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ABSTRACT Radio frequency (RF) power amplifier (PA) design using Gallium Nitride (GaN) transistor

technology requires accurate device models in order to maximise performance and reduce development time.

The current state-of-the-art frequency-domain behavioural models focus on linear and quadratic approxima-

tions to the polyharmonic distortion (PHD) formalism. However, the linear approximation suffers from poor

accuracy under loadmismatch conditions, while the quadratic approximation suffers from poor extrapolation

beyond the measured range, leading to erroneous predictions of the optimum load impedances for maximum

output power and maximum drain efficiency. In this work, a rational Padé-based approximation is proposed

as themodel core, and it is shown, through experimental validation, that the Padé approximation-basedmodel

can provide superior results in a more scalable format. It can mitigate problems found in the existing PHD

models when applied to the matching problem. Specifically, the proposed model produces fewer erroneous

solutions for the optimum load points, due to the well-behaved nature of Padé approximants. In addition, for

the first time, results are reported on using the behavioural model to determine the optimum impedance for

maximum transducer gain in a two-port device model. All results show the Padé model has high potential

when compared to the established PHD-derived models in RF PA design.

INDEX TERMS Behavioural modelling, Padé approximation, polyharmonic distortion (PHD) modelling,

X-parameter model.

I. INTRODUCTION

The cellular communication industry is a significant con-

sumer market in the world today, with GSMA Intelligence

estimating that the number of unique mobile subscribers

worldwide is over 5 billion [1]. With the roll-out of the fifth

generation (5G) mobile communication networks across the

world, data rates for mobile devices have increased dramat-

ically. This poses huge challenges for power amplifier (PA)

designers in maintaining high efficiency across broad band-

widths, as well as extracting maximum performance from the

active device. For this type of radio frequency (RF) design,

an accurate and robust device model is seen as essential to

deliver the required level of performance.

Gallium Nitride (GaN) is often regarded as the most

promising semiconductor technology for these applications
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that require simultaneous operation at high frequency and

high power [2]. GaN devices are able to achieve an order of

magnitude improvement in power density when compared to

other traditional compound semiconductors, such as gallium

arsenide (GaAs). A key enabler of this is the high breakdown

electric field (Ebr ≈ 4 MV/cm) inherent in this technology

due to the large bandgap (Eg ≈ 3.4eV) [3]. This allows for

a larger voltage swing across the device output terminals

compared to traditional technologies, such as metal oxide

semiconductor (MOS) technology. This large voltage swing

is useful for designing certain classes of highly efficient PAs,

such as the popular continuous class-F PA which exhibit

voltage peaks well above 150% of the drain supply voltage

value [4].

Within the device modelling research field, there are three

distinct types of models: physical, equivalent circuit and

behavioural models. This research is focused on behavioural

models. Behavioural models have been shown to be very
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effective at describing the RF frequency domain behaviour

of GaN-based transistor devices [5]. The popularity of the

behavioural approach is two-fold. Firstly, behavioural mod-

els, sometimes referred to as ‘‘black-box’’ models, require

no knowledge of the inner workings of the device, result-

ing in fast model extraction. This differs markedly from the

two other competing modelling paradigms, namely: physical

models and equivalent circuit models [6], [7]. Secondly, since

such models are built directly from measurement data, they

are typically very accurate in the operating region fromwhich

they have been extracted.

The scattering parameter (S-parameter) formalism is an

example of arguably the most successful frequency-domain

behavioural model. However, S-parameters are only valid for

linear, time-invariant systems (or systems that can be approx-

imated as such), and cannot model devices with nonlinear

behaviour [8], [9].

The PHD (polyharmonic distortion) models, introduced

in [10], are designed to extend the scattering parameter

approach to the nonlinear domain i.e. PHD models can be

applied to nonlinear time-invariant devices or systems. Given

the significantly more complex behaviour of devices in the

nonlinear regime, an approximation of the PHD model is

generally used, such as the first order Taylor series approx-

imation, known as X -parameters. Higher order approxima-

tions are also possible, e.g. the quadratic PHD (QPHD)model

[11], [12]. As the order increases, such polynomial based

models can approach global accuracy i.e. maintain accurate

prediction across the full Smith chart under moderate-to-high

mismatch conditions. However, higher order polynomials do

not extrapolate well, can result in overfitting, and can be

difficult to extract [12].

Padé approximations, on the other hand, are based on

rational functions (a quotient of polynomial functions). This

ensures the model is better behaved, particularly when eval-

uated beyond the modelled range i.e. during extrapolation.

