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ABSTRACT

Location privacy in mobile services has the potential to become
a serious concern for service providers and users. Existing pri-
vacy protection techniques that use k-anonymity convert an origi-
nal query into an anonymous query that contains the locations of
multiple users. Such techniques, however, generally fail in offer-
ing guaranteed large privacy regions at reasonable query process-
ing costs. In this paper, we propose the PAD approach that is ca-
pable of offering privacy-region guarantees. To achieve this, PAD
uses so-called dummy locations that are deliberately generated ac-
cording to either a virtual grid or circle. These cover a user’s ac-
tual location, and their spatial extents are controlled by the gener-
ation algorithms. The PAD approach only requires a lightweight
server-side front-end in order for it to be integrated into an exist-
ing client/server mobile service system. In addition, query results
are organized according to a compact format on the server, which
not only reduces communication cost, but also facilitates the re-
sult refinement on the client side. An empirical study shows that
our proposal is effective in terms of offering location privacy, and
efficient in terms of computation and communication costs.

1. INTRODUCTION

1.1 Overview

The Internet is on the brink of going mobile. An infrastruc-
ture is rapidly emerging that encompasses large numbers of users
equipped with mobile terminals that posses geo-positioning capa-
bilities, e.g., built-in GPS receivers, and data communication capa-
bilities.

Location-based services are increasingly becoming available that
return results relative to the locations of their users. For example,
a service may return the nearest gas station or all four-star Chi-
nese restaurants downtown. Users who disclose their locations to a
server in order to receive such a service are not afforded any loca-
tion privacy, and knowledge of their locations can be misused [20].

We see location privacy as an enabling technology for the diffu-
sion of the mobile Internet and the use of location-based services.
By offering users the ability to choose different types and degrees
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of location privacy, users are more likely to want to use mobile
services.

The paper assumes a typical service usage scenario. To be able
to use a service provider’s services, a user needs to create an ac-
count and to log onto that account—this is akin to, e.g., iGoogle™.
Consequently, the service provider knows the identity of each ser-
vice user. In this setting, we assume that the user employs a service
that relies on queries that take the user’s current location as an ar-
gument; and we assume that the user wishes to not disclose his or
her exact location to the service provider.

Our objective is then to provide a technique that enables the user
to employ such services, but without disclosing his or her exact
location. The service provider is expected to be able to infer the
exact location of the (known) user with low probability.

1.2 Technical Motivation

The earliest proposal for location privacy protection is spatial
cloaking [11]. Instead of sending a single user’s exact location to
the server, spatial cloaking techniques [3,4,8-11, 17] collect k user
locations and send a corresponding (minimum) bounding region
to the server as the query parameter. The collection of different
mobile user locations is done either by a trusted third-party com-
ponent [8, 11, 17] in-between the clients and the server, or via a
peer-to-peer collaboration [4,9, 10] among mobile users. Because
of the k-anonymity [19] achieved, an adversary can only identify a
location’s user with probability no higher than 1/k.

Next, obfuscation techniques [1, 6, 7, 15] include fake or fixed
locations, rather than those of other mobile users, as parameters of
queries sent to the server. Fake dummy locations are generated at
random [15], and fixed locations are chosen from special ones such
as road intersections [6,7]. Either way, the exact user locations are
hidden from the server.

Other existing techniques include cryptographic protocol-based
approaches [12,14]. Based on a specific transformation fully known
only to the clients, the server processes user queries without the
ability to decipher exact user locations. The drawback of such tech-
niques is that the query results returned by the server do not offer
correctness guarantees.

Existing location privacy techniques exhibit two significant lim-
itations. First, some require a trusted third-party anonymizer that
maintains all user locations. Such a component may not always
be available, and it may itself present security/privacy problems.
Second, the underlying k-anonymity that some techniques borrow
directly from techniques for identity privacy protection is generally
inadequate for location privacy, where the notion of distance be-
tween locations is important (unlike distances between identities).

For example, Figure 1 contains a total of 100 mobile users within
a 1 km by 1 km region of interest. Assume that a query by the user
with location ¢ is given 10-anonymity. Because the user is in a
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Figure 1: k-anonymity in A Spatial Context

dense part of space, the small 200 m by 200 m dashed anonymity
region in the figure is generated. This region does not afford the
user the desired location privacy. For example, an adversary can
easily track down the user.

