
 Open access  Proceedings Article  DOI:10.1109/CCGRID.2002.1017122

PadicoTM: An Open Integration Framework for Communication Middleware and
Runtimes — Source link 

Alexandre Denis, Christian Pérez, Thierry Priol

Institutions: French Institute for Research in Computer Science and Automation

Published on: 21 May 2002 - Cluster Computing and the Grid

Topics: Grid computing, Middleware, Grid, Concurrent computing and Application software

Related papers:

 Optimisation of component-based applications within a grid environment

 Developing a user-level middleware for out-of-core computation on Grids

 Adaptive Distributed Computing Middleware for Computational Finance Applications

 A virtual file system interface for computational grids

 Multi-domain grid/cloud computing through a hierarchical component-based middleware

Share this paper:    

View more about this paper here: https://typeset.io/papers/padicotm-an-open-integration-framework-for-communication-
291i3a2khs

https://typeset.io/
https://www.doi.org/10.1109/CCGRID.2002.1017122
https://typeset.io/papers/padicotm-an-open-integration-framework-for-communication-291i3a2khs
https://typeset.io/authors/alexandre-denis-1qmzw2372q
https://typeset.io/authors/christian-perez-2505y7kixu
https://typeset.io/authors/thierry-priol-42oegkoj6q
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/conferences/cluster-computing-and-the-grid-17gdo0ih
https://typeset.io/topics/grid-computing-3slduoxr
https://typeset.io/topics/middleware-1iarmroc
https://typeset.io/topics/grid-1e79jo7o
https://typeset.io/topics/concurrent-computing-1ltisuq0
https://typeset.io/topics/application-software-rtpf67xb
https://typeset.io/papers/optimisation-of-component-based-applications-within-a-grid-1i5y0j6ac0
https://typeset.io/papers/developing-a-user-level-middleware-for-out-of-core-1kkx5qtqz8
https://typeset.io/papers/adaptive-distributed-computing-middleware-for-computational-5guss3m9jd
https://typeset.io/papers/a-virtual-file-system-interface-for-computational-grids-3i5o6d2l3u
https://typeset.io/papers/multi-domain-grid-cloud-computing-through-a-hierarchical-2ddd4jo656
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/padicotm-an-open-integration-framework-for-communication-291i3a2khs
https://twitter.com/intent/tweet?text=PadicoTM:%20An%20Open%20Integration%20Framework%20for%20Communication%20Middleware%20and%20Runtimes&url=https://typeset.io/papers/padicotm-an-open-integration-framework-for-communication-291i3a2khs
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/padicotm-an-open-integration-framework-for-communication-291i3a2khs
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/padicotm-an-open-integration-framework-for-communication-291i3a2khs
https://typeset.io/papers/padicotm-an-open-integration-framework-for-communication-291i3a2khs


HAL Id: inria-00000132
https://hal.inria.fr/inria-00000132

Submitted on 24 Jun 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PadicoTM: An Open Integration Framework for
Communication Middleware and Runtimes

Alexandre Denis, Christian Pérez, Thierry Priol

To cite this version:
Alexandre Denis, Christian Pérez, Thierry Priol. PadicoTM: An Open Integration Framework for
Communication Middleware and Runtimes. IEEE International Symposium on Cluster Computing
and the Grid (CCGrid2002), May 2002, Berlin/Germany, Germany. pp.144-151. inria-00000132

https://hal.inria.fr/inria-00000132
https://hal.archives-ouvertes.fr


PadicoTM: An Open Integration Framework for

Communication Middleware and Runtimes

Alexandre Denis1 Christian Pérez2
Thierry Priol21IRISA/IFSIC, 2IRISA/INRIA,

Campus de Beaulieu - 35042 Rennes Cedex, France

{Alexandre.Denis, Christian.Perez, Thierry.Priol}@irisa.fr

Abstract

Computational grids are seen as the future emergent

computing infrastructures. Their programming requires the

use of several paradigms that are implemented through

communication middleware and runtimes. However some

of these middleware systems and runtimes are unable to

take benefit of the presence of specific networking technolo-

gies available in grid infrastructures. In this paper, we

describe an open integration framework that allows sev-

eral communication middleware and runtimes to efficiently

share the networking resources available in a computa-

tional grid. Such framework encourages grid programmers

to use the most suited communication paradigms for their

applications independently from the underlying networks.

