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ABSTRACT 

 
 

Analytical solutions for either the shear stress or the normal stress differences 
in large-amplitude oscillatory shear flow, both for continuum or molecular 
models, often take the form of the first few terms of a power series in the shear 
rate amplitude.  Here we explore improving the accuracy of these truncated 
series by replacing them with ratios of polynomials.  Specifically, we examine 
replacing the truncated series solution for the corotational Maxwell model with 
its Padé approximants for the shear stress response, and for the normal stress 
differences.  We find these Padé approximants to agree closely with the 
corresponding exact solution, and that, in this way, we learn that in this way, one 
can nearly eliminate the inaccuracies of the truncated expansions.   
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I. INTRODUCTION 
 

In certain circumstances, functions can be usefully approximated with ratios 
of polynomials, and we attribute the method for getting this set of polynomial 
ratios to Padé ([1]; see Chapter 1 of [2]).  Elements of this set are not equally 
useful, and indeed, some or even all elements will sometimes be of little use.  We 

call each ratio the 
  
x, y!" #$  Padé approximant, where  x  is the order of the numerator, 

and 
 
y , of the denominator.  Curiously, when the starting function is itself a 

truncated series, one or more of the Padé approximants may represent the full 
series more accurately than the starting function (and sometimes, much more 
accurately), and rheologists sometimes exploit this useful property [3].  

Since its conception in 1935 [4,5,6] oscillatory shear flow has become by far 
the most popular laboratory method for exploring the physics of polymeric 
liquids.  We generate oscillatory shear flow by confining the fluid to a simple 
shear apparatus, and then subject one solid-liquid boundary to a coplanar 
sinusoidal displacement, and thus, the fluid to the following velocity profile (see 
the coordinate system defined and the flow field illustrated in Figure 1): 

   
v

x
= !γ

0 ycosωt ; v
y
= v

z
= 0  (1) 

and hence, to a corresponding cosinusoidal shear rate: 

   
!γ yx t( ) = !γ 0

cosωt  (2) 

where, in this paper, symbols are defined in Table II and Table III (which follow 
Tables 2 and 3 of [7]).  Using the characteristic relaxation time of the viscoelastic 
fluid, λ , we can nondimensionalize Eq. (2): 

   

λ !γ yx t( ) = λ !γ 0
cosλω t/λ( )

≡ WicosDe t/λ( )
 (3) 

where the Deborah number is given by: 
 De ≡ λω  (4) 
and, the Weissenberg number, by: 

  Wi ≡ λ !γ
0

 (5) 
The dimensionless Eq. (3) suggests that dimensionless solutions to large-
amplitude oscillatory shear flow problems shall be written in terms of  Wi  or  De  
only, and we follow this throughout this work.   

Increasing either the Weissenberg number or the Deborah number in Eq. (3) 
causes the fluid response to depart from Newtonian behavior.  We can construct 
a complex dimensionless number from the ordered pair 

 
De,Wi( )  thus (see this 

illustrated in Fig. 1 of [7]): 

  
Gn ≡ De+ i Wi  (6) 
which defines a vector with magnitude: 

 Gn ≡ De
2
+Wi

2  (7) 
and with angle: 

 

φ ≡ arctan
Wi

De

. (8) 
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The magnitude of  Gn  reflects how far the fluid behavior departs from 
Newtonian behavior.  We call such departures non-Newtonian.  We can associate 
behavior in steady shear flow with  De = 0 , where 

  
Gn = i Wi .  We further 

associate linear viscoelastic behavior with  Wi = 0 , where  Gn ≡ De .  The angle φ  

thus reflects the type of departure from Newtonian behavior.  The value 
 
φ = 0  

corresponds to linear viscoelastic behavior, and 
 
φ = π 2 , to steady shear flow.  

When higher harmonics are observed in the shear stress response, we call the 
oscillatory experiment large-amplitude.  For polymeric liquids, these higher 
harmonics are commonly observed when: 

 

Wi

De
>1  (9) 

which is when the shear stress and the normal stress difference responses 
generally exhibit higher harmonics.  This condition also happens to describe 
when the measurements become especially challenging [8,9,10,11].  Eq. (9) is thus 
our working definition of large-amplitude oscillatory shear flow [12,13], and 
with recent advances in rheometry, conducting experiments satisfying Eq. (9) is 
now commonplace for exploring the physics of polymeric liquids [14].  The 
material functions in this flow are most commonly defined as coefficients of the 
Fourier series: 

  

τ
yx
τ ,γ

0( )

γ
0

≡ − %G
n
ω ,γ

0( )
n=1

odd

∞

∑ sin nτ + %%G
n
ω ,γ

0( )cosnτ  (10) 

where  τ ≡ωt .  We call this set of coefficients, 
  
!G
n
ω ,γ

0( )  and 
  
!!G
n
ω ,γ

0( ) , the 

Fourier moduli.  These Fourier moduli are readily obtained from a measured time 

series 
  
τ

yx
τ ,γ

0( )  using the discrete Fourier transform [13].  The notation 

corresponding to Eq. (10), for the first normal stress difference coefficient, is 
given in Eq. (179) of [7].  

