
 
 
 
 

Heriot-Watt University 
Research Gateway 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

PAEAN: Portable and Scalable Runtime Support for Parallel
Haskell Dialects

Citation for published version:
Berthold, J, Loidl, H-W & Hammond, K 2016, 'PAEAN: Portable and Scalable Runtime Support for Parallel
Haskell Dialects', Journal of Functional Programming, vol. 26, e10.
https://doi.org/10.1017/S0956796816000010

Digital Object Identifier (DOI):
10.1017/S0956796816000010

Link:
Link to publication record in Heriot-Watt Research Portal

Document Version:
Peer reviewed version

Published In:
Journal of Functional Programming

General rights
Copyright for the publications made accessible via Heriot-Watt Research Portal is retained by the author(s) and /
or other copyright owners and it is a condition of accessing these publications that users recognise and abide by
the legal requirements associated with these rights.

Take down policy
Heriot-Watt University has made every reasonable effort to ensure that the content in Heriot-Watt Research
Portal complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact open.access@hw.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1017/S0956796816000010
https://doi.org/10.1017/S0956796816000010
https://researchportal.hw.ac.uk/en/publications/176425cc-56a5-40bc-86c1-d0d2e8281a29


Accepted for publication in J. of Functional Programming January 2016 Author’s version

Under consideration for publication in J. Functional Programming 1

PAEAN: Portable and Scalable Runtime Support
for Parallel Haskell Dialects

JOST BERTHOLD∗
Commonwealth Bank of Australia, Sydney

and
HANS-WOLFGANG LOIDL

School of Mathematical and Computer Sciences
Heriot-Watt University

and
KEVIN HAMMOND

School of Computer Science
University of St.Andrews

(e-mail: jberthold@acm.org, hwloidl@macs.hw.ac.uk, kevin@kevinhammond.net)

Abstract

Over time, several competing approaches to parallel Haskell programming have emerged. Differ-
ent approaches support parallelism at various different scales, ranging from small multicores to
massively parallel high-performance computing systems. They also provide varying degrees of con-
trol, ranging from completely implicit approaches to ones providing full programmer control. Most
current designs assume a shared memory model at the programmer, implementation and hardware
levels. This is, however, becoming increasingly divorced from the reality at the hardware level. It also
imposes significant unwanted runtime overheads in the form of garbage collection synchronisation
etc. What is needed is an easy way to abstract over the implementation and hardware levels, while
presenting a simple parallelism model to the programmer.

The PAEAN (PArallEl shAred Nothing) runtime system design aims to provide a portable and
high-level shared-nothing implementation platform for parallel Haskell dialects. It abstracts over ma-
jor issues such as work distribution and data serialisation, consolidating existing, successful designs
into a single framework. It also provides an optional virtual shared-memory programming abstraction
for (possibly) shared-nothing parallel machines, such as modern multicore/manycore architectures or
cluster/cloud computing systems. It builds on, unifies, and extends, existing well-developed support
for shared-memory parallelism that is provided by the widely-used GHC Haskell compiler. This
paper summarises the state-of-the-art in shared-nothing parallel Haskell implementations, introduces
the PAEAN abstractions, shows how they can be used to implement three distinct parallel Haskell
dialects, and demonstrates that good scalability can be obtained on recent parallel machines.

∗ Corresponding author. Reported work performed while at the University of Copenhagen (DIKU).



Accepted for publication in J. of Functional Programming January 2016 Author’s version

2 J.Berthold, H.W.Loidl, K.Hammond

1 Introduction

This paper studies how to implement parallelism portably and abstractly for different
dialects of parallel Haskell targeting modern multicore/manycore/cluster/cloud systems.
In order to improve energy efficiency and performance, there is a strong trend towards
reducing sharing in the underlying parallel hardware (Lameter, 2013). However, exposing
sharing concerns to the programmer moves away from the traditional functional program-
ming strengths of increasing programmability and maintaining very high levels of abstrac-
tion. In this paper, we describe a runtime system approach that enables us to separate
sharing at the language, implementation and hardware levels. In this way, we can provide a
possibly shared-nothing implementation for a possibly logically-shared language design,
for example. We can thus obtain the benefits of reducing or eliminating sharing at the
hardware level, without losing the benefits of high-level abstraction at the language level.
By providing a coherent framework of sophisticated runtime system operations, it becomes
possible to develop implementations of new language extensions quickly and robustly.
The same approach also enables extensibility of the runtime system. This helps overcome
two of the key obstacles to developing new parallel runtime systems, while maintaining
functional programming properties of abstraction and ease of use at the language level. Our
approach is evaluated against three existing and contrasting dialects of Parallel Haskell:
GpH (Hammond & Peyton Jones, 1990; Trinder et al., 1995), Eden (Loogen et al., 2005)
and EdI (Berthold & Loogen, 2007; Berthold, 2008).

1.1 Contributions

This paper makes the following contributions:

• We expose and evaluate the key design decisions underlying the GpH, Eden and EdI
Parallel Haskell dialects, focusing particularly on sharing, parallelism control and
load distribution;
• We describe a high-level, portable runtime system framework, PAEAN (PArallEl

shAred-Nothing), that builds on the widely-used GHC1 implementation and that can
be used to implement a variety of parallel dialects of Haskell, for possibly shared-
nothing parallel systems;

• We demonstrate how PAEAN can be used to implement different dialects of Par-
allel Haskell, in particular GpH and Eden, capturing all of the requirements of the
previously-constructed specialised GUM and DREAM runtime systems;

• We evaluate the performance and scalability of the parallel Haskell implementations
that follow PAEAN ideas and principles; and

• We discuss the state-of-the-art for distributed-memory parallel Haskell implemen-
tations, relating different programming models to the respective runtime support
and assessing the merits of runtime-system versus library support for coordinating
parallel programs.

1 The Glorious Haskell Compiler, https://www.haskell.org/ghc/



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 3

Table 1. Library based and runtime-system based parallel Haskell
Library RTS

Code Bloat High Low
Abstraction Level Low High
Language Integration Poor Good
Communication Abstraction Pervasive Localised
Performance Hard to tune Easily tunable
Implementation Cost Low High
Extensibility Easy Hard

1.2 Library versus Runtime System

A number of recent designs have chosen to implement parallel Haskell constructs ex-
clusively at the library level, e.g. (Maier & Trinder, 2012; Foltzer et al., 2012). In con-
trast, we have deliberately taken a runtime system (RTS) approach. As summarised in
Table 1, there are many advantages to our approach. Firstly, less coordination code is
required to manage parallelism and load distribution because an underlying RTS will
take care of all the details without programmer intervention. This significantly improves
programmability and productivity. RTS-based approaches can abstract most of the coor-
dination into language constructs, which simplifies programming, reduces code clutter
and gives better integration with the programming language. This is especially true for
communication abstractions, which are pervasive in any library-based approach for shared-
nothing approaches. Secondly, performance-critical code is much easier to fine-tune and
avoids the functionality limitations that are inherent to a library approach (for instance,
custom memory management is simple and direct). The key disadvantages to an RTS
approach are: firstly, that the cost of implementation can be significantly higher, since
features must be considered throughout the language implementation; and secondly, that
it can be difficult to incorporate new features. By taking a modular approach, PAEAN
addresses both of these problems, making it easier to design and build new parallel runtime
systems.

1.3 Why Sharing Matters

In Haskell, the sharing of the program and its data through graph reduction is fundamental
to achieving lazy evaluation. In a parallel setting, this creates a tension since inter-thread
sharing can impose unwanted synchronisation. At a hardware level, shared memory is
increasingly a performance bottleneck. In order to improve time and energy efficiency,
there is therefore a strong trend towards non-uniform memory architectures (NUMA) in
multicore/manycore processors (Lameter, 2013), where memory is not treated as a sin-
gle homogeneous, easily addressable array. At a software level there is a correspond-
ingly strong trend to avoid locks, wherever possible, and to minimise expensive cache
coherency by exploiting non-shared memory. We can obtain a more efficient and more
scalable implementation by not assuming the existence of shared memory at a hardware
or implementation level. Scalability is enhanced by reducing shared hotspots and memory
bottlenecks. Such a shared-nothing approach (Gray, 1985) is also easier to deploy on large-
scale systems, including clusters and distributed systems. We would also argue that it is
easier to implement such an approach, even on a relatively small scale, since issues of



Accepted for publication in J. of Functional Programming January 2016 Author’s version

4 J.Berthold, H.W.Loidl, K.Hammond

cache coherency, synchronisation etc. are exposed in the implementation, and not hidden
through shared memory accesses.

If memory cannot be assumed to be shared, then a number of implementation issues
need to be addressed. These include:

1. how to serialise data;
2. how to logically share values between physically disjoint heaps;
3. how to manage global garbage collection while minimising synchronisation costs;
4. how to migrate data, potential parallelism and threads.

Some recent approaches such as Cloud Haskell (Epstein et al., 2011) and HdPH (Maier
& Trinder, 2012) delegate much of this work to the applications programmer, making
parallelism control fully explicit in the program. While this minimises the work of the
systems implementor, such an approach is likely to suffer from replication, errors, and
unexpected feature interaction, as well as to cause incompatibilities between applications.
In our opinion, fully explicit parallelism control entangled with the application flies in
the face of the usual functional programming philosophy of good abstraction, effectively
“throwing out the baby with the bathwater”. This paper takes the opposite approach, by
focusing on a mostly implicit model of parallelism at the source level, where parallelism
is specified in an abstract, declarative way and by supporting this with a sophisticated,
well-engineered and flexible runtime system.

1.4 Paper Structure

The remainder of the paper is structured as follows. Section 2 describes the high-level
programming models for Parallel Haskell that provide the requirements for the PAEAN
implementation. Section 3 describes the PAEAN design and implementation. Section 4
evaluates the utility and scalability of the PAEAN approach. Section 5 covers related work,
including extensions to PAEAN. Finally, Section 6 concludes.

2 Parallel Programming models for Haskell

A wide variety of parallel extensions to Haskell have been proposed. A key design question
is how explicit to make the coordination of the parallel execution. One extreme is a purely
implicit approach, as taken by pH (Aditya et al., 1995), where there are no extensions to the
language and all parallelisation is performed by the compiler. Data parallel extensions to
Haskell, such as DpH (Chakravarty et al., 2007), take a similar approach, but are limited to
data-parallelism on specific data structures. While implicit parallelism is appealing to the
programmer, it also limits the scope for performance tuning. The other extreme is to make
most aspects of the coordination explicit in the program and thus give the programmer more
control on how the parallelism is used. In the Haskell world, examples of this approach
include the Par-Monad (Marlow et al., 2011) and Cloud Haskell (Epstein et al., 2011).
While they are easier to implement and tune than implicit approaches, such approaches
have the disadvantage of introducing all the complexities and lack of abstraction from
mainstream parallel programming models. In such an approach, applications programmers
must become systems programmers. The approach that we will mainly focus on is therefore



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 5

sumEuler :: Int → Int
sumEuler n = sum [ euler i | i ← [n,n−1..1] ]

euler :: Int → Int −− Euler phi function :
euler n = length ( filter (relprime n) [1..n−1])

relprime :: Int → Int → Bool −− are x and y coprime
relprime x y = hcf x y == 1

hcf :: Int → Int → Int −− highest common factor of x and y
hcf x 0 = x

hcf x y = hcf y (rem x y)

Fig. 1. The basic Euler totient function, sumEuler

a middle one of semi-explicit parallelism, where the programmer only needs to identify
(potential) parallelism, but where synchronisation and communication is managed by the
runtime system. This greatly simplifies the parallel programming task, but still gives the
programmer a concrete handle on how to improve parallel performance. Supporting such
an approach requires an elaborate runtime system, however. The focus of this paper is
on how to design such a runtime system in a generic, flexible and reusable way. A more
detailed discussion of related systems, including ones taking both more explicit and more
implicit approaches, is given in Section 5.