Therefore, there is no obstacle to deploy the applications

on a specific grid configuration.

1 Introduction

As parallel and distributed systems are merging into a

single computational infrastructure called the Grid, it is

foreseen that the programming of such an infrastructure will

require the use of several communication paradigms in a

combined and coherent way. Indeed, the availability of grid

infrastructures will encourage the development of new ap-

plications in the field of scientific computing that was un-

thinkable some years ago. With the availability of such an

amount of computing power, it is now envisaged to simu-

late more complex physical phenomena. For instance, the

simulation of all physical phenomena that are involved in

the design of an aircraft requires the coupling of a large

number of simulation codes, in the fields of structural me-

chanics, computational fluid dynamics, electromagnetism,

etc. Each code has its own requirement in term of comput-

ing resources (visualization, parallel or vector computers).

The codes that compose such an application are generally

independently developed. It appears very constraining to

require that all codes are based on the same communication

paradigm, like for example MPI, to be able to run on a com-

putational grid. It is more likely that each simulation code

has its own requirement in term of execution support. Some

of them are based on message-passing, some others require

a shared memory abstraction (either a physical memory or a

distributed shared memory). Moreover, the coupling of sim-

ulation codes requires the use of specific communication

paradigms to transfer both data and control, such as RPC

(Remote Procedure Call) or RMI (Remote Method Invoca-

tion). CORBA or Java RMI are good candidates to support

the coupling of codes. However, there exists several obsta-

cles that discourage programmers from using the available

communication paradigms in their applications. Thus, they

are forced to choose one against the others even if it is not

the most suitable one.

The first obstacle is that most implementations of the

communication paradigms for distributed systems (RPC or

RMI) are unable to exploit all the networks available in

a grid system, such as those in parallel computers or PC

clusters. Existing implementations of such communication

paradigms were mainly based on the widely used TCP/IP

communication protocol. Implementing TCP/IP on various

communication networks could be a solution to solve the

problem, but suffers from huge software overhead discour-

aging the programmers from using distributed program-

ming paradigms within high-performance applications. In

such circumstances, the use of RPC or RMI will restrict the

deployment of the application on some of the computing

resources depending on the availability of networks.

The second obstacle is the design of low-level communi-

cation layers for System Area Networks (SAN) in parallel

systems or PC clusters (Myrinet, SCI, ...) in a grid system.

Such communication layers were not designed to be able

to share the networking resources with several communica-
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tion middleware and runtimes. Usually, these networks are

available through a single communication paradigm (mes-

sage passing most of the time). Even worse, some commu-

nication layers require that the same binary code has to be

executed on each node of the parallel computing resource.

With such a restriction, it is not possible to execute two dif-

ferent codes on the same parallel system nor to exploit the

underlying high-performance network to let the two codes

exchange control and data.

Thus there exists a high risk of encouraging the program-

mers to use a single communication middleware or runtime

for both parallel (within a simulation code) and distributed

(between simulation codes) programming. For that pur-

pose, one can envisage the use of an MPI [8] implemen-

tation for a grid infrastructure. We think that this approach

is not suitable for several reasons. First of all, message-

based runtimes (eg. MPI) were not designed to transfer the

control; it forces thus the programmer to simulate a RPC on

top of the message-passing runtime. Moreover, there is no

way to express the interface of a scientific code. The use

of such a code in another application will not be as simple

as with a middleware that provides a way to express the in-

terface associated with a code (such as the IDL language of

CORBA). Our project aims at removing the two previously

mentioned obstacles to allow the programmers to choose

the most suitable middleware and runtimes for the design

of grid applications.

The remainder of this paper is divided as follows. Sec-

tion 2 gives a short description of communication middle-

ware and runtimes that should be integrated into our open

integration platform. In section 3, we sketch the architecture

of the PadicoTM platform. Section 4 gives some perfor-

mance results that were obtained with the PadicoTM plat-

form. Section 5 presents some related works. Finally, we

present some concluding remarks in section 6.

2 Communication Middleware and Run-

times

This section aims at giving a brief overview of sev-

eral communication middleware systems and runtimes we

would like to integrate into an open framework, and draws

a list of problems that such an open framework has to solve.

