NASA Contract Report 181747

Pactruss Support
Structure for Precision
Segmented Reflectors

John M. Hedgepeth
Astro Aerospace Corporation
Carpinteria, California 93013

Prepared by Astro Aerospace Corporation

for NASA Langley Research Center
under Contract NAS1-17536, Task 9

June 1989

NASAN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(5ASA-CR-1681747) EACIBUSS SUEECRI SIRUCIURE NBY9-254¢4
FCE FBRECISICN SEGRENTEL REFIECICES {Astro
dercspace Corg.) 15 CSCL 20K

Unclas

G3/39 0216750

SECTION 1:
SECTION 2:
SECTION 3:
SECTION 4:

SECTION 5:
SECTION 6:
REFERENCES:
APPENDIX A:

TABLE OF CONTENTS

INTRODUCTION

GEQOMETRY OF HYBRID PACTRUSS « . + « . .

GEOMETRIC REQUIREMENTS OF THE
STRUCTURAL PERFORMANCE . . .
4.1 Static Performance . .
4,2 Effects of Truss Depth

4.3 Vibration Performance .
DEPLOYMENT ANALYSIS .« « « « &

CONCLUDING REMARKS

EXAMPLE FILES ¢« ¢« ¢« ¢« ¢ ¢ « &

e e e e ¢ o & 8 o e o ¢ s o

PACTRUSS CONCEPT.

10
10
12
13
16
17
A-1

Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

.Figure

Figure

Figure

. Figure

1.
2.
3.

4,

5.
6.

13.
14,

15.

LIST OF ILLUSTRATIONS

Sequentially deployable precision reflector
LDR Pactruss deployment SCheme . ¢ ¢ « o ¢ o o o ¢ o &
Deployment of conceptual model of triangular Pactruss

Application of Pactruss to the support structure
for the primary mirror of the JPL low-cost LDR

Hybrid Pactruss concept . ¢« « ¢ ¢ ¢« ¢ ¢ o ¢ o ¢ o o« &
Stowed and deployed hybrid Pactruss . . . « + ¢« « + &
Hexagonal panels attached to hybrid Pactruss

Sixpac support trusSs « o o o o ¢ o o o o o o s 0 o o o

. Tripac Pactruss support structure with panels ., . . .

Static performance for the hybrid Pactruss . . . « . .
Effect of truss depth . . . ¢ ¢ ¢ ¢ ¢ v v v o o o o

Vibration frequencies for center-mounted sixpac truss
with tapered truss stiffness and 1- Kg/m2 panels . . .

XGTEST, a model for investigating deployment
of the sixpac configuration . . ¢« « ¢ ¢ o ¢ ¢« ¢ &« & &

XGTK, a model for deployment investigation
of Pactruss with extensiods . . .« ¢« ¢« ¢« ¢ ¢« ¢ ¢ & & &

Results of outer-bay deptoyment for two models

PRECEDING PAGE BLANK NOT FILMED

18
18
20

21
22
23
24
24-
24
25
26

27
28

29
30

SECTION 1
INTRODUCTION

The construction and maintenance of the primary reflectors of future large
space telescopes will demand major advances in the technology of space struc-
tures and materials. For example, the so-called Large Deployable Reflector
(LDR), described in Reference 1, is planned to have an aperture of 20 meters
and a wavefront accuracy of about five micrometers. The resulting ratio of
allowable structural error to aperture of 10'7 is much smaller than present
antenna systems and is surpassed only by non-deployable advanced optical
. instruments such as the Hubble Space Telescope. '

“Large reflectors such as the 20-meter LDR cannot, of course, be transported to
space in their final configuration. In addition, because of the requirement
that the surface of the reflector be mirror-like and very stable, the con-
struction by purely deployable techniques is difficult. One such approach,
described in Reference 2, and illustrated in Figure 1, utilizes a deployment
canister containing interconnected modules of reflector panels and attached
stowéd truss segments. The canister walks itself around the perimeter of the
reflector, deploying the modules sequentially and attaching them to the grow-
ing structure. Such an intelligent deployment mechanism would require exten-
sive development. ‘

The alternative to pure deployment is to use assembly in space. A possible
approach would be to attach premanufactured reflector panels to a supporting
stiff truss structure. While the truss structure could also be erected, the
total on-orbit assembly work would be greatly reduced by deploying it. The
recent invention of the Pactruss concept, described in Reference 3, with its
strongly self-synchronized deploymént, makes this combined approach particu-
larly attractive.

The application of the Pactruss deployable structure to the Space Station pri-
mary structure is described in References 4 and 5. The concept is seen to
provide a realistic alternative to assémbly in enabling the construction of
large trusses from small stowed volumes. In a similar way, the usefulness of

the concept to precision ségmented reflectors can be shown. For high
concentration-ratio solar collectors, for example, the Pactruss concept is
shown in Reference 6 to provide an efficient precise backup to the reflector
panels.

Because of its apparent ease of synchronous deployment, as well as its excel-
lent deployed dimensional stability, the Pactruss concept has been identified
as the primary candidate for the deployable truss for LDR (see Reference 1).
Some primary issues, however, need to be investigated. One is whether the
Pactruss design with its stringent geometric requirements can indeed be
applied to a doubly-curVed-surface such as the parabolic reflector of LDR.
Another 1is how to modify the design so that it can be stowed around, and
attached to, a central part of the spacecraft for launch. In addition, quan-
titative evaluations of the weight and stiffness of the resulting deployed
truss structure are needed. The investigations are described herein.

SECTION 2
GEOMETRY OF HYBRID PACTRUSS

Pactruss deployable structures stow in a very compact form. As shown schemat-
fcally in Figure 2 and as a conceptual model in Figure 3, the structure is
composed of verticals connected by surface members (longerons) and core mem-
bers (diagonals). The verticals move up or down during stowage, the sense
alternating in two of the three triangular directions over the planform.
Alternating verticals are connected by non-folding longerons. In the third
planform direction, adjacent verticals move in the same sense. The longerons
in this direction must fold in order to a]lpw the ends to move together. The
verticals and the non-folding 1longerons form sets of parallelograms that
become thin when stowed. In the stowed configuration, all members are
vertical, with the folding longerons and diagonals occupying spaces provided
_ by finite hinge offsets. The stowage is one of the type called "double fold"
because the planform is packaged in both directions. '

For a configuration such as the LDR, Figuré 4, in whjch the deployed truss
surrounds a center body, double-fold stowage presents a problem--the central
opening occupied by the center body also packages during stowage. Thus, the
stowed truss must be packaged separately from the center body and mounted to
. it after deployment. A better approach would be to have the truss stow around
the center body. It could then be attached and any utility connections could
be made and tested prior to launch.

The desirability of stowage around the center body motivated the creation of
the hybrid Pactruss concept shown in Figufe 5. The hybrid is made up of
single-fold beams separating the planform into areas which are filled with
double-fold Pactruss. The directions of the non-folding Pactruss longerons
are taken to be parallel to the beams on the radial: boundaries. On stowage,
the hybrid truss shrinkslto a "sleeve" around the center body as shown in
Figure 6. The single-fold beams accordion-fold to flat packs and the Pactruss
seéments occupy the small triangular regions at the corners.

The width of the single-fold beams shdu1d>be selected so that the central
opening fits properly around the center body. .If‘possible, the width also

3

should be selected to provide good locations for the attachment of reflector
panels. A possible arrangement of panels is shown by the heavy lines in
Figure 7. Here three corners of each panel are attached to the truss node
lying under thém. In the single-fold regions, the attachments are located
differently than in the double-fold regions.

The truss configuration in Figures 5 through 7 is divided into six congruent
sections. It is entitled "Sixpac" and is shown in perspective in Figure 8.
Another possible arrangement would be the "Tripac" shown in Figure 9. Note
that the beams are considerably wider in this particular version in order to
interface with Tlarger panels attached as shown by the heavy dots in the
figure. Note that each panel has its own three attachment points instead of
having to share them with adjacent panels.

0f course, other arrangements are possible. The two shown serve to demon- '
strate that pre-attachment of the truss to a center body is feasible.

SECTION 3

GEOMETRYC REQUIREMEHWTS
OF THE PACTRU3S CONCEPT

The basic geometrical requiremenks for all t#russes with slender members is
that their centerlines must pass through a cammon point af& the node to which
they are attached.

Thé primary geometrical requirement pertaining to the Pactruss concept is that
the distance between connected nodal pairs be maimtained throughaut deplon
ment. Otherwise, the misfit would generate Targe axial lcads in the members.
For the folding longerons and diagonals, this requirement can be easily met by
appropriately locating the knee hinge in ea;h member. The mon-foldimg
members, on the other hand, must span the correct distance exactly.

The secondary geometrical requirement. is that the hinges between nembers be
located and oriented so that the amount of bending and torsiom in each strut
is small. Optimally, the entire deployment should tve straim-free, except for
those strains induced by hinge moments (either driving or frictional) or
external leads.’

Boih of these requirements are complicated by the fact that the struts,

although slender, have finite cross-sectional dimensions and require space in

the package. Therefore, the hinges between the members must be offset from
the center of the nodal points of the truss by as much as three member
diameters. Preferably, the hinges at member ends should be located on their
centerline so that no upsetting moments are generated by axial forces in the
members of the deployed truss.

When the Pactruss forms a flat surface, with regularly spaced modules, the

design of the Pactruss joints 1is straightforward. A1l the non-folding

10555F6n5¥are made the same length, with the same total hinge offset at the
two ends, producing a deployed structure with uniform distances between the
node points along the directions of the non-folding longerons. The hinge
lines are oriented in the horizontal plane, perpendicular to the member
centerline. During deployment, the projection of each node in the surface

plane moves directly and proportionally away from the projection of its
neighbors. The deployment proceeds smoothly, with the non-folding longerons
at a uniformly decreasing slope with respect to the horizontal plane.

For a doubly curved surface, on the other hand, the proper design is not so
immediately evident. Careful examination, however, shows that at least one
solution exists that satisfies the primary requirement of correct distances
between nodes. Furthermore, the solution also yields hinge locations and ori-
entations that satisfy the secondary requirement for the conditions of full
deployment and full stowage. Whether the solution also allows strain-free
deployment is by no means evident; the evaluation of deployment straining
requires detailed analysis.

The design solution is an extension of that for the flat truss. First, the
distances between adjacent deployed nodes along non-folding longerons must be
a constant value. Second, the sum of the hinge offsets at the ends of each
non-folding tongeron must be the same. Third, the hingevlines must Tie in the
horizontal plane and be perpendicular to the longeron centerline. Note that
these are the same as the rules used for the flat truss, except that the off-
set lengths can be different for the two directions in the flat truss--rot so
with the doubly curved truss.

That the solution yields a dep1oyed and stowed strain-free Pactruss can be
seen from the following reasoning:

Let the distance between nodes connected by non-folding longerons be 2 and the
total of the hinge offsets at the two ends be e. Let the upper-surface points
of the deployed truss be located at (xn, Yo 2)n-=1,2,3...,N with

)2

(x'i - Xj + (‘yi - 'yj
for all i,j pairs connected by non-folding longerons. Assume (without loss of
generality) that the origin of the coordinate system is attached to one cf the
nodes which does not move upward during stowage. Let the fixed node number be

m. Then the coordinates of the nth node when stowed can be seen to be

€h = Xp ¥ % (xp = Xp)
N, o= Yo+ 3 Yy - V)
Ch = Zpt % (2, - 2p) + 2,
where z, = 2 - e, for upwards stowing nodes

0, otherwise

One way to visualize this stowage is to assume that the non-folding longerons
-are removed and the hinge lines on either.end are merged. The resulting nodal
surface is then the same as the deployed one, except that it is shrunken by
the factor e/f2. Inserting the longerons then raises the upward stowing nodes
by the distance 2 - e.