The Fourier moduli in (10) are occasionally expanded in odd powers of 
 
γ

0
 

defining a matrix of frequency dependent nonlinear moduli [15,16,17]: 

  

τ
yx
τ( )

γ
0

= − γ
0

m−1

n=1

odd

m

∑
m=1

odd

∞

∑ &G
mn

ω( )sin nτ + &&G
mn

ω( )cosnτ[ ]  (11) 

where  τ ≡ωt .   
The shear stress response in LAOS has also been expanded in odd powers of 

  
!γ

0 , defining a matrix of frequency dependent nonlinear viscosities [18]: 

   

τ
yx
τ( )
!γ

0

= − !γ
0

n−1

m=1

odd

n

∑
n=1

odd

∞

∑ &η
mn

ω( )cosmτ + &&η
mn

ω( )sin mτ[ ]  (12) 

where 
  
!η
mn

, !!η
mn

( )  are named the loss and storage viscosities of mnth order, where 

 
!η
11

, !!η
11( ) ≡ !η , !!η( ) .  The “m” in the “mnth order” corresponds to the number of the 

harmonic in the shear stress response.  The “n” in the “mnth order” corresponds 



	
   6	
  

to one plus the power of the expansion in Eq. (12).  The notation corresponding to 
Eq. (12), for the first normal stress difference coefficient, is given in Eq. (183) of 
[7].  Finally, the first normal stress difference response in LAOS has been 

expanded in odd powers of 
  
!γ

0 , defining a matrix of frequency dependent 
nonlinear coefficients: 

   

Ψ
1
τ( ) = − !γ 0

p−1

m=0

even

p+1

∑
p=1

odd

∞

∑ 'Ψ
1,m ,p+2

ω( )cosmτ + ''Ψ
1,m ,p+2

ω( )sin mτ)* +,
)

*

-
-

+

,

.

.
 (13) 

Table I classifies solutions to constitutive equations in large-amplitude 
oscillatory shear flow for the shear stress that take the form of the truncated 
power series (Eq. (157) of [7]): 

    
S τ( ) = −A+BWi

2
−C Wi

4 +! (14) 
or of Eq. (14) further truncated: 

    
S τ( ) = −A+BWi

2
−!  (15) 

where each coefficient  A ,  B ,  C ,  …  is a Fourier series involving odd-valued 
harmonics.  Whereas work on continuum theory employs Eq. (14) (which 
matches the form of Eq. (28) which is Eq. (58) of [7]), for molecular theory, where 
calculations are more laborious, Eq. (15) is used (see Eq. (82) of [19]).  In this 
paper, we will compare Eq. (28) with its truncation, Eq. (39), which has the form 
of Eq. (15).  The former comparison will allow us to assess the usefulness of Padé 
approximants to power series expansions of the form of Eq. (15).  

Table I also lists solutions to constitutive equations in large-amplitude 
oscillatory shear flow for the normal stress differences that take the form of the 
power series (Eq. (184) of [7]): 

   
N

1
τ( ) = −αWi+βWi

3 −! (16) 

where each coefficient α , β ,  …  is a Fourier series involving even-valued 
harmonics.  Below we will replace, Eqs. (14), (15) and (16) each with ratios of 
polynomials whose power series match Eqs. (14), (15) and (16).  These ratios are 
called Padé approximants.  To be clear, the Padé approximant is an 
approximation of the full series from which the first few terms were used as the 
starting function.   

In this paper, we thus explore the usefulness of Padé approximants for the 
alternant part of the shear stress and normal stress difference responses to the 
large-amplitude oscillatory shear flow of polymeric liquids.  Specifically, we seek 
to calculate the Padé approximants to truncated expansions for the alternant 
parts of the shear stress and normal stress differences responses for a corotational 
Maxwell fluid.  The corotational Maxwell model is the simplest model of fluid 
viscoelasticity that is relevant to large-amplitude oscillatory shear flow, 
involving just two parameters:  

 
η

0
 and λ .  By relevant we mean that the model 

predicts, as it should, higher harmonics in the alternant parts of the shear stress 
and the normal stress differences.  We select the corotational Maxwell model 
because it is not only the simplest relevant model, but also, it is the only relevant 
constitutive model to have yielded an exact solution for the shear stress in large-
amplitude oscillatory shear flow [66].   
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II. ANALYSIS:  COROTATIONAL MAXWELL MODEL 
 

For a single-relaxation time, the corotational Maxwell model is: 

    

τ + λ
D τ

D t

= −η
0
!γ  (17) 

in which: 

   

D τ

D t

≡
Dτ

Dt

+ 1

2
ω ⋅ τ − τ ⋅ ω{ }  (18) 

defines the Jaumann derivative; here  Dτ / Dt  is the substantial derivative and: 

   
!γ ≡ ∇v + ∇v( )

†

 (19) 

is the rate-of-strain tensor, and: 

  
ω ≡ ∇v − ∇v( )

†

 (20) 

is the vorticity tensor.  We call the derivative given by Eq. (18) corotational 
because it measures rates of changes of the extra stress tensor with respect to a 
coordinate frame that both translates and rotates with the fluid.  For an extensive 
discussion of corotational models and their applications, see Chapters 7 and 8 of 
[20], and also [21,22,23,24,25].  The corotational model framework has been 
closely connected with molecular theory [26,27,28].  For the limiting behaviours 
of the corotational Maxwell model in steady shear flow, or in the limit of linear 
viscoelasticity, see Eq. (50), or Eqs. (37) and (47) below.   

 
a. Shear Stress  

 
Here we assess the usefulness of Padé approximants for improving the 

accuracy of the truncated expansion for the shear stress response of the 
corotational Maxwell model in large-amplitude oscillatory shear flow whose 
exact solution is given by [66]:   

   