2.1 Message Passing

Message-passing has been widely adopted as the com-

munication paradigm in the programming of distributed

memory parallel systems. Although in the past there were

various message-passing based runtimes provided by the

parallel systems vendors, several projects aimed at design-

ing a common message-passing interface. PVM [20] and

MPI [7] are examples of such projects. Such runtimes allow

client

DII

object implementation

DSI object

adapter
skeleton

static

static
stub

ORB (Object Request Broker)

Figure 1. CORBA Architecture

the sending and receiving of messages through explicit send

and receive operations with various semantics (blocking or

non-blocking). Messages are usually associated with a type

to allow a selection at the receiving side. Nowadays most of

the parallel programs designed for distributed memory par-

allel systems are based on MPI. However, MPI was mainly

designed for parallel programming and not for distributed

programming.

2.2 Distributed Shared Memory

Distributed shared memory systems [13, 11] are seen as

an alternative for the programming of distributed and/or par-

allel systems. It gives the illusion of a single address space

in a computational infrastructure in which each node has its

own local physical memory. Although this paradigm has

had few success, we think that the availability of a single

address space in a grid infrastructure could simplify the pro-

gramming of irregular applications for which data distribu-

tion is extremely challenging, or even impossible. Current

DSM implementations are built on existing or specific mes-

sage passing libraries.

2.3 Distributed Objects and Components

CORBA [15] is a specification from the OMG (Object

Management Group) to support distributed object-oriented

applications. Figure 1 describes its architecture. An ap-

plication based on CORBA can be seen as a collection of

independent software components or CORBA objects. Re-

mote method invocations are handled by an Object Request

Broker (ORB) which provides a communication infrastruc-

ture independent of the underlying network. An object in-

terface is specified with the Interface Definition Language

(IDL). An IDL compiler is in charge of generating a stub for

the client side and a skeleton at the server side. Stubs and

skeletons aim at connecting a client of a particular object

to its implementation through the ORB. Within the ORB,

several protocols exist to handle specific network technolo-

gies. The most important protocol is IIOP (Internet Inter-

ORB Protocol) which is used to support IP-based networks.
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However, IIOP was designed for interoperability and of-

fers limited performance. Fortunately, CORBA provides

the ability to write an ESIOP (Environment-Specific Inter-

ORB Protocol) which can handle other network technolo-

gies. However, there are very few ESIOP implementations

for specific network technologies such as those in PC clus-

ters or parallel computers. Moreover, the problem is more

complex as we may think. A high performance CORBA

implementation will typically utilize SAN with a dedicated

high-performance protocol. It needs to be interoperable

with other standard ORBs, and thus should implement both

high-speed protocol for SAN and standard IIOP for inter-

connecting with other ORBs over TCP/IP. From the appli-

cation designer perspective, such a high-speed ORB must

behave as any other ORB.

2.4 Supporting several Communication Middle
ware and Runtimes

Supporting CORBA and MPI, both running simultane-

ously, is not straightforward. Several access conflicts for

networking resources may arise. For example, only one ap-

plication at a time can use Myrinet through BIP [17]. If

both CORBA and MPI try to use it without being aware of

each other, there are access conflicts and reentrance issues.

If each middleware (eg. CORBA, MPI, a DSM, etc.) has its

own thread dedicated to communications, with its own pol-

icy, communication performance is likely to be sub-optimal.

If ever we are lucky enough and there is no resource con-

flict, there is probably a more efficient way than putting side

by side pieces of software that do not see each other and

that act in an “egoistic” fashion. In a more general manner,

resource access should be cooperative rather than competi-

tive.

3 PadicoTM Architecture

Padico is our research platform to investigate the prob-

lems of integrating several communication middleware and

runtimes. PadicoTM, standing for Padico Task Manager, is

the runtime of Padico. The role of PadicoTM is to provide a

high performance infrastructure to plug in middleware like

CORBA, MPI, JVM (Java Virtual Machine), DSM (Dis-

tributed Shared Memory), etc. It offers a framework that

deals with communication and multi-threading issues, al-

lowing different middlewares to efficiently cohabit within

the same process. Its strength is to offer the same interface

to very different networks. Such platform is being used as

a runtime for code coupling applications based on the con-

cept of parallel CORBA objects [18, 6] for which there is a

need to simultaneously use a middleware (CORBA) and a

runtime (MPI). Figure 2 shows a typical use of PadicoTM:

SCI threadsMyrinet TCP

PadicoTM

CORBA MPI

Application
(process view)

Figure 2. Example of a typical PadicoTM ap
plication which uses both MPI and CORBA

an application uses MPI and CORBA at the same time. The

following sections focus on the description of PadicoTM.