This is due to the superior convergence typically observed for

Padé approximants compared to that of a Taylor series [13],

where Padé approximants can even yield acceptable results

around points for which a Taylor series diverges.

This paper is structured as follows. In Section II, a brief

overview of the Padé model approximation applied to the

PHD formalism is provided, along with a statement of the

large-signal matching problem and its solution, this repre-

sents the first time the Padé model has been used to solve the

large-signal matching problem. In Section III, a Padémodel is

extracted from aGaN transistor device, and used to determine

directly from the model, the load impedances corresponding

to maximum output power and maximum efficiency. These

predicted results from the model are then compared with cor-

responding loadpull measurement data as well as being com-

pared with other state-of-the-art models. In Section IV, the

investigation of a load-dependent Padé model is carried out,

with results and discussion provided. The proposed model

is also extended to determine the conditions for maximum

transducer gain from a two-port device for the first time.

FIGURE 1. Types of scattered waves needed for a model extraction of a
given DUT.

II. THEORY OF LARGE-SIGNAL MATCHING USING

BEHAVIOURAL SCATTERING WAVE MODELS

Consider the device under test (DUT) shown in Fig. 1. The

incident and scattered waves are indicated at port-1 as A1
and B1, respectively, and those at port-2 are indicated as A2
and B2. These waves may be further broken down into their

constituent harmonics e.g. A12 for the second harmonic in

the incident wave at port-1. These pseudowaves are linear

combinations of the complex port voltage amplitude Vph and

complex port current amplitude Iph, as shown in (1a), where

the current is defined as positive when flowing into the port,

p is the port number, and h is the harmonic index

Aqn =
Vqn + Z0Iqn

2
√
Z0

(1a)

Bik =
Vik − Z0Iik

2
√
Z0

, (1b)

where, for simplicity, it is assumed that Z0 is purely real.

In order to describe the DUT in the frequency domain,

we need some way to relate the incident and scattered waves.

In principle, a describing function F could provide the

nonlinear spectral mapping required for an extension of the

scattering formalism to this nonlinear domain, as shown in (2)

below,

Bik = Fik (A11,A12, . . . ,A21,A22, . . . , ), (2)

which relates the complex amplitude Aqn of the incident

waves at device port q and harmonic index n to the complex

amplitude Bik of the scattered waves, at device port i and

harmonic index k . Separate functions Fik are required for

each port i and harmonic index k for which the value of

the amplitude and phase of the scattered wave are desired.

Such a modelling framework, known as the poly-harmonic

distortion (PHD) model, has been introduced by Verspecht

and Root [10]. However, describing functions such as these,

which must account for all A-waves at every port and at

every harmonic, would require a prohibitively large data-set

and elaborate set of functions Fik . To solve this problem,

Verspecht and Root proposed a linearisation of the PHD

model, known as X -parameters [14]. In the original form

of X-parameters, a single incident wave at a single har-

monic (usually the fundamental input wave) is treated as

the dominant tone, and all others are considered as linear

perturbations.
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A basic X -parameter model is implemented by (3), giving

B21 i.e. the scattered wave at port-2, in terms of the X -

parameters (which depend on the dominant wave A11), A21
i.e. the small-signal perturbation in the fundamental at port-

2, and its conjugate, A∗
21,

B21 = XF21 + XS21,21A21 + XT21,21A
∗
21, (3)

where it is assumed, here, for simplicity, that A11 has zero

phase. The quantity XFik accounts for the large-signal output

wave due specifically to the large-signal input A11 at port-1,

while XS21,21 and X
T
21,21 describe the contribution to B21 from

the perturbation A21. The need for two parameters (XS21,21 and

XT21,21) to describe the effect of the small-signal perturbation

is due to the nonholomorphic nature of the describing func-

tion mapping, F21 in this case. Previous attempts, such as Hot

S-parameters, omitted the conjugate term and hence suffered

from a fundamentally incorrect model structure. In general,

the X -parameters are also functions of the dc bias and funda-

mental frequency [15].

The X -parameter model described above is reasonably

accurate when the load impedance is matched, or nearly

so, such that only a small wave is reflected back into the

device. However, in highly mismatched systems this model

can yield poor results. Load-dependent X-parameter [16]

descriptions give improved results under load impedances

far from the matched condition [17], as is often the case

in PA designs. Load-dependent X -parameters means the

X-parameters become, effectively, functions of the funda-

mental incident wave at port-2, A21 in addition to A11. How-

ever, since A21 results from the scattered wave B21 reflecting

back into the DUT due to the load mismatch, it is not possible

to know this value apriori, and typically the X -parameters

are given as functions of A11 and ŴL , e.g. X
F
ik (A11, ŴL), since

ŴL can be controlled during extraction. This grid structure

facilitates tabulation of the X -parameters across a range of

reflection coefficients over the Smith chart, which can be read

and interpreted by a circuit simulator.