In this paper, we will consider three Haskell dialects: Glasgow parallel Haskell (GpH),
Eden, and EdI (the implementation language for Eden). The approach taken by GpH
uses programmer-specified annotations (par) to create “sparks” that may, or may not, be
subsequently transformed into parallel threads. In contrast, in Eden and EdI, parallelism
is introduced by process constructs that always create new threads. While Eden provides
a purely functional interface, EdI uses monadic constructs in a similar fashion to the Par
Monad. We will use the sumEuler function to characterise these three dialects. For a given
n, sumEuler computes the Euler ϕ-function2 for values up to n, and sums the results. The
sequential Haskell code for this is shown in Figure 1.

2.1 GpH

GpH (Hammond & Peyton Jones, 1990; Trinder et al., 1995) uses a semi-explicit paral-
lelism model, where the programmer simply indicates potentially parallel closures and all
synchronisation, coordination etc. issues are delegated to the runtime system. It uses two
basic primitives: par and pseq.

par, pseq :: a -> b -> b -- parallel/sequential composition

The par primitive identifies potential parallelism using lazy futures (Mohr et al., 1991).
Its first argument is a closure that is marked for possible parallel execution (sparked). It

2 ϕ(i) counts how many numbers smaller than i are coprime to i. It can of course be computed more
efficiently using a prime factorisation of i. The naı̈ve version shown here is just for benchmarking.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

6 J.Berthold, H.W.Loidl, K.Hammond

type Strategy a = ... −− evaluation strategy abstraction

rseq :: Strategy a −− normal sequential evaluation
rpar :: Strategy a −− spark a closure

rdeepseq :: NFData a⇒ Strategy a −− full evaluation

parList :: Strategy a → Strategy [a] −− parallel evaluation of a list

using :: a → Strategy a → a −− strategy application

Fig. 2. Basic Evaluation Strategies

returns the value of its second argument. So, x ‘par‘ e marks x for parallel execution,
and then returns e. The pseq primitive sequences the evaluation of its arguments, returning
the value of its second argument. So, x ‘pseq‘ e first evaluates x, and then returns e.

Experience has shown that unstructured use of par and pseq can quickly obscure pro-
grams. A higher level of abstraction is provided by evaluation strategies (Trinder et al.,
1998; Marlow et al., 2010), which cleanly separate coordination from computation. Eval-
uation strategies are lazy, polymorphic, higher-order functions that control the evaluation
degree and parallelism of a Haskell expression. Some primitive strategies are shown in
Figure 2. The rseq and rpar strategies are analogous to pseq and par. The rdeepseq

strategy is similar to rseq, except that it fully evaluates its argument3. The parList

strategy is an example of a higher-order strategy. This takes another, possibly parallel,
strategy as its argument, and applies it in parallel to all elements of a list. So, for example,
parList rdeepseq is the strategy that evaluates a list in parallel, forcing all the results to
be completely evaluated. Finally, the using function applies a strategy to a Haskell expres-
sion. So, e ‘using‘ parList rdeepseq will evaluate e using the parList rdeepseq

strategy.

sumEulerGpH0 :: Int → Int
sumEulerGpH0 n = sum (map euler [n, n−1..1]

‘using‘ parList rdeepseq)

sumEulerGpH :: Int → Int → Int
sumEulerGpH z n = sum (map workF (unshuffle z [n, n−1..1])

‘using‘ parList rdeepseq)
where workF = sum ◦ map euler

Fig. 3. GpH versions of sumEuler

Our first GpH version of sumEuler, sumEulerGpH0 (Figure 3), simply uses parList
rdeepseq to compute every application of euler in parallel. However, the granularity of

3 i.e. it evaluates to full normal form rather than the Haskell default of weak head normal form. The
NFData class defines the recursive evaluation strategy to implement this full evaluation.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 7

splitAtN :: Int → [a] → [[a]]
splitAtN n [] = []
splitAtN n xs = ys : splitAtN n zs

where (ys,zs) = splitAt n xs

unshuffle :: Int → [a] → [[a]]
unshuffle n xs = map (takeEachN) [ drop i xs | i← [0.. n−1]]

where takeEachN [] = []
takeEachN (x:xs) = x : takeEachN (drop (n−1) xs)

Fig. 4. Chunking functions

the parallelism is too fine, since each spark only describes a single function application.
sumEulerGpH therefore uses chunking to overcome this. We therefore introduce an ad-
ditional parameter z, the desired number of chunks (i.e. sparks). The n list elements are
then distributed into z sub-lists. Each sub-list becomes a spark that may then potentially
be evaluated in parallel. Alternative chunking functions can be easily defined as standard
Haskell definitions4. For example, as shown in Figure 4, splitAtN splits a list into sub-
lists of size n, and unshuffle distributes elements of a list into exactly n sub-lists, in a
round-robin fashion. For sumEulerGpH, we have chosen to use unshuffle rather than
splitAtN because the computation time for the ϕ-function increases with its argument. If
splitAtN was used instead, then the largest argument values would be gathered into the
first sparks that were created, creating load-imbalance between the sparks.

−− Process abstraction and instantiation
process :: (Trans a, Trans b) ⇒ (a → b) → Process a b
( # ) :: (Trans a, Trans b) ⇒ (Process a b) → a → b
spawn :: (Trans a, Trans b) ⇒ [Process a b] → [a] → [b]

Fig. 5. Eden core constructs

2.2 Eden

In contrast to GpH, Eden provides explicit process abstraction and process instantiation
operations (Figure 5). The expression process ( λx→ e ) of type Process a b denotes a
process abstraction over a function λx→ e of type a → b. The (#) operator allows a new
child process to be instantiated, i.e. evaluated in parallel with the calling parent process.
process (\ x -> map factorial x) # [1..100] creates a process that maps the
factorial function over the list [1..100]. This list is evaluated on the parent, and passed
in a fully evaluated form to the child. Once computed, the result list is then returned
to the parent. Eden’s spawn function lifts process to a list of processes and inputs.
All processes are created eagerly in parallel. This avoids the sequential demand-driven

4 Chunking functions can also be provided abstractly for lists and other data types via a Cluster
type class (Totoo & Loidl, 2014).



Accepted for publication in J. of Functional Programming January 2016 Author’s version

8 J.Berthold, H.W.Loidl, K.Hammond

sumEulerEden :: Int → Int
sumEulerEden n = sum (spawn (repeat childProc) (unshuffle noPe [1..n]))

where childProc = process (sum ◦ map euler)

Fig. 6. Eden version of sumEuler

evaluation that the lazy Haskell list would imply. Once instantiated, the new child process
will be executed in parallel with the parent process. The parent and child processes have
independent heaps. and will only communicate by exchanging (implicit) messages. Data
that is exchanged between Eden processes is always in normal form (i.e. fully evaluated).
Therefore, process instantiation is roughly equivalent to hyper-strict function application.
Lists are communicated as streams, element by element. Tuple components are evaluated
by concurrent threads. This allows for circular programs and infinite data streams.

Figure 6 shows how sumEuler can be implemented in Eden by spawning a number
of independent processes that each apply euler to part of the original input list. Having
created these processes, the main process will block until the results become available, and
then compute the final sum. Since, unlike GpH, Eden will create threads for every process
construct that is specified by the programmer, we introduce a use of the unshuffle func-
tion to balance the load between child processes. This will evenly divide the inputs among
the number of available processors, noPe (provided as a constant by the Eden RTS).

spawnProcessAt :: Int→ IO () → IO ()

data ChanName’ a
createC :: IO (ChanName’ a, a)
createCs :: Int → IO ([ChanName’ a], [a])

sendWith :: Strategy a → ChanName’ a→ a→ IO ()
sendStreamWith :: Strategy a → ChanName’ [a]→ [a] → IO ()

noPe, selfPe :: IO Int

Fig. 7. The complete API for the Eden implementation language, EdI

2.3 EdI

The Eden implementation language EdI (Berthold & Loogen, 2007; Berthold, 2008) (Fig-
ure 7) takes the approach of explicit process control even further, requiring the program-
mer to take full control of, and responsibility for, all data transfers. As suggested by its
name, EdI was designed to implement Eden, but can also be used in its own right as a
monadic language for parallelism. As in Eden, a new parallel process can be spawned on
a specific instance of a running system but, unlike Eden, an EdI process is simply an IO

action. EdI processes communicate explicitly using typed one-to-one channels. Channels
are created using createC, which returns a channel name, of type ChanName’ a and a
placeholder result of type a. A channel name can be explicitly communicated to another



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 9

sumEulerEdi :: Int → IO Int
sumEulerEdi n = do pes← noPe

(cs, rs) ← createCs pes

zipWithM (spawnEulerW pes) [1..pes] cs
return (sum rs)

where spawnEulerW :: Int → Int → ChanName’ Int→ IO ()
spawnEulerW stride k c = spawnProcessAt k

(sendWith rseq c
(sum (map euler [n−k+1, n−k+1−stride..1]))

Fig. 8. EdI implementation for sumEuler

process, using sendWith, or implicitly passed to a new process when it is created using
spawnProcessAt. The other process can use the channel to return data (of a suitable type)
to the original process. Note that the sendWith operation takes an evaluation strategy
argument. This controls where the evaluation happens and is applied to the data argument
before it is transmitted. Finally, the sendStreamWith operation extends sendWith to
streams. This enables the definition of circular process networks and pipelining.

Figure 8 shows how sumEuler can be implemented in EdI. A set of channels, cs, and
placeholders, rs, are created using createCs. One channel and one placeholder are cre-
ated for each available processor (noPe). Each channel is used in one call to spawnEulerW,
which creates a child process on processor k using spawnProcessAt. The new process
will generate its own part of the input list, apply the euler function to this partial input,
and sum the resulting list. This partial sum is returned to the parent by calling sendWith

on the given channel. EdI represents the lowest level of abstraction that we will consider
in this paper, exposing the full control, and burden, of parallel evaluation and explicit
communication to the programmer. It constitutes a minimal set of runtime-system support
functionality for sending and receiving data and computations, exploiting the underlying
GHC runtime system to achieve synchronisation.