S τ( ) = −
1

De
e
−τ De

sin Wi

De
sinτ( )I

1
−

1

De
e
−τ De

cos Wi

De
sinτ( )I

2
 (21) 

where: 

  

I
1
= Dee

τ De α
k

1( )
cos2kτ + β

k

1( )
sin 2kτ⎡

⎣
⎤
⎦

k=1

∞

∑  (22) 

and: 

  

I
2
= Dee

τ Deα
1

2( )
cosτ + Dee

τ Deβ
1

2( )
sinτ

+Dee
τ De α

k

2( )
cos 2k −1( )τ + β

k

2( )
sin 2k −1( )τ⎡

⎣
⎤
⎦

k=2

∞

∑
 (23) 

and: 
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α
k

1( ) ≡

0 ; k = 0

−8k2
De

2 J
2k

Wi 4 De
2 k2

+1( )
; k ≥ 1

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (24) 

and: 

  

β
k

1( ) ≡

0 ; k = 0

4k De J
2k

Wi 4 De
2 k2

+1( )
; k ≥ 1

⎧

⎨
⎪

⎩
⎪

 (25) 

and where: 

  

α
k

2( )
=

0 ; k = 0

J
2k
+ J

2k−2

De
2

2k −1( )
2

+1
; k ≥ 1

⎧

⎨
⎪

⎩
⎪

 (26) 

and: 

  

β
k

2( )
=

0 ; k = 0

De 2k −1( ) J
2k
+ J

2k−2( )

De
2

2k −1( )
2

+1
; k ≥ 1

⎧

⎨
⎪⎪

⎩
⎪
⎪

 (27) 

By comparing with this exact solution, we can assess how much improvement 
one might expect from the use of Padé approximants for the shear stress in large-
amplitude oscillatory shear flow.   

For the corotational Maxwell model, the approximate	
  solution for the 
dimensionless shear stress response is given by (Eq. (58) of [7]): 
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S τ( ) = −
cosτ +Desinτ

1+De
2

+
Wi

2

4

3cosτ +6Desinτ

1+De
2( ) 1+ 4De

2( )

+
1−11De

2( )cos3τ +6 1−De
2( )Desin3τ

1+De
2( ) 1+ 4De

2( ) 1+9De
2( )

#

$

%
%
%
%
%

&

'

(
(
(
(
(

−
Wi

4

8

5cosτ +15Desinτ

1+De
2( ) 1+ 4De

2( ) 1+9De
2( )

+
5−130De

2( )cos3τ + 45−120De
2( )Desin3τ

2 1+De
2( ) 1+ 4De

2( ) 1+9De
2( ) 1+16De

2( )

#

$

%
%

&

'

(
(

+
1−85De

2 + 274De
4( )cos5τ + 15− 225De

2 +120De
4( )Desin5τ

2 1+De
2( ) 1+ 4De

2( ) 1+9De
2( ) 1+16De

2( ) 1+ 25De
2( )

#

$

%
%

&

'

(
(

#

$

%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(

+!

 (28) 

which has the form of Eq. (14) where, for the corotational Maxwell model: 

  

A ≡
cosτ +Desinτ

1+De
2

 (29) 

and:	
  

  

B ≡
1

4

3cosτ +6Desinτ

1+De
2( ) 1+ 4De

2( )

+
1−11De

2( )cos3τ +6 1−De
2( )Desin3τ

1+De
2( ) 1+ 4De

2( ) 1+9De
2( )

$

%

&
&
&
&
&

'

(

)
)
)
)
)

 (30) 

and: 

  

C ≡
1

8

5cosτ +15Desinτ

1+De
2( ) 1+ 4De

2( ) 1+9De
2( )

+
5−130De

2( )cos3τ + 45−120De
2( )Desin3τ

2 1+De
2( ) 1+ 4De

2( ) 1+9De
2( ) 1+16De

2( )

$

%

&
&

'

(

)
)

+
1−85De

2 + 274De
4( )cos5τ + 15− 225De

2 +120De
4( )Desin5τ

2 1+De
2( ) 1+ 4De

2( ) 1+9De
2( ) 1+16De

2( ) 1+ 25De
2( )

$

%

&
&

'

(

)
)

$

%

&
&
&
&
&
&
&
&
&
&

'

(

)
)
)
)
)
)
)
)
)
)

 (31) 

We examine all Padé approximants of Eq. (14) up to order 
 
4,4!" #$  and, in this 

corner of the Padé table (see Chapters 1 and 2 of [2]), we find exactly four Padé 
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approximants, that we next list in order of degree, first of their numerators, then, 
denominators.  Approximant of order 

  
0,2[ ]  of Eq. (14) is given by: 

   

S τ( ) =
−A

2

A+BWi
2

 (32) 

of order 
  
0,4[ ] , by: 

   

S τ( ) =
−A

3

A
2 +ABWi

2
− AC−B

2( )Wi
4

 (33) 

of order 
  

2,2[ ] , by: 

   

S τ( ) =
−AB+ B

2
−AC( )Wi

2

B+C Wi
2

 (34) 

and finally, of order 
  

2,4[ ] , by: 

   

S τ( ) =
A

2
C−AB

2
− 2ABC−B

3( )Wi
2

AC−B
2
−BCWi

2
−C

2
Wi

4
 (35) 

Eq. (35) is the first main result of this work.  We can also report that this 
  

2,4[ ]  
approximant exhibits the correct limiting behaviors, for both steady shear flow: 