There is, however, a drawback to this improved accuracy:

as mentioned, load-dependent X -parameters require tabula-

tion of the parameter values versus ŴL . This adds yet another

dimension to the data. Effectively, each table entry describes

a local model, valid around the vicinity of the ŴL from which

it is extracted. One way of mitigating this issue is to return to

the standard X -parameter model in (3).We see it is effectively

a first-order two dimensional Taylor series approximation to

the describing functionFik . Previous work has shown that this

linear polynomial can be modified to include higher order

terms e.g. a quadratic model [12]. Such models allow for

larger perturbations at the load while maintaining a reason-

able level of accuracy. However, some numerical difficulties

arise even for this second degree case, and hence further

attempts at improving the model fidelity via cubic, or higher

order, polynomials, is likely to face more extreme versions of

the same problem.

In this work, we build on previous modelling efforts

[18]–[20] using Padé approximants, rather than polynomials,

for simplification of the describing functions Fik . For the first

time, we show the Padé-based model can provide significant

advantages compared with the state-of-the-art when solving,

numerically, the large-signal matching problem. We demon-

strate how the Padé model enables a more accurate prediction

of the optimum load impedance for a given criterion, i.e.

the impedance that maximises the desired metric (power

delivered, drain efficiency or operating gain). The rational

nature of the approximation allows higher order models to

be considered when it is necessary to model, accurately,

complex device behaviour. This is, in general, not possible

using poorly-behaved polynomial functions.

A. PADÉ APPROXIMATION THEORY AND EXTRACTION
A 1-D Padé approximant is defined as

R1(x) =
P1(x)

Q1(x)
=

∑N
r=0 Grx

r

1 +
∑M

r=1 Hrx
r
, (4)

where G and H are the coefficients for the numerator and

denominator respectively, x is the independent variable, and

the order of the Padé approximant is indicated using the

notation [N/M ].

However, as discussed in the introduction to this section,

PHD-based models require a 2-D approximation, since we

must consider the perturbation and its conjugate as dis-

tinct independent variables. Extending (4) to a 2-D rational

approximation [13], gives

R2(x, y) =
P2(x, y)

Q2(x, y)
=

∑N ,N ′

(r,s)=0 Grsx
rys

1 +
∑M ,M ′

(r,s)6=(0,0) Hrsx
rys

, (5)

which represents a 2-D Padé approximation, sometimes

known as a Chisholm approximant [21]. We can write the

order as [NN ′/MM ′].
If we approximate an expression f (x, y) around the

steady-state point (X ,Y ), based on (5), we get

f (X + 1x,Y + 1y) ≈ R2(X + 1x,Y + 1y)

=
P2(X + 1x,Y + 1y)

Q2(X + 1x,Y + 1y)

=
∑N ,N ′

(r,s)=0 Grs(X ,Y )1xr1ys

1 +
∑M ,M ′

(r,s) 6=(0,0) Hrs(X ,Y )1xr1ys
,

(6)

where 1x and 1y are small deviations caused by a small

perturbation signal.

Applying it to the PHD model allows us to make the

following equivalences

(X ,Y ) ≡ (|A11|)
1x ≡ Aqn

1y ≡ (Aqn)
∗ (7)

For an expression f (x, y) around the steady state point (X ,Y ).

Where q and n are the port and harmonic respectively. If we
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say N = 1,N ′ = 1,M = 1 and M ′ = 1 then we end up with

notation for a Padé 11/11 model, to use the notation in [18].

If we say that the scattered wave Bpm is written as

Bik = F ′
ik (|A11|,Aqn, (Aqn)

∗) (8)

where F ′
ik is a (new) describing function that associates all of

the relevant incident waves Aqn with the scattered waves Bpm.

Then after using the harmonic superposition principle and the

2-D Padé approximation method (8) can be represented as

Bik =
Gik,00 +

∑

qn

∑N ,N ′

(r,s)=0 Gik,qn,rs(Aqn)
r [A∗

qn]
s

1 +
∑

qn

∑M ,M ′

(r,s) 6=0 Hik,qn,rs(Aqn)
r [A∗

qn]
s

(9)

Note that for this work i and q will be equal to 2 and k

and n equal to 1, therefore the notation of the coefficients

can be shortened for simplicity as will be shown later. This

is done for the same reasons as in [12], to limit the model the

model size and because linear PHD terms allow for sufficient

accuracy even when allowing for harmonic mismatch.