éxamination of the hinge 1lines shows that _they have the same orientation
whether deployed or stowed; the verticals have no rotation. The Tlongerons
thus do not bend or twist. '

In order'that the nodes 1ie on the desired paraboloidal surface and obey the
internodal distance requirement, a computational algorithm must be developed
as follows: '

Let (xl, Y 21) and (XZ’ Yoo 22) be previously located points. The location
of the next point (x, y, z) must satisfy the following equations:

(- x)2w ty - ypPez-zp? = 4P
(x-xp)% + (v -yl (z-zp? - A
2 2
X +
R S e

where F is the focal length of the parabaloid.

The easiest way to solve for x, y, and z is to assume a value for z, solve the
first two equations for x and y, and determine a new value for z. Repeating
the process a finite number of times (say, 50) guarantees a very accurate
answer,

Before determining the Pactruss nodes, the nodes for the beam lying along the
x axis are found by using only one of the distance equations in addition to
the paraboloid equation, with the assumption that y is the half-width of the
beam. Thus for the beam of width b,

2 2 _ .2
(x - Xl) + (z - zl) o= R
2 2
b X
2% % TTeF T

This is also solved most easily by iteration.

After the points on the upper surface are obtained, those for the lower sur-
face are determined by subtracting the constant depth h from the z coordi-
nates.

In order to determine the points, computer programs wefe written in the C
language. The source code is included in the Appehdix for GEN6PAC.C and
GEN3PAC.C for generating the Sixpac and Tripac geometries, ‘respectively.
Inputs to these programs are:

the number of rings
, the longeron length
the truss depth

, the beam width

, the focal length

-

M O O o Z

OQutput is a file, T@USSNAME.DAT, listing the nodal coordinates.

Also included in the Appendix are source files GEN6STR.C and GEN3STR.C, which
read the file TRUSSNAME.DAT and generate a file, TRUSSNAME.DTA, which contains

the nodal coordinates followed by a listing of node endpoints and strut type
for each of the members.

An example of an output file for a two-ring Sixpac truss is included in
Table 1. Note that there are 72 nodes (36 on each surface), 258 members, and
12 types of members. An additional point is included at the focal point. For
this case, ¢ = 2.0, h = 2.0, b = ¥3, F = 5.0.

SECTION 4
STRUCTURAL PERFORMANCE

In order to obtain quantitative estimates of the ability of the Pactruss
structure to provide precise positioning and support to reflector panels, the
five-ring Sixpac truss was analyzed using the MSC/pal 2* finite element
analysis. The truss is shown in Figure 8 and has the following dimensions:

10.0 m
2.0m
2.0m
1.732 m

F
2
h
b

The necessary input file to the MSC/pal 2 program was generated by the com-
puter program - SEEZPAL.C .included 1in the appendix, which reads the
TRUSSNAME.DTA file previously prepared, and obtains structural property infor-
mation from the data file TRUSSNAME.PRP. This latter file lists the strut
area, modu]us; and so forth, for each strut type.

4.1 STATIC PERFORMANCE

Static structural analysis was performed for two cases: One-g loading in the
negative z-direction, and an angular acceleration of 0.001 radians/set2 around
the y-axis. The first case was selected to determine the expected deflections
during ground testing. The second case represents a severe case of loading
due to steering control while in operational orbit. (Earlier estimates given
in Reference 2 reveal that the maximum operational angular acce1eration‘1s of
the order of 10'4 radians/secz.) In both cases, the truss is assumed to be
mounted at the central opening.

Results of the static analyses, given in Figure 10, pertain to both the bare
truss alone and to the truss loaded with reflector panels weighing 10 kg/mz.

*MSC/pal 2 is a trademark of the MacNeal-Schwendler Corporation.

10

The mass of the structure itself included a joint weight equal to the weight
of the tubular struts.

Examination of the deformation shapes showed that most of the deformation
comes from straining of the inner rings. Accordingly, a tapered-stiffness
design was developed which was much 1ighter than a uniform stiffness truss of
equal overall stiffness. The tapered design was chosen for further study.

The tapered design deflects a maximum of 200 micrometers at the rim due to its
own weight. The accuracy requirement that has been placed on the truss is
that its attachment nodes should be precise to 100 micrometers without on-
orbit adjustment. The fact that the gravity sag is only twice this much gives
confidence that a combination of ground testing and analysis will be able to
guarantee the required accuracy when the truss is deployed on-orbit.

The structural weight, including joints, of the tapered design is 819 kg. The
truss supports panels weighing 3730 kg and is strong enough to carry them in a
one-g field. Of more import is the fact that the maximum deflection at the
rim caused by the angular acceleration of 1.0 mﬂliradian/sec2 is only 3.5
micrometers., '

The distortion due to operational loading is better described in terms of the
rms deviation from a best-fit paraboloidal surface. The source code of the
program BESTFIT.C is included in the Appendix. This program reads the files
output by MSC/pal 2 and determines the deviation from and the pointing error
of the best-fit paraboloid. For the two-meter deep truss, the rms deviation
is only 0.17 micrometer; the poihting error is 2 x 10’7 radians or 0.04 arc
sec. These errors are well within the budgets of ~3 micrometers and 0.1 arc
sec established for the LDR in Reference 1. The fact that the Pactruss is
stiff enough to prevent unaecceptable deflections due to operational. loads
means that the control system needed to correct the optical path can be of the
low band pass type and interaction between the structure and the control sys-
tem can be readily handted.

4.2 EFFECTS OF TRUSS DEPTH

Some influences of truss depth on structural performance are shown in Figure
11. The distortions increase rapidly for truss depths less than two meters.

11

Larger depths reduce the distortion at the cost of increased structural mass.
Of more concern is the fact that the longer struts have a lower lateral vibra-
tion frequency, which is about 22 Hz for a two-meter depth. Earlier studies
of sensitivity of surface accuracy to manufacturing imperfections (Reference
6) indicate that depths between one and three longeron lengths are best. All
these results point to the desirability of a truss depth equal to or moder-
ately greater than a longeron length.

4.3 VIBRATION PERFORMANCE

As an additional indication of the stiffness of the Pactruss, the dynamic
analysis capability of MSC/pal 2 was used to obtain the natural vibration
modes and frequencies for the tapered design. The structure includes the
truss and the panels and is mounted at the 12 node points at the central
opening. The results are shown in Figure 12 for the first 20 modes. The fun-
damental frequency is over 10 Hz, a high figure indeed for such a large
structure. The modal density is high, with the first five modes having fre-
.quencies within 15 percent of each other.

12

SECTION 5
DEPLOYMENT ANALYSIS

In order to obtain some insight into the behavior of a Pactruss structure with
a doubly curved surface, the sector shown darkened in Figure 13 was analyzed
with an Astro Aerospace Corporation proprietary deployment program called
ASTRAN. This computer analysis program was written during 1987 and has the
following characteristics:

e High fidelity, efficient analysis of deformations and 1loads
encountered by fiexible truss structures during deployment.

e Large displacements and rotations, 'small distortions, quasi-
static.)

e Structural elements are clusters (hinge bodies) and struts
connected by hinges.

o Can apply external loads, hinge moments, constraints, and pre-
scribed hinge angles.

s Degrees of freedom are six for each cluster and one for each
hinge.

* Written in C language; presently running. on PC-family com-
puters.

o ASTRAN is interactive. The analysis can be interrupted in
order to examine aspects of the behavior and to change updat-
ing procedures in order to help convergence.

.* The user develops a good "feel" of how the structure behaves.
The similarity to conducting a test is uncanny.

The method has been applied to a two-bay segment of articulated Astromast con-
sisting of 15 clusters, 33 hinges and 27 struts. The results obtained com-
pared well with experimental results. It was also used to predict the
stability of deployment of Z-Beam, which was being developed for the now-
defunct COFS Mast Flight Experiment program. Results showed successful stow-
age even with a large imbalance in hinge friction moment.

The effect of the surrounding structure on the segment shown in Figure 13 was
simulated by constraining the nodes along the beams to have a zero component

13

of displacement normal to the plane of the beams. The deployment is assumed
to be driven at the two hinges joining the lower non-folding Tongerons to the
inner cluster. The outer bays were allowed to deploy freely.

The analysis revealed a serious deployment defect in the Sixpac design. The
inner bay deployed easily. The outer bays also deployed well for the initial
stages, exhibiting no member straining, but as the inner bays reached full
deployment, the outer bays "hung up" in the partially deployed condition shown
in Figure 13. The difficulty arises from the fact that the folding longerons
straighten prematurely and lock the outer bays, whose longerons should swing
through the horizontal from the stowed downward sloping condition to the
deployabie upward sloping condition.

Numerous trials were made attempting to get the outer bays to pop through
before the inner bay was fully deployed. Only by proViding large asymmetri-
cal drive moments to the outer bays could full deployment be achieved.

~ A model based on the Tripac design was similarly analyzed. Here the results
were more promising. It is possible to achieve full deployment by driving the
bays whose longerons must pass through the horizontal. Successful deployment,
however, will probably require driving at many locations, thereby destroying
the main advantage of the Pactruss concept.

One possible remedy is to modify the Pactruss concept somewhat in a manner
shown in Figure 14. In this approach, the situation in which a bay's longe-
rons must pass through the horizontal is avoided by requiring such bays to be
horizontal when deployed. Extensions, with braces if necessary, provide the
required mounting point at the paraboloidal surface. Bays for which the
longerons move through less than 90 degrees are designed to be steeper,
thereby returning to the paraboloidal surface. |

The results for the deployment analysis of a sector of the modified truss
shown darkened in Figure 14 and called XGTK are given in Figure 15. The
deployment angle of the outer bays is shown as a function of the drive angle
at the inner bay. The results for XGTK show smooth progress to full deploy-
ment even with no outer helping hinge moment, Mh' In comparison, the results
for the unmodified design, identified as XGTEST, show smooth deployment until
nearly full deployment, where the structure jumps to the undesirable result.

14

Clearly, fuller models of the deploying truss must be investigated in evaluat-
ing the deployment behavior. The effects of off nominal drive and hinge con-
ditions and the effects of external forces need to be examined. These

preliminary results indicate that the modified Pactruss with extensions will
deploy successfully.

15

SECTION 6
CONCLUDING REMARKS

This investigation has shown that it is possible to design a hybrid Pactruss
structure capable of supporting reflector panels to form a precise, doubly
curved (paraboloidal) reflector surface. The truss can be stowed around a
central body to which it is attached for launch and orbital deployment. The
deployed truss is very stiff, stiff enough to resist operational loads with
sub-micrometer rms distortions and to limit gravity sag to amounts small
enough to enable ground testing and measurement of the surface.

Preliminary deployment analyses indicated that the Pactruss, modified with
extensions to avoid lockup, can be deployed in a strain-free manner. '

16

4.

5.

REFERENCES

Swanson, Paul N., A Lightweight Low Cost Large Deployable Reflector (LDR),
JPL D-2283, NASA Jet Propulsion Laboratory, California Institute of
Technology, Pasadena, California, June 1985.

Hedgepeth, John M., Support Structures for Large Infrared Telescopes, NASA
Contractor Report 3800, Astro Research Corporation, Carpinteria, Califor-
nia, 1984,

Von Roos, A., and J.M. Hedgepeth, Design, Model Fabrication, and Analysis
for a Four-Longeron, Synchronously Deployable, Double-Fold Beam Concept,
AAC-TN-1139, Astro Aerospace Corporation, Carpinteria, California, March
1985, , '

Hedgepeth, John M., Application of Pactruss to Space Station Structure,
AAC-TN-1143, Astro Aerospace Corporation, Carpinteria, California, Septem-
ber 1985.

Hedgepeth, John M., Evaluation of Pactruss Design Characteristics Critical

to Space Station Primary Structure, NASA Contractor Report 178171, Astro

Aerospace Corporation, Carpinteria, California, February 1987.