To obtain a larger privacy region, we intuitively need to use a
larger value for k. In the example, if we need a 1 km by 1 km cloak-
ing region, k must be set at 100. Unfortunately, simply increasing
k may not help. If the user is in a high-density sub-region, e.g.,
at a bus stop with many people waiting for buses, we may need a
very large k in order to obtain a suitably large privacy region. In
contrast, if the density is low, even a small k can bring about a
very large cloaking region, which may then result in a very large
intermediate query result. Consequently, communication cost be-
tween the server and third-party anonymizer will become higher, as
will the result refinement cost on the anonymizer. In other words,
k-anonymity faces problems in offering region-based location pri-
vacy.

The example highlights two important observations. First, k-
anonymity by itself is not enough to ensure location privacy. Rather,
we should take privacy area constraints into account as well. Sec-
ond, the effect of k-anonymity-based location privacy depends heav-
ily on the distribution and density of the mobile users, which, how-
ever, are beyond the control of the location privacy technique. The
Casper [17] requires each mobile user to specify a privacy pro-
file that includes two parameters k and A,in, where k reflects the
anonymity requirement and A,,;, indicates at least how large the
cloaking region should be. Although both aspects are taken into ac-
count, the Casper is unable to balance between them, but is depen-
dent on the mobile user distribution, due to the cloaking approach
used.

For techniques based on cryptographic transformation, the key
problem is the impaired query accuracy. Also, such techniques re-
quire a trusted third entity to accomplish the cryptographic trans-
formation. This requirement may be difficult or impossible to meet.

1.3 Proposal Overview

Motivated by the observations above, we propose PAD, a privacy-
area aware, dummy-based approach to user location privacy in mo-
bile services. This approach takes into account the number of lo-
cations in one query request being sent to the server, as well as the
area of the region covered by those locations. This duality makes
it more appropriate in spatial contexts than purely k-anonymity-
based techniques.

We present two dummy generation algorithms. One generates
dummies based on a virtual grid covering the user location. The
other generates dummies based on a virtual circle that contains
the user location. These algorithms are flexible in that the dummy
generation is configurable and controllable, thus offering means of
controlling the location privacy of a user. This contrasts past work
where location dummies are either generated totally at random [15]
or are selected among fixed and constrained options [6, 7].

The PAD approach can be easily integrated into existing systems
that employ client/server architectures. It does not require a trusted
third-party component to server as an anonymizer, and nor does it
assume that the server is trustable. In the server side, a lightweight
front-end module suffices to render the approach functional. In ad-
dition, the query results to be sent to clients are organized accord-
ing to a compact format with respect to all dummy locations in a
query. This format not only reduces the communication cost, but
also facilitates the result refinement on the client side.

Empirical evaluation show that our proposals are effective in
terms of offering location privacy, are efficient in terms of com-
putation and communication costs, and are flexible in terms of bal-
ancing between privacy requirements.

1.4 Paper Outline

The rest of the paper is organized as follows. Section 2 presents
preliminaries relevant to the PAD approach. Section 3 details the
PAD approach, covering two specific dummy generation algorithms
and the integration of PAD into existing systems. Section 4 empiri-
cally evaluates our solution. Section 5 briefly revisits related work,
and Section 6 concludes the paper.

2. PRELIMINARIES

Our proposal assumes a client/server architecture without a third-
party anonymizer. This is motivated by several considerations.
First, the client/server architecture is used widely, which affords
our proposal wide applicability. Second, a mobile terminal does
not need to report its location periodically to an anonymizer, as is
needed in spatial cloaking solutions where the anonymizer needs
up-to-date location information from all mobile terminals in order
to do the cloaking. In our proposal, a mobile terminal only issues
queries to the server on demand without any periodical location
reports. Third, our proposal setting is based on the seemingly real-
istic assumption that the adversary knows what the server knows,
i.e., the parameters and result of a query, and the identity of that
query issuer. We focus on protecting user location privacy when
they issue snapshot queries which are expected to occur frequently
in practice.

2.1 Definitions

A location-dependent query is abstracted as @ = (pos, P), where
parameter pos is the mobile user location and parameter P denotes
user-specified predicates. We call such a query @ the original
query. With the location dummy approach, the original query is
typically converted into a query Q' = (posi1,posa, - .., posk, P),
where the pos; include the user’s real location and £ — 1 dummy
locations, and P is the original query predicate that applies to all
k locations. We call query Q' an location privacy query, since it
hides the user location.