3.1 PadicoTM Overview

The design of PadicoTM, derived from the software

component technology, is very modular. Every module is

represented as a component: a description file is attached

to the binary files. PadicoTM is composed of core mod-

ules and service modules. PadicoTM core implements mod-

ule management, network multiplexing and thread man-

agement. PadicoTM core comprises three modules: Puk,

TaskManager and NetAccess. Services are plugged in Padi-

coTM core. The available services are:� advanced network API (VSock described in Section 3.5

and Circuit described in Section 3.6) on top of native

PadicoTM network API;� middleware and runtimes, namely a CORBA module

(Section 4.2), a MPI module (Section 4.1) and a Java

Virtual Machine;� gatekeepers (Section 3.7) which enable the user to re-

motely steer the processes on every nodes.

Currently, we have a functional prototype with all these

modules available.

3.2 Dynamicity

Static vs. Dynamic. There is a network model discrep-

ancy between the “distributed world” (eg. CORBA) and

the “parallel world” (eg. MPI). Communication layers ded-

icated to parallelism typically use a static topology1: nodes

1PVM and MPI2 address this problem but do not allow network man-

agement on a link-per-link basis.
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cannot be inserted or removed into the communicator while

a session is active. On the other hand, CORBA has a

distributed approach: servers may be dynamically started,

clients may dynamically contact servers. The network

topology is dynamic. High-performance networks API are

mostly biased toward the parallel model; thus, it is chal-

lenging to map the distributed communication model of

CORBA onto SAN such as Myrinet or SCI.

Loadable modules. Since most communication libraries

for SAN (eg. BIP, Madeleine [2] or vendor’s MPI on most

machines) require the processes on all nodes to be started at

the same time, we chose that PadicoTM bootstraps a unique

binary on each node. It satisfies the SPMD requirement of

the communication library. Since we do not want all nodes

to actually run the same application, we chose to store appli-

cations into dynamically loadable modules. Thanks to this

mechanism, different binaries can be dynamically loaded

into the different nodes of a cluster or a parallel computer

that participates to a grid system. For example, we can load

a CORBA server on one node and CORBA clients on other

nodes. In PadicoTM, we call this bootstrap binary Padico �-

Kernel, or in shorter Puk. Once the Puk module is boot-

strapped on each node, it loads the other modules and starts

them. Puk is able to do only three things: load, start and

unload modules on the node it manages. It knows noth-

ing about threads nor about the network – these tasks are

delegated to the TaskManager and NetAccess modules de-

scribed below.

Module type. We want the module concept to be open.

We do not restrict ourselves to binary dynamically loadable

libraries. Actually, modules are described in a file written in

XML. This description file contains: the name of a driver

able to load this module, references to other modules for

dependency checking, units and attributes. A driver is a

set of functions which tell Puk how to load, start and un-

load a given type of unit. Different drivers may be seen

as module types. For example, the binary driver defines

units as binary shared objects (“.so” libraries on Unix),

the java driver defines units as Java classes, or the pkg
driver defines units as being modules. Attributes are envi-

ronment variables aimed at configuring modules. Figure 3

is the description for the ORB module: it should be loaded

by the binary driver, requires the VSock module, contains

the libORB.so unit and an attribute for referencing the

CORBA name service running on the paraski machine

and listening on port 10000.

3.3 Thread Management

Common thread library. It is now common that middle-

ware implementations use multi-threading. However, mid-

<mod name="ORB" driver="binary">
<requires>VSock</requires>
<attr label="NameService">
corbaname::paraski.irisa.fr:10000

</attr>
<unit>libORB.so</unit>

</mod>

Figure 3. XML description for the ORB service.

dleware systems which are not designed to run together in

the same process are likely to use incompatible thread poli-

cies, or simply different multi-threading packages. An ap-

plication runs into trouble when mixing several kinds of

threads. That is why PadicoTM must provide the plugged-

in middleware with a portability layer for multi-threading.

At first look, it may seem attractive to use Posix threads

(known as pthread) as a foundation. However, it has been

shown [4] that MPI and current implementations of Posix

threads do not stack up nicely. To deal with portability as

well as performance issues, we choose the Marcel [5] multi-

threading library. Marcel is a multi-threading library in user

space. It implements an N:M thread scheduling on SMP

architectures. Marcel has been designed to guarantee a good

reactivity of the application to network I/O when used in

conjunction with the Madeleine [2] communication layer.

