
PADS: Processing Arbitrary Data Streams

Kathleen Fisher
AT&T Labs — Research
kfisher@research.att.com

Robert E. Gruber
AT&T Labs — Research
gruber@research.att.com

August 7, 2003

1 Introduction
Transactional data streams, such as sequences of stock-market buy/sell orders, credit-card purchase records, web server
entries, and electronic fund transfer orders, can be mined very profitably. As an example, researchers at AT&T have
built customer profiles from streams of call-detail records to significant financial effect [CP98, CP99, CFP

�

00].

Often such streams are high-volume: AT&T’s call-detail stream contains roughly 300 million calls per day requir-
ing approximately 7GBs of storage space. Typically, such stream data arrives “as is” in ad hoc formats with poor
documentation. In addition, the data frequently contains errors. The appropriate response to such errors is application-
specific. Some applications can simply discard unexpected or erroneous values and continue processing. For other
applications, however, errors in the data can be the most interesting part of the data.

Understanding a new data stream and producing a suitable parser are crucial first steps in any use of stream data.
Unfortunately, writing parsers for such data is a difficult task, both tedious and error-prone. It is complicated by lack
of documentation, convoluted encodings designed to save space, the need to handle errors robustly, and the need to
produce efficient code to cope with the scale of the stream. Often, the hard-won understanding of the data ends up
embedded in parsing code, making long-term maintenance difficult for the original writer and sharing the knowledge
with others nearly impossible.

The goal of the PADS project is to provide languages and tools for simplifying data stream analysis. We have a
preliminary design of a declarative data-description language, PADSL, expressive enough to describe the data feeds we
see at AT&T in practice, including ASCII, binary, EBCDIC, Cobol, and mixed data formats. From PADSL we generate
a tunable C library with functions for parsing, manipulating, and summarizing the data.

2 PADS language
Intuitively, a PADSL description specifies complete information about the physical layout and semantic constraints for
the associated data stream. Most type declarations in PADSL are analogous to type declarations in C. PADSL has an
extensible set of base types that specify how to read and verify atomic pieces of data such as ASCII 32-bit integers
(Pa_int32) and binary bytes (Pb_int8). Verification conditions for such base types include checking that the
resulting number fits in the indicated space, i.e., 16-bits for Pa_int16. PADSL has Pstructs, Punions, and
Parrays to describe record-like structures, alternatives, and sequences, respectively. Each of these types can have an
associated predicate that indicates whether a value calculated from the physical specification is indeed a legal value
for the type. For example, a predicate might require that two fields of a Pstruct are related or that the elements of
a sequence are in increasing order. Programmers can specify such predicates using PADSL expressions or functions.
PADSL Ptypedefs can be used to define new types that add further constraints to existing types.

In addition, PADSL types can be parameterized by values. This mechanism serves both to reduce the number of
base types and to permit the format of later portions of the data to depend upon earlier portions. For example, the base
type Pa_uint32_FW(:3:) specifies an unsigned integer physically represented by exactly 3 ASCII characters,
while the type Pa_string(:’ ’:) describes an ASCII string terminated by a space. Parameters can be used with
compound types to specify the size of an array or which branch of a union should be taken.

As an example, consider the common log format for Web server logs. A typical record looks like the following:

207.136.97.49 - - [15/Oct/1997:18:46:51 -0700] "GET /tk/p.txt HTTP/1.0" 200 30

recording the IP address of the requester; either a dash or the owner of the TCP session; either a dash or the login of
the requester; the date; the actual request, which consists of the HTTP method, the requested URL, the HTTP version
number; a response code; and the number of bytes returned. A PADSL type describing the request portion is

Pstruct http_request_t {
’\"’; http_method_t meth; /- Method used during request
’ ’; Pa_string(:’ ’:) req_uri; /- Requested uri.
’ ’; http_v_t version : checkVersion(version, meth);

/- HTTP version number of request
’\"’;

};

This Pstruct uses (omitted) auxiliary types http_method_t and http_v_t to describe the HTTP method and
version formats, respectively. It uses character literals (’\"’ and ’ ’) to consume the quotes and spaces from the
physical representation. The version field has a constraint predicate checkVersion which ensures that obsolete
HTTP methods LINK and UNLINK are only used with HTTP version 1.0.

3 Generated library
From each type in a PADSL description, we generate C declarations for (1) an in-memory representation, (2) a check-
set-mask, which allows users to specify which portions of the data are relevant to their applications, (3) an error-
description, which we use to describe physical and semantic errors detected during parsing, (4) a parse function, and
(5) utility functions. The parse function takes as arguments pointers to a checkset-mask, an in-memory representation,
and an error-description. The generated library maintains the invariant that if the checkset-mask requests that a data
item be verified and set, and if the error description indicates no error, then the in-memory representation satisfies the
semantic constraints on the data.

The checkset-mask allows the user to specify with fine granularity which constraints the parser should check and
which portions of the in-memory representation it should fill in. This control allows the description-writer to specify
all known constraints about the data without worrying about the run-time cost of verifying potentially expensive
constraints for time-critical applications.

Appropriate error-handling can be as important as processing error-free data. The error descriptor marks which
portions of the data contain errors and characterizes the detected errors. Depending upon the nature of the errors and
the desired application, programmers can take the appropriate action: halting the program, discarding parts of the data,
or repairing the errors.

By supporting multiple entry-points, we accommodate larger-scale data. For a small file, programmers can define
a PADSL type that describes the entire file and use that type’s parsing function to read the whole file with one call. For
larger-scale data, programmers can sequence calls to parsing functions that read manageable portions of the file, e.g.,
reading a record at a time in a loop.

4 Related work
There are many tools for describing data formats. For example, ASN.1 [Dub01] and ASDL [asd] are both systems for
declaratively describing data and then generating libraries for manipulating that data. In contrast to PADS, however,
both these systems specify the logical representation and automatically generate a physical representation. Although
useful for many purposes, this technology does not help process data that arrives in predetermined, ad hoc formats.

More closely related work allows declarative descriptions of physical data [MC98, erl, Bac02], motivated by
parsing TCP/IP packets and JAVA jar-files. In contrast to our work, these systems only handle binary data and assume
the data is error-free or halt parsing if an error is detected.

5 Conclusion
Further information and a source-code distribution of PADS is available from:

http://www.research.att.com/projects/pads

2

References

[asd] Abstract syntax description language. http://sourceforge.net/projects/asdl.

[Bac02] Back, G. DataScript - A specification and scripting language for binary data. In Proceedings of Generative Program-
ming and Component Engineering, vol. 2487. LNCS, 2002, pp. 66–77.

[CFP
�

00] Cortes, C., K. Fisher, D. Pregibon, A. Rogers, and F. Smith. Hancock: A language for extracting signatures from data
streams. In Proceedings of the Sixth International Conference on Knowledge Discovery and Data Mining, 2000, pp.
9–17.

[CP98] Cortes, C. and D. Pregibon. Giga mining. In Proceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, 1998.

[CP99] Cortes, C. and D. Pregibon. Information mining platform: An infrastructure for KDD rapid deployment. In Proceedings
of the Fifth International Conference on Knowledge Discovery and Data Mining, 1999.

[Dub01] Dubuisson, O. ASN.1: Communication between heterogeneous systems. Morgan Kaufmann, 2001.

[erl] Proposals for and experiments with an Erlang bit syntax. http://lambda.weblogs.com/discuss/msgReader$5185.

[MC98] McCann, P. and S. Chandra. PacketTypes: Abstract specification of network protocol messages. In ACM Conference
of Special Interest Group on Data Communications (SIGCOMM), August 1998, pp. 321–333.

3