3 Haskell on shared-nothing systems: The PAEAN runtime framework

The language characteristics of Eden, GpH, and EdI can be classified into the four key
concepts of parallelism, binding, synchronisation and workload management (Table 2).
Each of these will lead to a number of important implementation requirements.

Parallelism. As we have seen, in Eden and EdI, all threads that are specified by the
programmer must be created (parallelism is mandatory). In contrast, in GpH, the runtime
system decides both when and whether to instantiate the potential parallelism that has been
indicated by the programmer (parallelism is advisory). The corresponding requirements for
thread management are:

• to provide mechanisms to support the creation of parallelism;
• to decide on whether or not to instantiate potential parallelism;
• to decide on when to instantiate potential parallelism.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

10 J.Berthold, H.W.Loidl, K.Hammond

Table 2. Language characteristics of GpH, Eden, and EdI, and implementation concepts
Concept
Realisation Eden EdI GpH

Parallelism Explicit process constructs Implicit par annotations

Threads implicit threads explicit threads implicit threads
mandatory parallelism mandatory parallelism advisory parallelism
explicit task distribution explicit task distribution implicit task distribution

Binding data exchange through process application variables act as futures

Memory mgt. distributed heaps (per process) virtual-shared memory

Synchronisation Implicit through process arguments and results Implicit variable sharing

Communication implicit and hyper-strict
(on process arguments)

explicit, including evalu-
ation control

implicit and lazy (on
shared data)

Workload
Management

Explicit logical processor ids Implicit

Workload
distribution

default (round-robin) or explicit process placement automatic spark distribu-
tion (work-stealing)

Binding. The concept of variable binding is realised in Eden and EdI via data transfer,
initiated by a process creation, and in GpH via lazy futures and implicit synchronisation.
This concept is implemented by the memory management component. For Eden, this links
remote data access with the language concept of process abstraction, requiring explicit data
transfer. For GpH, the main requirements are completely transparent access to bindings,
which leads to automatic and distributed memory management over several physical heaps,
and hence to a virtual-shared memory abstraction. More specifically, the requirement on
the runtime system is to ensure that all data is available at the location where the computa-
tion is to be executed. This implicitly invokes communication, so establishing a tighter link
between these components in the GpH implementation. In contrast, the runtime system for
Eden and EdI must implement a model of distributed heaps that are connected through
communication channels. The requirements for parallel memory management are:

• to identify points of data exchange;
• to implement a logically shared address space on top of distributed memory;
• to interact with the communication component based on the need for remote data.

Synchronisation. Synchronisation is required to i) avoid evaluating a value multiple times;
ii) communicate values between threads; and iii) ensure that results are shared between the
evaluating thread and the threads that use those results. In EdI, the programmer is respon-
sible for all communication and for ensuring that evaluation is performed appropriately.
In Eden, the argument to a process is fully evaluated to full normal form by the parent
process and communicated incrementally. The child process will block if it requires some
part of the data that has not yet been evaluated and communicated to it. In contrast, in



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 11

GpH, some data may be passed to a child thread when it is created, but the majority will
be fetched on a demand-driven basis. This increases sharing and reduces startup costs, but
may add some delay if a significant volume of data is fetched during execution. Having
created one or more child processes, in Eden the parent process will typically block until
the results become available. In GpH, however, execution continues normally. If any GpH
thread requires a value that is being evaluated by another thread, it will block until the
result is produced. When the value of a virtually shared node becomes available, it will be
returned to all blocked threads. This reduces synchronisation delays, but once again, shared
data may be fetched incrementally. This uses an extension of the standard “black-holing”
mechanism that is normally used to detect cycles in sequential code. Rather than raising
an exception, as would normally happen, the parallel implementation treats an attempt to
evaluate a node that is currently under evaluation as a synchronisation request5. The virtual
shared graph model used in GpH will ensure that the results of computations will be shared
as they become available, so avoiding repeated evaluation. In contrast, Eden and EdI make
no attempt to avoid repeated evaluation other than through transmitting only normal forms.
The requirements for communication are therefore:

• to check whether necessary data is available;
• to realise data exchange when necessary;
• to update values with results as they are produced;
• to notify blocked threads of the availability of a result;
• to interact with the thread management component, based on data availability.

Workload Management. A key runtime decision is when and where to execute paral-
lelism. At the language level, Eden and EdI both provide a notion of virtual processor,
which can be used by the programmer to offload processes to specific processors. GpH
abstracts this even further: threads are instantiated from sparks and then mapped to the
available processors by the runtime system. In order to get a good load balance, it may
be necessary to migrate sparks and/or threads between processors. Finally, where multiple
threads exist on a single processor, it is necessary to schedule them appropriately both
for efficiency and, in the case of Eden and EdI, to ensure fairness. The requirements for
workload distribution are:

• to decide on the order of execution of available threads (scheduling);
• to determine how to distribute the available parallelism (load balancing);
• to decide whether and when to offload parallelism.

As shown in Figure 9, PAEAN realises each of these issues as its own modular component.
This makes PAEAN much more generally applicable. Although they have formed our
starting point, the PAEAN system design is not restricted to the GpH and Eden parallelism
models. Neither is it necessarily limited to Haskell: the concepts and realisations that we
have shown in Table 2 are characteristic of a much wider class of languages, including
some parallel dialects of Lisp, Prolog and C++. Any language that is more prescriptive in
terms of thread management can easily be mapped to the underlying PAEAN realisations,
though it may not make full use of the PAEAN mechanisms.

5 A full description of this mechanism can be found in (Hammond, 2011)



Accepted for publication in J. of Functional Programming January 2016 Author’s version

12 J.Berthold, H.W.Loidl, K.Hammond

HEC HEC HEC HEC

Memory Management Thread Management

Heap

Communication Workload Management

1 2 1

4?

Fig. 9. The PAEAN runtime system components

Fig. 10. Parallel system built as a collection of PAEAN instances

3.1 PAEAN Thread management

PAEAN coordinates multiple instances of the standard GHC runtime system. Each PAEAN
instance is typically mapped onto a separate processor in its own operating system process.
When run on a multicore, an instance may comprise multiple Haskell Execution Contexts
(HECs) which share the same heap, i.e. the standard shared-memory parallel Haskell
implementation of GpH, GHC-SMP (Marlow et al., 2009). These instances are connected
to form a collaborating parallel system with a distributed heap, as shown in Figure 10.
Each PAEAN instance manages its own thread pool and, if required, a spark pool, pro-
viding its own independent thread scheduler. In addition, PAEAN introduces the concept
of a process, a thread group that shares a region of the Haskell heap and communication
channels (explained in Section 3.4.3). As shown in Table 3, PAEAN routines are provided
to: spark closures and add them to the local spark pool (createSpark); select a spark from
the local spark pool (findSpark); turn a spark into a thread and move it from the spark
pool to the thread pool (activateSpark); add an IO thread directly to the local thread
pool (createIOThread); and start a new process (startNewProcess).

3.2 Virtual shared heap management

Following our shared-nothing design, each PAEAN instance maintains its own independent
heap, with its own address space. Each instance undertakes its own local garbage collection
(GC) on this heap, using, for example, the usual GHC garbage collection mechanism. By
default, this is a stop-and-copy generational garbage collector (Appel, 1989). On a shared-
memory system, the GHC-SMP shared-memory garbage collection implementation may
be used, if desired, though this may degrade performance. It is possible to combine the
heaps from multiple PAEAN instances to form a single virtually-shared heap that can be
accessed by any PAEAN instance. Shared heap nodes are accessed through a shared global
address space.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 13

Table 3. PAEAN runtime system routines for sparks and threads
Spark Management

PAEAN Routine and Parameters Description

void createSpark(StgClosure ∗la) Generate a spark and put it into the local spark
pool

StgClosure∗ findSpark() Select and return a spark from the the local
spark pool

void activateSpark(StgClosure ∗spark) Turn a spark into a thread, allocating a thread,
and put it into the thread pool

Thread Management
void startNewProcess(StgClosure ∗la) Create a new thread in its own process, to

evaluate given (IO) closure
StgTSO∗ createIOThread(StgClosure ∗la) Create a new thread (sharing a process with

other threads) to evaluate given closure

Table 4. PAEAN runtime system routines for global heap management
PAEAN Routine and Parameters Description

RtsGA∗ makeGlobal() Create a new unique global address (GA) on
the current node

StgClosure∗ lookupGA(RtsGA ∗ga) Look up global address ga in the GIT, return
a local address (LA) if found

RtsGA∗ lookupLocal(StgClosure ∗la) Look up local address la, return GA if found
void commonUp(RtsGA ∗ga, StgClosure ∗la) Check whether a ga already exists on this

node; if so, keep only the further evaluated of
the two (a data duplicate is eliminated)

void splitWeight(RtsGA ∗ga1, RtsGA ∗ga2) Split weight attached to ga1, into 2 compo-
nents adding up to the original, one attached
to ga1 and one attached to ga2 (a reference
is created)

RtsGA∗ addWeight(RtsGA ∗ga) Add the weight in ga to the weight of the GA
in the local GIT table (a reference is deleted)

void markGIT() Traverse in-pointers section of GIT during GC
(local closures with GAs are roots)

void rebuildGIT Traverse GIT to fix references to local
addresses (out-pointers), return weight for
dead entries

3.2.1 Global addresses

The virtual shared heap forms a subset of the individual PAEAN instance heaps. Each
(potentially) shared heap object is identified by a unique global address (GA), created by
makeGlobal. Unshared objects exist only in the local heap for the PAEAN instance and
so do not have a global address. Only selected unevaluated objects need to be shared, other
objects referenced from them will be handled transparently, and evaluated data can simply
be copied. This minimises the number of globally addressed objects and brings benefits in
terms of performance (quicker lookup), space leaks (fewer external pointers), and memory
usage (smaller pointers). This design is based on the assumption that only a small fraction
of any given instance heap is globally visible, as verified on the GRIP architecture (Peyton
Jones et al., 1987; Hammond & Peyton Jones, 1992). Each PAEAN instance maintains
tables of in-pointers from other PAEAN instances (a Global In-Pointer Table, or GIT),



Accepted for publication in J. of Functional Programming January 2016 Author’s version

14 J.Berthold, H.W.Loidl, K.Hammond

Heap
Instance 1

Heap
Instance 2

1

3

2
4

5

1

3

2
4

5

6

GIT GIT

...
GA 1.1
GA 1.2

GA 2.1
GA 2.2

GA 2.1
GA 2.2

2

3

1Thunk
(computation)

Normal
Form (data)

FetchMe
(indirection)

Links

before
transfer

during
transfer

after
transfer

Fig. 11. Transferring graph structures between PAEAN instances. Here, the sub-graph rooted at
address 1 (with GA2.1) has been transferred from instance 1 to instance 2. Thunks are moved,
replacing them by FetchMes on instance 1, while normal forms are copied. GA1.1 and GA1.2 are
only used during transfer. At completion of the transfer, they are replaced by GA2.1 and GA2.2.

which provide external references to shared objects that are defined within the instance.
By maintaining a separate table, we avoid the need to record a GA in every allocated
closure, and also make the inter-heap dependencies explicit. This allows an instance to
freely choose any appropriate local garbage collection mechanism — it is only necessary
to treat the global in-pointers as additional GC roots. As discussed in Section 3.2.3, global
garbage collection is performed using weighted reference counting. The PAEAN virtually-
shared heap implementation that is described here mostly follows that of (Trinder et al.,
1995), but reduces the amount of heap management information that is needed. The most
notable new extensions are user-tunable policies for globalising heap structures and for the
size of a sub-graph to be transferred.