   

lim
De→0

S τ( ) = lim
De→0

A
2
C−AB

2
− 2ABC−B

3( )Wi
2

AC−B
2
−BCWi

2
−C

2
Wi

4
= −

1

1+Wi
2

 (36) 

which matches Eq. (84) of [7] (see Eq. (50) below) as it should.  For linear 
viscoelasticity: 

   

lim
Wi→0

S τ( ) = lim
Wi→0

A
2
C−AB

2
− 2ABC−B

3( )Wi
2

AC−B
2
−BCWi

2
−C

2
Wi

4
= −

cosτ +Desinτ

1+De
2

 (37) 

which matches Eq (59) of [7] as it should.  It goes without saying that all Padé 
approximants will be singular where their denominators go to zero, and one 
must, of course, be mindful of this when we use these.  The singularities in Eq. 
(35) arise, for example, whenever the roots of: 

  AC−B
2
−BCWi

2
−C

2
Wi

4
= 0  (38) 

are both real and positive.  
In Section III below, we will compare the Padé approximants, Eqs. (32) 

through (35), with the approximate solution from which these were derived, Eq. 
(28), and then with the exact solution [Eq. (21) with Eqs. (22)-(27)].  For Padé 

approximants of Εq. (28), we have limited ourselves to the 
 
4,4!" #$  corner of the 

Padé table, however, were our results unsatisfactory, in any way, we can report 
that, from experience, extending our search area to a larger corner of the Padé 
table does not help.  By unsatisfactory, we at least mean, when the shear stress 
loops lack two-fold symmetry.  In our subsequent treatment of Eq. (39), we get 

less satisfactory results. Given the usefulness of our 
 
2,4!" #$  approximant, we see 

no reason to pursue orders exceeding 
 
4,4!" #$ .   

Mindful of the discussion following Eq. (15) above, we next truncate Eq. (28) 
to its next lowest power of  Wi : 
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S τ( ) = −
cosτ +Desinτ

1+De
2

+
Wi

2

4

3cosτ +6Desinτ

1+De
2( ) 1+ 4De

2( )

+
1−11De

2( )cos3τ +6 1−De
2( )Desin3τ

1+De
2( ) 1+ 4De

2( ) 1+9De
2( )

#

$

%
%
%
%
%

&

'

(
(
(
(
(

+!

 (39) 

which has the general form of Eq. (15).  We examine all Padé approximants of Eq. 

(15), up to order 
 
4,4!" #$  and we find exactly two Padé approximants, which we 

next list in order of degree, first of their numerators, then, denominators.  
Approximant 

  
0,2[ ]  matches Eq. (32), and approximant 

  
0,4[ ]  is given by: 

   

S τ( ) =
−A

3

A
2 +ABWi

2 +B
2
Wi

4
 (40) 

which is just Eq. (33) evaluated for   C = 0 .  We will examine Eqs. (39) and (40) in 
Section III below.   
 

b. Normal Stress Differences 
 

Here we assess the usefulness of Padé approximants for improving the 
accuracy of the truncated expansion for the normal stress difference responses of 
the corotational Maxwell model in large-amplitude oscillatory shear flow.  We 
select the corotational Maxwell model because it is not only the simplest relevant 
model, but also, it is the only relevant constitutive model to have yielded an 
exact solution for the normal stress differences in large-amplitude oscillatory 
shear flow.  This exact solution is given by:   

   

!
1
τ( ) = −2!

2
τ( ) =

2

De
e
−τ De

cos Wi

De
sinτ( )I1

−
2

De
e
−τ De

sin Wi

De
sinτ( )I2

 (41) 

where 
  
I

1
 and 

  
I

2
 are given by Eqs. (22) and (23).  By comparing with this exact 

solution, we can assess exactly how much improvement one might generally 
expect from the use of Padé approximants for the normal stress differences in 
large-amplitude oscillatory shear flow.   

For the corotational Maxwell model, the dimensionless normal stress 
differences are given by (Eq. (66) of [7]): 
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N
1
τ( ) = −2N

2
τ( )

= −We
1

1+De
2
+

1− 2De
2( )cos2τ +3Desin 2τ

1+De
2( ) 1+4De

2( )

#

$

%
%

&

'

(
(

+
We

3

4

3

1+De
2( ) 1+4De

2( )
+

4− 24De
2( )cos2τ + 20Desin 2τ

1+De
2( ) 1+4De

2( ) 1+9De
2( )

+
1−35De

2 + 24De
4( )cos4τ + 10De−50De

3( )sin 4τ

1+De
2( ) 1+4De

2( ) 1+9De
2( ) 1+16De

2( )

#

$

%
%
%
%
%
%

&

'

(
(
(
(
(
(

 (42) 

which has the form of Eq. (16) where: 

 

α ≡
1

1+De
2
+

1− 2De
2( )cos2τ +3Desin 2τ

1+De
2( ) 1+4De

2( )

%

&

'
'

(

)

*
*

 (43) 

and:	
  

 

β ≡
1

4

3

1+De
2( ) 1+4De

2( )
+

4− 24De
2( )cos2τ + 20Desin 2τ

1+De
2( ) 1+4De

2( ) 1+9De
2( )

+
1−35De

2 + 24De
4( )cos4τ + 10De−50De

3( )sin 4τ

1+De
2( ) 1+4De

2( ) 1+9De
2( ) 1+16De

2( )

%

&

'
'
'
'
'
'

(

)

*
*
*
*
*
*

 (44) 

We examine all Padé approximants of Eq. (16) up to order 
 
4,4!" #$  and we find 

exactly two Padé approximants, that we next list in order of degree, first of their 
numerators, then, denominators.  Approximant of order 