Note that we use the same predicates P for all positions in Q’,
namely the one from the original query. There is no need for vary-
ing the predicates for different dummy locations—the variance in
locations already yields the desired location privacy protection. In
fact, the use of different Ps might be exploited by an adversary.

As pointed out in Section 1, the use of k-anonymity for offering



location privacy has a crucial drawback: no guarantees are given
of the form that user’s location cannot be identified within a cer-
tain region. As we consider it important to be able to offer such
guarantees, we proceed to introduce the relevant concepts.

DEFINITION 1. (Privacy Region) The privacy region of a lo-
cation privacy query is the convex hull of all positions contained in
the query.

Given that the convex hull is the minimum convex region that
covers all positions in a location privacy query, it is a natural and
conservative guess on the part of an adversary who knows all pos;
of where the user may be located. Put differently, the convex hull is
a lower bound on the region within which an adversary may expect
to find the real user location.

The area of a privacy region indicates the effort that an adversary
needs to expend in an attempt at identifying the user’s actual loca-
tion. We therefore define the area of the privacy region of a location
privacy query as the query’s privacy area.

With this notion of privacy area, we are able to define our own
location privacy notion, which is similar to, but semantically dif-
ferent from that employed by Casper [17].

DEFINITION 2. ((k, s)-privacy) A location privacy query obeys
(k, s)-privacy if it contains k locations and its privacy area is no
smaller than s.

This notion of (k, s)-privacy takes into account both the number
of privacy locations and the privacy area. It should not simply be
regarded as an extension of pure k-anonymity, as the k has a dif-
ferent meaning from that used in k-anonymity, which requires that
at least k different users are unidentifiable from each other so that
an adversary is unable to associate some sensitive information to
any specific individual user. In contrast, we use (k, s)-privacy to
protect user locations, not user identities, from being known by the
service provider. The additional area constraint s controls the size
of the region covered by a location privacy query and thus ensures
location privacy in a “real” spatial sense.

2.2 Enforcing (k, s)-Privacy

A conventional spatial cloaking approach does not ensure that
its anonymous queries obey (k, s)-privacy. Most existing spatial
cloaking techniques focus on satisfying the k-anonymity, which is
intended to protect user identities, rather than the user locations,
from being inferred by an adversary. As a result, the implicit pri-
vacy area requirement is downplayed. Although Casper [17] im-
proves the cloaking by introducing an area constraint into its pri-
vacy profiles, it still faces difficulty because it depends heavily on
the distribution of actual mobile users as indexed by a hierarchy of
grid structures. If a grid cell is dense with respect to mobile users,
Casper merges adjacent cells to enlarge the privacy region. How-
ever, this may group too many users and result in privacy regions
that are overly large, which may increase the cost of query process-
ing, including that in result refinement. If there are too few mobile
users, any spatial cloaking technique fails at ensuring k-anonymity,
let alone (k, s)-privacy.

Next, existing obfuscation techniques largely ignore the indica-
tion of privacy areas. They choose as dummies either prefixed lo-
cations or randomly generated, fake positions, which may fail in
ensuring privacy areas that comply with the expected privacy area
requirement s.

Our proposal is based on dummies: it generates multiple location
dummies and converts the original query () into a location privacy
query Q' = (posi,posa, ..., posk,P). The dummy generation
takes into account the privacy area requirement s, so that the area of

the privacy region covered by all k positions (those of the dummies
and the user’s actual location) is equal to or close to s.

The actual user location is hidden among the k locations in Q’,
so the server cannot tell which location belongs to the user. In
contrast, the client maintains a privacy index, namely the index of
the exact user position in the position sequence sent to the server.
This privacy index, denoted ¢dz, is used by the client to determine
the real query result from all points received from the server, as will
be shown towards the end of Section 3.2.

2.3 Pitfalls in (k, s)-Privacy

Extreme cases exist in which (k, s)-privacy may fail to offer
the location privacy expected by a user. Such extreme cases are
related to the distribution of the positions in a location privacy
query. For example, if k' positions, where k’ is close to k, in query
Q' = (pos1,posa, . .., posi, P) are very close, this can have two
negative consequences for (k, s)-privacy. An adversary will prob-
ably ignore the few outliers and infer with high probability that
the user’s location is among the k' ones. This effectively causes a
smaller k in the (k, s)-privacy. Further, the privacy region becomes
the convex hull of the k&’ positions, yielding a privacy area that may
be much smaller than the expected s.