Hedgepeth, John M., Influence of Fabrication Tolerances on the Surface
Accuracy of Large Antenna Structures, AIAA Journal, Vol. 20, No. 5,

pp. 680-686, May 1982.

17

Figure 1. Sequentially deployable precision reflector.

18

SIDE VIEW DEPLOYED

HINGES

PARTIALLY DEPLOYED

PLAN VIEW DEPLOYED

g

PLAN VIEW STOWED

Figure 2. LDR Pactruss deployment scheme.

19

Figure 3. Deployment of conceptual model of triangular Pactruss.

ORIGINAL PAGE

20
BLACK AND WHITE PHOTOGRAPH

HOLE TO SKY

\

SEGMENTS

' \

| SUPPORT VANES \ SECONDARY

| FIRST STAGE v THERMAL

| Focus . : SHIELD

} PRIMARY ' ACTIVE
l

{

|

QUATERNARY

.)<METER

SUNSHIELD SUNSHIELD
?;'5‘5’;"“’ 7 SECOND STAGE
| : FOCUS
BALNCE oF ~ T]
SPACECRAFT) ,
~3”
(a) Cutaway perspective
22m
20m
SECONDARY
/
QIH}’:INAIV THERMAL
20 LAYERS
MULTILAYER SHIELD
INSULATICN,) .
0.26 kg/mz " .
6-cm-DIA.
INSTRUMENTS GR/EP TUBES
4 CRYOSTATS
(400 kg HELIUM)
2m
4
SUNSHIELD 2-cm-DIA,
GR/EP RODS

77 LAYERS

THERMAL ISOLATION
MULTILAYER

INSULATION, . o DYNAMIC I1SOLATION
2
1.0 kg/m TELESCOPE "
SUPPORT
MODULE RESOURCE

MODULE rﬁ

SOLAR PANEL

(b) Cross section

Figure 4. Application of Pactruss to the support structure
for the primary mirror of the JPL low-cost LDR.

21

22

Pactruss

Single-fold beams

Figure 5. Hybrid Pactruss concept.

"ssnijoed puqAy pahojdep pu

NNININTS
JEEE@QV

Aﬁw
AVAVAV T AVAVS v

;§§E§EﬂEEEP
AVAVAVAVA D YA AVAVAVAVY
DONNNN NN\
VAVAVAVAVA = 0\VaVAVAVAY,
VAVAVAVATS G VAVAVLY,
\SOLAAAINEL
ALRIXKI
NAKAKKD

e pamolg ‘g ainbi4

uoNoas $s010 pamojs pabiejug

23

JAVAVAVAT> Y

AVA‘AW’AM \
ii"m&m\‘%

A CEANAN
IAVAVAVAVA) 7/ W, W, W

ANANANANAN 5N AN ANAN AN

VAVAVAVAV

Figure 7. Hexagonal panels attached to hybrid Pactruss.

AN

ANV =

uszgi%‘

!

>
N/

X}
S ’/
<
L\ll:

>
N
\/

1A

)
N
17

4

N
[L~”]]
>,
AN Z e
i
- ’ \#
/b,
/
-

R
4
.
=
d
fi
AN
A """’d Nl
v '-‘
' 70V

L]
AR
ULk

= RN ;_l;"‘ B
AN g NI £
AN S A N
2ty 5 R AN TN
AT AN, = T ANV VAT =T
2 F q(.‘_wanl‘\\' AN =t
s - DS ¥
v ~,u_’.’/u\"u§'(1\'.\‘=_A‘"
<N 4“5’1._'1!'51",.(‘\&‘ ,‘:—d‘e‘
NS A 0 i W e SVATA
AN RN N SRR

a3 ,“'<
NS

-,
Uz
v, 4
/0%,
@,
z
'aN

‘;,"z NN
Auﬁl".:v ST X
\l/

Figure 9. Tripac hybrid Pactruss support structure with panels.

24

(g =Wioly ‘SuyN ;01 X 0°0€ = 3) ssnuioed pugAY ey} 10} eouewiopied onels "0l emnbiy4

(Buipong uwnjod Ja|NJ) PepPEOlsAD BJe 18Jusd JBaU SINUIS M6} Y,

sBuiy JeINO ‘Jlem ww |

g'e L'l 0€.€ 618 2 buiy ‘rem ww ¢
- 020 0 618 ¢ Buiy Inng piiog :pesedey
80 +6°0 0€L€ vich
- ov'0 0 1062 'SINNS plos
€'e L1 0€LE vigt
- 0r'0 0 viZh llem ww g X wd Gg :ybiop wnipay
G'L 6 0ele 8LV
- 90 0 8.¥ lem ww | x wd G'g :yblemybi
(zoesperg.oLx1 (D) (63) (Zw/bx 01) (b¥) sSSYW oedxig 1816N-g ‘DUIH-G
(wrl) ININIOVIISIA WNNIXYIN SSYW 13Nvd IVHNLONYLS NOILVHNOIINOD

25

1]

0¢

oe

oy

0§

“yidsp ssnu} Jo 1oey3 1| 8inbiy

w ‘yidep ssni]

—
——

€
T

o ‘fousnbayy iuis jeuobeig

1]

6% 0001 ‘ssew ssnu)

S1918WOoIoIW
‘1018 80BUNS SWY

S0

o'l

26

MODE FREQUENCY MODE SHAPE
(Hz)
1 1.03718E+01 N = 1, ROCKING ABOUT XX
2 1.03718E+01 N = 1, ROCKING ABOUT YY
3 1.17236E+01 N = 0, ROTATION ABOUT ZZ
4 1.19297€+01 N = 2, NODE LINES AT -45,45 DEG
5 1.19297E+01 N = 2, NODE LINES AT 15,105 DEG
6 1.37824E+01 N = 0, AXIAL PUMPING
7 1.59909E+01 N = 3, NODE LINES AT -30,30,90 DEG
8 1.95641E+01 N = 3, NODE LINES AT 0,60,120 DEG
9 2.47072E+01 N = 4, NODE LINES AT 0,45,90,135 DEG
10 2.47072E+01 N = 4, MAXIMA AT 0,45,90,135 DEG
11 2.84482E+01 N = 5, MAXIMA AT -54,18,90,162,234 DEG
12 2.84482E+01 N = 5, NODE LINES AT -54,18, ETC. DEG
13 3.26987E+01 N = 5, MAXIMA AT -54,18, ETC. DEG
14 3.26987E+01 N = 5, NODE LINES AT -54,18, ETC. DEG
15 3.52508E+01 N = 6, MAXIMA AT 0,60, ETC. DEG
16 3.91162E+01 N = 6, NODE LINES AT 0,60, ETC. DEG
17 4.06708E+01 N = 3, SECOND RADIAL MODE; NODES AT 0,60,...
18 4.06708E+01 N=3, 22
19 4.21089E+01 N =4, 22
20 4.21089E+01 N =2,

SECOND RADIAL MODE; MAX AT 0,90,...

Figure 12. Vibration frequencies for center-mounted Sixpac truss
with tapered truss stiffness and 10 kg/m? panels.

27

‘uoneanbyuod oedxis ey} Jo
juswhojdep Bunebyseaul Joj japow B ‘1 SF1DX €} einbig

(Ayney) pehojdeq

28

pakojdaq

"SUOISUBIXd YIM SSNIIORd JO
uonebusaaul juaswholdap 10§ jopow € ‘Y1 OX v} einbig

29

‘Sjopow om} 10} juswAoidap Aeq-1eino jo synsey ‘Gl 8inbi4

06 08 0L

saa.6ap ‘a|bue aauqg
09 s OF 0g

0¢ ot 0

T) 1

wN oot =YW ‘1S31OX

S0

- suelpel ‘s|bue
wawdhojdap
feq-181nO

30

APPENDIX A
Example Files:

GEN6PAC.C
GEN3PAC.C
GEN6STR.C
GEN3STR.C
TWORING.DTA
SEE2PAL.C
BESTFIT.C

A-1

/% GEN6PAC.C - Program for generating the basic geometry of a hybrid Pactruss
with six radial single-fold beams bounding the six sectors of
double-fold Pactruss. The truss nodes are required to lie on

the paraboloidal surface

z = rxr/(4%F)

where F is the focal length and r is the radius

r = sqrt(xkx + yxy)

The truss is composed of M rings. The number of nodes in each
gector is (M + 1)*(M + 2)/2. The length of the non-folding
surface struts is 1, and the width of the single-fold beams is b.
The truss height is h.

Although this analysis does not explicitly consider the effects

of joint offsets, the geometry is exact for the case in which the
length 1 is divided between offsets, totalling 3.5 tube diameters
times the secant of the surface slope at the rim, and the strut ’
itself. The stowed geometry then can be obtained by uniformly
shrinking the planform and appropriately adjusting the z-coordi-
nate of each node. Note that the deployment mechanics may
necessarily involve some straining of the members as a result of
the double curvature of the nodal surface, not as a result of
finite offsets. ‘

The nodes are numbered consecutively within each sector, starting
at the first sector with 1, 2, 4, 7, 11, 16, etc. outward along
the beam boundary with intermediate numbering counterclockwise
along each ring. Nodes in succeeding sectors are numbered in the
same order consecutively. The entire upper surface is numbered
first, then the lower, and f1na11y any accessory nodes are as-
s1gned numbers.

The focal point is assigned the number 0.

The results are stored in ‘ASCII form in the file XYZ.DAT where

XYZ is entered in the command tail. The default is SIXPAC.

The first entry is the parameter values. The second line contains
the total number of nodes in the truss. The following lines are
the coordinates of each node in x,y,z form listed in order.

The input parameters M, F, 1, b, and h are obtained from' the file
XYZ.PRM, which is a one-line ASCII file with the values, in order,
separated by commas. The default values for SIXPAC are 6, 10.0,
2.0, 1.154701, and 2.0.

John M. Hedgepeth 8/26/87

Altered to allow F = infinity by inputting f <0 9/16/87
Updated to MS C 5.0 12/29/87

MM I W e W W W W e H W W Fe I F P I F e W M W WM W W W I I I M I I W I W I M I I I I I M I MW M I W I

* I

/

#include <scitech.h>

int M = 5;
double F = 10.; A-2

double 1 = 2.;
double b = 1.154701;
double h = 2.;

void initbeam(),newpoint(),fillsec();

main{argc, argv)
int argc;
char *argv(];

int i, j,n,chr,N;

static double x,y,z,coord[100]([3],cosv,sinv;
static char inname([50],cutname{50];

FILE xinfile, *outfile;

strcpy(outname, "SIXPAC.DAT");

if(arge > 1) {
strepy(outname,argv(1l]);
strcat (outname, ".DAT");
strcpy(inname,argv(l]);
strcat (inname, " .PRM");
strupr(inname);

if((infile = fopen(inname,"r")) == NULL) {
printf("\nCannot open %s. Aborted.\n",inname);
exit(1l);
}
if(fscanf(infile,” %d X1f %1f X1f X1f", &M, &F, &1, &b, &h) !'= 5) {
printf("\nCannot read input parameters. Aborted.\n");
exit(1l);
}

fclose(infile);

if(F == 0)
F = -10000.;

}
N=(M+ 1)*(M+ 2))/2;

if((outfile = fopen(outname,"r")) '= NULL) {

fflush(stdin);
printf("\nFile %s exists. Do you want to write over it? (Y/N) <N>",
outname);
if(toupper(getch()) !'= 'Y’)
exit(l);
fclose(outfile);

