarchical analysis can be
seamlessly integrated into a single unified packrat parser, and lexi-
cal and hierarchical language features can even be blended together,
so as to handle string literals with embedded expressions or literate
comments with structured document markup, for example.

The main disadvantage of packrat parsing is its space consumption.
Although its asymptotic worst-case bound is the same as those of
conventional algorithms—linear in the size of the input—its space
utilization is directly proportional to input size rather than maxi-
mum recursion depth, which may differ by orders of magnitude.
However, for many applications such as modern optimizing compil-
ers, the storage cost of a pacrkat parser is likely to be no greater than
the cost of subsequent processing stages. This cost may therefore
be a reasonable tradeoff for the power and flexibility of linear-time
parsing with unlimited lookahead.

The rest of this paper explores packrat parsing with the aim of pro-
viding a pragmatic sense of how to implement it and when it is
useful. Basic familiarity with context-free grammars and top-down
parsing is assumed. For brevity and clarity of presentation, only
small excerpts of example code are included in the text. However,
all of the examples described in this paper are available, as complete
and working Haskell code, at:

http://pdos.lcs.mit.edu/˜baford/packrat/icfp02

The paper is organized as follows. Section 2 introduces packrat
parsing and describes how it works, using conventional recursive
descent parsing as a starting point. Section 3 presents useful ex-
tensions to the basic algorithm, such as support for left recursion,
lexical analysis, and monadic parsing. Section 4 explores in more
detail the recognition power of packrat parsers in comparison with
conventional linear-time parsers. Section 5 discusses the three main
practical limitations of packrat parsing: determinism, statelessness,
and space consumption. Section 6 presents some experimental re-
sults to demonstrate the practicality of packrat parsing for real lan-
guages. Section 7 discusses related work, Section 8 points out di-
rections for future exploration, and Section 9 concludes.

2 Building a Parser

Packrat parsing is essentially a top-down parsing strategy, and as
such packrat parsers are closely related to recursive descent parsers.
For this reason, we will first build a recursive descent parser for a
trivial language and then convert it into a packrat parser.

2.1 Recursive Descent Parsing

Consider the standard approach for constructing a recursive descent
parser for a grammar such as the trivial arithmetic expression lan-

guage shown in Figure 1. We define four functions, one for each
of the nonterminals on the left-hand sides of the rules. Each func-
tion takes takes the string to be parsed, attempts to recognize some
prefix of the input string as a derivation of the corresponding nonter-
minal, and returns either a “success” or “failure” result. On success,
the function returns the remainder of the input string immediately
following the part that was recognized, along with some semantic
value computed from the recognized part. Each function can re-
cursively call itself and the other functions in order to recognize the
nonterminals appearing on the right-hand sides of its corresponding
grammar rules.

To implement this parser in Haskell, we first need a type describing
the result of a parsing function:

data Result v = Parsed v String
| NoParse

In order to make this type generic for different parse functions pro-
ducing different kinds of semantic values, theResult type takes a
type parameterv representing the type of the associated semantic
value. A success result is built with theParsed constructor and
contains a semantic value (of typev) and the remainder of the input
text (of typeString). A failure result is represented by the sim-
ple valueNoParse. In this particular parser, each of the four parse
functions takes aString and produces aResult with a semantic
value of typeInt:

pAdditive :: String -> Result Int
pMultitive :: String -> Result Int
pPrimary :: String -> Result Int
pDecimal :: String -> Result Int

The definitions of these functions have the following general struc-
ture, directly reflecting the mutual recursion expressed by the gram-
mar in Figure 1:

pAdditive s = ... (calls itself and pMultitive) ...
pMultitive s = ... (calls itself and pPrimary) ...
pPrimary s = ... (calls pAdditive and pDecimal) ...
pDecimal s = ...

For example, thepAdditive function can be coded as follows, us-
ing only primitive Haskell pattern matching constructs:

-- Parse an additive-precedence expression
pAdditive :: String -> Result Int
pAdditive s = alt1 where

-- Additive <- Multitive ’+’ Additive
alt1 = case pMultitive s of

Parsed vleft s’ ->
case s’ of

(’+’:s’’) ->
case pAdditive s’’ of

Parsed vright s’’’ ->
Parsed (vleft + vright) s’’’

_ -> alt2
_ -> alt2

_ -> alt2

-- Additive <- Multitive
alt2 = case pMultitive s of

Parsed v s’ -> Parsed v s’
NoParse -> NoParse

To compute the result ofpAdditive, we first compute the value of
alt1, representing the first alternative for this grammar rule. This

alternative in turn callspMultitive to recognize a multiplicative-
precedence expression. IfpMultitive succeeds, it returns the se-
mantic valuevleft of that expression and the remaining inputs’
following the recognized portion of input. We then check for a
‘+’ operator at positions’, which if successful produces the string
s’’ representing the remaining input after the ‘+’ operator. Finally,
we recursively callpAdditive itself to recognize another additive-
precedence expression at positions’’, which if successful yields
the right-hand-side resultvright and the final remainder string
s’’’. If all three of these matches were successful, then we re-
turn as the result of the initial call topAdditive the semantic value
of the addition,vleft + vright, along with the final remainder
strings’’’. If any of these matches failed, we fall back onalt2,
the second alternative, which merely attempts to recognize a single
multiplicative-precedence expression at the original input position
s and returns that result verbatim, whether success or failure.

The other three parsing functions are constructed similarly, in direct
correspondence with the grammar. Of course, there are easier and
more concise ways to write these parsing functions, using an appro-
priate library of helper functions or combinators. These techniques
will be discussed later in Section 3.3, but for clarity we will stick to
simple pattern matching for now.

2.2 Backtracking Versus Prediction

The parser developed above is abacktrackingparser. Ifalt1 in
the pAdditive function fails, for example, then the parser effec-
tively “backtracks” to the original input position, starting over with
the original input strings in the second alternativealt2, regard-
less of whether the first alternative failed to match during its first,
second, or third stage. Notice that if the inputs consists of only
a single multiplicative expression, then thepMultitive function
will be called twice on the same string: once in the first alternative,
which will fail while trying to match a nonexistent ‘+’ operator,
and then again while successfully applying the second alternative.
This backtracking and redundant evaluation of parsing functions
can lead to parse times that grow exponentially with the size of the
input, and this is the principal reason why a “naive” backtracking
strategy such as the one above is never used in realistic parsers for
inputs of substantial size.

The standard strategy for making top-down parsers practical is to
design them so that they can “predict” which of several alterna-
tive rules to applybeforeactually making any recursive calls. In
this way it can be guaranteed that parse functions are never called
redundantly and that any input can be parsed in linear time. For ex-
ample, although the grammar in Figure 1 is not directly suitable for
a predictive parser, it can be converted into an LL(1) grammar, suit-
able for prediction with one lookahead token, by “left-factoring”
the Additive and Multitive nonterminals as follows:

Additive ← Multitive AdditiveSuffix
AdditiveSuffix ← ‘+’ Additive | ε
Multitive ← Primary MultitiveSuffix
MultitiveSuffix ← ‘*’ Multitive | ε

Now the decision between the two alternatives for AdditiveSuffix
can be made before making any recursive calls simply by check-
ing whether the next input character is a ‘+’. However, because the
prediction mechanism only has “raw” input tokens (characters in
this case) to work with, and must itself operate in constant time,
the class of grammars that can be parsed predictively is very re-
strictive. Care must also be taken to keep the prediction mechanism
consistent with the grammar, which can be difficult to do manu-

’2’ ’3’’*’ ’4’ ’)’

pDecimal

input

pPrimary

pMultitive

pAdditive

column

(7,C7)

C1 C3 C4 C5 C6 C7 C8

(3,C5)

(3,C5)

(3,C5) (4,C7)

(4,C7)

(4,C7)

(4,C7)

(end)’+’’(’

?