B. FORMULATION OF THE LARGE-SIGNAL MATCHING
PROBLEM VIA LINEAR AND QUADRATIC APPROXIMANTS
In linear circuits, maximum power transfer from a source to a

load is facilitated by a load impedance equal to the complex

conjugate of the source impedance. In the case of a nonlinear

transistor, however, no such general analytical method exists.

However, in the recent literature it is shown how an equation

may be formulated using an X -parameter model, and solved,

analytically, to identify the optimum load that maximises the

output power [22]. The formulation of this problem begins by

examining the net output power at port-2 of the DUT, as given

by (10)

POUT =
|B21|2 − |A21|2

2
, (10)

where |B21|2/2 represents the power in the wave emanating

from port-2 of the DUT, while |A21|2/2 represents the power
in the wave that is incident back into port-2 of the DUT. This

output power is maximised at the values of A21 where (10) is

stationary, i.e. it is required to solve

∂POUT

∂A21
=

∂(|B21|2 − |A21|2)
∂A21

(11)

The variable B21 can be eliminated using the X -parameter

model, e.g. (3), and the resulting optimisation problem in the

single variable A21 may by solved to obtain the reflection

coefficient A21/B21 of the optimum load for maximum output

power.

While not a general method (since it only solves an approx-

imated problem via the X -parameter model), in practice it

yields reasonable results. An extension of this method for

use with quadratic PHD (QPHD) models is given in [12].

However, in this case, a closed-form analytical solution is

not possible, hence the optimisation problem in (11) is solved

numerically.

When using the QPHD model for B21, it is typical that

multiple solutions to (11) exist [12]. In reality, there generally

exists only a single optimum load impedance for maximum

output power. Some of the solutions to (11) correspond to

points outside the Smith chart, and can therefore be neglected

outright (as they cannot be realisedwith a passive load). Other

erroneous solutions also arise; these are due to poor QPHD

model extrapolation. This will be discussed again shortly.

C. FORMULATION OF THE LARGE-SIGNAL MATCHING
PROBLEM VIA PADÉ APPROXIMANT
As an alternative to polynomial-based models, Padé

approximants have also been applied to frequency-domain

behavioural modelling problems, with positive results [18].

The mathematical background of the Padé approximant has

been discussed in detail in Section II-A. It is evident from the

defining equation (5), that when the numerator and denom-

inator polynomials have equal order the Padé model will be

bounded – it is important to be aware that this property is not

possible from a polynomial-based model.

For demonstrative purposes, we proceed with the simple

example of the Padé [11/11] model to use the notation from

[18], where [NN ′/MM ′] implies an N -th order expansion in

A21 and a P-th order expansion in A
∗
21 in the numerator, with

MQ providing the same information for the denominator. This

means that the Padé [11/11] shown in (12) below only has one

more coefficient than the QPHD model

B21 = G21 +
G21,10A21 + G21,01A

∗
21 + G21,11A21A

∗
21

1 + H21,10A21 + H21,01A
∗
21 + H21,11A21A

∗
21

(12)

where G21 plays the same role as XF
21 from (3) i.e. the repre-

sents the large-signal operating point (LSOP).

Returning to the matching problem, the Padé model can

now be used to replaced the B21 variable in (11), giving

∂

∂A21

(

∣

∣

∣

∣

G21+
G21,10A21 + G21,01A

∗
21 + G21,11A21A

∗
21

1 + H21,10A21 + H21,01A
∗
21+H21,11A21A

∗
21

∣

∣

∣

∣

2

− |A21|2
)

= 0. (13)

Similarly to the QPHDmodel, a simple analytical formula-

tion is not possible for finding the optimum load in this case.

Instead, a numerical solution can be obtained via standard

solvers. Note that in all optimisation equations provided in

this paper, the variables A21 and A∗
21 are considered to be

independent. To solve the resulting systems of one equation

and two unknown values, the derivative with respect to the

conjugate must also be used – see [22] for the details.