}

outfile = fopen(outname, "wt");

fprintf(outfile,” %d, %1f, X1f, X1f, xlf\n" M, F, 1, b, h);
fpr1ntf(outf11e," %d\n",12%N + 1);

x = 0; _
fprlntf(outflle," %.8le, %.8le, %.8le\n",x,x,F);

initbeam(coord);

fillsec(coord);

for(i=0; i<6; i++) { A-3

cos{{double)i*PI/3);

| cosv
sin{(double)i*PI/3);

’ sinv

for(n=1; n<= N; n++) {
x = coord(n][0]*cosv - coord[n][1l]*sinv;
y coord{n][0]*sinv + coord[n][1]*cosv;
i coord([n][2];
‘ fpr1ntf(outf1le," %.8le, %.8le, %.8le\n",x,y,z);

}

for(i=0; i<6; i++) {
cosv = cos({(double)i*PI/3);
sinv = sin((double)i*PI1/3);

(1 T}

for(n=1; n<= N; n++) {

x = coord[n] {0]*cosv - coord[n][1]*sinv;
y = coord[n](0]*sinv + coord[n][1l]%cosv;
z = coord[n][2] - h;
fprintf(outfile,”" %.8le, %.8le, %.8le\n",x,y,2);
1} »
fclose(outfile);

printf("\nFile %s successfully written.\n",outname);

void initbeam(coord)
double coord[100]([3];

{ .
| int i,n,j;
% double x,y,z,x0ld,ksi,sqrt3,eps;

3.;
sqrt(sqrt3);

sqrt3
sqrt3

: X = sqrt3x*xb/2.;

y = b/2.;
coord[1][0] = x;
coord[1][1] = y;
coord[1][2] = bxb/(4.%F);
if(F < 0)

coord[1][2] =

for(i=1; i<=M; i++) {
= (ix(i +))/2 + 1;
if(F < 0) {
X += 1;
coord[n][2] =

else {
xold = x;
eps = 1/2.;

for(j=0; j<50; j++,eps/=2.) {
ksi = x + eps - xold;
= ksik(ksi + 2.%xo0ld)/(4.%F);
if(ksik¥ksi + z¥z <= 1%1)
X += eps;

} - A-4

coord{n][2] = (xkx + yky)/(4.XF);

}
coord{n][0]
coord{n][1]

X;
Y5

void fillsec(coord)
double coord[100](3];
{
int i,n,p,q,r;
double x,y,z,temp,cosv,sinv;

temp = PI/3.:
cosv = cos(temp);
sinv = sin(temp);

/% First fill in the other radial boundary
x/
for(i=1; i¢=M; i++) {
n=((1i+1)x(i+ 2))/2;
x = coord[n — i][0] - bxsinv;

coord{n][0]
coord[n][1]
coord([n][2]

x¥cosv + b¥*sinv;
xk¥sinv + b¥cosv;
coord{n - i}{2];

Wi

}

/% Then fill horizontal rows
X/ .
for(i=1; i<=M-1; i++)
for(n=i+l; n<=M; n++) {
P ((n - 1)*)/2 + i;
qQ=p+ 1 '
“r=(nk(n +1))/2 + i + 1;

newpoint(p,q,r,coord);

void newpoint(p,q,r, coord)
int p,q,r;
double coord{100}{3};
{ ,
int i,n;
double x,y,z,zold,Rbar[3],delR(3],rhosq,d, temp,eps,mult;

for(i=0,rhosq=0; i<3; i++) {
Rbar{i] (coord[pl{i] + coordiql{i})/2;
delR(i] = coord(p][i] ~ coord(q]([il;
rhosq += delR{i]*delR[i];

}

d = rhosq - delR[2]*delR[2];
zold = (Rbar{0]*Rbar{0] + Rbar{l]*Rbar[l])/(4.%F);
eps = zold/16;

for(i=0,mult=1.; i<50; i++,eps¥=mult) {
A-5

2z = zold + eps - Rbar{Zl;

if(F < 0) ¢
z = zold = eps = 0;
i = 49;
}
temp = 1*%1 - rhosqk(0.25 + z*z/d);
temp /= d;

temp = sqrt(temp);

x = Rbar[0] - z*delR[0]*delR(2]/d - delR(1]*temp;
y = Rbar[1l] - z*delR[1l]*delR[2]/d + delR[0]*temp;

if(xkx + y¥y >= 4.%Fx(zold + eps))
zold += eps;
else mult = 0.5;

}

coord[r}[0] = x;
coord[r][1l] = v;
coord[r][2] = zold;

A-6

/% GEN3PAC.C - Program for generating the basic geometry of a hybrid Pactruss
with three radial single-fold beams bounding the three sectors of
double-fold Pactruss. The truss nodes are required to lie on
the paraboloidal surface

z = r¥r/(4%F)

where F is the focal length and r is the radius

r = sqrt(x¥x + yxy)

The truss is composed of M rings. The number of nodes in each
sector is M¥(M + 3) + 1. The length of the non-folding

surface struts is 1, and the width of the single-fold beams is b.
The truss height is h.

Although this analysis does not explicitly consider the effects
of joint offsets, the geometry is exact for the case in which the
length 1 is divided between offsets, totalling 3.5 tube diameters
times the secant of the surface slope at the rim, and the strut
itself. The stowed geometry then can be obtained by uniformly
shrinking the planform and appropriately adjusting the z-coordi-
nate of each node. Note that the deployment mechanics will
necessarily involve some straining of the members as a result of
the double curvature of the nodal surface, not as a result of
finite offsets.

The nodes are numbered consecutively within each sector, starting
at the first sector with 1, 3, 7, 13, 21, etc. outward along

the boundary of the beam running out along the x axis. Along the
other beam the points are numbered 1, 4, 7, 14, 22, etc. The
other points in the first sextant is numbered with odd numbers
increasing toward the center. The even numbers are assigned to
the symmetrically located points in the second sextant. Points are
assigned to the midpanel points of the beam for possible use; they
are even numbered 2, 6, 12, 20, 30, etc. Nodes in succeeding
sectors are numbered in the same order consecutively. The entire
upper surface is numbered first, then the lower, and finally any
accessory nodes are assigned numbers.

W M I I I I I I I I M I I M W I MW I I I N I F W W I I I MW I I I I I M

The focal point is assigned the number 0.

The results are stored in ASCII form in the. file XYZ.DAT where

XYZ is entered in the command tail. The default is SIXPACK.

The first entry is the parameter values. The second line contains
the total number of nodes in the truss. The following lines are
the coordinates of each node in x,y,z form listed in order.

The input parameters M, F, 1, b, and h are obtained from the file
XYZ.PRM. The default values for TRIPAC are 5, 10.0, 2.0, 3.4641,
and 2.0.

John M. Hedgepeth 9/6/87

Updated to MS C 5.0 A 12/29/87

I I I W I I I I W W I W I I K I

~

#include <{(scitech.h> A-7

int M = 5;

double F = 10.;
double 1 = 2.;
double b = 3.4641;
double h = 2.;

void initbeam(),sympoint(),newpoint(),fillsec();

main{argc,argv)

int argc;
char xargv([];
{

int i,j,n,chr,N;

double x,y,z,coord[100]{3],cosv,sinv;
char inname{50],outname([50];

FILE *infile,%outfile;

strcpy(outname, "TRIPAC.DAT");

if(arge > 1) {
strcpy(outname,argv(1]);
strcat (outname, " .DAT");
strcpy(inname,argv(l]);
strcat(inname,"”.PRM");
strupr(inname);

if((infile = fopen(inname,"r")) == NULL) {
printf("\nCannot open %s. Aborted.\n",inname);
exit(1); ~

} . .

if(fscanf(infile," %d %1f %1f %1f X%1f", &M, &F, &1, &b, &h) !'= 5) {
printf("\nCannot read input parameters. Aborted.\n");
exit(1l);

}

fclose(infile);

}
N=MkM+3) +1;

if((outfile = fopen(outname,"r")) != NULL) {

fflush(stdin);
printf("\nFile X%s exists. Do you want to write over it? (Y/N) <N>",
: outname) ;
if(toupper(getch()) '= 'Y’)
exit(1l);
fclose(outfile);

outfile = fopen(outname,"wt");

fprintf(outfile," %d, %1f, %1f, %1f, %1f\n",M, F, 1, b, h);
fprintf(outfile,” %d\n",6%N + 1);

X = 0;

fprintf(outfile,"” %.8le, %.8le, %.8le\n",x,x,F);

initbeam(coord);

fillsec(coord);

for(i=0; i<3; i++) { A_é

cos((double)i*PI%2./3.);

cosv)
sin((double) i*PI*2./3.);

sinv

for(n=1; n<= N; n++) {

X = coord[n][0]%*cosv - coord[n][l]*sinv;
y = coord[n][0]*sinv + coord[n][l]*cosv;
z = coord{n][2];

fprintf(outfile,” %.8le, %.8le, %.8le\n",x,y,2);

}

for(i=0; i<3; i++) {
cosv = cos{{(double)i*PI*2./3.);
sinv = sin((double)i¥PI*2./3.);

for(n=1; n<= N; n++) {

x = coord[n] [0]%cosv — coord[n][l]*sinv;
y = coord[n][0}*sinv + coord[n][1]*cosv;
z = coord[n][2] - h;
fprintf(outfile,” %.8le, %.8le, %.8le\n",x,y,2);
¥ : _
}
fclose(outfile);

printf("\nFile %s successfully written.\n",outname);

void initbeam(coord) -
double coord[100][3];
{- '
int 1i,n,j;
double x,y,z,xo0ld,ksi,sqrt3,eps;

sqrt3 = 3.;

sqrt3 = sqrt(sqrt3);
X = b/(2.%sqrt3);

y = b/2.; ,
coord(1] (0] = x;
coord[1](1] = y;
coord[1][2] =

(x*¥x + yxy)/(4.%F);

for(i=1; i<=M; i++) {

n=ik(i +1) +1;

xold = x;

eps = 1/2.; .

for(j=0; j<50; j++,eps/=2.) {
ksi = x + eps - xold;
z = ksix(ksi + 2.%xo0ld)/(4.%F);
if(ksixksi + z*z <= 1x1)

X += eps;
) \
coord[n][0] = x;.
coord[n][1] = y;

coord[n] 2] = (x*x + yky)/(4.%F);
coord[n - 1][0]
coord{n - 1][1]
coord{n - 1]([2]:

(xold + x)/2.;
0; .
x*x/(4.*F);

A-9

-

void fillsec(coord)
double coord(100]{3];
{
int i,n,p,q,r;
double x,y,2z;

/% First fill in the other radial boundary
x/
for(i=1; i<=M; i++) {
n = ik(i + 1) + 1;
sympoint (n, coord);

/% Then fill slanted rows and symmetrical points
x/
for(i=1; i<=M; i++) {
~for(n=1; n<i; n++) {

r = ik(i + 1) + 1 + 2%n;
P=r 2
qQ = r — 2%i;

newpoint(p,q,r,coord);
sympoint(r,coord);

}
r = ix(i + 3) + 1;
p=r-2;
q=r-~-1;
: newpoint(p,q,r,coord);
}
}
void sympoint(p,coord)
int p; _ '
double coord[100][3];
{ ' :
double x,y, temp,cosv,sinv;
temp = 2.%PI/3.;
cosv = cos(temp);
sinv = sin(temp);
x = coord[p][0];

y = coord[p][1];

xXcosv + yksinv;
x¥sinv — yXcosv;
coord[p] (2];

coord[p + 1][0]
coord{p + 1][1] -
coord[p + 1][2]

void newpoint(p,q,r,coord) "
int p,q,r; _ '
double coord[100][3];
{ ,

int i,n;

A-10

double x,y,z,zold,Rbar{3],delR[3],rhosq,d, temp,eps,mult;

for(i=0,rhosq=0; i<3; i++) {
Rbar[i] = (coord[p]{i] + coord[q]}[i])/2;
delR[i] = coord{p]{i] - coord{q][i];
rhosq += delR[i]*delR{i];

}. ,

d = rhosq — delR[2]*delR[2];
zold = (Rbar[O]*Rbar[0] + Rbar([l]*Rbar(l])/(4.%F);
eps = zold/16;

for(i=0,mult=1.; i<50; i++,eps¥=mult) ({
z = zold + eps - Rbar(2];
temp = 1%1 - rhosq*(0.25 + zxz/d);
temp /= d;
temp = sqrt(temp);

Rbar{0] - zxdelR[0]*delR[2]/d - delR[1l]*temp;
Rbar{l] - z*delR[1]*delR[2]/d + delR[0]*temp;

X
y

non

if(xxx + y*Xy >= 4.%F%(zold + eps))
zold += eps;
else mult = 0.5;

}

coord[r][0] = x;
coord(r}[l] = y;
coord[r][2] = zold;

A-11

/% GENS6STR.C - Generates the connectivity array for the six-spoke hybrid
Pactruss. Input data is read from XYZ.DAT.