  
1,2[ ]  of Eq. (16) is given 

by: 

  

N
1
τ( ) = −

α 2
Wi

α +βWi
2

 (45) 

and of order 
  
1,4[ ] , by: 

  

N
1
τ( ) =

−α 3
Wi

α 2 +αβWi
2 +β 2

Wi
4

 (46) 

Eq. (46) is the second main result of this work.  We can also report that this 
  
1,4[ ] , 

approximant the correct limiting behavior for linear viscoelasticity: 

  

lim
Wi→0

!
1
τ( ) = lim

Wi→0

−α 3
Wi

α 2 +αβ Wi
2+β 2

Wi
4
= 0  (47) 

as it should, and that for its behavior in steady shear flow, we get: 

  

lim
De→0

!
1
τ( ) = lim

De→0

−α 3
Wi

α 2 +αβ Wi
2+β 2

Wi
4
=

−2Wi

1+Wi
2+Wi

4
 (48) 

or that: 
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Ψ
1

2η
0
λ
=

1

1+Wi
2
+Wi

4
 (49) 

which is only a close approximation to Eq. (84) of [7]: 

 

η

η
0

=
Ψ

1

2η
0
λ
=

1

1+Wi
2

 (50) 

and so the limiting behavior of Eq. (46), though qualitatively correct, is only 
approximately right.  Since the denominator in Eq. (46) features no real roots, Eq. 
(46) presents no problematic singularities.  	
  

In Section III below, we will compare the Padé approximants, Eq. (45) and 
(46), with the approximate solution from which this was derived, Eq. (42), and 
then with the exact solution [Eq. (41) with Eqs. (22)-(27)].  Exploring the Padé 

table beyond the order 
 
4,4!" #$  may uncover more accurate, though no less 

complex, approximants.  Given the usefulness of our 
  
1,4[ ]  approximant, we 

chose not to investigate orders exceeding 
 
4,4!" #$ .   

 
III. RESULTS 
 

When using the exact solutions given by either Eq. (21) or Eq. (41) with 
approximate solutions, one must decide on the number of terms to keep in the 
Bessel functions, and also on how many harmonics to keep in the stress 
calculations.  For the Bessel functions, we find 40 terms to be more than sufficient 
for our results to be at least invariant to within a line width for all of the figures 
reported in this paper, and so we kept 40 terms for the Bessel functions 
throughout.  For our figures, we use a computer to evaluate the exact solutions 
given by Eqs. (21) or (41).  For our alternant loop evaluations, we included 40 
harmonics, and coded Eqs. (41) and  into MATLAB (Version R2012b).  On a 
MacBook Air (1.3 GHz Intel Core i5 processor with 4GB 1600 MHz DDR3 
memory) employing the OS X (Version 10.9.5) operating system, we find such an 
evaluation to consume less than 5 minutes of CPU time. Keeping 40 terms in the 
Bessel functions, with 40 harmonics in the Fourier series represents an 
abundance of caution.  In all of our figures below, the loops for the exact solution 
have thus been calculated to a precision that falls well below the line widths.   

Figure 2 through Figure 5 illustrate the improvements in the predictions for 
the shear stress that we realize when we covert Eq. (28) to its 

  
0,2[ ] , 

  
0,4[ ] , 

  
2,2[ ]  

and 
  

2,4[ ]  Padé approximants given by Eqs. (32) through (35).  In Figure 5, we 

discover stunning improvement upon Eq. (28) with the 
  

2,4[ ]  approximant, 

which agrees with the exact solution [Eq. (21) with Eqs. (22)-(25) and with (23)-
(27)].  By stunning, we mean that although Eq. (28) involves only up to the fifth 
harmonic (and then only a first approximation of this fifth), the 

  
2,4[ ]  

approximant of Eq. (28) agrees closely with the exact solution, which, of course, 
contains all of the higher harmonics.  We learn that with the use of Padé 
approximants, for the shear stress in large-amplitude oscillatory shear flow, one 
can take a power series expansion in the shear rate amplitude, truncated after the 
fourth power of the Weissenberg number (as thus, truncated after the first term 
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to contain the fifth harmonic), and then get loops that agree closely with the exact 
solution (even under extreme conditions for the Weissenberg number).  Since 
obtaining the first few terms of a power series in the shear rate amplitude is 
laborious, even for the simplest relevant constitutive models [7,19,29,30], we 
recommend the use of Padé approximants to get the most out of this labor.   

From Table I we learn that solutions of the form of Eq. (15) are much more 
commonly available that of Eq. (14).  In this sense, the successful Padé 
approximation of Eq. (15) would be of wider use.  Figure 6 and Figure 7 illustrate 
the improvements in the predictions for the shear stress that we realize when we 
convert Eq. (39) [which has the form of Eq. (15)] to its 

  
0,2[ ]  and 

  
0,4[ ]  Padé 

approximants given by Eqs. (32) and (40).  In Figure 7, we find satisfactory 
agreement with the exact solution for the shear stress [Eq. (21) with Eqs. (22)-
(27)], but the result is not stunning.  Specifically, the 

  
0,4[ ]  approximant yields a 

little two-fold asymmetry in the shear stress loops, which makes the prediction 
slightly unphysical.  Otherwise, the agreement with the exact solution is close.   