D. PADÉ MODEL EXTRACTION
To determine the coefficients for this model, i.e. to extract

the model, we use the small range of measured sample points

shown in Fig. 2. The selected load points are shown here at

the 50 � load point and at 12 different phases at two different
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FIGURE 2. Sample of load-points taken for model extraction.

magnitudes of Ŵ, therefore there are exactly 25 unique data

points used for model extraction. Theoretically 12 unique

phase points would be enough to extract a Padé model

with 12 independent coefficients. However, in order to keep

the comparison with the QPHD model fair the number of

coefficients should be similar in size to the full QPHD model

which is six coefficients. Generally it is best practice to take

more measurements than theoretically needed in order to

minimise the effects of noise. It is possible that more data

points than the 25 used for this extraction will make the mod-

els more robust to noise, however it was found that 25 points

extracted macro models with good accuracy.

After the sample points are taken, we can get the matrix

formulation of the problem. In this case the problem is how

to extract a Padé [11/11] model, as shown in

PA =











1 A21,1 A∗
21,1 A21,1A

∗
21,1

1 A21,2 A∗
21,2 A21,2A

∗
21,2

...
...

...
...

1 A21,n A∗
21,n A21,nA

∗
21,n











(14)

PAB =











−B21,1A21,1 −B21,1A∗
21,1 −B21,1A21,1A∗

21,1

−B21,2A21,2 −B21,2A∗
21,2 −B21,2A21,2A∗

21,2
...

...
...

−B21,nA21,n −B21,nA∗
21,n −B21,nA21,nA∗

21,n





















B21,1
B21,2

...

B21,n











=
[

PA PAB
]





















G21

G21,10

G21,01

G21,11

H21,10

H21,01

H21,11





















(15)

This matrix formulation can be presented symbolically as

B = ACo (16)

FIGURE 3. Loadpull setup for extracting Padé model.

Because A is complex and not always square, we have to

obtain the pseudo-inverse

A
H
B = A

H
ACo (17)

Matrices denotedwith a ‘‘H’’ superscript are theHermetian

conjugate of that matrix. Now, the model coefficients can be

obtained according to

Co = (AH
A)−1

A
H
B (18)

III. MEASUREMENT RESULTS USING PADÉ-BASED

MODEL

In order to investigate the real world efficacy of the proposed

Padé-based modelling technique, loadpull-based waveform

data is experimentally obtained from a 10WGaN deviceman-

ufactured by CREE, CGH40010F. The transistor is measured

at a class-AB bias point, with VGS equal to −3V and VDS
equal to 28V.

The A11 input tone is injected at the DUT input using a

driver amplifier (where necessary), while an active load-pull

system is used to synthesise an A21-wave impinging on port-

2 of the device. The particular experimental setup used to

extract the data for this work is shown in Fig. 3. This effects

a change in the load impedance implemented at the output

of the DUT. Note that if the losses in the loadpull system

tuner(s) are low (which they typically are at low frequencies),

a passive loadpull system may suffice for model extraction.

Measurements are taken across a range of input powers:

10 dBm, 20 dBm and 30 dBm, with a fundamental frequency

of 1.5GHz. These measurements are carried out with a fixed

source impedance of 50�. Once the measurements are col-

lected the model can be extracted in MATLAB, according to

Section II-D.

A. MULTIPLE OPTIMA PROBLEM AND SOLUTION
A major advantage of the Padé model is that it tends to

produce fewer erroneous load impedance values for a given

metric of interest. In [12], it is stated that the QPHD model

can produce ‘false positive’ results i.e. multiple values sat-

isfying (11) can be returned, all but one of which are mathe-

matical artifacts that do not correspond to a true optimum e.g.

maximum output power. Due to the order of the polynomial
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FIGURE 4. QPHD models multiple predictions for optimum loads
represented on a Smith chart.

used for the QPHDmodel, there will be nine unique solutions

to it. While some of these can be immediately dismissed,

such as those outside the Smith chart, in this work it has

been shown that many solutions are returned inside the Smith

chart, in general, with no obvious method of eliminating the

erroneous values. The exact number of such false positives

returned depends on the measurement conditions, such as

input power level, and the selection of loadpull data that is

used for the least-squares model extraction.

For example, Fig. 4 shows four (potential) optimum load

points for maximum output power, as predicted by a QPHD

model extracted from loadpull data in the usual way, i.e.,

similar to the method given for Padé model extraction in

Section II-D. This poses many problems as, without any prior

information as to where the true optimum load point is (in

general there will be only one), it is not obvious which one

of these predicted optimum loads is correct, i.e., which one is

closest to the optimum load for maximum power that would

be determined via extensive brute-force loadpull measure-

ment on the real device.

In this work, a simple and accurate way of eliminating

these false positives is identified and will now be explained.