3.2.2 Transferring program graph between PAEAN instances

Every object which is moved from one PAEAN instance to another is given a new, unique
GA in the target instance’s GIT. The original local heap node is replaced with a special
FetchMe closure that refers to this GA. When the value of a FetchMe node is needed,
the communication subsystem is invoked to obtain the value of the node from the remote
PAEAN instance. In this way, local heap nodes are linked to remote heap nodes. The
commonUp routine is used to avoid replicating data where the same GA is communicated
to an instance more than once. An example is shown in Figure 11. Here, two thunks (nodes
1 and 3) are moved between heaps, replacing the original nodes with FetchMe nodes.
The packing routine checks whether the thunks are already global. If they are not, GAs
are allocated locally for each thunk (GA1.1–GA1.2). These GAs are used to refer to the
thunks while they are in transit. When the thunks are unpacked, new GAs (GA2.1–GA2.2)
are generated to indicate the transfer of ownership to Instance 2. An acknowledgement
message informs Instance 1 that GA1.1 and GA1.2 have been superseded by GA2.1 and
GA2.2. The latter become the permanent remote references, whereas the former become
garbage. Figure 11 shows the final state, with FetchMes on Instance 1 referring to GAs on
Instance 2 (GA2.1–GA2.2).



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 15

3.2.3 Global Garbage Collection

A weighted reference counting scheme (Bevan, 1987) is used to garbage collect the inde-
pendent PAEAN heaps. As we have seen, the GIT indicates the possibly live in-pointers for
each instance. These are marked as roots during GC using the markGIT routine. Weights
are associated with each GA. Whenever a GA is shared between instances, e.g. because a
FetchMe has been replicated, then its weight is split between the two relevant GIT entries
using splitWeight. Conversely, when an instance frees a remote closure during its local
garbage collection, the weight is returned to the original GIT using addWeight. The same
happens when old GAs are replaced by new ones. When all the weight is concentrated in
the original GIT, then the closure is no longer referenced globally and the GIT entry can
be removed. The local closure can then be freed if it is not referenced locally. One general
weakness of this scheme is that it will not collect cycles across independent heaps. Various
schemes can be used to deal with this issue, if needed, such as collating cross-heap cycles
onto a single instance, where they can be collected (Bevan, 1987). Such a mechanism,
however, is not currently implemented in PAEAN.

3.3 Haskell program graph serialisation

Haskell program graphs are communicated between runtime system instances as seri-
alised sub-graphs (see Figure 12). These are packed into one or more packets for efficient
communication. PAEAN provides methods to traverse a graph in a local heap, packing it
for efficient transmission (packGraph), and to unpack a serialised graph into the remote
heap (unpackGraph), restoring its original structure and building any inter-instance links
using new FetchMe closures. The serialisation concept used in PAEAN is a breadth-first
traversal that is designed to limit the amount of communicated graph to a single efficiently-
transmitted message. This was first used in (Trinder et al., 1995) as a modification of
the original Graph for PVM mechanism (Loidl & Hammond, 1994; Hammond, 1993)
that packed entire sub-graphs. (Loidl & Hammond, 1996) studies the best strategies for
efficiently packing shared program graph. We have followed this work here.

Table 5. PAEAN runtime system routines for serialisation
PAEAN Routine and Parameters Description

rtsPackBuffer∗ packGraph(StgClosure ∗la) serialise a sub-graph rooted at la
StgClosure∗ unpackGraph(rtsPackBuffer ∗buf) de-serialise a buffer, returning a

local address

3.3.1 Closure Layout and Serialisation

Most GHC closures are laid out in the heap as a header section containing the key meta-
data, followed by any pointers to other closures, and then by all the non-pointers. The
first header field is an info pointer, which points to a record containing information such
as the number of pointers and non-pointers for a particular heap closure, plus a method
that can be used to evaluate the closure. During packing, the Haskell program graph is
traversed and serialised so that it can be written into the communication packet. Every



Accepted for publication in J. of Functional Programming January 2016 Author’s version

16 J.Berthold, H.W.Loidl, K.Hammond

1:graphroot

CLO 1.1 hdr d1,d2

6:closure 2

CLO - hdr d1,d2

11:closure 3

CLO 1.2 hdr

14:closure 5

CLO - hdr d1,d2,d3

20: ref 2

REF - 6

23:closure 4

CLO - hdr d1,d2,d3

28: ref 5

REF - 14

2
d1,d2

4

d1,d2,

d3

5

d1,d2,

d3

GIT

GA 1.2

GA 1.1

1

d1,d2

3

empty

Fig. 12. Example serialisation of the five-closure graph from Figure 11 with two shared closures.
The packet on the left encodes the graph on the right, using REF tags to describe sharing.

unique closure in the packet is identified using a CLO tag, followed by the global address
of the packed closure. The header and all non-pointer data is packed directly into the packet
immediately after the GA. Pointers into the local instance heap will, however, need to be
re-established once the program graph has been successfully transmitted to the remote
heap. They are therefore omitted from the packet. The order in which the graph is recon-
structed allows them to be correctly re-established. Where a packed graph contains shared
closures, explicit REF tags are used to preserve sharing. They also allow cyclic structures
to be transmitted. Finally, top-level program constants (constant applicative forms) do not
need to be transmitted between PAEAN instances, since each instance maintains its own
identical collection of such constants, embedded in the binary program that is executed by
all instances. These are identified using a CAF tag. Clearly, the graph referenced from the
root might be larger than could fit into a single fixed-size packet. In this case, PAEAN will
either use FetchMe closures to reference the additional heap, or will raise an error.

A few special types of GHC closures cannot be packed using the mechanism described
here. These include primitive GHC data structures for synchronisation: Haskell mutable
variables, MVars, and transactional variables that used to implement software transactional
memory, STM, as well as some system-level data structures. Packing these nodes would
not be sensible since they encode state that is local to a specific PAEAN instance, such as
operating system file handles.

3.3.2 Example: Packing/Unpacking Graph

Figure 12 shows how the graph from Figure 11 can be serialised into a single packet and
transferred between PAEAN instances. Here, closures 2 and 5 are shared using REF tags.
The packGraph function traverses the graph in a breadth-first manner. This means that if
the complete sub-graph cannot be packed, then a closure will generally be packed with
all its children. In the example, closures 1 and 3 are thunks, and are therefore replaced by
FetchMe closures in the sender’s heap. The packGraph method assigns temporary global
addresses, GA 1.1 and GA 1.2, to the two thunks and includes them in the serialised
structure. During de-serialisation, these temporary addresses will be replaced by the final
addresses that are assigned by the receiver, GA 2.1 and GA 2.2. The same serialisation
process can also be used without taking advantage of the PAEAN virtual shared heap
mechanism. In this case, the GA fields are omitted and no GIT table is maintained by



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 17

Table 6. PAEAN runtime system communication routines.
PAEAN Routine Parameters Description

rtsBool MP_start Program arguments Start/synchronise all nodes
rtsBool MP_sync Program arguments Start/synchronise all nodes
rtsBool MP_quit error code disconnect from system
rtsBool MP_send receiver, tag, data (non-blocking) data sending
int MP_recv destination buffer (blocking) data reception
rtsBool MP_probe void (non-blocking) probe for available messages

Table 7. PAEAN message tags and protocols

Message tag Meaning / Effect
System Sync: READY Sync. message from non-main to main instance

PETIDS Sync. message from main to non-main instances
FINISH Shutdown signal (from one non-main instance to main

instance, or broadcast from main to all non-main instances)
FAIL Failure indicator (middleware to main instance)

Data transfer: CONNECT receiver registers a sender for an inport
DATA receiving instance replaces heap placeholder by arriving data
STREAM receiving instance modifies heap placeholder, adding arriving

data into a list
FETCH receiving instance sends back requested data (identified by a

global address)
Global Addresses: ACK sender acknowledges reception of thunks by communicating

new GAs, receiver creates FetchMe closures with GAs
NACK sender indicates failure to receive thunks, receiver will revert

thunk
Process control: RFORK receiver instance creates a new Haskell process

TERMINATE receiving instance terminates a Haskell thread (identified by
thread ID)

Work distribution: FISH sender requests work, receiver will forward fish or answer
with SCHEDULE

SCHEDULE receiver will create new thread to evaluate data (answered by
ACK or NACK)

the receiving instance. In place of global addresses, global references are established by
communication channels connected to heap cells. These can be created from within Haskell
source programs using the createC primitive operation (Section 3.4.3).

3.4 The PAEAN communication subsystem

PAEAN provides a number of communication primitives that allow instances to commu-
nicate using asynchronous messages. The RTS implementation provides event-handling
routines that allow messages to be received at certain safe execution points, and that link
to one of several low-level transport libraries.

3.4.1 Low-level Communication Primitives

The PAEAN design is based on simple asynchronous point-to-point message passing com-
munication, plus a mechanism for structured startup and shutdown of PAEAN instances,



Accepted for publication in J. of Functional Programming January 2016 Author’s version

18 J.Berthold, H.W.Loidl, K.Hammond

Table 8. PAEAN primitive operations (callable from Haskell)

data Mode = Stream | Data data modes: Stream or Single data
| Connect | Instantiate Int special modes: Connection, Instantiation

data ChanName’ = Chan Int# Int# Int# a single channel

createC :: IO ( ChanName’ a, a ) create a channel and placeholder
connectToPort :: ChanName’ a→ IO () receiver registration
sendData :: Mode→ a→ IO () send data to registered receiver
fork :: IO () → IO () new thread in same process (Conc.Haskell)
noPe :: IO Int number of instances
selfPe :: IO Int ID of own instance (1..N)

where one PAEAN instance acts as the main instance. As shown in Table 6, message
passing is implemented by MP_send (non-blocking send) and MP_recv (blocking receive).
These are complemented by the (non-blocking) MP_probe, which tests whether messages
are available to receive. MP_start and MP_sync start and synchronise PAEAN instances.
MP_quit performs a controlled shutdown of the system. Different middleware can be
used to implement this communication sub-system. Existing implementations can use both
PVM (Geist, 2011) and MPI (MPI Forum, 2012). The shared-nothing message-passing
mechanism can also be implemented on top of physically-shared memory. The Eden im-
plementation supports POSIX shared memory, Windows shared memory, and Windows
Mailslots.