The command is
genbstr xyz
If xyz is omitted, the default is SIXPAC.

The connectivity array is created by the routines, is appended to
the input nodal array and the combination is output to XYZ.DTA
which is an ASCII file in the format needed for input to
SEETRUSS.CMD.

The types of struts are:

Numbering
External Internal

Non-folding Pactruss upper—-surface struts
Upper—surface Pactruss diagonals
Upper—surface beam longerons and battens
Upper-surface beam diagonals

Non-folding Pactruss lower—-surface struts
Lower-surface Pactruss diagonals
Lower—surface beam longerons and battens
Lower-surface beam diagonals

Pactruss verticals

Beam verticals

Core Pactruss diagonals

Beam core diagonals '

OO0 WN -

~O WO NhAhWNN—~O

FaN
-

John M. Hedgepeth 8/27/87

Updated to MS C 5.0 12/29/87

P I I I I I I I I I I I W I I I I I I I I I I I W W W I I I

~

#include <{scitech.h>
int M;
int Ntypes = 12;

int pacsurf(),paccore(),beamsurf(),beamcore();

main(argc,argv)
int argc;
char. xargv([];
{ .
int i, j,n,N,Nnodes,Nstruts,nl,n2, type;
int Npacsurf,Npaccore, Nbeamsurf,Nbeamcore,
int conl[100]([3],con2{100]([3],con3{100](3], con4[100][3],
double x,y,2;
char inname[50],outname(50];
FILE xinfile,%outfile;

strcpy(inname, "SIXPAC.DAT");
s@rcpy(outname,"SIXPAC.DTA");

if(arge > 1) {
strcpy(inname,argv(l]);
strcpy(outname,argv(1]);
strcat{inname,".DAT");

strcat{outname,".DTA");

}

strupr(inname);
strupr(outname);

if((infile = fopen(inname,"rt")) == NULL) {
printf("\nCannot open %s. Aborted.\n",inname);
exit(1l);

}
if(fscanf(infile," %d, %1f, %1f, %1f, %1f %d",
&M, &x, &x, &x, &%, &Nnodes) !'= 6) {
printf("\nCannot read input parameters. Aborted.\n");
exit(l);
}

if{(outfile = fopen(outname,"r")) != NULL) {
fflush(stdin);
printf("\nFile %s exists. Do you want to write over it? (Y/N) <N>",
outname) ;
if(toupper(getch()) !'= 'Y’)
exit(l);

fclose(outfile);
outfile = fopen(outname,"wt");

N=(M+ 1)x(M+ 2))/2;

Npacsurf = pacsurf(conl);

Npaccore = paccore(con2);

Nbeamsurf = beamsurf(con3);

Nbeamcore = beamcore(cond);

Nstruts = 6%(2xNpacsurf + Npaccore + 2%Nbeamsurf + Nbeamcore);

fprintf(outfile,” %d, %d, %d\n",Nnodes,Nstruts,Ntypes);
for(i=0; i<Nnodes; i++) {

if(fscanf(infile," X1f, %1f, %1f",&x,&y,&z) !'= 3) {
printf("Corrupt data for node %d. Aborted.\n",i);

exit(l);
}
fprintf(outfile,"” %.8le, %.8le, %.8le\n",x,y,2z);
} .
fclose(infile);

for(j=0; j<Npacsurf; j++) {
for(i=0; i<6; i++) {
nl = conl{j][0] + ixkN;
n2 = conl[j][1] + ixN;
fprintf(outfile," %d, %d, %d\n",nl,n2,conl(j](2]);
nl += Bx%N;
n2 += B6%N;
fprintf(outfile,”" %d, %d, %d\n",nl,n2,conl(j][2] + 4);

}

for(j=0; j<Npaccore; j++) {
for(i=0; i<6; i++) {
nl = con2[j][0] + ix%N;

n2 = con2[j][1l] + i*N;
fprintf(outfile," %d, %d, %d\n",nl,n2,con2(j](2]);
} .
}

for(j=0; j<Nbeamsurf; j++) {
for(i=0; i<6; i++) {

nl = con3[j][0] + i%N;

n2 = con3[j][1] + ixN;

if(nl > 6%N)
nl -= 6x%N;

if(n2 > 6%N)
n2 —-= 6%N;

fprintf(outfile," %d, %d, %d\n",nl,n2,con3(j]{2]);

nl += 6%N;
n2 += 6%N;
fprintf(outfile," %d, %d, %d\n",nl,n2,con3(j][2] + 4);

}

for(j=0; j<Nbeamcore; j++) {
for(i=0; i<6; i++) {
nl = cond[j]{0] + ixN;
n2 © cond[j}(1l] + ixN;
if(nl > 6%N)

nl —-= BxN;
if(n2 > 12x%N)
n2 -= 6%N;
fprintf(outfile," %d, %d, %d\n",nl,n2,con4[j]{2]);
}
}
fclose(outfile);

printf("\n\nData file %s successfully written.\n",outname);

int pacsurf(buf)
int buf[100]([3];
{

int i,n,p,nl,n2;

for(n=1,p=0; n <= M; n++) {
for(i=1; i<=n; i++) {

nl = (nk(n + 1))/2 + i + 1;
n2 = ((n - 1)¢M)/2 + i;
buf(p][0] = nl;
buf{p](1l] = nl - 1;
buf(p] (2] = 1;
pt+;
if(i == n)

break;
buf{p] (0] = nl;
buf(p](1] = n2;
buf(p] (2] = O;

A-14

pt+;

buf{p][0] = nl;
buf{p] (1] = n2 + 1;
buf(p] (2] = 0;
p+;
}
}
return p;

}

int paccore(buf)
int buf[100](3];
{ .

int i,n,p,N,nl,n2;

N = 6%((M + 1)x(M + 2))/2;

for(n=2,p=0; n<=M; n++) { ™
for(i=0; i <= n; i++) {

nl = (n¥x(n + 1))/2 +1i + 1;

if(i>0 && i<n) {
buf[p][0] = nl;
buf[p]{1] = nl + N;
buf(p][2] = 8;

) p+t;

} .

if((n & 1) == 0) {
n2 = ((n - 1)*n)/2 + i;
if(i>0 && i<n) {

-buf(p][0] = nl;
buf(p] 1] = n2 + N;
buf(p](2] = 10;
p++;
buf(p][0] = nl;
buf(p][1] = n2 + N + 1;
buf{p] (2] = 10;
ptt;

}

n2 = ((n+ 1)¥(n + 2))/2 +1i + 1;

if(i > 08 n <M {
buf[p][0] = nl;
buf{p](1l] = n2 + N;
buf(p] (2] = 10;
ptt;

}

if(i < n & & n <(M) {
buf(p] (0] = nl;
buf{p]}(1l] = n2 + N + 1;
buf(p] (2] = 10;
ptt;

}

}

}

return p;

int beamsurf(buf)
int buf{100]{3];
{

int i,nl,n2,p,N;

N = 5%x((M + 1)X(M + 2))/2;

for(i=0,p=0; i<=M; i++) {
nl = (ix(i + 1))/2 + 1;

n2

/% Beam battens

/X Beam

/% Beam

x/

x/

*/

}

buf{p]{0]
buf{p] (1]
buf(p] [2]
ptt;

if(i == M)
break;

longerons

buf(p] [0]
buf(p]{1]
buf(p][2]
p+t;

buf[p}[0]
buf(p] (1]
buf(p] (2]
pt+;

diagonals

buf{p] (0]
buf(p] (1]

buf(p] (2]
pHt;

return p;

int beamcore(buf)
int buf(100][3];

{

((i + 1)x(i + 2))/2 + 1

nl;
nl + N + 1i;

nl + N + i;
n2 + N+i+ 1;
2;

nl;
n2 + N+1i+1;
3;°

int i,nl,n2,p,N5,Nsurf;

N5 = 5x((M + 1)%x(M + 2))/2;
Nsurf = 6%N5/5;

for(i=0,p=0; i<=M; i++) {
nl = (ix(i + 1))/2 + 1;

buf(p] (0] = nl;
buf[p]{1] = nl + Nsurf;
buf{p](2] = 9;
p++;
if(i > 0) {
buf{p][0] = nl + N5 + i;
buf{p] (1} = nl + N5 + i + Nsurf;
buf{p] (2] = 9;
p++;
}
buf[p][0] = nl;
buf(p][1] = nl + N5 + i + Nsurf;
buf(p][2] = 11;
pt+;

if((i & 1) == 0) {

n2 e ((i - 1)*%i)/2 + 1;
if(i > 0) {
buf{p] (0] = nl;
buf[p][1] = n2 + Nsurf;
buf(p][2] = 11;
pH+;
buf{p]} (0] = n1 + N5 + i;
buf(p]{1] = n2 + N6 + i - 1 + Nsurf;
buf(p] (2] = 11;
p++;
}
if{i < M) {
n2 = (i + L)x@(1i + 2))/2 + 1;
buf{p] (0] = nl;
buf[p]}[1] = n2 + Nsurf;
buf(p] (2] = 11;
p++;
buf{p][0] = n1 + N6 + i;
buf(p](1] = n2 + N5 + i + 1 + Nsurf;
bufp]{2] = 11;
pt+;
}
-}
}
return p;

A-17

/% GEN3STR.C - Generates the connectivity array for the three-spoke hybrid

SEETRUSS.CMD.