C2

Figure 2. Matrix of parsing results for string ‘ 2*(3+4)’

ally and highly sensitive to global properties of the language. For
example, the prediction mechanism for MultitiveSuffix would have
to be adjusted if a higher-precedence exponentiation operator ‘**’
was added to the language; otherwise the exponentiation operator
would falsely trigger the predictor for multiplication expressions
and cause the parser to fail on valid input.

Some top-down parsers use prediction for most decisions but fall
back on full backtracking when more flexibility is needed. This
strategy often yields a good combination of flexibility and perfor-
mance in practice, but it still suffers the additional complexity of
prediction, and it requires the parser designer to be intimately aware
of where prediction can be used and when backtracking is required.

2.3 Tabular Top-Down Parsing

As pointed out by Birman and Ullman [4], a backtracking top-down
parser of the kind presented in Section 2.1 can be made to operate in
linear time without the added complexity or constraints of predic-
tion. The basic reason the backtracking parser can take super-linear
time is because of redundant calls to the same parse function on the
same input substring, and these redundant calls can be eliminated
through memoization.

Each parse function in the example is dependentonly on its sin-
gle parameter, the input string. Whenever a parse function makes
a recursive call to itself or to another parse function, it always sup-
plies eitherthe sameinput string it was given (e.g., for the call by
pAdditive to pMultitive), or asuffixof the original input string
(e.g., for the recursive call bypAdditive to itself after matching a
‘+’ operator). If the input string is of lengthn, then there are only
n+ 1 distinct suffixes that might be used in these recursive calls,
counting the original input string itself and the empty string. Since
there are only four parse functions, there are at most 4(n+ 1) dis-
tinct intermediate results that the parsing process might require.

We can avoid computing any of these intermediate results multiple
times by storing them in a table. The table has one row for each of
the four parse functions and one column for each distinct position
in the input string. We fill the table with the results of each parse
function for each input position, starting at theright end of the input
string and working towards the left, column by column. Within
each column, we start from the bottommost cell and work upwards.
By the time we compute the result for a given cell, the results of all
would-be recursive calls in the corresponding parse function will
already have been computed and recorded elsewhere in the table;
we merely need to look up and use the appropriate results.

Figure 2 illustrates a partially-completed result table for the in-
put string ‘2*(3+4)’. For brevity, Parsed results are indicated as
(v,c), wherev is the semantic value andc is the column number at
which the associated remainder suffix begins. Columns are labeled

C1, C2, and so on, to avoid confusion with the integer semantic val-
ues.NoParse results are indicated with an X in the cell. The next
cell to be filled is the one forpPrimary at column C3, indicated
with a circled question mark.

The rule for Primary expressions has two alternatives: a parenthe-
sized Additive expression or a Decimal digit. If we try the alter-
natives in the order expressed in the grammar,pPrimary will first
check for a parenthesized Additive expression. To do so,pPrimary
first attempts to match an opening ‘(’ in column C3, which suc-
ceeds and yields as its remainder string the input suffix starting at
column C4, namely ‘3+4)’. In the simple recursive-descent parser
pPrimary would now recursively callpAdditive on this remain-
der string. However, because we have the table we can simply look
up the result forpAdditive at column C4 in the table, which is
(7,C7). This entry indicates a semantic value of 7—the result of
the addition expression ‘3+4’—and a remainder suffix of ‘)’ start-
ing in column C7. Since this match is a success,pPrimary finally
attempts to match the closing parenthesis at position C7, which suc-
ceeds and yields the empty string C8 as the remainder. The result
entered forpPrimary at column C3 is thus (7,C8).

Although for a long input string and a complex grammar this re-
sult table may be large, it only grows linearly with the size of the
input assuming the grammar has a fixed number of nonterminals.
Furthermore, as long as the grammar uses only the standard opera-
tors of Backus-Naur Form [2], only a fixed number of previously-
recorded cells in the matrix need to be accessed in order to compute
each new result. Therefore, assuming table lookup occurs in con-
stant time, the parsing process as a whole completes in linear time.

Due to the “forward pointers” embedded in the results table, the
computation of a given result may examine cells that are widely
spaced in the matrix. For example, computing the result for
pPrimary at C3 above made use of results from columns C3, C4,
and C7. This ability to skip ahead arbitrary distances while making
parsing decisions is the source of the algorithm’s unlimited looka-
head capability, and this capability makes the algorithm more pow-
erful than linear-time predictive parsers or LR parsers.

2.4 Packrat Parsing

An obvious practical problem with the tabular right-to-left parsing
algorithm above is that it computes many results that are never
needed. An additional inconvenience is that we must carefully
determine the order in which the results for a particular column
are computed, so that parsing functions such aspAdditive and
pMultitive that depend on other results from the same column
will work correctly.

Packrat parsingis essentially a lazy version of the tabular algorithm
that solves both of these problems. A packrat parser computes re-
sults only as they are needed, in the same order as the original re-
cursive descent parser would. However, once a result is computed
for the first time, it is stored for future use by subsequent calls.

A non-strict functional programming language such as Haskell pro-
vides an ideal implementation platform for a packrat parser. In fact,
packrat parsing in Haskell is particularly efficient because it does
not require arrays or any other explicit lookup structures other than
the language’s ordinary algebraic data types.

First we will need a new type to represent a single column of the
parsing result matrix, which we will callDerivs (“derivations”).

This type is merely a tuple with one component for each nonter-
minal in the grammar. Each component’s type is the result type of
the corresponding parse function. TheDerivs type also contains
one additional component, which we will calldvChar, to represent
“raw” characters of the input string as if they were themselves the
results of some parsing function. TheDerivs type for our example
parser can be conveniently declared in Haskell as follows:

data Derivs = Derivs {
dvAdditive :: Result Int,
dvMultitive :: Result Int,
dvPrimary :: Result Int,
dvDecimal :: Result Int,
dvChar :: Result Char}

This Haskell syntax declares the typeDerivs to have a single con-
structor, also namedDerivs, with five components of the specified
types. The declaration also automatically creates a corresponding
data-accessor function for each component:dvAdditive can be
used as a function of typeDerivs → Result Int, which extracts
the first component of aDerivs tuple, and so on.

Next we modify theResult type so that the “remainder” compo-
nent of a success result is not a plainString, but is instead an
instance ofDerivs:

data Result v = Parsed v Derivs
| NoParse

TheDerivs andResult types are now mutually recursive: the suc-
cess results in oneDerivs instance act as links to otherDerivs
instances. These result values in fact provide theonly linkage we
need between different columns in the matrix of parsing results.