To counter these problems, we must have some control over the
distribution of the dummy positions in location privacy queries. In
particular, we must avoid extreme cases in which many dummy
positions are clustered very closely. Our dummy generation algo-
rithms, to be presented in Section 3.1, avoid extreme distribution
cases by generating all dummy locations evenly with respect to the
exact user location.

3. PAD: PRIVACY-AREA AWARE DUMMY

We proceed to detail our proposal: Privacy-Area Aware Dummies-
based location privacy (PAD). We propose two dummy generation
algorithms, describe the corresponding server-side query process-
ing, and present techniques for reducing the client/server commu-
nication costs.

3.1 Privacy-Area Aware Dummy Generation
Algorithms

Generating the dummy locations totally at random provides lit-
tle control [15]. We are interested in approaches for generating the
dummies that aid in satisfying (k, s)-privacy. We thus propose two
privacy-area aware dummy generation algorithms. The one algo-
rithm employs a circle to constrain all dummy positions, while the
other uses a uniform grid.

3.1.1 Circle-Based Dummy Generation

To understand the idea behind the circle-based dummy genera-
tion, consider the example in Figure 2(a), where k£ = 9 and pos is
the user location. All locations, including the user location and the
dummy locations, are constrained by a circle centered at position
pos’ with radius r. The center pos’ is determined at random such
that 7min < dist(pos,pos’) < r.! We will show how to deter-
mine the values r,i, and r given the privacy area requirement s.
For each pair of clock-wise consecutive positions and pos’, they
determine an angle 6. All positions are distributed in such a way
that all fs are equivalent.

We first consider the hull of all positions, whose area is the sum

ldz’st(p, q) denotes the Euclidean distance between points p and q.
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where r; is dist(pos;, pos’). To ease the representation, we let
rr+1 be equal to 1. It is easy to understand that this hull is not
necessarily convex and that § < 5, where § is the area of the corre-
sponding convex hull.

If we assume that all positions have identical distance to pos’,
the hull determined by them is necessarily convex. Thus, taking
into account the privacy area requirement s, we have:
s=s5= 1 k-r? st—7r =3

=5=3 ; =
Solving this, we get an upper bound 7 = /(2-s)/(k - sin2F).
Let 7min = p - 7, where 0 < p < 1. We then get:
—~ ~ 1 2 . 21 1 2 . 2 2

>3> = k-ri, - L k(p- . sinY/— = p%.
52825 T sin— 5 (p-7) sin—-=p"-s
This indicates a lower bound of the privacy area of all the k& posi-
tions, i.e., § > p? - 5. As a result, by carefully choosing p, we can
get a guarantee on the privacy area of the location privacy query
generated based on a virtual circle. For example, if we choose
p = /3/2, we can ensure that the resulting privacy area is not
smaller than three quarters of s.

The algorithm, called CirDummy, is shown in Algorithm 1. The

Algorithm 1 CirDummy (User position pos, anonymity k, privacy
area s, coefficient p)

1: 0—2-7/k; r— /2 -s/(k-sin0)

2: determine a position pos’ at random s.t. dist(pos,pos’) €
lp-r7]

: initialize K'[0..k — 1] to be an empty array; K[1] < pos

: for i from 1to k — 1 do

determine a position p at random s.t. dist(pos’, p) € [p-r, 7]

and Zppos' K[i —1] =6

Kli] —p

: tdz «— random(0,k — 1)

: switch K [0] with K [idz]

: return K and idx

A )

NN

algorithm first calculates the upper-bound radius 7 of the virtual cir-
cle and the angle 6 between any consecutive position pair (line 1).
Next, it determines the virtual circle center pos’ at random (line 2)
so that its distance to pos falls in [p - r,7]. Then, it initializes an
empty array K and makes the user position pos its first element
(line 3). The k¥ — 1 dummy locations are generated as discussed
already: their distances to the virtual center pos’ are constrained
by [p - r, 7], while they are scattered evenly in terms of their angles
with respect to pos’ (lines 4-6). Having generated all dummies, a
random index idx between 0 and £ — 1 (both inclusive) is chosen
for the user position pos, which is switched with the idx-th element
(lines 7-8). Finally, K and ¢dx are returned.