Coherent thread management. The TaskManager mod-

ule of PadicoTM is based on Marcel. Every PadicoTM

modules which use multi-threading are supposed to use

Marcel and no other multi-threading library. This is not very

constraining: Marcel API is very similar to Posix threads

API.

The TaskManager module provides handy queues for

asynchronous processing of Puk operations (described in

Section 3.2). All Puk operations are performed in the same

thread to avoid reentrance issues at low level. The modules

outside the PadicoTM core are not supposed to perform di-

rect calls to Puk; they should use it through the TaskMan-

ager API instead. The TaskManager module manages sys-

tem calls so that they do not block the whole process. It

provides hooks for polling loops so that they do not compete

with each other. As the TaskManager knows the threads of

every modules, it is able to chose a coherent policy.

3.4 Cooperative Access to the Network

High performance networks. Access to high speed net-

works is the more conflict-prone task when using multiple

middleware systems at the same time. Some access meth-

ods require an exclusive access to the hardware (eg. Myrinet

through BIP) thus only one library can use it at the same
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time – ie. CORBA or MPI, not both; some networks have

limited resources which can be exhausted if different li-

braries open separate connections (eg. SCI); some network

hardware can be used through several drivers, but it causes

conflicts if more than one driver is used to access the same

hardware at the same time (eg. on Myrinet, all middleware

systems must agree on the driver to use: BIP or GM).

In the worst case, middleware cannot coexist in the same

process nor on the same machine, due to network access

conflict. In the best case, if middleware systems do not

know each other, each would run its own polling thread so

that the access to the network is competitive and prone to

race conditions.

To deal with low level, portability, and performance is-

sues, we chose to use Madeleine [2] as a foundation for

the NetAccess module of PadicoTM. The Madeleine com-

munication layer was designed to bridge the gap between

low-level communication interfaces (such as BIP [17], SBP

or UNET) and middleware. It provides an interface opti-

mized for RPC-like operations that allows zero-copy data

transmissions on high-speed networks such as Myrinet or

SCI, and is best used with Marcel threads. A unique polling

loop managed by the PadicoTM NetAccess module dis-

patches incoming messages to modules that want access to

high-speed networks. Thus, every module use the network

through NetAccess: there is no access conflict. Moreover,

there is no competition thanks to the unique polling loop.

Multiplexing over Madeleine. In order to allow several

middleware to use the network, there is a need for multi-

plexing in some layer. Madeleine provides no more multi-

plexing channels than what is allowed by the hardware. For

example, Madeleine provides two channels on top of BIP,

and only one channel on top of SCI. However, we want to be

able to deploy an arbitrary number of communication mid-

dlewares in a PadicoTM process. Therefore, we need an ar-

bitrary number of logical communication channels. The Ne-

tAccess module multiplexes logical “PadicoTM channels”

on top of Madeleine hardware channels. Practically, Ne-

tAccess uses one Madeleine channel with one polling loop

listening on it. The modules that want to use Madeleine reg-

ister callback functions which are called when a message ar-

rives. To guarantee that the communications are deadlock-

free, callbacks are not allowed to block nor to send directly

a message on the network. However, if they need to send a

reply or to wait on a condition, the TaskManager can do it

in another thread.

This mechanism requires very few changes to existing

Madeleine applications. Moreover, user’s applications do

not want to use Madeleine directly; they use CORBA or

MPI instead. Only developers of middleware for PadicoTM

need to use these callbacks.

Multiplexing on top of Madeleine adds a header to all

messages. This can increase significantly the latency if

not done properly. We implement “headers combining”

which enables most messages to contain only one combined

header plus the body. Headers of all logical layers are ag-

gregated into a single low-level packet. For each outgo-

ing message, NetAccess allocates a buffer for headers; on

top of NetAccess, each layer adds its headers in the buffer.

Thus, multiplexing on top of Madeleine adds virtually no

overhead compared to middleware built on top of regular

Madeleine. We measured that the overhead is negligible.

Puk, TaskManager and NetAccess modules compose

PadicoTM core. Other modules are called services. They

are plugged in the PadicoTM core. Figure 4 sums up the

available modules in PadicoTM.