Now we modify the original recursive-descent parsing functions so
that each takes aDerivs instead of aString as its parameter:

pAdditive :: Derivs -> Result Int
pMultitive :: Derivs -> Result Int
pPrimary :: Derivs -> Result Int
pDecimal :: Derivs -> Result Int

Wherever one of the original parse functions examined input char-
acters directly, the new parse function instead refers to thedvChar
component of theDerivs object. Wherever one of the original
functions made a recursive call to itself or another parse function, in
order to match a nonterminal in the grammar, the new parse func-
tion instead instead uses theDerivs accessor function correspond-
ing to that nonterminal. Sequences of terminals and nonterminals
are matched by following chains of success results through multiple
Derivs instances. For example, the newpAdditive function uses
thedvMultitive, dvChar, anddvAdditive accessors as follows,
without making any direct recursive calls:

-- Parse an additive-precedence expression
pAdditive :: Derivs -> Result Int
pAdditive d = alt1 where

-- Additive <- Multitive ’+’ Additive
alt1 = case dvMultitive d of

Parsed vleft d’ ->
case dvChar d’ of

Parsed ’+’ d’’ ->
case dvAdditive d’’ of

Parsed vright d’’’ ->
Parsed (vleft + vright) d’’’

_ -> alt2
_ -> alt2

_ -> alt2

-- Additive <- Multitive
alt2 = dvMultitive d

Finally, we create a special “top-level” function,parse, to produce
instances of theDerivs type and “tie up” the recursion between all
of the individual parsing functions:

-- Create a result matrix for an input string
parse :: String -> Derivs
parse s = d where

d = Derivs add mult prim dec chr
add = pAdditive d
mult = pMultitive d
prim = pPrimary d
dec = pDecimal d
chr = case s of

(c:s’) -> Parsed c (parse s’)
[] -> NoParse

The “magic” of the packrat parser is in this doubly-recursive func-
tion. The first level of recursion is produced by theparse function’s
reference to itself within thecase statement. This relatively con-
ventional form of recursion is used to iterate over the input string
one character at a time, producing oneDerivs instance for each
input position. The finalDerivs instance, representing the empty
string, is assigned advChar result ofNoParse, which effectively
terminates the list of columns in the result matrix.

The second level of recursion is via the symbold. This identifier
names theDerivs instance to be constructed and returned by the
parse function, but it is also the parameter to each of the individual
parsing functions. These parsing functions, in turn, produce the rest
of the components forming this veryDerivs object.

This form ofdata recursionof course works only in a non-strict lan-
guage, which allow some components of an object to be accessed
before other parts of the same object are available. For example,
in anyDerivs instance created by the above function, thedvChar
component can be accessed before any of the other components of
the tuple are available. Attempting to access thedvDecimal com-
ponent of this tuple will causepDecimal to be invoked, which in
turn uses thedvChar component but does not require any of the
other “higher-level” components. Accessing thedvPrimary com-
ponent will similarly invokepPrimary, which may accessdvChar
anddvAdditive. Although in the latter casepPrimary is accessing
a “higher-level” component, doing so does not create a cyclic de-
pendency in this case because it only ever invokesdvAdditive on
a differentDerivs object from the one it was called with: namely
the one for the position following the opening parenthesis. Every
component of everyDerivs object produced byparse can be lazily
evaluated in this fashion.

Figure 3 illustrates the data structure produced by the parser for the
example input text ‘2*(3+4)’, as it would appear in memory under
a modern functional evaluator after fully reducing every cell. Each
vertical column represents aDerivs instance with its fiveResult
components. For results of the form ‘Parsed v d’, the seman-
tic value v is shown in the appropriate cell, along with an arrow
representing the “remainder” pointer leading to anotherDerivs in-
stance in the matrix. In any modern lazy language implementation
that properly preserves sharing relationships during evaluation, the
arrows in the diagram will literally correspond to pointers in the
heap, and a given cell in the structure will never be evaluated twice.
Shaded boxes represent cells that would never be evaluated at all in

14

14

2

2

’2’ ’*’ ’(’ ’3’ ’+’ ’4’ ’)’

4

4

4

’4’7

3

3

3

7

7

7dvAdditive

dvMultitive

dvPrimary

dvDecimal

dvChar

Figure 3. Illustration of Derivs data structure produced by
parsing the string ‘2*(3+4)’

the likely case that thedvAdditive result in the leftmost column is
the only value ultimately needed by the application.

This illustration should make it clear why this algorithm can run in
O(n) time under a lazy evaluator for an input string of lengthn. The
top-levelparse function is theonly function that creates instances
of the Derivs type, and it always creates exactlyn+ 1 instances.
The parse functions only access entries in this structure instead of
making direct calls to each other, and each function examines at
most a fixed number of other cells while computing a given result.
Since the lazy evaluator ensures that each cell is evaluated at most
once, the critical memoization property is provided and linear parse
time is guaranteed, even though the order in which these results
are evaluated is likely to be completely different from the tabular,
right-to-left, bottom-to-top algorithm presented earlier.

3 Extending the Algorithm

The previous section provided the basic principles and tools re-
quired to create a packrat parser, but building parsers for real appli-
cations involves many additional details, some of which are affected
by the packrat parsing paradigm. In this section we will explore
some of the more important practical issues, while incrementally
building on the example packrat parser developed above. We first
examine the annoying but straightforward problem of left recursion.
Next we address the issue of lexical analysis, seamlessly integrat-
ing this task into the packrat parser. Finally, we explore the use of
monadic combinators to express packrat parsers more concisely.

3.1 Left Recursion

One limitation packrat parsing shares with other top-down schemes
is that it does not directly supportleft recursion. For example, sup-
pose we wanted to add a subtraction operator to the above example
and have addition and subtraction be properly left-associative. A
natural approach would be to modify the grammar rules for Addi-
tive expressions as follows, and to change the parser accordingly:

Additive ← Additive ‘+’ Multitive
| Additive ‘-’ Multitive
| Multitive

In a recursive descent parser for this grammar, thepAdditive func-
tion would recursively invoke itself with the same input it was pro-
vided, and therefore would get into an infinite recursion cycle. In
a packrat parser for this grammar,pAdditive would attempt to
access thedvAdditive component ofits ownDerivs tuple—the
same component it is supposed to compute—and thus would cre-
ate a circular data dependency. In either case the parser fails, al-
though the packrat parser’s failure mode might be viewed as slightly
“friendlier” since modern lazy evaluators often detect circular data
dependencies at run-time but cannot detect infinite recursion.

Fortunately, a left-recursive grammar can always be rewritten
into an equivalent right-recursive one [2], and the desired left-
associative semantic behavior is easily reconstructed using higher-
order functions as intermediate parser results. For example, to make
Additive expressions left-associative in the example parser, we can
split this rule into two nonterminals, Additive and AdditiveSuffix.
The pAdditive function recognizes a single Multitive expression
followed by an AdditiveSuffix:

pAdditive :: Derivs -> Result Int
pAdditive d = case dvMultitive d of

Parsed vl d’ ->
case dvAdditiveSuffix d’ of

Parsed suf d’’ ->
Parsed (suf vl) d’’

_ -> NoParse
_ -> NoParse

ThepAdditiveSuffix function collects infix operators and right-
hand-side operands, and builds a semantic value of type ‘Int→ Int’,
which takes a left-hand-side operand and produces a result:

pAdditiveSuffix :: Derivs -> Result (Int -> Int)
pAdditiveSuffix d = alt1 where

-- AdditiveSuffix <- ’+’ Multitive AdditiveSuffix
alt1 = case dvChar d of

Parsed ’+’ d’ ->
case dvMultitive d’ of

Parsed vr d’’ ->
case dvAdditiveSuffix d’’ of
Parsed suf d’’’ ->

Parsed (\vl -> suf (vl + vr))
d’’’

_ -> alt2
_ -> alt2

_ -> alt2

-- AdditiveSuffix <- <empty>
alt3 = Parsed (\v -> v) d

3.2 Integrated Lexical Analysis

Traditional parsing algorithms usually assume that the “raw” input
text has already been partially digested by a separatelexical ana-
lyzer into a stream of tokens. The parser then treats these tokens
as atomic units even though each may represent multiple consecu-
tive input characters. This separation is usually necessary because
conventional linear-time parsers can only use primitive terminals in
their lookahead decisions and cannot refer to higher-level nonter-
minals. This limitation was explained in Section 2.2 for predictive
top-down parsers, but bottom-up LR parsers also depend on a sim-
ilar token-based lookahead mechanism sharing the same problem.
If a parser can only use atomic tokens in its lookahead decisions,
then parsing becomes much easier if those tokens represent whole
keywords, identifiers, and literals rather than raw characters.