When the coefficient p is very close to 1, it may happen that
all positions are too close to the virtual circle edge. This leaves
a large blank region around the center pos’ of the virtual circle,
which is not desirable. The CirDummy algorithm can be adapted
to handle such cases. We can generate half the dummies using
the CirDummy algorithm, and generate the other half at random
making their distances to pos’ fall in (0, p - 7]. To make it safer, the
distance between pos and the user position pos is not constrained
by p, but falls in (0, r] (line 2 in Algorithm 1).
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Figure 2: Privacy-Area Aware Dummy Generation Examples

3.1.2 Grid-Based Dummy Generation

The grid-based dummy generation works as follows. A (virtual)
uniform, square grid is created, such that (1) it has k vertices, (2)
its area is equal to s, and (3) the user position pos is one of the k
vertices. The k — 1 other vertices will be used as dummy locations,
to be sent to the server together with the user position pos.

Algorithm 2 GridDummy (user position pos, anonymity k, pri-
vacy area s)

I c—Vk

2: idy < random(0,c — 1); idy < random(0,c — 1)
39— Vs/le—1)

4: initialize K[0..k — 1] to be an empty array

5: for i from O to c — 1 do

6: for jfromOtoc—1do

7: z — (i —idg) - g + pos.x

8: y — (j —idy) - g+ pos.y

9: K[jxc+1i] < (z,y)

10: return K and i¢d, * c + id, // the index of pos in K

The algorithm, called GridDummy, is shown in Algorithm 2. It
first calculates the number of vertices in either direction (the x and
y axes) as the square root of k (line 1). Next, it attaches the user
position pos to one of the vertices, by generating the corresponding
z and y indices at random (line 2). Based on the given area s and
value c, the algorithm is able to determine the side length g of each
grid cell (line 3). It then calculates the position for each grid vertex
in row-major order and enters all positions into an array K in that
order (lines 4-9). Finally, it returns both the position array K and
the index of the user position pos in K.



We assume that k is a square number. If k is not a square num-
ber, we can simply use the smallest square number k&’ > k.2 For
a location privacy query with dummy positions generated by the
GridDummy algorithm, its privacy region is simply the rectangle
(square) indicated by the grid, as such a rectangle perfectly covers
all the k locations. It does not make sense for an adversary who is
aware of all positions in the query to assume any other shape in an
attack.

An example of grid-based dummy generation is shown in Fig-
ure 2(b), where k is 25, with 5 vertices in either direction. All
vertices are numbered in row-major order. The user position (dark
color) is attached to vertex 6, which means i¢d, = ¢d, = 1in the
algorithm. The array K returned contains all positions from ver-
tices O to 24.

3.2 Server-Side Processing

Having received a location privacy query Q' = (pos1, posa, . . .,
posyk, P) from a mobile client, the server processes this according
to predicate P.

An extension is needed to ensure that the location privacy query
is served correctly. Specifically, we place a module in front of the
query engine that sends all positions in Q’ to the query engine one
by one as separate, individual queries and that assembles the query
results returned by the query engine. This module differs from the
secure third-party component adopted by previous work [13, 17];
notably, the module needs not be trusted, as the query request al-
ready hides the user location.

To reduce the server-to-client communication, the results for all
k positions that need to be sent back to the client are organized
in a compact manner as follows. Assume that there are [ dis-
tinct points in the results. Then the result is represented as R =
({r1,bmp1), (r2,bmpa), ..., {(ri,bmp;)), where each r; is a point
retrieved by the query engine, and each bmyp; is a bitmap telling
which positions in Q' have r; in their results.