Recall how each of the behavioural models discussed in this

paper are based on predicting the scattered wave dependent

variable, say B21, for known values of the independent vari-

able e.g. A11, A21 etc. For optimum load prediction, however,

the quantity of interest is the ratio of A21 to B21, namely

the load reflection coefficient ŴL = A21/B21. Hence, while

sensible values for ŴL may be returned (i.e. where ŴL < 1) as

potential optimum loads via numerical solution of (11), it is

possible that A21 and B21 themselves are well outside of the

accurately modelled range.

The A21 values for the four optimum load points inside the

Smith chart are shown in Table 1. Given that the measured

values of the reflected wave at the load, A21, extend between

±0.65 W1/2 on the real axis, and approximately the same

for imaginary A21 axis, we can see that only one of the

A21 values is within this measured range (the value labelled

TABLE 1. A21 values for Ŵopt,QPHD.

FIGURE 5. QPHD models multiple predictions for optimum loads
represented in 3D. The three points above the surface are invalid
solutions to the large-signal matching problem.

‘a’ in Table 1). Hence only this value can be considered to

accurately reflect real-world behaviour. In essence, all other

values are extrapolations. This is particularly problematic for

the QPHD model, since the predicted scattered wave B21
value grows without bound as the square of the incident wave

A21.

Hence, the first entry in Table 1 (i.e. ŴL = −0.321 +
j0.259) is the only value that can be ‘trusted’ to give a realis-

tic optimum load reflection coefficient for maximum output

power. Indeed, this value is closest to the actual optimum load

point as revealed by measurements – see Fig. 7.

In Fig. 5 it is shown how all bar one of the predicted

optimum A21 values are high above the mesh of measured

values i.e., most predicted optimum loads have very large

|A21| values, well beyond the measured range. This means

that even though these A21 values achieve a realistic A21/B21
ratio resulting in a ŴL value that is inside the Smith chart, the

A21 and B21 values that lead to these reflection coefficients

are derived from extrapolated values of A21 that poorly model

the real system. The advantage of the Padé-based model is

that in the vast majority of cases it produces no erroneous

solutions since (when used with equal order numerator and

denominator expansions) it remains bounded for extreme

values of A21.

B. QPHD AND PADÉ MODEL COMPARISON FOR
MAXIMUM OUTPUT POWER
Fig. 6 shows the real-world measured optimum load, as deter-

mined through brute force loadpull measurements on the

real device. Also on this figure are the two predicted opti-

mum loads for maximum output power, one from the QPHD
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FIGURE 6. Models predictions of optimum loads for maximum power
delivered at 20 dBm input power represented on a Smith chart.

FIGURE 7. Smith chart representing optimum loads (measured and
modelled) for maximum output power, corresponding to input powers of
10 dBm, 20 dBm and 30 dBm.

model, and one from the Padé-based model. Both models are

extracted from the same data, using the load pattern shown

in Fig. 2. In both cases, the models are based on a 50�

large-signal operating point, with the model attempting to

account for the deviations away from this point.

Another advantage of the Padé-based model may also be

observed in Fig. 6: the optimum load predicted from the Padé-

based model is closer to the measured (i.e. true) optimum

than that predicted by the QPHD model. While this variation

appears minor on the plot, it can be significant when trying

to achieve the best possible output power from a PA, for

example. In Fig. 7, the measured versus modelled optimum

load across a range of input power levels can be observed.

Shown are both the Pade-based [11/11] model and the QPHD

model. It is shown that Padé-based model outperforms the

QPHD model across all input powers, as expected.

C. QPHD AND PADÉ MODEL COMPARISON FOR
MAXIMUM DRAIN EFFICIENCY
This section demonstrates how the PHD formalism may be

used to determine the load impedance required for optimum

drain efficiency. Results from the current state-of-the-art

FIGURE 8. Models predictions of optimum loads for maximum drain
efficiency represented on a Smith chart.

QPHD model are compared to those obtained from the Padé-

based model proposed in this work.