Packrat parsing suffers from no such lookahead limitation, how-
ever. Because a packrat parser reflects a true backtracking model,
decisions between alternatives in one parsing function can depend
on complete resultsproduced by other parsing functions. For this
reason, lexical analysis can be integrated seamlessly into a packrat
parser with no special treatment.

To extend the packrat parser example with “real” lexical analysis,
we add some new nonterminals to theDerivs type:

data Derivs = Derivs {
-- Expressions
dvAdditive :: Result Int,
...

-- Lexical tokens
dvDigits :: Result (Int, Int),
dvDigit :: Result Int,
dvSymbol :: Result Char,
dvWhitespace :: Result (),

-- Raw input
dvChar :: Result Char}

The pWhitespace parse function consumes any whitespace that
may separate lexical tokens:

pWhitespace :: Derivs -> Result ()
pWhitespace d = case dvChar d of

Parsed c d’ ->
if isSpace c
then pWhitespace d’
else Parsed () d

_ -> Parsed () d

In a more complete language, this function might have the task of
eating comments as well. Since the full power of packrat parsing is
available for lexical analysis, comments could have a complex hier-
archical structure of their own, such as nesting or markups for liter-
ate programming. Since syntax recognition is not broken into a uni-
directional pipeline, lexical constructs can even refer “upwards” to
higher-level syntactic elements. For example, a language’s syntax
could allow identifiers or code fragments embedded within com-
ments to be demarked so the parser can find and analyze them as
actual expressions or statements, making intelligent software engi-
neering tools more effective. Similarly, escape sequences in string
literals could contain generic expressions representing static or dy-
namic substitutions.

The pWhitespace example also illustrates how commonplace
longest-matchdisambiguation rules can be easily implemented in
a packrat parser, even though they are difficult to express in a
pure context-free grammar. More sophisticated decision and dis-
ambiguation strategies are easy to implement as well, including
generalsyntactic predicates[14], which influence parsing deci-
sions based on syntactic lookahead information without actually
consuming input text. For example, the usefulfollowed-byandnot-
followed-byrules allow a parsing alternative to be used only if the
text matched by that alternative is (or is not) followed by text match-
ing some other arbitrary nonterminal. Syntactic predicates of this
kind require unlimited lookahead in general and are therefore out-
side the capabilities of most other linear-time parsing algorithms.

Continuing with the lexical analysis example, the functionpSymbol
recognizes “operator tokens” consisting of an operator character
followed by optional whitespace:

-- Parse an operator followed by optional whitespace
pSymbol :: Derivs -> Result Char
pSymbol d = case dvChar d of

Parsed c d’ ->
if c ‘elem‘ "+-*/%()"
then case dvWhitespace d’ of

Parsed _ d’’ -> Parsed c d’’
_ -> NoParse

else NoParse
_ -> NoParse

Now we modify the higher-level parse functions for expressions to
usedvSymbol instead ofdvChar to scan for operators and paren-
theses. For example,pPrimary can be implemented as follows:

-- Parse a primary expression
pPrimary :: Derivs -> Result Int
pPrimary d = alt1 where

-- Primary <- ’(’ Additive ’)’
alt1 = case dvSymbol d of

Parsed ’(’ d’ ->
case dvAdditive d’ of

Parsed v d’’ ->
case dvSymbol d’’ of

Parsed ’)’ d’’’ -> Parsed v d’’’
_ -> alt2

_ -> alt2
_ -> alt2

-- Primary <- Decimal
alt2 = dvDecimal d

This function demonstrates how parsing decisions can depend not
only on theexistenceof a match at a given position for a nontermi-
nal such as Symbol, but also on thesemantic valueassociated with
that nonterminal. In this case, even though all symbol tokens are
parsed together and treated uniformly bypSymbol, other rules such
aspPrimary can still distinguish between particular symbols. In a
more sophisticated language with multi-character operators, iden-
tifiers, and reserved words, the semantic values produced by the
token parsers might be of typeString instead ofChar, but these
values can be matched in the same way. Such dependencies of syn-
tax on semantic values, known assemantic predicates[14], provide
an extremely powerful and useful capability in practice. As with
syntactic predicates, semantic predicates require unlimited looka-
head in general and cannot be implemented by conventional parsing
algorithms without giving up their linear time guarantee.

3.3 Monadic Packrat Parsing

A popular method of constructing parsers in functional languages
such as Haskell is using monadic combinators [11, 13]. Unfortu-
nately, the monadic approach usually comes with a performance
penalty, and with packrat parsing this tradeoff presents a difficult
choice. Implementing a packrat parser as described so far assumes
that the set of nonterminals and their corresponding result types is
known statically, so that they can be bound together in a single fixed
tuple to form theDerivs type. Constructing entire packrat parsers
dynamically from other packrat parsers via combinators would re-
quire making theDerivs type a dynamic lookup structure, asso-
ciating a variable set of nonterminals with corresponding results.
This approach would be much slower and less space-efficient.

A more practical strategy, which provides most of the convenience
of combinators with a less significant performance penalty, is to
use monads to define the individual parsingfunctionscomprising a
packrat parser, while keeping theDerivs type and the “top-level”
recursion statically implemented as described earlier.

Since we would like our combinators to build the parse functions
we need directly, the obvious method would be to make the combi-
nators work with a simple type alias:

type Parser v = Derivs -> Result v

Unfortunately, in order to take advantage of Haskell’s usefuldo
syntax, the combinators must use a type of the special classMonad,

and simple aliases cannot be assigned type classes. We must instead
wrap the parsing functions with a “real” user-defined type:

newtype Parser v = Parser (Derivs -> Result v)

We can now implement Haskell’s standard sequencing (>>=),
result-producing (return), and error-producing combinators:

instance Monad Parser where

(Parser p1) >>= f2 = Parser pre
where pre d = post (p1 d)

post (Parsed v d’) = p2 d’
where Parser p2 = f2 v

post (NoParse) = NoParse

return x = Parser (\d -> Parsed x d)

fail msg = Parser (\d -> NoParse)

Finally, for parsing we need an alternation combinator:

(<|>) :: Parser v -> Parser v -> Parser v
(Parser p1) <|> (Parser p2) = Parser pre

where pre d = post d (p1 d)
post d NoParse = p2 d
post d r = r

With these combinators in addition to a trivial one to recognize
specific characters, thepAdditive function in the original packrat
parser example can be written as follows:

Parser pAdditive =
(do vleft <- Parser dvMultitive

char ’+’
vright <- Parser dvAdditive
return (vleft + vright))

<|> (do Parser dvMultitive)

It is tempting to build additional combinators for higher-level id-
ioms such as repetition and infix expressions. However, using it-
erative combinators within packrat parsing functions violates the
assumption that each cell in the result matrix can be computed in
constant time once the results from any other cells it depends on
are available. Iterative combinators effectively create “hidden” re-
cursion whose intermediate results are not memoized in the result
matrix, potentially making the parser run in super-linear time. This
problem is not necessarily serious in practice, as the results in Sec-
tion 6 will show, but it should be taken into account when using
iterative combinators.