Numbering

P F M I I I I I I I I I W I W I K XK W

1 0
2 1
3 2
9 3
5 4
6 5
7 6
8 7
9 8
: 9
; 10
b 3 < 11
3
X
X
X Updated to MS C 5.0
o .
X/

#include <{scitech.h>
int M;
int Ntypes = 12;

Pactruss. Input data is read from XYZ.DAT. The connectivity array
is appended to the input nodal array and the combination is output
to XYZ.DTA which is an ASCII file in the format needed for input to

The types of struts are:

External Internal

Non—-folding Pactruss upper—surface struts
Upper-surface Pactruss diagonals
Upper—-surface beam longerons and battens
Upper-surface beam diagonals

Non-folding Pactruss lower-surface struts
Lower-surface Pactruss diagonals
Lower—surface beam longerons and battens
Lower-surface beam diagonals

Pactruss verticals

Beam verticals

Core Pactruss diagonals

Beam core diagonals

John M. Hedgepeth 9/6/87

12/29/87

int pacsurf(),paccore(),beamsurf(),beamcore();

main(argc,argv)
int argc;
char xargv([];

int i, j,n,N,Nnodes,Nstruts,nl,n2, type; -
int Npacsurf,Npaccore,Nbeamsurf,Nbeamcore;
int conl1[100][3],con2[100])[3]),con3[100][3],cond4[100][3];

double x,y,z;

char inname[50],outname[50];

FILE xinfile,*outfile;

strcpy(innéme,”TRIPAC.DAT");
strcpy(outname, "TRIPAC.DTA");

if(arge > 1) {

strcpy(inname,argv(1]);
strcpy(outname,argv{l]);
strcat(inname, ".DAT");

}

strupr(inname);
strupr(outname);

strcat (outname,".DTA");

A-18

if((infile = fopen(inname,"rt")) == NULL) {
printf("\nCannot open %s. Aborted.\n", inname);
exit(l);

}
if(fscanf(infile," %d, %1f, %1f, %1f, %1f %d",
&M, &x, &x, &x,&x%,&Nnodes) '= 6) {
printf("\nCannot read input parameters. Aborted.\n");
exit(l);
}

if((outfile = fopen(outname,"r")) != NULL) {
fflush(stdin);
printf("\nFile %s exists. Do you want to write over it? (Y/N) <N>",
outname) ;
if(toupper(getch()) 1= ’Y’)
exit(1l);

fclose(outfile);
}

outfile = fopen{outname, "wt");

N=Mx(M+ 3) +1;

Npacsurf = pacsurf{conl);

Npaccore = paccore(con2);

Nbeamsurf = beamsurf{con3);

Nbeamcore = beamcore(cond);

Nstruts = 3%(2*Npacsurf + Npaccore + 2*Nbeamsurf + Nbeamcore);

fprintf(outfile," %d, %d, %d\n",Nnodes,Nstruts,Ntypes);

for(i=0; i<Nnodes; i++) {
if(fscanf(infile," X1f, %1f, %1f",&x,&y,&z) '= 3) {
printf("Corrupt’data for node %d. Aborted.\n",i);

exit(l);
} .
. fprintf(outfile," %.8le, %.8le, %.8le\n",x,y,z);
}
fclose(infile);

for(j=0; j<Npacsurf; j++) {
for(i=0; i<3; i++) { .

nl = conl(j][0] + ixN;
n2 = conl[j][1] + i*N;
fprintf(outfile,”" %d, %d, %d\n",nl,n2,conl(j][2]);
nl += 3%N;
n2 += 3%N;
fprintf(outfile," %d, %d, %d\n",nl,n2,conl[j]}[2] + 4);

}

for(j=0; j<Npaccore; j++) {
for(i=0; i<3; i++) {
nl = con2[j]1[0] + i*N;
n2 = con2[j][1] + i*N;
fprintf(outfile,"” %d, %d, %d\n",nl,n2,con2(j](2]);

}

for(j=0; j<Nbeamsurf; j++) { A-19

for(i=0; 1<3; i++) {

nl = con3[jl1[0] + ixN;

n2 = con3(j}[(1] + i*N;

if(nl > 3%N)
: nl -= 3%N;
‘ if(n2 > 3*N)

n2 -= 3%N;
fprintf(outfile," %d, %d, %d\n",nl,n2,con3[j}{2]);

nl += 3x%N;
n2 += 3x%N;
fprintf(outfile," %d, %d, %d\n",nl,n2,con3(j][2] + 4);

}

for(j=0; j<Nbeamcore; j++) {
for(i=0; i<3; i++) {
nl = cond[j][0] + i%N;
‘ n2 = cond4[j][1] + i%N;
if(nl > 3%N)

? nl —-= 3*%N;
if(n2 > 6x%N)
n2 —= 3%N;
E fprintf(outfile," %d, %d, %d\n",nl,n2,con4(j][2]);
}
}
fclose(outfile);

printf("\n\nData file %s successfully written.\n",outname);

int pacsurf(buf)
int buf[100](3];
{

int i,n,p,nl,n2;

for(n=1,p=0; n <= M; n++) {
for(i=1l; i<=n; i++) {
’ nl = nk(n + 1) + 2%i + 1;
n2 = (n- 1)%n + 2%i - 1;

if(i < n) {
buf{p] (0]
buf(p][1]
buf{p][2]
p++;

W onn
- g0
N -

}

| buf[p] (0]
buf(p] (1)
buf(p]{2]
p++;

nl;
nl - 2;
0;

if(i == n) {
buf{p] (0]
buf(p][1]
buf(p] (2}

ptt; A-20

W
CEA
=

-

buf{p] (0] = nl;
buf[p][1] = nl - 2%(n + 1);
buf(p] (2] = 1;
ptt;
break;
}
buf(p][0] = nl;
buf(p}{1l] = n2 + 2;
buf(p][2] = 0;
pH+;
buf{pl}[0] = nl + 1;
buf{p](1l] = nl - 1;
buf{p][2] = 0;
p++;
buf[p][0] = nl + 1;
if(n == 1 + 1)
buf[p][1l] = n2 + 2;
else

buf(p][1l] = n2 + 3;
buf{p][2] = 0;

p+t;
buf[p][0] = nl + 1;
buf[p][1] = n2 + 1;
buf{p] (2] = 1;
pt+t;
}
}
return p;

}

int paccore(buf)

int buf[100]([3];
{
int i,n,p,N,nl,n2; -
N = 3%k(Mx(M + 3) + 1);

for(n=1,p=0; n<=M; n++) {
for(i=0; i <= n; i++) {
nl = n¥x(n + 1) + 2%i + 1;

if(i>0) {
buf(p] [0]
buf(p]{1]
buf[p] (2]
p++;

nl;
nl + N;
8;

if(i '=n) {
. buf(p] (0]
buf(p][1]
buf(p][2]
P++;

} " A-21

n1A+ 1;
nl + 1 + N;
8;

\
J

if(((i + n) & 1) ==0) {
if(i '=n) {
buf(p] (0] = nl;
buf{p] (1] = nl + 2 + N;
buf([p][2] = 10;
PH;
buf[p]{0] = nl + 1;
buf{p}[1l] = nl + 3 + N;
buf[p][2] = 10;
pt+;
if(i '=0) {
buf{p]} (0] = nl;
buf[p][1l] = nl - 2 + N;
buf(p][2] = 10;
p+t;
buf{pl{0] = nl + 1;
buf(p](1] = nl - 1 + N;
buf{p}[2] = 10;
pt+;
buf{p]{0] = nl;
buf(p] (1] = nl - 2%n + N;
buf{p]{2] = 10;
ptt;
buf(p][0] = nl + 1;
buf{p]{1] = nl + 1 - 2%n + N;
buf[p][2] = 10;
ptt;
if(n < M) {
buf(p] (0] = nl; _
buf(p][1] = nl + 2%(n + 1) + N;
buf({p] (2] = 10;
ptt;
buf[p][0] = nl + 1;
buf{p][(1l] = nl + 1 + 2%(n + 1) + N;
. buf[p][2] = 10;
pt+t;
}
}
}
if(i == n) {
buf(p] (0] = nl;
buf{p]{l] = nl -1 + N;
buf(p]{2] = 10;
pH+;
buf{p] (0] = nl;
buf(p]{1] = nl - 2 + N;
buf(p] (2] = 10;
pt+;
if(n < M) {

A-22

buf(p][0] = nl;
buf{p][l]) = nl + 2%(n + 1) + 1 + N;
buf(p] (2] = 10;
pt;
buf[p][0] = nl;
buf(p]{1l] = nl + 2%(n + 1) + N;
buf(p][2] = 10;
p++;
}
}
}
}
}
return p;
}
int beamsurf(buf)
int buf([100](3];
{
int i,nl,n2,p,N;
N =Mk(M + 3) + 1;

for(i=0,p=0; i<=M; i++) {

nl = ix(i + 1) + 1;
n2 = (i + L)x(i+2) +1;

/% Beam battens

*/

/% Beam
x/

/% Beam
x/

buf[p][0] = nl;

if(i > 0)

buf[p}[1] = nl + 2%N + 1;
else

buf{p][1] = nl + 2%N;
buf(p] (2] = 2;
p++;
if(i == M)

break;
longerons
buf[p][0] = nl;
buf(p][1l] = n2;
buf[p][2] = 2;
pt+;
if(i > 0)

buf{p][0] = nl + 2%N + 1;
else

buf[p][0] = nl + 2xN;
buf{p][1l] = n2 + 2%N + 1;
buf{p][2] = 2;
p++;

surface diagonals

buf(p] (0] = nl; A-23

bufp] (1] n2 + 2%N + 1;

buf(p]{2] = 3;
Pt+;
if(i > 0)
buf[p][0] = nl + 2*%N + 1;
else
buf[p][0] = nl + 2%N;
buf{p] (1] = nZ;
buf{p][2] = 3;
pt+;
}
return p;

int beamcore(buf)
int buf[100]{3];

{

int i,nl,n2,p,N2,Nsurf;

N2 = 2%(Mx(M + 3) + 1);
Nsurf = 3%N2/2;

for(i=0,p=0; i<=M; i++) {
nl = i¥x(i + 1) + 1;

buf(p] (0]
buf(p}[1]
buf(p] (2]
p++;

nl; .
nl + Nsurf,;
9;

if(i > 0) {
buf{p][0]
buf(p] (1]
buf([p][2]
ptt;

n nn
=}
o
+
=
N
+ +

}

buf(p][0] = nl
if(i > 0)
buf[p][1]
else
buf(p] (1]
buf(p](2] = 11;
pt+;

-e

nl + N2 + 1 + Nsurf;

nl + N2 + Nsurf;

if((i & 1) ==0) {
n2 = (i - 1)*i + 1;

if(i > 0) {
buf(p] (0] = nl;
buf[p][1] = n2 + Nsurf;
buf(p][2] = 11;
p++;
buf[p][0] = nl + N2 + 1;
buf(p][1l] = n2 + N2 + 1 + Nsurf;
buf(p] (2] = 11;

A-24

ptrt,

1

}

n2 = (i + 1)%(1i + 2) + 1;

if(i < M) {
buf{p} (0] = nl;
buf{p][1l] = n2 + Nsurf;
buf{p] (2] = 11;
p++;
if(i > 0) ’

buf{p]}{0] = n1 + N2 + 1;

else

buf{p]{0] = nl + N2;

buf{p]{1] = n2 + N2 + 1 + Nsurf;
buf(p][2] = 11;
p++;
}
}
}
return p;

A-25

73, 258, 12

O=NWAFFNOCO

.00000000e+000,
.99999534e-001,
.94193152e+000,
.97096553e+000,
. 74468663e+000,
.85313753e+000,
. 87234308e+000,
.12309793e-015,
.70965992e-001,

.87234355e+000,
.99999534e-001,
.97096553e+000,
.94193152e+000,
.87234308e+000,
.85313753e+000,
. 74468663e+000,
.99999534e-001,
.94193152e+000,
. 97096553e+000,
. 74468663e+000,
.85313753e+000,
. 87234308e+000,
.57397792e-015,
.70965992e-001,

9.70965992e-001,

-1.

87234355e+000,

N~WLWNOTNDOTOO

TWORING.DTA

.00000000e+000,
.77350000e-001,
.77350000e-001,
. 25911243e+000,
.77350000e-001,
. 22460999e+000,
.82034415e+000,
. 15470000e+000,
. 83646243e+000,
-9,70965992e-001, 2.83646243e+000, 5.61768380e-001
1.87234355e+000, 4.39769415e+000, 1.42783651e+000
6.11750234e-015, 4.44921998e+000, 1.23722240e+000

.39769415e+000,
.77350000e-001,
.25911243e+000,
.77350000e-001,
.82034415e+000,
. 22460999e+000,
.77350000e-001,
.77350000e~-001,
.77350000e-001,
.25911243e+000,

.77350000e-001,
.22460999e+000, .
.82034415e+000,
.15470000e+000,
.83646243e+000,

VOO = =~ =~ O OVOO WD

1.
8.
5.
5.
1.
1.
1.