The algorithm underlying the server-side module is presented in
Algorithm 3. The first step is to initialize two vectors, R for all
points retrieved and L for all bitmaps. For each position pos; in

Algorithm 3 ServerModule (Location privacy query Q')
1: initialize the final-result vector R
2: create a vector L to contain all bitmaps
3: for i from 1 to k£ do

4:  send (Q'.pos;, Q'.P) to query engine and get its result R;
5 for each point pt € R; do

6: if pt appears in R as the j-th one then

7 set bit ¢ of L[j]

8 else

9: append pt to R

10: create a bitmap bmp with bit ¢ set

11: append bmp to L

12: send R and L to the client

@', the algorithm sends this position together with the predicate to
the query engine; it receives the result 12;, and it then updates the
result R and bitmaps in L accordingly (lines 3-11). To facilitate
the checking of whether a point pt in R; has already been included
in the result R (line 6), we use a memory resident R-tree to index
all points in R. If pt has appeared, the corresponding bitmap in L

2As a variation, k can be a composite number, meaning that the
virtual grid becomes a rectangle. The = and y directions then have
different numbers of vertices. Due to space limitations, we present
the fundamental idea only and omit minor variations possible.

will have its ¢-th bit set, to indicate it belongs to the result of the
i-th position (lines 6-7). Otherwise, pt will be appended to R, and
a new bitmap is appended to L (lines 9-11). Finally, both R and L
are returned to the client.

Like the server-side packing, the client-side result refinement is
quite simple: a single loop on all received points is enough. For
each point r;, we apply a bit-wise AND operation to its bitmap
bmp; and the value of operation 1 << (k — idxz — 1). Point r; is
in the final result if the AND operation returns a value larger than
Zero.

3.3 Communication Cost Analysis

3.3.1 Upstream Communication Cost

With a 2D location taking up 8 bytes, the size of a raw request
containing a total of & locations is expressed as:

Restructuring a raw query request [15] by putting all  coordinate
values in front of y values, the cost can be reduced to roughly
16Vk.

When we employ the virtual grid approach to generate dummies,
we can further reduce the cost by sending the grid configuration
only in the request. The configuration of a uniform grid is given
by 3 parts: the top-left corner location (8 bytes), the side length of
each square grid cell (4 bytes), and the number of grid cells in the
horizontal/vertical direction (1 byte). Therefore, a request with the
grid configuration consumes 13 bytes only.

3.3.2 Downstream Communication Cost

Let R; be the result that corresponds to the i-th position in query
Q’. Then the size in bytes of a raw result message without packing
is:

k
‘Resm.w | =8 Z |Rz| (2)

i=1

With the packing described in Section 3.2, the result message size
shrinks to:

k
| Respacked| = (8 + [k/81)| | Rl 3)

=1

The data reduction rate achieved by the packing is therefore defined
as:

| ReSraw| — | ReSpacked|
| ReSraw|

DRR = @

3.4 Summary

The PAD approach has several noteworthy properties. First, the
dummy generation algorithms are aware of the privacy area re-
quirement, enabling them to support region-based location privacy—
privacy regions with desired sizes may be returned. Second, PAD
is easy to implement and to integrate into a client/server architec-
ture because it does not assume a trusted third-party component.
Its dummy generation algorithms are quite simple yet effective, es-
pecially compared to cloaking techniques [8, 17] that depend heav-
ily on the distribution and density of the mobile-user population.
Third, PAD incorporates techniques that reduce both the upstream
and downstream communication between client and server. We
proceed to evaluate PAD empirically on both real and synthetic
datasets.
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Figure 3: Privacy Area

4. EMPIRICAL EVALUATION

In the empirical evaluation, we consider three performance as-
pects: privacy area, communication cost, and server module cost.

4.1 Settings

We use randomly generated uniform (UI) datasets and a real-
world dataset in our experiments. The latter, called SC, contains
162,896 schools in the US mainland. It is obtained from a complete
set of 172,188 schools across the entire country’. All datasets are
normalized to a 10,000 x 10,000 square 2D space on the server
side and are indexed by R-trees with a 1K byte page size. Within
the data space, we generate 100 points at random and use them
as query positions in each experiment. The performance figures
reported are averages of all 100 queries.

All algorithms are written in Java and run on a Windows XP
PC with a 2.8GHz Intel Pentium D CPU and 1GB RAM. All ex-
perimental parameters and their settings are listed in Table 1, with
default values given in bold.

Parameter Setting
10000 x 10000

100K, 200K, 500K, .. ., 1000K

Spatial extents
UI dataset cardinality, N

Anonymity, k 2232, ...,5%,...,10%
Privacy region area, s 0.1-10002, 0.2-10002, ..., 10002
K in KNN queries 10, 20, 30, 40, 50

Range in range queries 100, 200, 300

Table 1: Parameters Used in Experiments

4.2 Privacy Area

This batch of experiments compares PAD’s two dummy gener-
ation algorithms with the MN dummy generation algorithm [15],
which places the next dummy position within the neighborhood of
the current one. For both the MN algorithm and the CirDummy
algorithm, we use the convex hull of all positions in each location
privacy query as the privacy area. We use p® = 0.75 as the default
in the CirDummy algorithm.