The on-line examples for this paper include a full-featured monadic
combinator library that can be used to build large packrat parsers
conveniently. This library is substantially inspired by PARSEC[13],
though the packrat parsing combinators are much simpler since they
do not have to implement lexical analysis as a separate phase or
implement the one-token-lookahead prediction mechanism used by
traditional top-down parsers. The full combinator library provides a
variety of “safe” constant-time combinators, as well as a few “dan-
gerous” iterative ones, which are convenient but not necessary to
construct parsers. The combinator library can be used simultane-
ously by multiple parsers with differentDerivs types, and supports
user-friendly error detection and reporting.

4 Comparison with LL and LR Parsing

Whereas the previous sections have served as a tutorial onhow to
construct a packrat parser, for the remaining sections we turn to

the issue ofwhenpackrat parsing is useful in practice. This sec-
tion informally explores the language recognition power of packrat
parsing in more depth, and clarifies its relationship to traditional
linear-time algorithms such as LL(k) and LR(k).

Although LR parsing is commonly seen as “more powerful” than
limited-lookahead top-down or LL parsing, the class of languages
these parsers can recognize is the same [3]. As Pepper points
out [17], LR parsing can be viewed simply as LL parsing with the
grammar rewritten so as to eliminate left recursion and to delay all
important parsing decisions as long as possible. The result is that
LR provides more flexibility in the way grammars can be expressed,
but no actual additional recognition power. For this reason, we will
treat LL and LR parsers here as being essentially equivalent.

4.1 Lookahead

The most critical practical difference between packrat parsing and
LL/LR parsing is the lookahead mechanism. A packrat parser’s de-
cisions at any point can be based on all the text up to the end of the
input string. Although the computation of an individual result in the
parsing matrix can only perform a constant number of “basic oper-
ations,” these basic operations include following forward pointers
in the parsing matrix, each of which can skip over a large amount
of text at once. Therefore, while LL and LR parsers can only look
ahead a constant number ofterminalsin the input, packrat parsers
can look ahead a constant number ofterminals and nonterminals
in any combination. This ability for parsing decisions to take ar-
bitrary nonterminals into account is what gives packrat parsing its
unlimited lookahead capability.

To illustrate the difference in language recognition power, the fol-
lowing grammar is not LR(k) for anyk, but is not a problem for a
packrat parser:

S ← A | B
A ← x A y | x z y
B ← x B y y | x z y y

Once an LR parser has encountered the ‘z’ and the first following
‘y’ in a string in the above language, it must decide immediately
whether to start reducing via nonterminal A or B, but there is no
way for it to make this decision until as many ‘y’s have been en-
countered as there were ‘x’s on the left-hand side. A packrat parser,
on the other hand, essentially operates in a speculative fashion, pro-
ducing derivations for nonterminals A and Bin parallel while scan-
ning the input. The ultimate decision between A and B is effectively
delayed until theentireinput string has been parsed, where the deci-
sion is merely a matter of checking which nonterminal has a success
result at that position. Mirroring the above grammar left to right
does not change the situation, making it clear that the difference
is not merely some side-effect of the fact that LR scans the input
left-to-right whereas packrat parsing seems to operate in reverse.

4.2 Grammar Composition

The limitations of LR parsing due to fixed lookahead are frequently
felt when designing parsers for practical languages, and many of
these limitations stem from the fact that LL and LR grammars are
not cleanlycomposable. For example, the following grammar rep-
resents a simple language with expressions and assignment, which
only allows simple identifiers on the left side of an assignment:

S ← R | ID ‘ =’ R
R ← A | A EQ A | A NE A
A ← P | P ‘+’ P | P ‘-’ P
P ← ID | ‘(’ R ‘)’

If the symbols ID, EQ, and NE are terminals—i.e., atomic to-
kens produced by a separate lexical analysis phase—then an LR(1)
parser has no trouble with this grammar. However, if we try to
integrate this tokenization into the parser itself with the following
simple rules, the grammar is no longer LR(1):

ID ← ’a’ | ’a’ ID
EQ ← ’=’ ’ =’
NE ← ’!’ ’ =’

The problem is that after scanning an identifier, an LR parser must
decide immediately whether it is a primary expression or the left-
hand side of an assignment, based only on the immediately fol-
lowing token. But if this token is an ‘=’, the parser has no way
of knowing whether it is an assignment operator or the first half
of an ‘==’ operator. In this particular case the grammar could be
parsed by an LR(2) parser. In practice LR(k) and even LALR(k)
parsers are uncommon fork > 1. Recently developed extensions to
the traditional left-to-right parsing algorithms improve the situation
somewhat [18, 16, 15], but they still cannot provide unrestricted
lookahead capability while maintaining the linear time guarantee.

Even when lexical analysis is separated from parsing, the limita-
tions of LR parsers often surface in other practical situations, fre-
quently as a result of seemingly innocuous changes to an evolving
grammar. For example, suppose we want to add simple array in-
dexing to the language above, so that array indexing operators can
appear on either the left or right side of an assignment. One possi-
ble approach is to add a new nonterminal, L, to represent left-side
or “lvalue” expressions, and incorporate the array indexing operator
into both types of expressions as shown below:

S ← R | L ‘ =’ R
R ← A | A EQ A | A NE A
A ← P | P ‘+’ P | P ‘-’ P
P ← ID | ‘(’ R ‘)’ | P ‘[’ A ‘]’
L ← ID | ‘(’ L ‘)’ | L ‘ [’ A ‘]’

Even if the ID, EQ, and NE symbols are again treated as terminals,
this grammar is not LR(k) for any k, because after the parser sees
an identifier it must immediately decide whether it is part of a P or
L expression, but it has no way of knowing this until any following
array indexing operators have been fully parsed. Again, a pack-
rat parser has no trouble with this grammar because it effectively
evaluates the P and L alternatives “in parallel” and has complete
derivations to work with (or the knowledge of their absence) by the
time the critical decision needs to be made.

In general, grammars for packrat parsers are composable because
the lookahead a packrat parser uses to make decisions between al-
ternatives can take account of arbitrary nonterminals, such as EQ in
the first example or P and L in the second. Because a packrat parser
does not give “primitive” syntactic constructs (terminals) any spe-
cial significance as an LL or LR parser does, any terminal or fixed
sequence of terminals appearing in a grammar can be substituted
with a nonterminal without “breaking” the parser. This substitution
capability gives packrat parsing greater composition flexibility.