[&: Wo dWEE IS S W e o]

.00000000e+000
. 33332556e-002
.61768380e-001
.61768380e-001
.42783651e+000
. 23722240e+000
.42783651e+000
. 33332556e-002
.61768380e-001

42783651e+000
33332556e-002
61768380e-001
61768380e-001
42783651e+000
23722240e+000
42783651e+000
.33332556e-002
.61768380e-001
.61768380e-001
.42783651e+000
.23722240e+000
.42783651e+000
. 33332556e-002
.61768380e-001

-2.83646243e+000, 5.61768380e-001
~-4.39769415e+000, 1.42783651e+000

-1.94142662e-014, -4.44921998e+000, 1.23722240e+000

O D WD R OB WM N O

.87234355e+000,
.99999534e-001,
.97096553e+000,
.94193152e+000,
.87234308e+000,
.853137563e+000,
.74468663e+000,
.99999534e-001, 5
.94193152e+000,
. 97096553e+000,
. 74468663e+000,
.85313753e+000,
. 87234308e+000,
. 12309793e-015,
.70965992e-001,

42783651e+000
33332556e-002
61768380e—-001
61768380e-001
42783651e+000
23722240e+000

.39769415e+000, 1.
.77350000e-001, 8.
.25911243e+000, 5.
.77350000e-001, 5.
.82034415e+000, 1.
. 22460999e+000, 1.
.77350000e-001, 1.42783651e+000
.77350000e-001, -1.91666674e+000
.77350000e-001, -1.43823162e+000
.25911243e+000, -1.43823162e+000
.77350000e~-001, -5.72163486e-001
.22460999e+000, -7.62777599e-001
.82034415e+000, -5.72163486e—001
. 15470000e+000, -1.91666674e+000
.83646243e+000, -1.43823162e+000

N~WNOIN O

-9.70965992e-001, 2.83646243e+000, -1.43823162e+000

1.

87234355e+000,

4.39769415e+000, -5.72163486e-001

6.11750234e-015, 4.44921998e+000, -7.62777599e-001

.87234355e+000,
. 99999534e-001,
.97096553e+000,
.94193152e+000,
.87234308e+000,
.85313753e+000,
. 74468663e+000,
.99999534e-001,
.94193152e+000,

5.
-1.
-1.
-1.
-5.

72163486e-001
91666674e+000
43823162e+000
43823162e+000
72163486e—001
~7.62777599e-001
.77350000e-001, -5.72163486e-001
~-5.77350000e-001, -1.91666674e+000
-5.77350000e-001, -1.43823162e+000

A-26

.39769415e+000,
.77350000e-001,
. 25911243e+000,
.77350000e-001,
.82034415e+000,
. 22460999¢+000,

WO O A

-1.97096553e+000,
-4.74468663e+000,
-3.85313753e+000,
-2.87234308e+000,
-4.57397792e-015,
-9.70965992e-001,

-2.25911243e+000,
-5.77350000e-001,
-2.2246099%e+000,
-3.82034415e+000,
-1.15470000e+000,
-2.83646243e+000,

-1.43823162e+000
-5.72163486e-001
~7.62777599e-001
-5.72163486e-001
-1.91666674e+000
-1.43823162e+000

9.70965992e-001, -2.83646243e+000, -1.43823162e+000
-1.87234355e+000, —4.39769415e+000, -5.72163486e-001
-1.94142662e-014, -4.44921998e+000, -7.62777599e-001

1.87234355e+000,
9.99999534e-001,
1.97096553e+000,
2.94193152e+000,
2.87234308e+000,
3.85313753e+000,
4.74468663e+000,
3, 2, 1
39, 38,
9, 8,1
45, 44,
15, 14,
51, 50,
21, 20,
57, 56,
27,
63,
33,
69, 68,
5, 4, 1
41, 40,
11, 10,
47, 46,
17, 16,
53, 52,
23, 22,
59, 58,
29, 28,
65, 64,
35, 34,
71, 170,
5,2, 0
41, 38,
11, 8, O
47, 44,
14,

5

Q= N N =N

OO > OO ORODN -3 NN NN~ -~

-4,
.77350000e-001,
.25911243e+000,
.77350000e-001,
.82034415e+000,
. 2246099%e+000,
. 77350000e-001,

39769415e+000,

-5.72163486e-001
-1.91666674e+000
-1.43823162e+000
-1.43823162e+C00
-5.72163486e-001
~7.62777599e-001
-5.72163486e-001

A-27

- 36, 35,

29, 217,
65, 63,
35, 33,
71, 69,
6, 5, 1
42, 41,
12, 11,
48, 47,
18, 17,
54, 53,
24, 23,
60, 59,
30, 29,
66, 65,

OO

M= NN N =N

72, 71,
5, 41, 8
11, 47, 8
17, 53, 8
23, 59, 8
29, 65, 8
35, 71, 8
5, 38, 10
11, 44, 10
17, 50, 10
23, 56, 10
29, 62, 10
35, 68, 10
5, 39, 10
11, 45, 10
17, 51, 10
23, 57, 10
29, 63, 10
35, 69, 10
1, 31, 2
37, 67, 6
7, 1, 2
43, 37, 6
13, 7, 2

(o Wl)
W
E N
www

(e}

25, 19,

—

w

H

>
OANONOAINOAINIIND [o] ANOANONN

A-28

1, 3, 2
37, 39,
7, 8, 2

(]

[
[{o]
[xv]
fe-—

(o2 3CMer W sC T o) N s i 0]

61, 57,

2, 33, 2
38, 69, 6
8, 3, 2
44, 39, 6
14, g9, 2
'501 45a
20, 15,
56, 51,

62, 57,
32, 27,
68, 63,
2, 4, 2
38, 40,
8, 10, 2

N
[
3]
>
(o2 e)l Sl e 3 (6]

[$4]
o
m
N
(=] ANONONONONG o] NN NDON

A-29

8, 6, 3
44, 42,
14, 12,
50, 48,
20, 18,
56, 54,
26, 24,
62, 60,
32, 30,
68, 66,
4, 36, 2
40, 72, 6
10, 6, 2
46, 42,
16, 12,
52, 48,
22, 18,
58, 54,
28, 24,
64, 60,
34, 30,
70, 66,
1, 37, 9
7, 43, 9
13, 49, 9
19, 55, 9
25, 61, 9
31, 67, 9
1, 67, 11
7, 37, 11
13, 43, 11
19, 49, 11
25, 55, 11
31, 61, 11
1, 38, 11
7, 44, 11
13, 50, 11
19, 56, 11
25, 62, 11
31, 68, 11
31, 69, 11
1, 39, 11
7, 45, 11
13, 51, 11
19, 57, 11
25, 63, 11
2, 38, 9
8, 44, 9
14, 50,
20, 56,
26, 62,
32, 68,
33, 69,
3, 39, 9
9, 45, 9
15, 51, 9
21, 57, 9
27, 63, 9
2, 69, 11
8, 39, 11

~SNWTWIWIWw=]

ONONONDOONDO

DWW

A-30

14, 45, 11

20, 51, 11
26, 57, 11
32, 63, 11
4, 40, 9
10, 46,
16, 52,
22, 58,
28, 64,
34, 170,
36, 72,
6, 42, 9
12, 48, 9
18, 54, 9
24, 60, 9
30, 66, 9
4, 12, 11
10, 42, 11
16, 48, 11
22, 54, 11
28, 60, 11
34, 66, 11
4, 38, 11

OWWWOWWwOW

10, 44, 11

16, 50, 11
22, 56, 11
28, 62, 11
34, 68, 11
36, 69, 11
6, 39, 11

12, 45, 11
18, 51, 11
24, 57, 11
30, 63, 11

A-31

I I I I H I W W A I I I I I I I K

/

#include <scitech.h>

/% SEE2PAL.C - Reads geometry from XYZ.DTA (SEETRUSS format), strut cross
section and material properties for each type of strut from file

XYZ.PRP. Produces file XYZ.TXT which is suitable for input into

the MSC PAL2 finite element analysis program.

The file XYZ.PRP has a row, for each type, of the following quanti-

ties separated by white space for each type:

type number (starting

at 1), strut area A, Young’s modulus E, material density rho, and
the strut Euler buckling stress S_euler. The material density is

adjusted to include joint and payload masses.

John M. Hedgepeth

Updated to MS C 5.0

Added thermal properties to material specs

char xgetdataline(FILE ¥);

main{argc,argv)
int argc;
char *argv(];

int i,n,N,Ntypes,Nnodes,Nstruts,nl,n2,type,*p_strut, ¥ptr;

double X,Y¥,2,A,E,rho,S_euler;

char dtaname([30],prpname[30], outname[30] name[30] ¥line;

FILE xdtafile, *prpfile, *outfile;

strcpy(dtaname, "SIXPAC.DTA");

" strcpy(prpname, "SIXPAC.PRP");

strcpy(outname, "SIXPAC. TXT");
strcpy(name, "SIXPAC");

if(arge > 1) {
strcepy(dtaname,argvi{l]);
strcpy(prpname,argv(1]});
strcpy(outname,argvil]);
strcpy(name,argv(l]);

strcat(dtaname,".DTA");
strcat(prpname, " .PRP");
strcat(outname,".TXT");

}

strupr(dtaname);
strupr(prpname);
strupr(outname) ;
strupr(name) ;

if((dtafile = fopen(dtaname,"it")) == NULL) {
printf("\nCannot open %s. Aborted.\n",dtaname);
exit(l); C '

}

if({prpfile = fopen(prpname,”rt"”)) == NULL) {
printf("\nCannot open %s. Aborted. \n",prpname),
-~ A-32:

8/30/87

12/30/87
5/11/88

exit(l);
}

line = getdataline(dtafile);

if(sscanf(line," %d, %d, %d",&Nnodes,&Nstruts,&Ntypes) '= 3) {
printf("\nCannot read input parameters from %s. Aborted.\n",dtaname);
exit(l);

}

/% Allocate space for strut connection array
x/ '
if((p_strut = (int *)calloc(3*Nstruts,sizeof(int))) == NULL) {
printf("\nCannot allocate space for strut array. Aborted.\n");
exit(l);
}

if((outfile = fopen(outname,"r")) t= NULL) {
fflush(stdin);
printf("\nFile %s exists. Do you want to write over it? (Y/N) <N>",
' outname) ;
if(toupper(getch()) != ’Y’)
exit(l);

fclose(outfile);
} -

if((outfile = fopen(odtname,"wt")) == NULL) {
printf("\Cannot open %s. Aborted.\n",outname);
exit(1l);
} ,

/¥ Start with truss name
x/ o
fprintf(outfile,"TITLE %s TRUSS\n\n",name);

/% Discard first (zeroeth) node
x/
line = getdataline(dtafile);:
if(sscanf(line,"” %1f, %1f, X1f",&x,&y,&z) '= 3) {
printf("\nCannot scan node 0. Aborted.\n");
exit(l);

/¥ Transfer node coordinates
x/
fprintf(outfile, "NODAL POINT LOCATIONS 1\n");

for(n=1; n<Nnodes; n++) {
line = getdataline(dtafile);
if(sscanf(line," %1f, %1f, X1f",&x,&y,&z) !'= 3) {
printf("\nCannot scan node %d. Aborted.\n",n);
exit(1l);
}

fprintf(outfile,"%-3d %12.61f, %12.61f, %12.61f\n",n,x,y,z);

}
fprintf(outfile, "\n");

/% Discard rotation degrees of freedom
A-33

X/
fprintf(outfile,"ZERO 1\nRA OF ALL\n\n");

/% Select type of mass lumping

x/
fprintf(outfile, "LUMPED MASS TYPE 1\n");

/% Fill the strut connection array
x/
ptr = p_strut;
for(i=0; i<Nstruts; i++) {
line = getdataline(dtafile);
if(sscanf(line,” %d, %d, %d",&nl,&n2,&type) '= 3) {
printf("\nCannot read data for strut %d. Abort.\n",i);

exit(1l);
}
.¥ptr++ = type;
xptr++ = nl;
¥ptr++ = n2;
}
fclose(dtafile);

