
PADS: A Domain-Specific Language
for Processing Ad Hoc Data

talk based on paper by
Kathleen Fisher1 Robert Gruber2

1AT&T Labs Research 2Google

November 10, 2005

Jan Voung (UCSD) PADS November 10, 2005 1 / 24



Outline

1 Why worry about ad hoc data?

2 Current options for processing ad hoc data

3 What PADS does for you

Jan Voung (UCSD) PADS November 10, 2005 2 / 24



Outline

1 Why worry about ad hoc data?

2 Current options for processing ad hoc data

3 What PADS does for you

Jan Voung (UCSD) PADS November 10, 2005 3 / 24



Data and formatting

Massive amounts of data is generated and collected every day.

Formatted data is easier to understand and process.

Formats can either be standardized, or not standardized.

Jan Voung (UCSD) PADS November 10, 2005 4 / 24



Standard vs nonstandard formats

Boundary not so clear, but...

there is certainly a difference in the size of the expected
producer/user-base. Standard formats tend to have many applications
that generate and process them. Standardized formats should be
designed to expect a growing user-base.

Examples of data in standard formats:

• webpages in HTML

• pictures in JPEG

• XML

• data in databases

• The billions of lines of code you write every day?

Jan Voung (UCSD) PADS November 10, 2005 5 / 24



Ad hoc data (data in nonstandard formats)

Claim/(fact?): Most data is actually stored in nonstandard formats.
Here are some examples:

• AT&T accumulates 250-300GB/day of billing data

• Netflow data arrives at Cisco routers at over a GB/sec.

Jan Voung (UCSD) PADS November 10, 2005 6 / 24



Common Log Format (CLF) for web servers

One record per line, with 7 fields:

The ’-’ character indicates missing data for that field

Jan Voung (UCSD) PADS November 10, 2005 7 / 24



Investment data

Records within another kind of record

Jan Voung (UCSD) PADS November 10, 2005 8 / 24



Ad hoc data in chemistry

Context-free?

Jan Voung (UCSD) PADS November 10, 2005 9 / 24



DNS data

Binary data

Jan Voung (UCSD) PADS November 10, 2005 10 / 24



Small audience, big expectations

Groups that work with ad hoc data, no matter how small, still need tools
that

• parse the data to load into applications

• visualize the data

• allow queries over the data

• convert the data (maybe to load into a database)

• detect errors in the data

• correct errors

• filter data

• combine data from multiple sources

Jan Voung (UCSD) PADS November 10, 2005 11 / 24



Outline

1 Why worry about ad hoc data?

2 Current options for processing ad hoc data

3 What PADS does for you

Jan Voung (UCSD) PADS November 10, 2005 12 / 24



Perl/AWK/Shell scripts/C

Pros

• flexible

Cons

• time investment
• hand-code parser
• hand-code error handling (if you even bother)
• hand-code other tools (e.g., converters, viewers)

• error-prone

• difficult to maintain in the face of format changes

Jan Voung (UCSD) PADS November 10, 2005 13 / 24



Lex + Yacc

Pros

• ?

Cons

• specify lexer and parser separately

• error handling inflexible

• still need to hand-code other tools (e.g., converters, viewers)

People don’t use Lex + Yacc for ad hoc data.

Jan Voung (UCSD) PADS November 10, 2005 14 / 24



Outline

1 Why worry about ad hoc data?

2 Current options for processing ad hoc data

3 What PADS does for you

Jan Voung (UCSD) PADS November 10, 2005 15 / 24



What we want

• Simple data description language
• Parser

• should handle various encodings (ASCII, binary, etc.)
• should not halt on errors, and
• should track errors (syntactic + semantic)
• generate useful in-memory representation

• Other tools
• converter to other formats (e.g., XML, CSV)
• statistical profiler
• query interface
• more?

• High performance

Jan Voung (UCSD) PADS November 10, 2005 16 / 24



What we get from PADS

• Simple data description language
• Parser

• handles ASCII, EBCDIC, and binary
• does not halt on errors, and
• tracks errors (syntactic + semantic) in a parse-descriptor struct
• generates C structs, unions, etc., for in-memory rep.

• Other tools
• convert/print to other formats (XML + XML Schema, CSV)
• statistical profilers via accumulator programs
• query interface
• more in the future

• Faster than Perl programs

• Can stream data, rather than read it all into memory at once

Jan Voung (UCSD) PADS November 10, 2005 17 / 24



PADS architecture

(Not to scale)

Jan Voung (UCSD) PADS November 10, 2005 18 / 24



PADS architecture: a closer look

Note: Use masks to select only the features that are relevant to the
application ⇒ increased performance

Jan Voung (UCSD) PADS November 10, 2005 19 / 24



Data Description Language

Primitives (Pint32, Pdate, Pstring, Pip).

Complex data (Pstruct, Punion, Parray, Popt, Ptypedefs,
Penum).

Parameterized types (e.g., Puint16_FW(:3:)).

Can attach predicates for error checking (see following example).

Jan Voung (UCSD) PADS November 10, 2005 20 / 24



CLF: Checking HTTP version conformance

Jan Voung (UCSD) PADS November 10, 2005 21 / 24



Siruis Data: Check that timestamps increase
monotonically

Jan Voung (UCSD) PADS November 10, 2005 22 / 24



Conclusion

• They evaluate the work by showing how to construct parsers for a
few formats and comparing the performance of generated tools to
hand-coded perl programs. PADS generated tools are no slower
(actually faster in all 6 runs and 2x faster in 3 of the runs).

• Rather than standardize a format (e.g., HTML), then create tools,
PADS can automatically generate tools as the format evolves. The
only cost is the time to update the PADS description.

If you want to try it, go to http://www.padsproj.org

Jan Voung (UCSD) PADS November 10, 2005 23 / 24



Discussion

• What other methods of evaluation would you like to see for work of
this kind?

• The PADS group plans to add more auxiliary tool generators. Is it
really useful, or do you imagine people building custom tools using
only the generated parser?

• If people build custom tools, does that also build up data-format
inertia?

• Do you feel that the PADS compiler has more opportunities to
optimize the generated parser and tools than compiled
hand-coded tools?

Jan Voung (UCSD) PADS November 10, 2005 24 / 24


	Why worry about ad hoc data?
	Current options for processing ad hoc data
	What PADS does for you