In order to predict drain efficiency, a model for the dc

drain current must first be formulated. The dc drain current

of the transistor can be modelled in a similar fashion to

the X-parameter model (for simplicity – of course a QPHD,

or even Padé-based model, could be considered instead for

higher accuracy). The dc drain current is the current at port

index i = 2, and is modelled as follows

ID = X I2 (|A11|) +
∑

(i,j)6=(1,1)

R{XY2,jl(|A11|.Ajl} (19)

where R{·} denotes the real part.
For a constant dc drain voltage (28V in this case), the drain

efficiency is calculated as

ηD =
POUT

PDC
=

|B21|2 − |A21|2

2.VD.ID
. (20)

Such a drain current model has been extracted for the same

device as used in Sec. III-B. In Fig. 8, a comparison is

shown between the Padé [11/11] model prediction and the

QPHDmodel prediction, along with the real-world measured

optimum drain efficiency. We clearly see the efficacy of the

Padé [11/11] model over the QPHD model, with the former

achieving a near perfect prediction, while the QPHD model

provides a prediction which is even farther away from the true

optimum (blue cross) than we have seen previously with the

load predictions from the two models for maximum output

power.

Fig. 9 shows a 3D plot of the measured drain efficiency

across the full Smith chart, along with the predictions for the

QPHD and Padé-based models – this is effectively providing

the same basic information as that in Fig. 8, along with infor-

mation on the rate of change of the efficiency i.e., note the
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FIGURE 9. Example for determining the optimum load for maximising
drain efficiency for a GaN HEMT transistor (PIN = 20 dBm), by comparing
results from a Padé 11/11 model and a QPHD model to measurement
results.

TABLE 2. Ŵerr for drain efficiency.

expected steep roll-off in the efficiency around the optimum

load, as the load approaches the edge of the Smith chart.

To facilitate a more quantitative comparison, the distance is

recorded between the measured optimum load point and the

optimum load predicted by the models. The exact equation

used is shown below,

Ŵerr = |Ŵopt,meas − Ŵopt,mod|, (21)

where Ŵopt,meas is the measured reflection coefficient corre-

sponding to maximum drain efficiency, while Ŵopt,mod is the

corresponding prediction from the model.

These load reflection coefficient errors are given in Table 2,

for both the QPHD and Padé-based models. Both models

show good accuracy, however the the Padé [11/11] model

shows consistent higher fidelity across a relatively wide mea-

sured power range.

Table 3 shows the efficiency at the two predicted optima

from the models, versus input power. As expected, for low

input powers the drain efficiency is poor. However, in all

cases the measured and modelled efficiencies are remarkably

close – a feature of directly-extracted behavioural models.

IV. ADVANCED APPLICATIONS

A. INTELLIGENT LOAD-PULL AND LOAD-DEPENDENT
MODELS
The concept of an intelligence-driven load-pull system has

been discussed briefly in the literature [23]. Specifically,

the main desire is for a load-pull system that can intelli-

gently determine the area(s) of the Smith chart to explore

in order to maximise a given metric (e.g. output power)

TABLE 3. Drain efficiency by model predict opt loads.

while minimising the number of measurements, and hence

minimise the measurement time.

Alternatively to minimising time, extra measurements

could be taken in the vicinity of the optimum Smith

chart area of interest, in order to extract a highly accu-

rate load-dependent model. Pichler et al. [12] shows that

load-dependant X-parameter models can achieve superior

results compared with regular X-parameters which are

extracted under nearly-matched conditions. It seems pertinent

therefore to investigate whether higher order PHD models,

such as the Padé [11/11] model and the QPHD model, can

themselves be extended to load-dependent models for fur-

ther prediction accuracy. This section attempts to answer

this question, while also comparing the efficacy of these

higher-order PHD models against each other, in the context

of adherence to real-world measured data.

In order to build a load-dependent model, the loadpull

system first needs to determine an area of interest on the

Smith chart, around which a model can be extracted. Ideally,

this would be an area where it is suspected that a certain quan-

tity, say output power, may be maximised. In general, this is

not known apriori. In this work, we overcome this problem

through the use of a simple X -parameter-based model which

may be extracted around the matched condition (usually

50�) and solved, analytically, as in [22], to obtain a rough

estimate of where to center the load-dependent model. This

can be done very quickly, and automatically, by the loadpull

system, and tends to yield reasonably accurate estimates [12].

It is important to realise that this initial X-parameter-based

estimate need not be perfect; it need only be accurate enough

in order to form the center a load-dependent extraction grid,

subsequent measurements will collect enough data to correct

small to moderate errors.

For an input power of 10 dBm, the load-dependent model

center (aka, the LSOP) is taken to be equal to the pre-

dicted load for maximum output power from an X -parameter

model exacted at 50�. Load points are then selected around

this initial LSOP in order to extract load-dependant higher

order models. Fig. 10 shows the load-center (red circle),

as well points around this LSOP from which the extraction

of load-dependent QPHD and Padé-based models will take

place (blue crosses).