According to the results reported in Figure 3(a), the privacy area
of CirDummy is always considerably larger than that of the MN
algorithm when varying the anonymity k. This is attributed to the
fact that CirDummy is aware of the privacy area requirement, while
MN is not. When k changes from 4 to 9, the privacy area of Cir-
Dummy exhibits an apparent increase, and then it grows slowly as
k increases. This indicates that CirDummy does not achieve good
privacy areas with only few dummies, but with enough dummies

3U.S. Board on Geographic Names, http://geonames.
usgs.gov/index.html.

(here, at least 9) its result is better than the expectation indicated by
the coefficient p.

Figure 3(b) plots the achieved privacy areas of CirDummy and
GridDummy when varying the privacy area requirement s. As s in-
crease, GridDummy always produce exactly sized privacy regions,
and CirDummy achieves the guarantee indicated by p. Figure 3(c)
reports on the effect on the privacy area of CirDummy for varying
p. It is seen that the privacy area is at least 80% of the privacy area
requirement s.

As the GridDummy algorithm always produces exactly sized pri-
vacy regions, we focus on it in the sequel.

4.3 Communication Cost

We first consider the upstream communication cost, i.e., the query
request message size in bytes. Figure 4 covers three approaches:
all positions are sent without any reduction (“Dummy”); dummy
reduction [15] is used (“Dummy with reduction”); the virtual grid
configuration is sent (“GridDummy”) as described in Section 3.3.1.
GridDummy is a clear winner, as it needs only send the grid config-
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Figure 4: Upstream Communication Cost

uration rather than all positions. When k grows the communication
cost savings therefore increase.

We next investigate how the downstream communication cost,
i.e., the query result message size, is affected by & and s. Figure 5
reports on the result data reduction rate (Formula 4) for the SC
dataset.

Figures 5(a) and 5(b) cover range queries. It is shown in Fig-
ures 5(a) that as the anonymity requirement k& grows, the commu-
nication cost savings also increase. Given a fixed privacy area s, the
more positions a location privacy query contains, the more overlap
these positions’ results have. Consequently, the packing of results
gains and becomes more efficient.
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Figure 6: Server-Side CPU Cost on SC Dataset

Next, Figure 5(b) shows that an increasing privacy area require-
ment s decreases the communication cost saving. As the privacy
region expands for a fixed number of positions, these positions are
distributed more apart. This results in less overlap among their re-
sults, which reduces the result reduction. Both figures also indicate
that when other settings are fixed, the result reduction savings in-
crease as the query range predicate increases. A larger range predi-
cate retrieves more data points, increases the overlap among results
of different positions, and therefore improves the result reduction.
Figures 5(a) and 5(b) indicate that small anonymity requirement k
values are not good choices, but a medium-sized privacy area re-
quirement s strikes a good balance between location privacy and
the overall result transmission cost for range queries.

Figures 5(c) and 5(d) report results for KNN queries. Here, the
privacy area requirement s has little effect on the communication
cost savings, as shown in Figure 5(d). Nevertheless, both larger
anonymity requirement k£ values and larger K values have a posi-
tive effect. The reason for the former is similar to that mentioned
earlier for range queries. A larger value of K increases the over-
lap among the results of different positions when other settings are
fixed, thus increasing the result data reduction. Because the result
cardinality of a KNN query is usually smaller than that of a range
query, the anonymity requirement k has a more significant effect
than does the privacy area requirement s. Small k values are not
good choices for KNN queries.

Next, we consider how the result data reduction is affected by the
dataset cardinality. The results shown in Figure 7(a) indicate the
effect of the cardinality is insignificant. Due to space limitations,
we show results for range queries; those of KNN queries exhibit
similar trends, but the values are slightly lower.

4.4 Server-Side Cost

For the experiments covered in Section 4.3, we also obtain the
CPU processing time of the server-side module. The results ob-
tained on the SC dataset are reported in Figure 6.