3.4.2 High-level messages

A high-level set of messages is built on this low-level implementation. Table 7 summarises
all the PAEAN message types and their semantics. Many kinds of messages are sent
internally by the runtime system itself: system messages are exchanged during startup and
shutdown to synchronise and coordinate instances; data transfer messages (Section 3.2.2)
request globalised data (FETCH); global address messages ACKnowledge a new GA or
indicate failures (NACK); and work distribution messages (Section 3.5) search for work
(FISH) and pass on new work (SCHEDULE).

3.4.3 Explicit communication via channels

PAEAN also provides facilities to enable explicit communication and process control di-
rectly from within Haskell, using a number of new primitive operations (Table 8). These
primitives may be preferred where a full shared heap is not required, and allow direct
communication between two instances, forming a dual to the FetchMe closures described
above. EdI uses the primitives directly as a simple explicit language for parallel coordina-
tion. Figure 13 shows a simple example of using the explicit communication primitives,
which provide functionality for creating and using typed channels, as well as instantiating
computations on nodes.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 19

Heap

C

C

C

1

2

Instantiate

createC 4

Data
3

connect

Instance 1

Heap
Instance 2

−− parent process
do −− create reply channel (1)

(ch,bkh) ← createC

−− spawn remote process (2)
sendData (Instantiate 2)

(thread2 ch)
−− next function call will
−− block until response arrives
print bkh

−− child process

−− thread2 ch =
do connectToPort ch −− (3)

let dat = fib 42
rnf dat ‘pseq‘ −− (4)

sendData Data dat

−− terminated

Fig. 13. Communicating computations and values explicitly. A thread on Instance 1 creates a channel
(1) and passes the created ChanName’ to a new process on Instance 2 (2). A newly created thread
connects to the channel (3) and sends evaluated Data (4).

−− insert a closure into a local HEC’s spark pool:
par# :: a → b → b
−− as above, but with locality control , specifying min and max distances :
parDist# :: Int → Int → a → b → b

Fig. 14. Spark insertion primitives in GHC-SMP and PAEAN

3.5 Work distribution through Offloading and Work Stealing

In a shared-nothing system, work will need to be moved from instances that have excessive
amounts of work to those that are idle. When and how this is done is an important policy
choice that can significantly affect performance. There are two basic approaches: work
can be offloaded eagerly at the time of creation (active load distribution); or it can be
offloaded lazily, e.g. in response to changes in system load (passive load distribution).
Eager work offloading aims to quickly saturate the parallel system. This is beneficial
in cases of regularly structured parallelism where a single main task generates all the
available parallelism at the start of the execution. Such a policy is easy to implement
using PAEAN’s remote execution mechanisms, as used by Eden. Typically, under such
an approach, all the data that a thread requires will also be sent with the thread when it
is offloaded. This may, of course, add significant delay before a thread can start. When
used with virtual shared memory, it also runs the risk of significant heap fragmentation and
increased communication costs. In contrast, lazy work offloading is typically implemented
by some kind of work stealing mechanism, where idle instances attempt to obtain work
from busy instances. PAEAN provides flexible support for distributing work lazily across



Accepted for publication in J. of Functional Programming January 2016 Author’s version

20 J.Berthold, H.W.Loidl, K.Hammond

run

spark activate

run

sparkactivate

Spark Pool

Thread Pool

awake

block

Blocking Queue

Spark Pool

Thread Pool

awake

block

Blocking Queue

SCHEDULE

HEC HEC

Instance 1 Instance 2

FISH

Fig. 15. Work stealing using PAEAN’s spark-based mechanisms. An idle instance (Instance 2) sends
a FISH message to Instance 1, aiming to steal some available work. If Instance 1 has any sparks, then
the spark and any associated graph will be serialised and sent to Instance 2 in a SCHEDULE message.

a shared-nothing system by building on, and extending, the basic GHC-SMP spark/thread
mechanisms (Figure 14). The serialisation mechanism described in Section 3.3 is used to
offload a spark plus some or all of the data that is associated with it. The PAEAN work
stealing mechanism supports stealing sparks, which are fairly cheap to transfer, rather than
threads, which may carry significant local state.

3.5.1 Example of Work Stealing

Figure 15 illustrates this work-stealing load-balancing mechanism. When Instance 2 be-
comes idle, it sends a work request message (or FISH) to another processor. In this case
Instance 1 is targeted. Since Instance 1 has some sparks in its spark pool, it responds by
sending one of these sparks to Instance 2 in a SCHEDULE message, serialising the graph
that it refers to, as described in Section 3.3, and replacing the original sparked closure by a
FetchMe. The program graph will be de-serialised when it is received on Instance 2. The
spark is added to its local spark pool, whence it can be turned into a thread using the usual
thread scheduling mechanisms, or even passed on to another PAEAN instance if Instance
2 has gained sufficient work6. If a targeted instance has no sparks, it forwards the FISH
message a fixed number of times. If no instance has any sparks, the FISH message is sent
back to the originator. A back-off delay is introduced, and a new FISH message will be
sent (Trinder et al., 1995).

Typically, execution of the thread that created the spark on Instance 1 depends on the
result of this spark that has been moved to Instance 2, and other threads might also depend
on it. When execution requires the exported spark, the thread will be added to a local queue
of blocked threads. The FetchMe will then be followed, and a FETCH message will be sent

6 This helps avoid starvation. It would be possible, but highly unlikely, for a spark to be transferred
between the same instances multiple times, but only where the instances gain sufficient work
elsewhere. Although some effort would then be wasted, progress would have been made, so
termination is ensured.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 21

Load Balancing Mechanisms:Markers:

active with off-loading

passive without fishing

passive with fishing

Low Watermark

High Watermark

Spark Pool

Fig. 16. Low- and high-watermark mechanisms for spark distribution. (showing a single spark pool).
By default work-stealing (passive) load distribution is used. If the size exceeds the higher-watermark,
work is actively offloaded. The system aims to always fill the pool up to the low-watermark.

to Instance 2. If the spark has been evaluated by Instance 2, its (weak head) normal form
will be serialised and returned to Instance 1 in a DATA message. Otherwise, Instance 2
will record the attempt to fetch the closure in its blocking queue, so that its (weak head)
normal form can be returned to Instance 1 once it becomes available.

3.5.2 Work Distribution Mechanisms for Hierarchical Systems

We have made several enhancements to our work distribution mechanism in order to
improve performance for large-scale systems, which typically involve clusters of multi-
core processor nodes connected using high-latency networks. Such systems are usually
hierarchical with widely varying inter-node latencies, i.e. they are genuinely non-uniform
memory architectures. The largest system we have studied is Edinburgh Parallel Computer
Centre’s HECToR, which has over 90,000 cores and a complex hardware interconnect.
Section 4 shows scalability results from a smaller, but still realistic, hierarchical cluster.

Watermarks: One simple, but flexible, mechanism that gives better control of spark dis-
tribution is to use low- and high-watermarks for each spark pool. Using this approach, work
offloading decisions are based on the sizes of each spark pool, as shown in Figure 16. The
low-watermark specifies a minimum number of sparks that should be held in the local spark
pool. If the number of sparks falls below this watermark, no sparks will be exported, and
the instance will try to obtain additional sparks from other instances. The high-watermark
indicates the maximum number of sparks that should be held in a spark pool. If the number
of sparks exceeds this limit, the instance will use SCHEDULE messages to actively offload
sparks to other instances without being asked for work. In other words, the instance will
temporarily and locally switch from lazy load distribution to eager load distribution, until
the spark pool size drops below the high-watermark. If all instances have large numbers of
sparks, a back-off mechanism is used to delay SCHEDULE messages, as described above
for FISH messages. Our experiments identify this mechanism as the most important one
for tuning cluster performance (Aljabri et al., 2013). Measurements on a 32-node cluster
with up to 100 cores show a reduction in runtime on a set of micro-benchmarks of up to
57%, i.e. in the best case, we can gain a speedup of more than 2 over the standard FISHing
policy that we described above. For larger benchmarks, improvements range from 16%



Accepted for publication in J. of Functional Programming January 2016 Author’s version

22 J.Berthold, H.W.Loidl, K.Hammond

to 28%. Further improvements are possible, by dynamically adapting the low-watermark
over the runtime of the program. In more recent work (Aljabri, 2015) (Section 5.4), we
have extended the scalability measurements to a combination of two remote clusters with
300 cores in total. Using our sumEuler example, we have obtained speedups of up to 140
on this more heterogeneous, distributed architecture.

Locality control: Controlling locality is important for ensuring good performance on
hierarchical shared-nothing systems, especially those with high latency connections (Loidl,
1998; Loidl, 2001). PAEAN provides several enhanced primitives to support locality con-
trol. The most powerful of these primitives is parDist (Aswad, 2012) (Figure 14), which
takes two additional integer arguments, specifying a lower and an upper limit on the
distance of work distribution from the current instance. If these are both 0, then this forces
local evaluation. Setting a minimum limit forces work to be distributed through the system.
This is useful in low-load situations, such as system startup.

4 Evaluation of scalability and performance

We have carried out a series of experiments to assess the scalability and performance of our
GpH, Eden and EdI implementations using the versions of sumEuler from Section 2. Our
experiments used a commodity cluster of 32 nodes, each with an 8-core x86 64 CPU7. The
cluster therefore provides a total of 256 processor cores. Since the full machine was not
available for our exclusive use, the measurements reported here are limited to a maximum
of 64 cores on 16 nodes (i.e. using at most four cores per node). We delegate the placement
of PAEAN instances to the communication middleware. Both MPI and PVM prefer using
different nodes to using different cores on the same node. This balances the load at the cost
of increased network communication. For our experiments, we have mainly used PVM,
but, where indicated, some of the EdI results have also used MPI. The implementations
used in our measurements are the Eden/EdI system version 7.8.3 (mid 2014), and a research
version of GpH on clusters, GUM-SMP, based on GHC 6.12.3.

4.1 Measured Speedup

Figure 17 shows measured speedups for each sumEuler variant, with n = 90,000. We can
clearly see that the sumEuler program gives near-linear speedup for all three implementa-
tions, even when large numbers of cores are used. Overall, the EdI implementation shows
the best speedups. The MPI implementation is slightly better than PVM. The Eden version
comes close to EdI. However, since the GpH version requires more management (i.e. over-
head), it delivers worse speedup. It does, however, scale robustly (we have confirmed this
up to 180 cores). The difference between the EdI and the Eden versions can be explained by
differences in communication behaviour: while the Eden version communicates the full list
of arguments to each child process as a stream, the EdI version requires the child processes

7 The beowulf cluster at Heriot-Watt University Edinburgh. Each node is built from 2 quad-core
Xeon E5506 2.13GHz, with 256kB L2 and 4MB shared L3 cache, connected by gigabit Ethernet,
and running CentOS 6.4.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 23

 0

 10

 20

 30

 40

 50

 60

 10  20  30  40  50  60

S
p

e
e

d
u

p

Number of Cores

sumEuler, n=90000 (different versions)  -  Cluster of 16 x 4-core

sumEulerEden, on PVM
sumEulerEdi, on PVM
sumEulerEdi, on MPI  

sumEulerGpH, on PVM
linear speedup

Fig. 17. Speedup of sumEuler Variants: n = 90,000

to generate their arguments from parameters (size, offset, stride), and communicates only
the results. This reduces communication costs. The GpH version suffers in this example
due to the higher overheads associated with managing the virtual shared heap. Since the
work is already well distributed through the structure of the problem, the automatic load
balancing mechanism does not improve performance in this case. It would, however, deal
better with situations where some nodes were executing external workloads, and were not
dedicated to the Haskell program. Overall, the sumEuler example clearly demonstrates the
ease of parallelisation and simplicity that is claimed for parallel functional programming.
It was straightforward to achieve the near-perfect speedup reported here, since the problem
structure itself is intuitive and easy to parallelise. Note that the speedup we obtain is
dependent on the problem size. For smaller problem sizes, where n < 90,000, it would
scale less well with increasing number of cores, since the constant overhead of instantiating
the program and using the middleware would have an increasing effect.