Figure 8 and Figure 9 illustrate the improvements in the predictions for the 
normal stress differences that we realize when we convert Eq. (42) [which has the 
form of Eq. (16)] to its 

  
1,2[ ]  and 

  
1,4[ ]  Padé approximants given by Eqs. (45) and 

(46).  In Figure 9 we find satisfactory agreement with the exact solution for the 
normal stress differences [Eq. (41) with Eqs. (22)-(27)], but the result is not 
stunning.  Specifically, the 

  
1,4[ ]  approximant yields a huge improvement over 

Eq. (42), shares the same shape as the exact solution, but falls  just below the 
exact solution.   

From Figure 7 or Figure 9 of our results, we learn that even for the most 
highly truncated forms published for analytical solutions, which are always 
arrived laboriously, it pays to use Padé approximants when using theory or 
when comparing theory with experimental measurements.  Here, specifically, we 
have examined Eqs. (39) and (42) for the corotational Maxwell model as 
examples of the truncated forms, Eqs. (15) and (16).   
 
IV. CONCLUSION 
 

This work begins by noticing, from our examination of Table I, that analytical 
solutions to large-amplitude oscillatory shear flow problems often take the form 
of truncated expansions in the shear rate [Eqs. (14), (15) and (16)].  Recognizing 
that getting even the first few terms of such expansion, for even the simplest of 
relevant constitutive models [7,19,29,30], is laborious.  We were thus motivated 
to devise a method to help make the most of the three common truncations of 
these expansions (for both the shear stress and the normal stress differences) 
using Padé approximants.   

For the shear stress, when the expansion is truncated after the fourth power 
of the Weissenberg number, we find stunning accuracy in the 

  
2,4[ ]  Padé 

approximant (see Figure 5).  When the expansion is truncated after the second 
power of the shear rate amplitude (as is more commonly done), we find 
satisfactory accuracy in the 

  
0,4[ ]  Padé approximant (see Figure 7).  For the 

normal stress differences, when the expansion is truncated after the third power 



	
   15	
  

of the Weissenberg number, we find satisfactory accuracy in the 
  
1,4[ ]  Padé 

approximant (see Figure 9).   
From this work, we learn that even for the most severely truncated forms 

published for analytic solutions, it pays to use Padé approximants when 
evaluating theory or when comparing it with experimental measurements.   
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Figure 1: Orthomorphic isometric sketch of alternating velocity profile in 
oscillatory shear flow [Eq. (1)].  Cartesian coordinates with origin on the 
stationary plate.  The linear velocity profile results from the assumption that 
inertial effects can be neglected. 
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Figure 2.  

  
0,2[ ]  Padé approximant of Eq. (28) (green) versus Eq. (28) (red) and 

also versus exact solution [Eq. (21) with Eqs. (22)-(27)]	
  (black)	
  for alternance.  
Counterclockwise loops of minus dimensionless shear stress,  −S , versus 
dimensionless shear rate, 

 
λ !γ , calculated for the 2-constant corotational Maxwell 

model with 
 
Wi De = 2  and  λω =1 .   
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Figure 3.  

  
0,4[ ]  Padé approximant of Eq. (28) (green) versus Eq. (28) (red) and 

also versus exact solution [Eq. (21) with Eqs. (22)-(27)]	
  (black)	
  for alternance.  
Counterclockwise loops of minus dimensionless shear stress,  −S , versus 
dimensionless shear rate, 

 
λ !γ , calculated for the 2-constant corotational Maxwell 

model with 
 
Wi De = 2  and  λω =1 . 
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Figure 4.  

  
2,2[ ]  Padé approximant of Eq. (28) (green) versus Eq. (28) (red) and 

also versus exact solution [Eq. (21) with Eqs. (22)-(27)]	
  (black)	
  for alternance.  
Counterclockwise loops of minus dimensionless shear stress,  −S , versus 
dimensionless shear rate, 

 
λ !γ , calculated for the 2-constant corotational Maxwell 

model with 
 
Wi De = 2  and  λω =1 . 
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Figure 5.  

  
2,4[ ]  Padé approximant of Eq. (28) (green) versus Eq. (28) (red) and 

also versus exact solution [Eq. (21) with Eqs. (22)-(27)] (black)	
  for alternance.  
Counterclockwise loops of minus dimensionless shear stress,  −S , versus 
dimensionless shear rate, 

 
λ !γ , calculated for the 2-constant corotational Maxwell 

model with 
 
Wi De = 2  and  λω =1 . 
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Figure 6.  

  
0,2[ ]  Padé approximant of Eq. (39) (green) versus Eq. (39) (red) and 

also versus exact solution [Eq. (21) with Eqs. (22)-(27)]	
  (black)	
  for alternance.  
Counterclockwise loops of minus dimensionless shear stress,  −S , versus 
dimensionless shear rate, 

 
λ !γ , calculated for the 2-constant corotational Maxwell 

model with 
 
Wi De = 2  and  λω =1 . 
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Figure 7.  

  
0,4[ ]  Padé approximant of Eq. (39) (green) versus Eq. (39) (red) and 

also versus exact solution [Eq. (21) with Eqs. (22)-(27)]	
  (black)	
  for alternance.  
Counterclockwise loops of minus dimensionless shear stress,  −S , versus 
dimensionless shear rate, 

 
λ !γ , calculated for the 2-constant corotational Maxwell 

model with 
 
Wi De = 2  and  λω =1 .  
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Figure 8.  

  
1,2[ ]  Padé approximant of Eq. (42) (green) versus Eq. (42) (red) and 

also versus exact solution [Eq. (41) with Eqs. (22)-(27)]	
  (black)	
  for alternance 

versus 
  
x, y!" #$ .  Minus dimensionless first normal stress differences, 

  
−!