4.3 Recognition Limitations

Given that a packrat parser can recognize a broader class of lan-
guages in linear time than either LL(k) or LR(k) algorithms, what
kinds of grammarscan’t a packrat parser recognize? Though
the precise theoretical capabilities of the algorithm have not been
thoroughly characterized, the following trivial and unambiguous
context-free grammar provides an example that proves just as trou-
blesome for a packrat parser as for an LL or LR parser:

S ← x S x | x

The problem with this grammar for both kinds of parsers is that,
while scanning a string of ‘x’s—left-to-right in the LR case or right-
to-left in the packrat case—the algorithm would somehow have to
“know” in advance where the middle of the string is so that it can
apply the second alternative at that position and then “build out-
wards” using the first alternative for the rest of the input stream. But
since the stream is completely homogeneous, there is no way for the
parser to find the middle until the entire input has been parsed. This
grammar therefore provides an example, albeit contrived, requiring
a more general, non-linear-time CFG parsing algorithm.

5 Practical Issues and Limitations

Although packrat parsing is powerful and efficient enough for many
applications, there are three main issues that can make it inappro-
priate in some situations. First, packrat parsing is useful only to
constructdeterministicparsers: parsers that can produce at most
one result. Second, a packrat parser depends for its efficiency on
being mostly or completelystateless. Finally, due to its reliance on
memoization, packrat parsing is inherently space-intensive. These
three issues are discussed in this section.

5.1 Deterministic Parsing

An important assumption we have made so far is that each of the
mutually recursive parsing functions from which a packrat parser is
built will deterministically returnat most one result. If there are any
ambiguities in the grammar the parser is built from, then the pars-
ing functions must be able to resolve them locally. In the example
parsers developed in this paper, multiple alternatives have always
been implicitly disambiguated by the order in which they are tested:
the first alternative to match successfully is the one used, indepen-
dent of whether any other alternatives may also match. This behav-
ior is both easy to implement and useful for performing longest-
match and other forms of explicit local disambiguation. A parsing
function could even try all of the possible alternatives and produce
a failure result if more than one alternative matches. What parsing
functions in a packrat parsercannotdo is returnmultiple results to
be used in parallel or disambiguated later by some global strategy.

In languages designed for machine consumption, the requirement
that multiple matching alternatives be disambiguated locally is not
much of a problem in practice because ambiguity is usually un-
desirable in the first place, and localized disambiguation rules are
preferred over global ones because they are easier for humans to
understand. However, for parsing natural languages or other gram-
mars in which global ambiguity is expected, packrat parsing is less
likely to be useful. Although a classic nondeterministic top-down
parser in which the parse functions return lists of results [23, 8]
could be memoized in a similar way, the resulting parser would not
be linear time, and would likely be comparable to existing tabu-
lar algorithms for ambiguous context-free grammars [3, 20]. Since

nondeterministic parsing is equivalent in computational complexity
to boolean matrix multiplication [12], a linear-time solution to this
more general problem is unlikely to be found.

5.2 Stateless Parsing

A second limitation of packrat parsing is that it is fundamentally
geared towardstatelessparsing. A packrat parser’s memoization
system assumes that the parsing function for each nonterminal de-
pends only on the input string, and not on any other information
accumulated during the parsing process.

Although pure context-free grammars are by definition stateless,
many practical languages require a notion of state while parsing and
thus are not really context-free. For example, C and C++ require
the parser to build a table of type names incrementally as types are
declared, because the parser must be able to distinguish type names
from other identifiers in order to parse subsequent text correctly.

Traditional top-down (LL) and bottom-up (LR) parsers have little
trouble maintaining state while parsing. Since they perform only a
single left-to-right scan of the input and never look ahead more than
one or at most a few tokens, nothing is “lost” when a state change
occurs. A packrat parser, in contrast, depends on statelessness for
the efficiency of its unlimited lookahead capability. Although a
stateful packrat parser can be constructed, the parser must start
building a new result matrix each time the parsing state changes.
For this reason, stateful packrat parsing may be impractical if state
changes occur frequently. For more details on packrat parsing with
state, please refer to my master’s thesis [9].

5.3 Space Consumption

Probably the most striking characteristic of a packrat parser is the
fact that it literally squirrels awayeverythingit has ever computed
about the input text, including the entire input text itself. For this
reason packrat parsing always has storage requirements equal to
some possibly substantial constant multiple of the input size. In
contrast, LL(k), LR(k), and simple backtracking parsers can be de-
signed so that space consumption grows only with themaximum
nesting depthof the syntactic constructs appearing in the input,
which in practice is often orders of magnitude smaller than the total
size of the text. Although LL(k) and LR(k) parsers for any non-
regular language still have linear space requirements in the worst
case, this “average-case” difference can be important in practice.

One way to reduce the space requirements of the derivations struc-
ture, especially in parsers for grammars with many nonterminals,
is by splitting up theDerivs type into multiple levels. For exam-
ple, suppose the nonterminals of a language can be grouped into
several broad categories, such as lexical tokens, expressions, state-
ments, and declarations. Then theDerivs tuple itself might have
only four components in addition todvChar, one for each of these
nonterminal categories. Each of these components is in turn a tuple
containing the results for all of the nonterminals in that category.
For the majority of theDerivs instances, representing character
positions “between tokens,” none of the components representing
the categories of nonterminals will ever be evaluated, and so only
the small top-level object and the unevaluated closures for its com-
ponents occupy space. Even forDerivs instances corresponding
to the beginning of a token, often the results from only one or two
categories will be needed depending on what kind of language con-
struct is located at that position.

Even with such optimizations a packrat parser can consume many
times more working storage than the size of the original input text.
For this reason there are some application areas in which packrat
parsing is probably not the best choice. For example, for parsing
XML streams, which have a fairly simple structure but often encode
large amounts of relatively flat, machine-generated data, the power
and flexibility of packrat parsing is not needed and its storage cost
would not be justified.

On the other hand, for parsing complex modern programming lan-
guages in which the source code is usually written by humans and
the top priority is the power and expressiveness of the language, the
space cost of packrat parsing is probably reasonable. Standard pro-
gramming practice involves breaking up large programs into mod-
ules of manageable size that can be independently compiled, and
the main memory sizes of modern machines leave at least three
orders of magnitude in “headroom” for expansion of a typical 10–
100KB source file during parsing. Even when parsing larger source
files, the working set may still be relatively small due to the strong
structural locality properties of realistic languages. Finally, since
the entire derivations structure can be thrown away after parsing is
complete, the parser’s space consumption is likely to be irrelevant
if its result is fed into some other complex computation, such as a
global optimizer, that requires as much space as the packrat parser
used. Section 6 will present evidence that this space consumption
can be reasonable in practice.

6 Performance Results

Although a detailed empirical analysis of packrat parsing is outside
the scope of this paper, it is helpful to have some idea of how a
packrat parser is likely to behave in practice before committing to a
new and unfamiliar parsing paradigm. For this reason, this section
presents a few experimental results with realistic packrat parsers
running on real source files. For more detailed results, please refer
to my master’s thesis [9].

6.1 Space Efficiency

The first set of tests measure the space efficiency of a packrat parser
for the Java1 programming language. I chose Java for this experi-
ment because it has a rich and complex grammar, but nevertheless
adopts a fairly clean syntactic paradigm, not requiring the parser to
keep state about declared types as C and C++ parsers do, or to per-
form special processing between lexical and hierarchical analysis
as Haskell’s layout scheme requires.