4.2 Scalability

While the sumEuler example is easy to decompose into independent parallel tasks, many
parallel algorithms have more complex structures with inter-task dependencies. One exam-
ple is the N-Body simulation, which simulates the movement and gravitational acceleration
of a number of “particles” (physical bodies) in a 3-dimensional space. The simulation is
typically approximated iteratively in a number of discrete time-steps. A simple straightfor-
ward parallelisation of this problem will exploit parallelism within each iteration, assigning
subsets of particles to different threads, where each thread computes the new velocity and
position for its own particles. In order to update the velocities for its own particles, each
thread needs the position and mass of all the other particles. This is approximated by
exchanging new information after each iteration, in a potentially costly global exchange
of data. We have measured the performance of an Eden implementation of N-Body based
on iteration skeletons (Dieterle et al., 2013). These use the allGather skeleton (Dieterle



Accepted for publication in J. of Functional Programming January 2016 Author’s version

24 J.Berthold, H.W.Loidl, K.Hammond

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10  20  30  40  50  60

S
p

e
e

d
u

p

Number of Cores

All-Pairs NBody, 20.000 bodies, 10 iterations  -  Cluster of 16 x 4-core

NBody allToAll (Eden) on MPI
NBody allToAll (Eden) on PVM

linear speedup

Fig. 18. NBody (Eden): 20000 particles, 10 iterations

 0

 5

 10

 15

 20

 10  20  30  40  50  60

S
p

e
e

d
u

p

Number of Cores

Parallelism Overhead (constant work)  -  Cluster of 16 x 4-core

4000 particles, 50 iterations
2828 particles, 100 iterations
2000 particles, 200 iterations

Fig. 19. NBody (Eden) on MPI: Overhead increasing with iteration count

et al., 2010) to implement the global data exchange. Figure 18 shows the speedups that we
obtain with this implementation for a problem size of 20000 particles. For this problem
size, the program scales reasonably well, achieving a maximum speedup of around 30 on
64 cores. Performance degrades when more than two cores per node are used. Once again,
the MPI back-end performs similarly to, but slightly better than, its PVM counterpart.

The iterative structure of this algorithm means that each iteration is performed sequen-
tially. Figure 19 shows the overhead when the algorithm performs more iterations while
the amount of computation is kept constant (N2 · k computations for N particles and k
iterations). We can see that speedup degrades earlier and is generally lower when more
iterations are performed, since each iteration requires a global synchronisation.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 25

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5  10  15  20  25  30  35  40  45

S
p

e
e

d
u

p

Number of Cores

sumEuler, n=90000  -  48-core AMD server

sumEulerGpH, GUM on PVM
sumEulerGpH, GHC-SMP (shared heap)

sumEulerEden, on PVM
sumEulerEden, on ShMem

Linear

Fig. 20. Speedup of sumEuler Variants on an 48-core machine: n = 90000

4.3 Shared-nothing performance on shared-memory systems

As a baseline for our shared-memory results, we again use the sumEuler program on a
48-core machine8 to compare the performance of the GpH and Eden implementations.
Figure 20 shows the results that we obtain. While the speedups are fairly modest for this
simple parallel program, we observe a steady increase in speedup for all versions, up to
28 on 46 cores in the best case for Eden with an ShMem shared-memory back-end,. All
implementation show a drop in speedup when using all 48 cores. This is consistent with
previous experimental results on similar systems, where we have found that allocating all
available processors to the parallel execution can interfere with system process execution.
As with the cluster results, the GpH speedups are slightly worse than those for Eden,
but notably better than those for the GHC-SMP shared-memory implementation. This
matches with our previous study of the impact of NUMA architectures on parallel Haskell
performance (Aljabri et al., 2014). We summarise our findings below. These findings are
also consistent with parallel benchmarks, across languages, on this NUMA architecture.
Due to the different memory latencies to different memory banks in NUMA architectures,
even simple parallel programs struggle to efficiently exploit this kind of architectures.

For a more detailed evaluation of the performance of the PAEAN shared-nothing ap-
proach on a physically shared-memory system, we have chosen to use the MatMult bench-
mark program from the nofib suite9. Matrix multiplication can be easily decomposed,
with independent calculations, so should give good scalability, in principle, provided that
the thread granularity is managed carefully. We compared the scalability of the original
GHC-SMP implementation against that of an equivalent Eden version. The Eden version
uses a variant of Cannon’s algorithm, communicating matrix blocks in a toroidal topology,

8 Four AMD Opteron-based processors, each with two NUMA regions, where each region has six
2.8GHz cores; total RAM is 512GB, with 64GB per region; there is a 2MB L2 cache, shared
between every 2 cores in each region, and a globally shared 6MB L3 cache.

9 http://git.haskell.org/nofib.git



Accepted for publication in J. of Functional Programming January 2016 Author’s version

26 J.Berthold, H.W.Loidl, K.Hammond

 0

 10

 20

 30

 40

 50

 10  20  30  40  50  60

S
p

e
e

d
u

p

Number of Cores

2000 x 2000 Matrix Multiplication  -  64-core AMD Server

Block-par. GHC-SMP
EdI Toroid on MPI

EdI Toroid on ShMem
EdI Toroid on PVM

linear speedup

Fig. 21. Matrix multiplication (2000×2000) comparing to GHC-SMP

using a recursive toroid skeleton (Berthold & Loogen, 2005). The GHC-SMP version uses
a similar blockwise task distribution, but tasks communicate via the shared heap without
using a specific communication topology. Hence, the GHC-SMP version can freely choose
the block size to improve load balancing, but might encounter bus contention when doing
so. Since we are evaluating scalability on shared-memory architectures, we have used a
64-core physically shared-memory system10. Our speedup results are shown in Figure 21.
They clearly show that the Eden version can exploit the available cores, delivering a peak
speedup of approximately 54 on 64 cores. The GHC-SMP shared-memory version delivers
the best speedups on small numbers of cores, but flattens out at about 16− 17×. The
Eden versions scale better when using more than 25 cores; all PAEAN shared-nothing
implementations have speedup that is equivalent to or better than GHC-SMP from that
size onwards. This is probably an effect of shared-memory garbage collection. Note that
the speedup for the Eden versions does not scale linearly with the number of cores. The
toroidal algorithm delivers a “stepped” speedup profile, that is ideally matched to a square
number of cores. The Eden program attempts to utilise all the cores by placing more than
one process on some of them when approaching square numbers. This however, hardly
yields any better speedup.

We note, in passing, two interesting phenomena: Firstly, the GHC-SMP version is faster
than the equivalent sequential version without any spark creation when executed on only
one core. However, it uses a considerably larger heap. Creating sparks reserves heap space
early, and therefore accelerates execution. This effect is intensified when using column-
wise instead of block-shaped sparks: column division exposes the worst access locality.
On more cores, this effect quickly disappears, and the spark strategies only have a minor
influence on the runtimes. Secondly, the Eden version has been measured with all three
possible back-ends for data transfer: the shared-memory back-end, MPI, and PVM. As

10 Compute server lovelace, University of St.Andrews: 4×16 core Opteron 6376 1.4GHz with 2MB
L2-cache (per core), 16MB shared L3 cache, 640GB shared RAM.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 27

expected, PVM performs worse than MPI, and the shared-memory back-end yields the best
performance. This exposes the overhead that is imposed by PAEAN communication sub-
system middleware: the bespoke shared-memory back-end was tailor-made for its specific
message-passing needs, without any additional features which would worsen performance.

Finally, we have recently performed a systematic evaluation of shared-nothing ver-
sus shared-memory parallel Haskell systems on a number of modern NUMA architec-
tures (Aljabri et al., 2014). We have explored a range of configurations, including purely
distributed memory, classic GUM; a mixture of shared-memory and distributed-memory,
GUM-SMP (Aljabri et al., 2013; Aljabri, 2015); and purely shared-memory, GHC-SMP.
Our measurements show that the shared-memory implementation consistently performs
worst on these architectures, repeatedly hitting memory access and locking bottlenecks.
A pure distributed-memory implementation improves runtimes by a factor of about 3
compared with the shared memory implementation. Further improvements can be achieved
by configuring the system to use one shared heap for each NUMA region on the machine.
These results support the findings reported above, underlining that even on the current
generation of moderately parallel systems, a shared-nothing design delivers consistent and
tangible performance benefits.

5 Related work

5.1 Built-in Parallelism Support in GHC: GHC-SMP

The standard GHC runtime system provides built-in support for parallelism (Marlow et al.,
2009), but only on physically shared-memory systems. Drawing on experience with e.g.
the GUM design for GpH (Trinder et al., 1995), GHC-SMP supports both the GpH and
Par-Monad models of parallelism. It uses a physically-shared heap with a common address
space. Synchronisation is achieved using a “black-holing” mechanism. Memory manage-
ment uses a shared-memory implementation of GHC’s standard generational garbage col-
lector, with independent nursery areas, but shared old generations. Garbage collection is
currently stop-and-copy: all threads must be suspended during garbage collection. While
there has been some work on independent garbage collection (Marlow & Peyton Jones,
2011), the complexity of supporting this efficiently and effectively on a physically shared-
memory architecture, without adopting a shared-nothing implementation, means that this
has not yet been integrated into the production version of GHC.

5.2 Implementations of GpH and Eden

The first implementation of GpH was designed to work on the novel GRIP multipro-
cessor (Peyton Jones et al., 1987; Hammond & Peyton Jones, 1990; Hammond & Pey-
ton Jones, 1992). This was first adapted to yield a message-passing implementation of
virtual-shared memory using PVM, GRAPH for PVM (Loidl & Hammond, 1994) and
subsequently to both physically shared-memory and shared-nothing parallel machines in
the form of GUM (GRAPH on a Unified Memory Model) (Trinder et al., 1995). GUM
uses a two-level message-passing communication system, where high-level messages for
synchronisation, workload distribution etc. are built on a basic communication system.
Low-level communication can be realised via either via shared-memory or via an explicit



Accepted for publication in J. of Functional Programming January 2016 Author’s version

28 J.Berthold, H.W.Loidl, K.Hammond

message-passing communication library such as PVM or MPI. This gives significant flex-
ibility. GUM has been extended using a variety of workload management systems (Loidl
& Hammond, 1996; Loidl, 2001; Al Zain et al., 2008; Du Bois et al., 2002; Aljabri et al.,
2012). Using these mechanisms, it has been deployed on a variety of systems ranging from
small-scale multicores to hierarchical clusters of up to 90,000 cores (Maier et al., 2014a).