1
= 2!

2
, 

versus dimensionless shear rate, 
 
λ !γ , left-clockwise loops calculated for the 2-

constant corotational  Maxwell model with 
 
Wi De = 2  and  λω =1 .   
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Figure 9.  

  
1,4[ ]  Padé approximant of Eq. (42) (green) versus Eq. (42) (red) and 

also versus exact solution [Eq. (41) with Eqs. (22)-(27)]	
  (black)	
  for alternance 

versus 
  
x, y!" #$ .  Minus dimensionless first normal stress differences, 

  
−!

1
= 2!

2
, 

versus dimensionless shear rate, 
 
λ !γ , left-clockwise loops calculated for the 2-

constant corotational  Maxwell model with 
 
Wi De = 2  and  λω =1 .   
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Table I:  Literature on Analytical Solutions for Large-Amplitude Oscillatory 
Shear Flow 

 
 

M
o

d
el

 F
ir

st
  

T
h

ir
d

  

F
if

th
 

Z
er

o
th

  

S
ec

o
n

d
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o
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. 

  
N

1( )
 
τ

yx( )

  

F
o

rm
 

[R
ef

.]
 

(C
o

rr
ec

ti
o

n
 t

o
) 

Shear 
Stress 

Harmonic 

Normal Stress 
Difference 
Harmonic 

    

Kirkwood and Plock 
(1956, 1967); Plock 
(1957) 

RD 
h

, 

SK 
h

 
n       (12) ≅  [31,32,33] 

Lodge (1961, 1964)  L✝      
  
N

1
 

  
N

1
    =  [34,35] 

Spriggs (1966) NGJ      
  
N

1
 

  
N

1
    =  [36] 

Spriggs (1966) CJ 
     

  

N
1

N
2

 
  

N
1

N
2

    =  [36] 

Williams and Bird 
(1962) 

O3       
  
N

1
    =  [37] 

Williams and Bird 
(1964) 

O3      
  
N

1
 

  
N

1
    =  [38] 

Spriggs (1965) O3

✝      
  

N
1

N
2

 
  

N
1

N
2

    =  [39] 

Akers and Williams 
(1969) 

RZ    
  
N

1

 
  
N

1

 
   =  [40] 

Paul (1969); Paul (1970); 
Bharadwaj (2012) 

RD 
h

, 

SK 
h

 
n X      (12) ≅  

[41,42,43] 
(31,33) 

Walters and Jones 
(1970); Walters (1975)  

I
3

 n X       ≅  
[44]; Section 
6.2.3 of [45] 

Paul and Mazo (1969), 
Paul (1970) RR 

h
 n X      (12) ≅  [46,42] 

MacDonald, Marsh and 
Ashare (1969) 

BC, 
OWFS✝ 

n        ≅  [47] 

Bird, Warner and Evans 
(1971) 

RD n   
  

N
1

N
2

 
  

N
1

N
2

   (12) ≅  [48] 

Leal and Hinch (1972) RSD 
     

  

N
1

N
2    

N
1

N
2  

  (12)
(13) ≅  

Section 3.3 of 
[49] 

Abdel-Khalik et al. 
(1974); Bird et al. (1974) 

GE+SK n   
  

N
1

N
2

 
  

N
1

N
2

    ≅  [50,51] 
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Bird et al. (1977) BHS 
   0 0      =  

Table 11.4-2 
[52] 

Mou and Mazo (1977) RR 
h

    
  

N
1

N
2    

N
1

N
2  

   ≅  [53](46) 

Pearson and Rochefort 
(1982); Helfand and 
Rochefort (1982) 

R✝ n X      (11) ≅  [15,16] 

Fan and Bird (1984) CB✝ n X      (12) ≅  [18](16) 

Oakley (1992); Oakley 
and Giacomin (1994) L✝      

  
N

1
 

  
N

1
    =  

APPENDIX B 
of [54]; 
[55](34) 

Phan-Thien et al. (2000) Dough 
          =   [56] 

Yu et al. (2002); Zhou 
(2004) 

SE n X  
  
N

1
 

  
N

1
 

  
N

1
   ≅  [57,58] 

Cho et al. (2010) K-BKZ        (11)  [59] 

Hoyle (2010) PP n       (11) ≅  [60] 

Wagner et al. (2011) R n X      (11) ≅  [61] 

Gurnon and Wagner 
(2012) 

G    X  

  

N
1

N
2

 
  

N
1

N
2

 
  (11) ≅  [62] 

Giacomin et al. (2011) CM✝, 
CJ 

n X X 
  

N
1

N
2

 
  

N
1

N
2

 
  

N
1

N
2

 X (12)
(13) 

≅  [7](63) 

Giacomin and Bird 
(2011) 

ANSR n X X 
  

N
1

N
2    

N
1

N
2    

N
1

N
2  

X (12)
(13) 

≅  [64] 

Bird et al. (2014) RD n X      (12) ≅  [19] 

Schmalzer et al. (2014) RD    
  

N
1

N
2

 
  

N
1

N
2

 
  

N
1

N
2

  (13) ≅  [29,30,65] 

Saengow et al. (2014) CM n X X 
  

N
1

N
2    

N
1

N
2    

N
1

N
2  

X (21)
(41) 

=  [66] 

Thompson and de 
Souza Mendes (2015) 

MSJ n   0 0 0 0  ≅  
See Section 
5.2.2 of [67] 