Referring to Figure 6(a) and Figure 6(c), larger anonymity re-
quirement k values cause higher CPU processing time on the server
side for both range queries and KNN queries. This is because a
larger k value causes more positions in a location privacy query
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Figure 7: Effect of N for UI (k = 25, s = 1km?)

sent to the server-side module for processing. Figure 6(b) and Fig-
ure 6(d) show that the privacy area requirement s has a very limited
impact on the CPU cost of the server-side module. The server-side
module design does not depend on the privacy area in an incoming
location privacy query. To some degree, however, the privacy area
can determine which and how many data points are retrieved from
a given dataset, which moderately affects the CPU processing time
consumed by the server-side module. All results here suggest that
the extra cost of the server-side module is very low, especially for
KNN queries, which retrieve relatively few data points.

Figure 7(b) reports on how the server-side module processing
time is affected by the dataset cardinality. It is seen that larger
dataset cardinalities increase the CPU processing time. This is be-
cause more data points are retrieved by the module as query results.

S. RELATED WORK

In this section we review the existing location privacy protection
techniques proposed in related work. Existing techniques can be
roughly classified into three categories.

The first category contains spatial cloaking techniques [2-5, 8-
11,16,17]. Based on the k-anonymity [19] privacy notion in infor-
mation publishing, spatial cloaking techniques do not send a single
user’s exact location to the server. Instead, they collect at least k
user locations and send a (minimum) region covering all these lo-
cations to the server as the query. This way, the k-anonymity [19]
is achieved. Therefore, an adversary can only guess which location



belongs to which user with probability no higher than 1/k. To col-
lect multiple mobile-user locations, the conventional client/server
architecture is extended. Either a trustable third-party component [8,
11,17] in-between the clients and the server is introduced, or peer-
to-peer collaboration [4,9, 10] is exploited.

The second category contains obfuscation techniques [1,6,7,15],
which use fake or fixed locations rather than those of other mobile
users when cloaking a query. One approach [15] generates at ran-
dom a number of fake locations, called dummies, and sends them
and the user’s location to the server, thus hiding the user’s loca-
tion. Another approach [6,7] directly uses special locations such as
road intersections as dummies. Motivated by inaccuracy in location
positioning technologies, a recent obfuscation-based technique [1]
employs a circular region to model each user location, and accord-
ingly sends obfuscated regions instead of positions to the server.

The third category encompasses techniques based on cryptographic

protocols [12, 14]. In relevant approaches, both the data stored on
the server and the query location sent to the server are transformed
into a specific format. Because that format is fully known by the
clients only, the server has great difficulty in finding out the exact
user locations when processing queries. However, such techniques
only return approximate query results without correctness guaran-
tees, and they require a trusted third-party component to carry out
the secret data transformation.

Finally, the recent SpaceTwist proposal [18] does not belong to
any category above. In SpaceTwist, a client asking for nearest
neighbors sends a fake location, called an anchor, to the server.
The server incrementally processes the KNN query with respect to
the anchor, returning nearest neighbor points incrementally to the
client. The client then continuously retrieves points from the server
and updates its query result with respect to its exact location kept
locally until it finds that the accurate nearest neighbors are con-
tained among the points retrieved so far.

6. CONCLUSION AND RESEARCH DIREC-
TIONS

In this paper we propose PAD, a privacy-area aware, dummy-
based location privacy protection technique for mobile services.
We design two dummy generation algorithms that take into account
privacy area requirements. The paper describes how to integrate
PAD into a client/server architecture so that the location privacy
of mobile users is preserved and the client/server communication
costs are reduced, at the expense of insignificant server-side costs.
We report on an empirical evaluation of PAD. It is noteworthy that
PAD is effective in offering area-based location privacy, which is
not the case for existing dummy-based techniques. In addition,
PAD is efficient: it requires insignificant extra server-side costs and
is capable of reducing the client-server communication costs.

Several direction for future research exist. First, it is possible
to extend PAD to 2-dimensional space with obstacles, which are
regions where service users cannot be located. The dummy gen-
eration algorithms must still satisfy the privacy requirements, but
must take into account the obstacles. Second, it is relevant to con-
sider privacy-area (or some other privacy metric) aware location
privacy in a spatial network setting. Third, while the paper consid-
ers only snapshot queries, it is of interest to extend PAD to support
also continuous queries that can be issued by mobile users.
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