3.5 Virtual Sockets

The TCP/IP network protocol is designed for use over a

WAN. It is not well suited for use over a SAN. Moreover,

system calls add a significant latency to the data path. That

is why we avoid as much as possible kernel-level communi-

cation libraries. However, the widespread socket interface

from Berkeley is fairly well suited for networking. Most

networking middleware use sockets; some of them heavily

rely on the concept of sockets and would require very deep

changes to use another communication paradigm. Thus, we

chose to implement a socket-like interface on top of the “na-

tive” NetAccess interface described in the previous section,

like Fast Socket [19] on top of Active Messages. Our ap-

proach relies on the concept of virtual socket, that we call

VSock. It implements a subset of the standard socket func-

tions in user space on top of NetAccess, for achieving high-

performance. It performs zero-copy datagram transfer with

a socket-like connection handshake mechanism.

VSock is a multi-protocol communication layer with

auto-selection. It automatically selects the adequate proto-

col according to the available hardware. For interoperability

issues, VSock is able to communicate with VSock-unaware

applications using standard TCP/IP protocol. It determines

by itself whether an address (a pair of standard IP address–

port number) is reachable using Madeleine or if it should

revert to standard TCP. From the application point of view,

VSock behaves exactly as regular sockets, even if the data

path is bypassed through NetAccess/Madeleine instead of

TCP/IP when possible.

Then, it is straightforward to port on top of VSock ex-

isting middleware based on sockets like CORBA or a Java

Virtual Machine.

3.6 Groups and circuits

The NetAccess module is a low-level communication

layer of PadicoTM. It creates communication channels
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Figure 4. PadicoTM modules

which comprise every nodes of a cluster. However, one may

want for example to deploy two MPI codes coupled with

CORBA on a cluster. In this case, each MPI code spans

across only a group of nodes, though the low-level commu-

nication library spans across all nodes.

To handle such cases, PadicoTM provides the concept

of logical groups of nodes. A group is a set of nodes of

a cluster or of a parallel machine. We define a circuit as

a NetAccess communication channel restricted to a group.

Thus, higher level communication libraries such as MPI or a

DSM run on a circuit. The logical topology has not to match

the hardware topology. This is different from creating MPI

groups inside the high-level MPI communicator: there is

no need to change an existing application which expects to

use MPI_COMM_WORLD, the middleware library (eg. MPI)

is loaded only on nodes which actually run an MPI appli-

cation, and finally it is available for any other middleware

such as a Distributed Shared Memory (DSM).

To manage modules on groups and circuits, we provide

an additional driver for Puk called multi. The multi
driver is aimed at running SPMD codes and SPMD mid-

dleware (such as MPI or a DSM) on PadicoTM groups and

circuits. Basically, the multi driver transforms the mod-

ules it contains into SPMD modules. For example, when

the user loads a multimodule (with only one request from

the user), the driver forwards the request to the given group

of nodes, performs synchronization, and aggregates the re-

turn codes. All Puk operations (load, start, unload) are per-

formed on a group of nodes instead of a single node, with

appropriate synchronization. For the multi driver, units

are modules. The group name is given through an attribute.

3.7 Remote Control

For dynamically monitoring and managing modules on

each node, Padico comprises PadicoControl, a set of appli-

cations to remotely steer a PadicoTM process. Currently,

there are two such applications: a GUI written in Java for

portability, and a command-line tool for more advanced

users. Communications between these tools and PadicoTM

rely on CORBA or an XML-based RPC (the use of SOAP

is being investigated), thus allowing the design of specific

tools.

A PadicoTM service called gatekeeper, loaded in Padi-

coTM processes, listens to incoming requests and handles

them (for example, load a module, return the list of run-

ning modules, etc.). It is mostly a remote interface for the

TaskManager (see Section 3.3).

For the moment, we use a single-user security policy.

Security is managed through the use of session keys. When

PadicoTM processes are launched, the same session key is

given to the user and to the gatekeeper. All requests to

PadicoControl must contain a session key which matches

the one known by the gatekeeper. If keys do not match, the

request is not taken into account. Thus, only the user who

launched the processes is authorized to steer them.

4 Experiments with middleware and run-

times with PadicoTM

The MPI implementation in PadicoTM is derived from

MPICH/Madeleine [3] with very few changes (use Circuit

instead of Madeleine and replace the polling thread with

a callback). The CORBA implementation in PadicoTM is

based on OmniORB3 [1] from AT&T. The porting of Om-

niORB on top of VSock and Marcel threads is straightfor-

ward. We also ported another implementation of CORBA,

namely MICO, to show the ability of PadicoTM to support

various CORBA-based middleware. However, the best per-

formance was obtained using OmniORB. The Java Virtual

Machine module is based on Kaffe [10], on top of VSock

and Marcel.