Fig. 11 compares the predicted optimum load impedance

for maximising output power from both QPHD and

Padé-based load-dependent models. It is clear that the

load-dependent Padé [11/11] model has a more accu-

rate prediction than previously when extracted around

the 50 ohm load point in Section III-B. It is also seen that

the Padé-derived prediction is significantly more accurate

than that from the QPHD load-dependant model. Indeed,
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FIGURE 10. Sample of load points taken for model extraction for
load-dependant models.

it is interesting to note that the QPHD model actually

yields poorer results than previously when extracted around

the 50 ohm load point. A possible explanation for this lies

in the symmetric nature of the quadratic curve; it is ideally

suited to modelling data that are symmetric as is typically the

case with output power or efficiency data centred on 50�; the

quantity is maximised inside the Smith chart disk (ŴL < 1)

and reaches aminimum at the edge (ŴL = 1) where the output

power is zero. When the model center is moved closer to the

Smith chart edge, a quadratic curve is less suitable. Hence,

for this reason, the Padé-based model in this work represents

the only higher order general load-dependent model proven

to work correctly.

In terms of numerical values themaximumpower delivered

at the LSOP given in Fig. 11 is 26.79 dBm. The Padé model

predicted optimum load value would deliver a power of 26.77

dBm while QPHD optimum load value would only deliver a

power of 26.57 dBm.

B. EXTEND TO 2-PORT MODEL
Until now, all published PHD-based models concerned with

analytic/numerical determination of maximum output power

and/or efficiency are solely based on one-port device descrip-

tions i.e. the focus is typically only on port-two, as that is the

port with the load that is being varied. However, for certain

metrics of interest, such as operating gain, defined as

Gp =
Pout

Pin
(22)

it is necessary to consider both ports.

This above situation would appear to complicate matters,

since it is now required to obtain the optimal values of

both port-one and port-two variables to, say, maximise the

FIGURE 11. Results for load-dependant models.

operating gain. However, if we consider an input-matched

device, the scattered wave at port-one can be described

in terms of the LSOP due to the input and output scat-

tered waves, plus some variation due to the mismatch at

port-2, i.e.

B11 = F11(A11,A21) + XS21,11A21 + XT21,11A
∗
21, (23)

since for matched input conditions A11 is constant. Essen-

tially, all travelling waves in the model are then expressed

in terms of A21, with A11 being a constant. This means

that for metrics where the value of B11 is needed to solve

for an optimum load, such as operating gain, the problems

reduces to a similar situation to that solved previously i.e.,

by optimising to a value of A21 which gives the maximum of

the required metric. To do this, (23) is used along with a value

of A11 which is constant for a given input power to find the

input power as follows

Pin =
|A11|2 − |B11|2

2
(24)

The operating gain can then be simply found by substitut-

ing (24) and (10) into (22) and then solving for the values

of A21 when (22) is stationary, in the same manner as have

been used to solve for maximisation of the previous metrics

such as power delivered and drain efficiency. Fig. 12 shows

the predictions for the optimum load for maximum operating

gain for the Padé and QPHD model. Due to the increased

complexity of this problem (modelling two ports as opposed

to one) there is a slightly more inaccurate solution than

what we have seen before for other metrics. Nevertheless,

the Padé-based model remains more accurate than the other

solutions, and has the added benefit of extensibility, which is

problematic in the othermodels due to numerical/false optima

issues.

18912 VOLUME 9, 2021



C. Wilson et al.: Pade-Approximation Based Behavioral Modeling for RF PA Design

FIGURE 12. Results for predicting the optimum load point for maximum
operating gain. Input power 30 dBm.

V. CONCLUSION

In this paper, a thorough comparison is presented com-

paring behavioural device models for a GaN device under

large-signal excitation. It is shown that using a Padé

approximant-based model, instead of a QPHD model, can

increase model accuracy significantly. Several large-signal

matching problems (i.e. determination of required load

impedance for optimising a given metric) are solved using

the Padé and the QPHD models directly, considering max-

imum power delivered but also, optimising for maximum

drain efficiency and maximum operating gain. It is shown

that the Padé 11/11 model outperforms the QPHD model

when predicting the required load impedances for both power

delivered and, separately, drain efficiency. It is also shown

how the Padé model does not suffer from the problem of

multiple ‘false’ load optima that the QPHD model is prone

to, and furthermore, a method to find the ‘‘valid’’ optimum

load in the case of multiple solutions, by ruling out invalid

solution on the basis of their A21 values, is also presented.
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