The DREAM runtime system (Breitinger et al., 1998; Klusik et al., 1999) was the first
working implementation of Eden. It was originally implemented by adapting the GUM
implementation to comply with the the DREAM abstract machine model (Breitinger et al.,
1997). It has subsequently seen several complete rewrites and major revisions. Some parts
of the implementation which were originally implemented directly in the runtime system
have now been lifted to the Haskell level, relying on simpler and more modular runtime
system support (Berthold et al., 2003). This refinement ultimately led to factoring out
the EdI language: all Eden language constructs are now implemented in Haskell, using
the simpler primitive operations that implement EdI directly (Berthold & Loogen, 2007;
Berthold, 2008).

5.3 Distributed Systems: Cloud Haskell and HdpH

A contrasting approach to that described here is taken by Cloud Haskell (Epstein et al.,
2011) and HdpH (Maier et al., 2014b). Rather than providing flexible and general runtime-
system support, which can be used to build appropriate high-level parallel programming
constructs for different language designs, Cloud Haskell and HdpH both use a fully explicit
approach to parallelism on distributed memory platforms, relying on the programmer to
build any necessary higher-level abstractions. Cloud Haskell provides a minimal abstrac-
tion level, while HdpH also includes ideas of work stealing and virtual sharing that were
previously developed for GpH. As with Eden or GpH, higher-level parallel abstractions
can be built on these primitives, in the form of structured parallel approaches such as
algorithmic skeletons (Cole, 1989) or evaluation strategies (Trinder et al., 1998). In our
opinion, this is likely to be the best way for functional applications programmers to use
libraries such as Cloud Haskell or HdpH, since many problematic details can then be
encapsulated into higher-level abstractions. This is also consistent with the functional
programming philosophy of good abstraction and encapsulation.

5.4 Work distribution for Large-Scale Hierarchical PAEAN Systems

The basic PAEAN work distribution model (Section 3.5) has been extended to provide
better support for large-scale, hierarchical architectures. Grid-GUM2 (Al Zain et al., 2008)
systematically attaches load information to FISH messages in order to refine the search for
available work. Unlike the standard PAEAN mechanism, it delivers a variable number of
work items in order to amortise the cost of transferring work and data between sub-clusters
in a Grid infrastructure. Grid-GUM2 also supports migration of live threads (Du Bois et al.,
2002): threads are serialised in their current execution state, and can be migrated across
processors in order to improve load balance. Migration should, however, be used carefully
since it is expensive and increases heap fragmentation. (Aljabri et al., 2013; Aljabri, 2015)
describe GUM-SMP, which combines our shared-nothing work-stealing mechanisms with



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 29

those in the standard GHC-SMP. This gives additional freedom in configuring PAEAN
systems for large-scale clusters of multicore machines.

5.5 Scheduling Support in Haskell

Both the Par-monad (Marlow et al., 2011) and Meta-par (Foltzer et al., 2012) have adopted
the idea of defining parallel scheduling policies in Haskell. However, these approaches do
not consider more general runtime-system support and system architecture, as we have
done in this paper. Moreover, unlike our approach, the Par-monad is restricted to shared
memory parallelism. Two separate lightweight implementations of concurrent Haskell have
also been produced that lift scheduling and other concurrency features to the Haskell
level (Li et al., 2007; Sivaramakrishnan et al., 2013). This complements our work, that
instead focuses on the introduction and control of parallelism. It would, however, be both
straightforward and useful to incorporate similar concurrency features into PAEAN, and
we intend to investigate this in future work. Similar support for scheduling operating
system level threads and processes has been provided in the prototype House operating
system (Hallgren et al., 2005) , which was written entirely in Haskell.

5.6 The ARTCOP micro-kernel

ARTCOP11 is a highly modular micro-kernel design for parallel Haskell (Berthold et al.,
2008) that is closely related to PAEAN. The kernel level implements simple and generic
routines for asynchronous communication, basic execution management, and system in-
formation. System Modules written in Haskell restrict and combine these kernel routines
to provide higher-level coordination constructs, narrowing the generic runtime support to
a particular programming model. Coordination constructs can be used at both a Library
and an Application level either to implement algorithms directly or to implement parallel
algorithmic patterns and skeletons (Cole, 1989). System modularity is achieved similarly
to PAEAN components: driven by a workload distribution logic, tasks are distributed to
processors and controlled by a scheduling component; scheduling relies on a communi-
cation subsystem; and a monitoring component informs dynamic and adaptive scheduling
decisions. In (Berthold, 2008; Berthold et al., 2008), we presented a Haskell scheduling
framework in the spirit of the ARTCOP design. Complex scheduling policies and heuristics
can be defined in Haskell, based on a system of type classes for parallel jobs and scheduler
states. The scheduling framework can express complex mechanisms such as the FISH
mechanism discussed in Section 3 and Grid-GUM2.

5.7 Haskell-level serialisation for PAEAN

The PAEAN serialisation and de-serialisation routines allow data to be exchanged between
different heaps in a running system. In doing so, however, they also provide type- and
evaluation-agnostic data persistence for Haskell. This has several important uses (Berthold,

11 ARchitecture-Transparent Control Of Parallelism



Accepted for publication in J. of Functional Programming January 2016 Author’s version

30 J.Berthold, H.W.Loidl, K.Hammond

data Serialized a = Serialized { packetData :: ByteArray# }

serialize :: a → IO ( Serialized a)
deserialize :: Serialized a → IO a

−− | Packing and unpacking exceptions :
data PackException

= P_BLACKHOLE | P_NOBUFFER | P_CANNOTPACK | ... | P_GARBLED −− from RTS
| P_ParseError | P_BinaryMismatch | P_TypeMismatch −− from Haskell

−− Serialized instances :
instance Typeable a⇒ Binary (Serialized a) ...
instance Typeable a⇒ Show (Serialized a) ...
instance Typeable a⇒ Read (Serialized a) ... −− read ◦ show == id

Fig. 22. Proposed Haskell types for serialised data

2011), including supporting persistence for memoised functions and checkpointing. Fig-
ure 22 shows how Haskell-level serialisation can be realised, supported by PAEAN primi-
tive operations. Serialisation is orthogonal to evaluation: any Haskell program graph can be
serialised. It is also orthogonal to Haskell types: as shown, type-safety can be re-established
by phantom types. When Serialized data is externalised (written to files or sent over
the network), phantom type information is lost and must be recovered dynamically, using
Typeable. This is achieved using the representations provided by the Binary, Show and
Read instances. To make our work usable in other settings, e.g. networked systems, we
have factored out this serialisation functionality, so that it can be installed as a Haskell
library12 using cabal. This library is a good example of the targeted bespoke runtime-
system support for parallelism that we advocate for PAEAN: well-tailored operations en-
able a simple and straightforward API and avoid the pervasive complications of library-
only solutions to Haskell data communication, as typified by e.g. Cloud Haskell or HdpH.

5.8 Kali Scheme

As with ARTCOP, Kali Scheme (Cejtin et al., 1995) aimed to provide user-level scheduling
operations, including load balancing and thread migration. Like PAEAN, Kali Scheme is a
shared-nothing implementation, but for Scheme rather than Haskell. Kali Scheme operates
at a similar level to EdI, HdpH or Cloud Haskell, using explicit message-passing communi-
cation. Unlike the PAEAN approach, but like Cloud Haskell and HdpH, it provides explicit
primitives to create and manage independent heap spaces, including serialisation and de-
serialisation for transmitting closures. Kali Scheme assigns unique identifiers (UIds) to all
heap objects, and uses a mechanism similar to our FetchMe to fetch all data referenced by
UId in a received message before taking any action on it. The PAEAN system, in contrast,
assigns global addresses only to thunks that were actually communicated before being
evaluated, and lazily fetches other references only when the data is required. Kali Scheme

12 Available at http://github.com/jberthold/packman/ and on hackage.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 31

also provides a proxy mechanism, which allows remote values to be accessed using Kali’s
strong code mobility capabilities. As with GUM and PAEAN, Kali Scheme supports a
two-level garbage collection scheme, where local collections can proceed independently.
Global collection uses a combination of lightweight distributed reference counting with a
separate mechanism for global cycle detection. A similar mechanism to our ACK/NACK
messages is used to ensure that messages are not lost in transit, and that in-flight data is
not garbage collected prematurely. At the time of writing, the Kali Scheme system seems
to be no longer maintained. However, there are calls to revive the project.

5.9 Manticore

Finally, while it does not aim to provide a reusable library as with PAEAN, the Manti-
core (Fluet et al., 2007; Fluet et al., 2010) implementation for parallel ML provides sim-
ilar implicitly-threaded parallelism and follows the same spirit of semi-explicit adaptivity
as our earlier implementations of GpH. Futures and data parallel constructs are used to
manage local parallelism. Explicit synchronisation and coordination is used at a larger
scale (Reppy et al., 2009). At the runtime level, Manticore provides a notion of virtual
processor similar to a HEC, which can be similarly mapped to physical cores by the
operating system. A process, comprising multiple lightweight threads, is mapped to the
required number of virtual processors using a provision operation. There is a simple
built-in mechanism for basic load-balancing, extended using a low-latency work-stealing
mechanism (Acar et al., 2013). Manticore also provides a low-level internal scheduling
interface (Acar et al., 2012), which provides preemption and interrupt via a signal-based
approach. Processes are scheduled in a round-robin fashion, and schedulers may be nested,
so that, for example, a data parallel scheduler may be used within a process-level scheduler.

6 Conclusions

This paper has introduced PAEAN, a runtime-system framework that supports efficient
and scalable execution of parallel Haskell programs on a variety of (possibly NUMA)
parallel architectures, and shown how it can be used to implement three distinct parallel
Haskell dialects: GpH, Eden and EdI. PAEAN is based on the widely-used and heavily-
tuned GHC runtime system. It offers a flexible and general API for workload distribution,
virtual shared memory, communication and serialisation that can be used to implement a
variety of further Haskell dialects, on a “pick-and-mix” basis.

The central design decision in PAEAN is its shared-nothing heap, which greatly en-
hances the scalability of the system. PAEAN abstracts over low-level communication li-
braries, linking to standards such as PVM and MPI. We believe that with hardware scala-
bility limitations imposed by upcoming many-core architectures, such a design is the only
way forward for modern, massively-parallel systems. These concerns are already visible in
modern NUMA hardware architectures, and threaten to disrupt current programmer models
of memory behaviour. It is no longer tenable to assume that access to an array is uniform
cost, for example.