Our benchmark machines are “old” dual-Pentium II

450MHz machines, with Ethernet-100, SCI and Myrinet-

1, and “more recent” dual-Pentium III 1GHz with Myrinet-

2000.

4.1 MPI

The MPI module in PadicoTM gets the bandwidth shown

on Figure 5. The peak bandwidth is excellent: 240 MB/s on

Myrinet-2000 and 75 MB/s on SCI. The latency is 11 �s

on Myrinet-2000 and 23 �s on SCI. This performance is

very similar to MPICH/Madeleine [3] from which Padi-

coTM MPI implementation is derived; PadicoTM adds no

noticeable overhead neither for bandwidth nor for latency.

4.2 CORBA

The bandwidth of the high-performance CORBA imple-

mentation is shown on Figure 5. The benchmark consists

in a remote invocation of a method which takes an inout
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parameter of variable size (sequence of long). The peak

bandwidth is 240 MB/s on Myrinet-2000, 89 MB/s on SCI,

and 101 MB/s on Myrinet 1 (not shown on figure). This

performance is very good. We reached more than 96 % of

the maximum achievable bandwidth with Madeleine.

On the “old” machines (Pentium II 450, SCI or Myrinet-

1), the latency of CORBA for an empty remote invocation

is around 55 �s. It is a good point when compared to the

160 �s latency of the ORB over TCP/Ethernet-100. On

the “more recent” machines (Pentium III 1GHz, Myrinet-

2000), the latency of CORBA is 20 �s where MPI gets

11 �s.

CORBA is as fast as MPI regarding the bandwidth, and

slightly slower than MPI for latency. This latency could

be lowered if we used a specific protocol (called ESIOP)

instead of the all-purpose GIOP protocol in the CORBA

implementation. This performance is very good, though.

As far as we know, OmniORB in PadicoTM is the fastest

CORBA implementation.

4.3 Java

Padico provides a Java Virtual Machine module based on

Kaffe [10]. It has been modified to use Marcel threads and

VSock. Thus, Java sockets can reach very good performance

when a high-speed network is available. Figure 5 shows the

bandwidth of Java sockets over Myrinet-2000.

5 Related Works

From our knowledge, there exist very few research

works dealing with the design of an open integration frame-

work for communication middleware and runtimes. Most

of the works focused on the performance optimization of

a single middleware or runtime. Since high-performance

MPI is well known, we focus here on high-performance

CORBA. TAO [12] (the ACE ORB) focuses on high per-

formance and real-time aspects. Its main concern is pre-

dictability. It may utilize TCP or ATM networks, but it is

not targeted to high performance network protocols found

on clusters of PCs such as BIP or SISCI. OmniORB2 had

been adapted to ATM and SCI networks. Since the code

is not publicly available, we only report published results.

On ATM, there is a gap of bandwidth between raw bytes

and structured data types [16]. The bandwidth can be as

low as 0.75 MB/s for structured types. On SCI, results are

quite good [14] (156 �s, 37.5 MB/s) for messages of raw

bytes; figures for structured types on SCI are not published.

CrispORB [9], developed by Fujitsu labs, is targeted to VIA

in general and Synfinity-0 networks in particular. Its latency

is noticeably better, up to 25 % than with standard IIOP.

6 Summary and Conclusion

In this paper we have presented an open platform that

is able to incorporate various communication runtimes and

middleware. This platform enables the execution of appli-

cations that are based on both distributed and parallel pro-

gramming paradigms on grid infrastructures, independently

from the underlying networking resources. Such an ap-

proach encourages grid programmers to use the most suited

communication middleware and runtimes for their applica-

tions. Although this platform adds one more layer between

the applications and the networking resources, we showed

that the additional overhead is insignificant. Moreover, we

showed that middleware, such as CORBA, for distributed

computing can take benefit from high-performance network

such as SCI and Myrinet. We also showed that CORBA can

achieve roughly the same level of performance than MPI

sweeping away prejudice concerning the performance of

such a middleware. Concerning the status of the project,

all the functionality described in this paper has been im-

plemented. It is expected to distribute this platform during

spring 2002.
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