The experiment uses two different versions of this Java parser.
Apart from a trivial preprocessing stage to canonicalize line breaks
and Java’s Unicode escape sequences, lexical analysis for both
parsers is fully integrated as described in Section 3.2. One parser
uses monadic combinators in its lexical analysis functions, while
the other parser relies only on primitive pattern matching. Both
parsers use monadic combinators to construct all higher-level pars-
ing functions. Both parsers also use the technique described in Sec-
tion 5.3 of splitting theDerivs tuple into two levels, in order to in-
crease modularity and reduce space consumption. The parsers were
compiled with the Glasgow Haskell Compiler2 version 5.04, with
optimization and profiling enabled. GHC’s heap profiling system
was used to measure live heap utilization, which excludes unused
heap space and collectible garbage when samples are taken.

1Java is a trademark of Sun Microsystems, Inc.
2http://www.haskell.org/ghc/

0

20

40

60

80

100

0 20000 40000 60000 80000 100000 120000 140000

M
ax

im
um

 h
ea

p
si

ze
 (

M
B

)

Source file size (bytes)

Avg. 695:1

Avg. 301:1

Monadic parser and scanner
Monadic parser, pattern-matching scanner

Figure 4. Maximum heap size versus input size

The test suite consists of 60 unmodified Java source files from the
Cryptix library3, chosen because it includes a substantial number
of relatively large Java source files. (Java source files are small on
average because the compilation model encourages programmers to
place each class definition in a separate file.)

Figure 4 shows a plot of each parser’s maximum live heap size
against the size of the input files being parsed. Because some of the
smaller source files were parsed so quickly that garbage collection
never occurred and the heap profiling mechanism did not yield any
samples, the plot includes only 45 data points for the fully monadic
parser, and 31 data points for the hybrid parser using direct pat-
tern matching for lexical analysis. Averaged across the test suite,
the fully monadic parser uses 695 bytes of live heap per byte of
input, while the hybrid parser uses only 301 bytes of heap per in-
put byte. These results are encouraging: although packrat parsing
can consume a substantial amount of space, a typical modern ma-
chine with 128KB or more of RAM should have no trouble pars-
ing source files up to 100-200KB. Furthermore, even though both
parsers use some iterative monadic combinators, which can break
the linear time and space guarantee in theory, the space consump-
tion of the parsers nevertheless appears to grow fairly linearly.

The use of monadic combinators clearly has a substantial penalty
in terms of space efficiency. Modifying the parser to use direct
pattern matching alone may yield further improvement, though the
degree is difficult to predict since the cost of lexical analysis often
dominates the rest of the parser. The lexical analysis portion of the
hybrid parser is about twice as long as the equivalent portion of the
monadic parser, suggesting that writing packrat parsers with pattern
matching alone is somewhat more cumbersome but not unreason-
able when efficiency is important.

6.2 Parsing Performance

The second experiment measures the absolute execution time of the
two packrat parsers. For this test the parsers were compiled by
GHC 5.04 with optimization but without profiling, and timed on a
1.28GHz AMD Athlon processor running Linux 2.4.17. For this
test I only used the 28 source files in the test suite that were larger
than 10KB, because the smaller files were parsed so quickly that
the Linux time command did not yield adequate precision. Fig-
ure 5 shows the resulting execution time plotted against source file
size. On these inputs the fully monadic parser averaged 25.0 Kbytes

3http://www.cryptix.org/

0

1

2

3

4

5

6

0 20000 40000 60000 80000 100000 120000 140000

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Source file size (bytes)

Avg. 49.8Kbps

Avg. 25.0Kbps

Avg. 49.8Kbps

Avg. 25.0Kbps

Monadic parser and scanner
Monadic parser, pattern-matching scanner

Figure 5. Execution time versus input size

per second with a standard deviation of 8.6 KB/s, while the hybrid
parser averaged 49.8 KB/s with a standard deviation of 16 KB/s.

In order to provide a legitimate performance comparison between
packrat parsing and more traditional linear-time algorithms, I con-
verted a freely available YACC grammar for Java [5] into a gram-
mar for Happy4, an LR parser generator for Haskell. Unfortunately,
GHC was unable to compile the 230KB Haskell source file result-
ing from this grammar, even without optimization and on a ma-
chine with 1GB of RAM. (This difficulty incidentally lends credi-
bility to the earlier suggestion that, in modern compilers, the tem-
porary storage cost of a packrat parser is likely to be exceeded by
the storage cost of subsequent stages.) Nevertheless, the generated
LR parser worked under the Haskell interpreter Hugs.5 Therefore,
to provide a rough performance comparison, I ran five of the larger
Java sources through the LR and packrat parsers under Hugs using
an 80MB heap. For fairness, I only compared the LR parser against
the slower, fully monadic packrat parser, because the LR parser uses
a monadic lexical analyzer derived from the latter packrat parser.
The lexical analysis performance should therefore be comparable
and only the parsing algorithm is of primary importance.

Under Hugs, the LR parser consistently performs approximately
twice the number of reductions and allocates 55% more total heap
storage. (I could not find a way to profilelive heap utilization under
Hugs instead of total allocation.) The difference in real execution
time varied widely however: the LR parser took almost twice as
long on smaller files but performed about the same on the largest
ones. One probable reason for this variance is the effects of garbage
collection. Since a running packrat parser will naturally have a
much higher ratio of live data to garbage than an LR parser over
time, and garbage collection both increases in overhead cost and
decreases in effectiveness (i.e., frees less space) when there is more
live data, garbage collection is likely to penalize a packrat parser
more than an LR parser as the size of the source file increases. Still,
it is encouraging that the packrat parser was able to outperform the
LR parser on all but the largest Java source files.

7 Related Work

This section briefly relates packrat parsing to relevant prior work.
For a more detailed analysis of packrat parsing in comparison with
other algorithms please refer to my master’s thesis [9].

4http://www.haskell.org/happy
5http://www.haskell.org/hugs

Birman and Ullman [4] first developed the formal properties of de-
terministic parsing algorithms with backtracking. This work was
refined by Aho and Ullman [3] and classified as “top-down limited
backtrack parsing,” in reference to the restriction that each parsing
function can produce at most one result and hence backtracking is
localized. They showed this kind of parser, formally known as a
Generalized Top-Down Parsing Language (GTDPL) parser, to be
quite powerful. A GTDPL parser can simulate any push-down au-
tomaton and thus recognize any LL or LR language, and it can even
recognize some languages that are not context free. Nevertheless,
all “failures” such as those caused by left recursion can be detected
and eliminated from a GTDPL grammar, ensuring that the algo-
rithm is well-behaved. Birman and Ullman also pointed out the pos-
sibility of constructing linear-time GTDPL parsers through tabula-
tion of results, but this linear-time algorithm was apparently never
put into practice, no doubt because main memories were much more
limited at the time and compilers had to operate as streaming “fil-
ters” that could run in near-constant space.

Adams [1] recently resurrected GTDPL parsing as a component of
a modular language prototyping framework, after recognizing its
superior composability in comparison with LR algorithms. In addi-
tion, many practical top-down parsing libraries and toolkits, includ-
ing the popular ANTLR [15] and the PARSEC combinator library
for Haskell [13], provide similar limited backtracking capabilities
which the parser designer can invoke selectively in order to over-
come the limitations of predictive parsing. However, all of these
parsers implement backtracking in the traditional recursive-descent
fashion without memoization, creating the danger of exponential
worst-case parse time, and thereby making it impractical to rely
on backtracking as a substitute for prediction or to integrate lexical
analysis with parsing.