Bozorgi (2014); Bozorgi 
and Underhill (2014) AS 

h
 n X      (11) ≅  

Chapter 8 of 
[68]; [69] 

This paper CM n X X 
  

N
1

N
2    

N
1

N
2    

N
1

N
2  

 (35)
(46) 

≅   

 

Legend: ANSR ≡ corotational; ANSR; AS ≡ active rod suspensions; BC ≡ Bird-Carreau; BHS ≡ 
Bead-Hookean spring; CB ≡ Curtiss-Bird; CJ ≡ corotational Jeffreys; CM ≡ corotational Maxwell; 
GE ≡ Goddard integral expansion; L ≡ Lodge rubberlike; NGJ ≡ nonlinear Generalized Jeffreys; O3 
≡ 3-constant Oldroyd; OWFS ≡ modified Oldroyd-Walters-Fredrickson-Spriggs; PP ≡ pompom; R 
≡ reptation; RD ≡ rigid dumbbell; RR ≡ planar rigid ring; RZ ≡ Rouse-Zimm; SE ≡ simple 
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emulsion; SK ≡ shish-kebab; 
  
N

1
, N

2
≡ first and second normal stress differences; 

  
n ≡ η * ω ,γ

0
( ) ; 

  
 ≡ η * ω( ) ; ✝ ≡ multiple relaxation times; =  ≡ exact; ≅  ≡ approximate;  

h
 ≡ with hydrodynamic 

interaction.   
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Table II: Dimensional Variables 

Angular frequency 
  t
−1  ω  

Cartesian coordinate	
  L   
x, y, z  

Elastic Fourier modulus 
  
M Lt

2

   
′G
n  

Extra stress tensor* 
  
M Lt

2  τ  
Extra stress, 

  
ijth  component  

  
M Lt

2  
 
τ

ij  
First normal stress coefficient 

  ML
−1

 
 
Ψ

1  
First normal stress difference 

  
M Lt

2  
  
N

1
≡ τ

11
−τ

22  
First normal stress Fourier 
coefficient, in phase with   cosmτ , 
Eq. (13) 

   

Ψ
1

!γ 0
n−1    

!Ψ
1,m,n  

First normal stress Fourier 
coefficient, out of phase with 
  cosmτ , Eq. (13) 

   

Ψ
1

!γ 0
n−1    

!!Ψ
1,m,n  

Fourier coefficients, in phase with 

  cosnτ ,   mnth component, Eq. (11)   
M Lt

2

  
!!G
mn  

Fourier coefficients, out of phase 
with   cosnτ ,   mnth component, Eq. 
(11) 

  
M Lt

2

  
!G
mn  

Loss moduli, in phase with   cosnτ , 

  mnth component, Eq. (12) [70]   
M Lt

2  
 
!η
mn  

Relaxation time  t  λ  
Second normal stress coefficient 

  ML
−1

 
 
Ψ

2  
Second normal stress difference 

  
M Lt

2  
  
N

2
≡ τ

22
−τ

33  
Shear rate, amplitude 

  t
−1  

  
!γ 0

 
Steady shear viscosity 

 
M Lt

 
η

 
Storage moduli, out of phase with 

  cosnτ ,   mnth component, Eq. (12) 
[70] 

  
M Lt

2

  
!!η
mn  

Strain rate tensor 
  t
−1   

!γ  
Strain rate, 

  
ijth  component   t

−1

 
  
!γ

ij  
Time  t   t  Velocity vector 

 
L t   v  

Velocity,   ith -components	
 
 
L t  

 
v

i  
Viscous Fourier modulus 

  
M Lt

2

   
′′G
n  

Vorticity tensor 
  t
−1

 ω  
Zero shear rate viscosity 

 
M Lt   

η
0  

Legend:  M  mass;  L  length;  t  time 
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* Where 

 
τ

ij  is the force exerted in the jth direction on a unit area of fluid surface 

of constant 
 
x

i
 by fluid in the region lesser 

 
x

i
 on fluid in the region greater 

 
x

i
 [71].	
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Table III: Dimensionless Variables and Groups 

 

 
  

Bessel function of first kind,   mth  
order 

  

J
m

z( ) ≡
−1( )

k

m+ k( )!k !

z

2

⎛
⎝⎜

⎞
⎠⎟

m+2k

k=0

∞

∑  

Bessel function of first kind,   mth  
order with argument 

 
Wi De  

  
J

m
≡ J

m
Wi De( )

 

Coefficient, Eq. (24) 
  
α

k

1( )
 

Coefficient, Eq. (26) 
  
α

k

2( )
 

Coefficient, Eq. (25) 
  
β

k

1( )
 

Coefficient, Eq. (27) 
  
β

k

2( )
 

Deborah number  De ≡ λω   
First normal stress difference 

   
!

1
≡ N

1
η

0
"γ 0

 
Generalized non-Newtonianness  Gn  
Inclination of non-Newtonianness φ  
Integral, Eq. (22) 

  
I

1
 

Integral, Eq. (23) 
  
I

2  
Normal stress difference expansion 
coefficients, Eq. (16) 

 
α ,β   

Second normal stress difference 
   
!

2
≡ N

2
η

0
"γ 0

 
Shear strain amplitude 

 
γ

0  
Shear stress 

   
S ≡ τ

21
η

0
!γ 0

 
Shear stress expansion coefficients, 
Eq. (14) 

  A,B,C   

Time 
  
τ ≡ωt = De t λ( )  

Weissenberg number 
  
Wi ≡ λ !γ 0
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