/% Transfer properties, connectivity, and ANALYZE for each type

x/
fprintf(outfile,"C\nC kxkkkkkkkkx Struts kkkkkkkkkkkkkkxx\nC\n");
fprintf(outfile, "\nANALYZE O\n");

N = Nnodes/12;

for(n=0;. n<Ntypes; n++) {
line = getdataline(prpfile);
if(sscanf(line,” %d %1f %1f %1f %1f",&type,&A,&E,&rho,&S_euler)
'= 5) {
printf("”\nCannot read properties for type %d. Aborted.",n+l);
exit(1l)

)

}

fprintf(outfile,"\nC *x Type %d **\n\n",type);
fprintf(outfile, "MATERIAL PROPERTIES %1E, 0.0, %1f, 0.3, %1E, "

) "1.0, 0.0\n", E,rho,S_euler);
fprintf(outfile,”"BEAM TYPE 1, %1E\n",A);

ptr = p_strut;
for(i=0; i<{Nstruts; i++) {
if(kptr++ == n) {

nl = Xptr++;

nZ2 = ¥ptr++;

fprintf(outfile, "CONNECT %d TO %d\n",nl,n2);
}
else {

ptr++;

ptr++;
}

}
fprintf(outfile, "\END DEFINITION\n");

fclose(prpfile); A-34

fclose(outfile);

printf("\nPal2 input file %s successfully written. \n",outname);

}

/kExkkkokkkkkkkkkiokkkkkkkkkkkiioookkkkkokokok Rk ko kk Rk kK
x/
char *getdataline(FILE *infile)
{
int chr,old;
char *ptr;
static char line[81];

while(fgets(line,80,infile) !'= NULL) {
ptr = line;
while(isspace((chr = (int)%ptr)))
ptr++;
if(isdigit(chr) !! chr == *.” || chr == ’+* || chr == '-’)
return ptr;
}
if(feof(infile)) {
printf("\007\nEnd of file reached.\n");
return line;
}
else {
printf("\007\nError in reading pal2 file. Abort.\n");
exit(1l);

}

/XkkkkkkkkRkkkk ok Rk kR kR kR Rk kR kR kR k kK
x/

A-35

/% BESTFIT.C — Determines the location x0,y0,z0 of the vertex and the
orientation angles phix,phiy of the best-fit paraboloid for

a deformed surface. The focal length of the paraboloid is held
constant. The parameters of the reference paraboloid and the
coordinates of nodes on the undeformed surface are read from the
file XYZ.DAT which was formed by the command

genNpac.exe Xyz (N = 6 or 3)

The values of the deformations at each point are read from the
file ABC.DEF which is obtained from the output of MSC Pal2 STATZ2
by using a text editor to extract the title and the list of dis-
placements.

The method used is to find the values of x0,y0,z0,phix,phiy which
minimize the sum of (Un cosalfa)¥(Un cosalfa)over all the nodes,
where

Un cosalfa = {uz ~ z0 + x*phiy —y*phix
- (ux - x0 - zXphiy)*xx/(2%F)
— (uy - y0 + z¥phix)xy/(2%F)}/{1 + z/{(2%F)}

I e I I I I I I I I W I W W I I

is one-half of the error in the reflected path length for the
displaced paraboloid. A weighting factor of cosalfa is used.
The displacements x0 and y0 are constrained to be related to the
rotations so that the focal point is stationary. Thus

x0
y0

~Fxphiy
Fxphix

Results are reported to the screen as values of the paraboloid
displacement and rotation as well as the rms value of the residual
half-path—-length error.

j.m.hedgepeth 9/14/87

I I W I I I I I I I W I I I I W

~

Updated for MS C 5.0 v _ 12/30/87

#include <{scitech.h>

int M;
double disp(5],F;

main()
{ a

int i, j,m,flag,lpa[5];

double x,y,z,%p_crd, ¥p_def, *p_real,c[6],d[6],Mat[3][4],w,W;
FILE xdatfile,*deffile;

‘char datname[50],defname[50],1inebuf{100],*p_chr, *n;

char title[80];

printf("\n\nBESTFIT reads input from xyz.DAT and abc.DEF.\n");
printf("Enter pathname of .DAT file? ");

gets(datname) ;

putchar(’\n’);

- if((n = strchr(datname,’.’)) == NULL)
strcat(datname, " .DAT");
o A-36

if((datfile = fopen(datname,"rt")) == NULL) {
printf("\nCannot open %s for reading. Aborted.\n",datname);
exit(1l);

}

printf("Enter pathname of .DEF file? ");

gets(defname);

putchar(’\n’);

if((n = strchr(defname,’.’)) == NULL)
strcat(defname, " .DEF");

if((deffile = fopen(defname,"rt")) == NULL) {
printf("\nCannot open %s for reading. Aborted.\n",defname);
exit(l);

}

if(fscanf(datfile,"” %d, %1f, %1f, %1f, %1f",&i,&F,&x,&y,&z) != 5) {
printf("\nCannot read parameters from .DAT file. Abort.\n");
exit(l);

}

if(fscanf(datfile,"” %d",&M) != 1) { _
‘printf("\nCannot read number of nodal points. Abort.\n");
exit(l);

}

/% Ignore first node (focal point) and divide M - 1 by 2 to use only upper
¥ surface points.
x/
M=(M-1)/2;
if(fscanf(datfile," %1f, %1f, %1f",&x,&y,&z) !'= 3) {
printf("\nCannot scan coordinates of node 0. Abort.\n");
exit(l);
}

/% Allocate space for arrays

94 ’ .

if((p_crd = (double *)calloc(3¥M,sizeof(double))) == NULL) {
printf("\nCannot allocate memory for coordinate array. Abort.\n");
exit(1l);

}

if((p_def = (double *)calloc(3%M,sizeof(double))) == NULL) {
printf("\nCanriot allocate memory for deflection array. Abort.\n");
exit(l);

}

/* Fill coordinate array
x/
p_real = p_crd;
for(i=0; idM; i++) {
if (fscanf(datfile," %1f, %X1f, X1f",&x,&y,&z) != 3) {
printf("\nCannot scan coordinates for node %d. Abort.\n",i+l);
exit(1l);
}
*p_real++
Xp_real++
*p_real++

X;
Y
z;

}
fclose(datfile);

/% Examine first lines of .DEF file until we reach deflection data. Pick up
X title on the way.

x/
/% Search each line for the title or for start of deflections

x/

flag = 1;
while(flag) {
fgets(linebuf,100,deffile);
if(sscanf(linebuf," %d %1f %1f %1f",&j,&x,&y,&z) == 4)
break;

p_chr = linebuf;

while(*¥p_chr == * > !! %p_chr == ’\t’ || %p_chr == ’\n’)
p_chr++;

if(*p_chr) {
strcpy(title,p_chr);

flag = 0;
}
}
if(flag)
strcepy(title,” TRUSS");
else {
while(fgets(linebuf,100,deffile) != NULL) ({
if(sscanf(linebuf," %d %1f %1f %1f",&j,&x,&y,&z) == 4) {
flag = 1;
break;
, }
}
}

if{flag == 0) {(:
printf("\nError reading start of .DEF file. Abort.\n");
exit(l); '
} .

/% Fill deflection array
x/

p_real = p_def;

for(i=0;i<j-1; i++) {

*p_real++ = 0;
*p_real++ = 0;
*p_real++ = 0;
}
*p_real++ = x;
*p_real++ = y;
*p_real++ = z;
i++;

for(; i<M; i++) { .
if(fgets(linebuf,100,deffile) == NULL) ({
printf("\nCannot read .DEF file for node %d. Abort.\n",i + 1);
exit(1l);

}

if(sscanf(linebuf," %d %1f %1f X1f",&j,&x,&y,&z) '= 4) {
printf("\nCannot scan deflections of node %¥d. Abort.\n",i + 1};
exit(1); A-38

} .

for(;i<j-1; i++) {
Xp_real++ = 0;
xp_real++ = 0;
*¥p_real++ = 0;

}

*p_real++ =
¥p_real++ = y;
*p_real++ =

}
fclose(deffile);

/% Prepare to fill matrix

x/

for(i=0; i<4; i++) {
for(j=0; j<3; j++)
Mat[j][i] = O;

dfi] = 0;
}
W =0;
for(m=0; m<M; m++) {
X = Xp_crd++;
y = ¥p_crd++;
2 = Xp_crd++;
X /= 2.%F;
y /= 2.%F;
z /= 2.%F;

w=1./(1. + 2.%2);

c[0]
c[l]
c[2]
c(3]
c(4]

xX¥w;
y¥w;
—w;
-y
X;

w = sqrt(w);

*p_def++;
¥p_def++;
X*p_def++;

X
y
Z
c[5] = c[0]*x +c[l]*y + c[2]*z;

for(i=0; i<4; i++) {
for(j=0; j<3; j++)
Mat[j][i] += c[i + 2]*%c[j + 2]%w;
d{i] += c[i + 2]*c[5]%w;

}
W += w;
}
for(i=0; id4; i++)

dfi] /= W;
. A-39

w = .000001;
dcrout(4,3,1,Mat,w,&W,&i, lpa);

W = d[3];

for(i=0; i<3; i++) {
disp[i] = Mat[i][3];
W —= d[i]*disp(i];

}
for(i=0; i<25; i++)
putchar(’\n’);
printf(" %s\n\n",title);

%le\n\n",sqrt(w));
%le\n\n",disp[0]);

printf("\tRms distortion from best-fit paraboloid
printf("\tVertical displacement of paraboloid: 20

printf("\tRotation of paraboloid about: X axis %le\n",disp{l1}/2./F);
printf("\t y axis %le\n",disp[2]/2./F);
for(i=0; i<10; i++)

putchar(’\n’);
fflush(stdin);
getch();

A-40

NIHONK Aeronauics and
Snace Agrwss

Report Documentation Page

3ton

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-181747

. Title and Subtitie 5. Report Date

Pactruss Support Structure for Precision June 1989
Segmented Reflectors

6. Performing Organization Code

7. Authoris) 8. Performing Organization Report No.
John M. Hedgepeth AAC-TN-1153
10. Work Unit No.
9. Performing Organization Name and Address 585-02-31-01
Astro Aerospace Corporation 1. Contract or Grant No.
6384 Via Real . NAS1-17536, Task 9

Carpinteria, CA 93013-2993

13. Type of Report and Period Covered

12

Sponsoring Agency Name and Address
Contractor Report

NASA Langley Research Center 14. Sponsoring Agency Code
Hampton, VA 23665-5225 '

15.

Supplementary Notes

Langley Technical Monitor: Wilbur B. Fichter

16.

Abstract -

This report deals with the application of the Pactruss deployable structure to
~the support of large paraboloidal reflectors of very high precision. The

Pactruss concept, originally conceived for the Space Station truss, is shown

to be suitable for use in a triangular arrangement to support a reflector sur-
face composed of hexagonal reflector panels. A hybrid of Pactruss structural

and deployable single-fold beams is shown to accommodate a center body. A

minor alteration in the geometry is shown to be necessary in order to avoid lock-
up during deployment.

~ In order to assess the capability of the hybrid Pactruss structure, an example

truss supporting a full-scale (20-meter-diameter) infra-red telescope is ana-
lyzed for static and dynamic performance. A truss structure weighing 800 kil-
grams is shown to give adequate support to a reflector surface weighing 3,000
kilograms.

17.

Key Words (Suggested by Authoris)) 18. Distribution Statement
Reflectors Truss Unclassified - Unlimited
Antennas Vibration

Synchronous deployment Subject Category 39

Large deployable reflector

19,

Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price

Unclassified ~ Unclassified 75 | Ao4

NASA FORM 1628 OCT 86