The only prior known linear-time parsing algorithm that effectively
supports integrated lexical analysis, or “scannerless parsing,” is the
NSLR(1) algorithm originally created by Tai [19] and put into prac-
tice for this purpose by Salomon and Cormack [18]. This algorithm
extends the traditional LR class of algorithms by adding limited
support for making lookahead decisions based on nonterminals.
The relative power of packrat parsing with respect to NSLR(1) is
unclear: packrat parsing is less restrictive of rightward lookahead,
but NSLR(1) can also take leftward context into account. In prac-
tice, NSLR(1) is probably more space-efficient, but packrat parsing
is simpler and cleaner. Other recent scannerless parsers [22, 21] for-
sake linear-time deterministic algorithms in favor of more general
but slower ambiguity-tolerant CFG parsing.

8 Future Work

While the results presented here demonstrate the power and practi-
cality of packrat parsing, more experimentation is needed to evalu-
ate its flexibility, performance, and space consumption on a wider
variety of languages. For example, languages that rely extensively
on parser state, such as C and C++, as well as layout-sensitive lan-
guages such as ML and Haskell, may prove more difficult for a
packrat parser to handle efficiently.

On the other hand, the syntax of a practical language is usually
designed with a particular parsing technology in mind. For this
reason, an equally compelling question is what new syntax de-
sign possibilities are created by the “free” unlimited lookahead and
unrestricted grammar composition capabilities of packrat parsing.
Section 3.2 suggested a few simple extensions that depend on inte-
grated lexical analysis, but packrat parsing may be even more useful

in languages with extensible syntax [7] where grammar composi-
tion flexibility is important.

Although packrat parsing is simple enough to implement by hand
in a lazy functional language, there would still be practical bene-
fit in a grammar compiler along the lines of YACC in the C world
or Happy [10] and Ḿımico [6] in the Haskell world. In addition
to the parsing functions themselves, the grammar compiler could
automatically generate the static “derivations” tuple type and the
top-level recursive “tie-up” function, eliminating the problems of
monadic representation discussed in Section 3.3. The compiler
could also reduce iterative notations such as the popular ‘+’ and
‘*’ repetition operators into a low-level grammar that uses only
primitive constant-time operations, preserving the linear parse time
guarantee. Finally, the compiler could rewrite left-recursive rules to
make it easier to express left-associative constructs in the grammar.

One practical area in which packrat parsing may have difficulty and
warrants further study is in parsing interactive streams. For exam-
ple, the “read-eval-print” loops in language interpreters often expect
the parser to detect at the end of each line whether or not more input
is needed to finish the current statement, and this requirement vio-
lates the packrat algorithm’s assumption that the entire input stream
is available up-front. A similar open question is under what condi-
tions packrat parsing may be suitable for parsing infinite streams.

9 Conclusion

Packrat parsing is a simple and elegant method of converting a
backtracking recursive descent parser implemented in a non-strict
functional programming language into a linear-time parser, without
giving up the power of unlimited lookahead. The algorithm relies
for its simplicity on the ability of non-strict functional languages
to express recursive data structures with complex dependencies di-
rectly, and it relies on lazy evaluation for its practical efficiency. A
packrat parser can recognize any language that conventional deter-
ministic linear-time algorithms can and many that they can’t, pro-
viding better composition properties and allowing lexical analysis
to be integrated with parsing. The primary limitations of the algo-
rithm are that it only supports deterministic parsing, and its consid-
erable (though asymptotically linear) storage requirements.

Acknowledgments

I wish to thank my advisor Frans Kaashoek, my colleagues Chuck
Blake and Russ Cox, and the anonymous reviewers for many help-
ful comments and suggestions.

10 References

[1] Stephen Robert Adams.Modular Grammars for Program-
ming Language Prototyping. PhD thesis, University of
Southampton, 1991.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1986.

[3] Alfred V. Aho and Jeffrey D. Ullman.The Theory of Parsing,
Translation and Compiling - Vol. I: Parsing. Prentice Hall,
Englewood Cliffs, N.J., 1972.

[4] Alexander Birman and Jeffrey D. Ullman. Parsing algorithms
with backtrack. Information and Control, 23(1):1–34, Aug
1973.

[5] Dmitri Bronnikov. Free Yacc-able Java(tm) grammar, 1998.
http://home.inreach.com/bronikov/grammars/java.html.

[6] Carlos Camar̃ao and Lućılia Figueiredo. A monadic com-
binator compiler compiler. In5th Brazilian Symposium on
Programming Languages, Curitiba – PR – Brazil, May 2001.
Universidade Federal do Paraná.

[7] Luca Cardelli, Florian Matthes, and Martı́n Abadi. Extensible
syntax with lexical scoping. Technical Report 121, Digital
Systems Research Center, 1994.

[8] Jeroen Fokker. Functional parsers. InAdvanced Functional
Programming, pages 1–23, 1995.

[9] Bryan Ford. Packrat parsing: a practical linear-time algorithm
with backtracking. Master’s thesis, Massachusetts Institute of
Technology, Sep 2002.

[10] Andy Gill and Simon Marlow. Happy: The parser generator
for Haskell.http://www.haskell.org/happy.

[11] Graham Hutton and Erik Meijer. Monadic parsing in Haskell.
Journal of Functional Programming, 8(4):437–444, Jul 1998.

[12] Lillian Lee. Fast context-free grammar parsing requires fast
boolean matrix multiplication.Journal of the ACM, 2002. To
appear.

[13] Daan Leijen. Parsec, a fast combinator parser.
http://www.cs.uu.nl/˜daan.

[14] Terence J. Parr and Russell W. Quong. Adding semantic and
syntactic predicates to LL(k): pred-LL(k). InComputational
Complexity, pages 263–277, 1994.

[15] Terence J. Parr and Russell W. Quong. ANTLR: A predicated-
LL(k) parser generator.Software Practice and Experience,
25(7):789–810, 1995.

[16] Terence John Parr.Obtaining practical variants of LL(k) and
LR(k) for k > 1 by splitting the atomic k-tuple. PhD thesis,
Purdue University, Apr 1993.

[17] Peter Pepper. LR parsing = grammar transformation + LL
parsing: Making LR parsing more understandable and more
efficient. Technical Report 99-5, TU Berlin, Apr 1999.

[18] Daniel J. Salomon and Gordon V. Cormack. Scannerless
NSLR(1) parsing of programming languages. InProceedings
of the ACM SIGPLAN’89 Conference on Programming Lan-
guage Design and Implementation (PLDI), pages 170–178,
Jul 1989.

[19] Kuo-Chung Tai. Noncanonical SLR(1) grammars.ACM
Transactions on Programming Languages and Systems,
1(2):295–320, Oct 1979.

[20] Masaru Tomita. Efficient parsing for natural language.
Kluwer Academic Publishers, 1985.

[21] M.G.J. van den Brand, J. Scheerder, J.J. Vinju, and E. Visser.
Disambiguation filters for scannerless generalized LR parsers.
In Compiler Construction, 2002.

[22] Eelco Visser. Scannerless generalized-LR parsing. Technical
Report P9707, Programming Research Group, University of
Amsterdam, 1997.

[23] Philip Wadler. How to replace failure by a list of successes:
A method for exception handling, backtracking, and pattern
matching in lazy functional languages. InFunctional Pro-
gramming Languages and Computer Architecture, pages 113–
128, 1985.