This provides an opportunity for more structured and flexible approaches to data as
promoted by Haskell and other functional languages, that will better fit limited sharing



Accepted for publication in J. of Functional Programming January 2016 Author’s version

32 J.Berthold, H.W.Loidl, K.Hammond

or shared-nothing settings. In order to achieve this potential, it is important to provide
good abstractions over this rapidly increasing complexity at the hardware memory level.
We have built a programmer-level virtual shared heap abstraction on top of a set of low-
level message passing primitives. PAEAN also supports physically-shared memory, but as
a special case of our shared-nothing design. Our performance results show that we can
obtain good, scalable and easy-to-use parallelism for multiple Haskell dialects beyond the
usual shared-memory limitations of standard parallel Haskell implementations.

6.1 Limitations and further work

While we have considered reasonably sized clusters in this paper (of up to 64 cores), in
order to fully study scalability, we will need to consider the use of PAEAN implementations
on larger machines such as EPCC’s 90,000 core HECToR. Our results with a challenging
symbolic computation application on up to 1024 cores of HECToR show good scalabil-
ity for a program with complex data dependencies (Maier et al., 2014a). However, we
anticipate that larger, hierarchical systems will highlight the need for improved control
of locality, hierarchical workload management, and other mechanisms of work and data
distribution that we have discussed above.

One other obvious limitation is that PAEAN does not currently provide support for
fault tolerance. This is not a major issue in a typical parallel computing setting (whether
shared-something or shared-nothing), since such systems can generally be assumed either
to be reliable or to provide systems-level recovery mechanisms. Likewise, cloud and other
managed distributed servers typically provide good system-level mechanisms for check-
pointing and recovery, which should deal with system-level failures. A language-level
mechanism is more useful for dealing with programmer-level failures, where the cause
of any error can be predicted and corrected by the programmer. In such a situation, the
direction taken by Cloud Haskell and HdpH, using Erlang-style supervisor processes to
monitor the health of large distributed systems (Stewart et al., 2012), would seem to offer
a relative simple and effective mechanism that can easily be added to PAEAN. We intend
to investigate this in due course.

Parallel programming is increasingly mainstream, and functional languages like Haskell
are, in principle, an excellent fit to modern massively parallel architectures. However,
the chief advantages of functional programming, namely composability and referential
transparency, can easily be lost, for example, by using explicit communication primi-
tives to link shared-nothing machines. Advanced runtime support such as we provide in
PAEAN aims to bridge and structure necessary performance tweaks in a carefully designed
and modular runtime system. In our opinion, such an approach is crucially important to
achieving large-scale parallel programming without losing key semantic advantages of
the functional approach. Ultimately, we intend to develop a revised PAEAN system that
captures the spirit of our ARTCOP design: with the necessary runtime system internals
largely programmed in Haskell, while still achieving good scalable performance through
flexible runtime-system support. We anticipate that this will allow us to address both near-
term and more distant parallel hardware developments, while providing support for high-
level parallelism abstractions in Haskell.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 33

Acknowledgements

This work has been partially supported by the European Union grants IST-248828 AD-
VANCE: Asynchronous and Dynamic Virtualisation through performance ANalysis to
support Concurrency Engineering, IST-288570 ParaPhrase: Parallel Patterns for Adaptive
Heterogeneous Multicore Systems, and IST-644235 RePhrase: Refactoring Parallel Het-
erogeneous Systems, a Software Engineering Approach; by EU COST Action IC1202:
Timing Analysis On Code-Level (TACLe); and by the UK’s Engineering and Physical
Sciences Research Council grant EP/G055181/1 HPC-GAP: High Performance Computa-
tional Algebra. Jost Berthold was partially supported by the Danish Council for Strategic
Research DSF under contract number 10-092299 (HIPERFIT). We would like to thank the
Scottish SICSA initiative for funding a visit of Jost Berthold to Heriot-Watt and St An-
drews Universities, and for supporting numerous events promoting research on (parallel)
programming languages and implementations. We would also like to thank Malak Aljabri
for her contributions in terms of performance measurements for the GUM-SMP system, as
well as all the PhD students and others who have contributed to extending the GUM and
Eden systems in many interesting directions.

Systems availability

Source code for the latest version of the GpH runtime system, including GUM and GUM-
SMP, is available at http://www.macs.hw.ac.uk/~hwloidl/hackspace/GUMSMP. This
version covers both GpH and Eden. The full Eden source code, which implements a subset
of the PAEAN design, plus pre-compiled binary releases for selected GHC versions, are
available for download at http://www.mathematik.uni-marburg.de/~eden/. Bina-
ries are provided for Windows, Linux, and Mac OS versions. All Haskell modules are avail-
able on hackage. RTS source code is available at http://github.com/jberthold/ghc.

References

Acar, Umut A, Charguéraud, Arthur, & Rainey, Mike. 2012 (January). Efficient primitives for
creating and scheduling parallel computations. Workshop contribution for DAMP’12. available
online at http://chargueraud.org/research/2012/damp/damp2012 primitives.pdf.

Acar, Umut A, Charguéraud, Arthur, & Rainey, Mike. (2013). Scheduling parallel programs by work
stealing with private deques. Pages 219–228 of: ACM SIGPLAN Notices, vol. 48. (18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP).

Aditya, Shail, Arvind, Augustsson, Lennart, Maessen, Jan-Willem, & Nikhil, Rishiyur S. (1995).
Semantics of pH: A parallel dialect of Haskell. Pages 35–49 of: Hudak, Paul (ed), Proceedings of
the Haskell Workshop. La Jolla, USA.

Al Zain, Abdallah D., Trinder, Phil W., Michaelson, Greg J., & Loidl, Hans-Wolfgang. (2008).
Evaluating a High-Level Parallel Language (GpH) for Computational GRIDs. IEEE Transactions
on Parallel and Distributed Systems, 19(2), 219–233.

Aljabri, Malak, Trinder, Phil, & Loidl, Hans-Wolfgang. 2012 (Aug.). The Design of a GUMSMP:
a Multilevel Parallel Haskell Implementation. IFL’12: 24th Symposium on Implementation and
Application of Functional Languages. Oxford, UK (draft proceedings).

Aljabri, Malak, Loidl, Hans-Wolfgang, & Trinder, Phil W. (2013). The Design and Implementation
of GUMSMP: a Multilevel Parallel Haskell Implementation. Pages 37–48 of: ACM SIGPLAN
Symposium on Implementation and Application of Functional Languages (IFL’13). ACM.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

34 J.Berthold, H.W.Loidl, K.Hammond

Aljabri, Malak, Loidl, Hans-Wolfgang, & Trinder, Phil. (2014). Balancing Shared and Distributed
Heaps on NUMA Architectures. Pages 1–17 of: TFP’14: Symposium on Trends in Functional
Programming. LNCS 8843. Springer.

Aljabri, Malak Saleh. 2015 (Oct.). GUMSMP: A Scalable Parallel Haskell Implementation. Ph.D.
thesis, School of Computing Science, University of Glasgow.

Appel, Andrew W. (1989). Simple generational garbage collection and fast allocation. Software:
Practice and experience, 19(2), 171–183.

Aswad, Mustafa Kh.2̇012 (Apr.). Architecture Aware Parallel Programming in Glasgow Parallel
Haskell. Ph.D. thesis, School of Mathematical and Computer Sciences, Heriot-Watt University.

Berthold, Jost. 2008 (June). Explicit and implicit parallel functional programming: Concepts and
implementation. Ph.D. thesis, Philipps-Universität Marburg, Germany.

Berthold, Jost. (2011). Orthogonal Serialisation for Haskell. Pages 38–53 of: Hage, Jurriaan,
& Morazan, Marco (eds), IFL’10: Implementation and Application of Functional Languages.
LNCS 6647. Springer.

Berthold, Jost, & Loogen, Rita. (2005). Skeletons for Recursively Unfolding Process Topologies.
Pages 835–843 of: Joubert, Gerhard R., Nagel, Wolfgang E., Peters, Frans J., Plata, Oscar G.,
Tirado, P., & Zapata, Emilio L. (eds), Proceedings of ParCo 2005. John von Neumann Institute of
Computing Series, vol. 33. Central Institute for Applied Mathematics, Jülich, Germany.

Berthold, Jost, & Loogen, Rita. (2007). Parallel Coordination Made Explicit in a Functional Setting.
Pages 73–90 of: Horváth, Zoltán, & Zsók, Viktória (eds), IFL’06: Implementation and Application
of Functional Languages. LNCS 4449. Springer.

Berthold, Jost, Klusik, Ulrike, Loogen, Rita, Priebe, Steffen, & Weskamp, Nils. (2003). High-level
Process Control in Eden. Kosch, H., Böszörményi, L., & Hellwagner, H. (eds), EuroPar 2003 –
Parallel Processing. LNCS 2790. Springer.

Berthold, Jost, Loidl, Hans-Wolfgang, & Al Zain, A.D. (2008). Scheduling Light-Weight Parallelism
in ARTCOP. Pages 214–229 of: Hudak, Paul, & Warren, David (eds), PADL’08 — Practical
Aspects of Declarative Languages. LNCS 4902. Springer.

Bevan, D.I. (1987). Distributed Garbage Collection Using Reference Counting. Pages 176–187 of:
PARLE’87 — Parallel Architectures and Languages Europe. LNCS 259. Springer.

Breitinger, Sylvia, Klusik, Ulrike, Loogen, Rita, Ortega Mallén, Yolanda, & Peña Marı́, Ricardo.
(1997). DREAM - the DistRibuted Eden Abstract Machine. Pages 250–269 of: IFL’97: 9th
International Workshop on the Implementation of Functional Languages. LNCS 1467. Springer.

Breitinger, Sylvia, Klusik, Ulrike, & Loogen, Rita. (1998). From (Sequential) Haskell to (Parallel)
Eden: An Implementation Point of View. Pages 318–334 of: Proceedings of the 10th International
Symposium on Principles of Declarative Programming. LNCS 1490. Springer.

Cejtin, Henry, Jagannathan, Suresh, & Kelsey, Richard. (1995). Higher-order distributed objects.
ACM Transactions on Programming Languages and Systems (TOPLAS), 17(5), 704–739.

Chakravarty, Manuel M. T., Leshchinskiy, Roman, Peyton Jones, Simon, Keller, Gabriele, & Marlow,
Simon. (2007). Data parallel Haskell: A status report. Pages 10–18 of: DAMP’07, Workshop on
Declarative Aspects of Multicore Programming. ACM.

Cole, Murray I. (1989). Algorithmic Skeletons: Structured Management of Parallel Computation.
Research Monographs in Parallel and Distributed Computing. Cambridge(MA), USA: MIT Press.

Dieterle, Mischa, Horstmeyer, Thomas, & Loogen, Rita. (2010). Skeleton Composition Using
Remote Data. Pages 73–87 of: PADL 2010: Practical Aspects of Declarative Languages. LNCS
5937. Springer.

Dieterle, Mischa, Horstmeyer, Thomas, Berthold, Jost, & Loogen, Rita. (2013). Iterating Skeletons –
Structured Parallelism by Composition. Pages 18–36 of: Hinze, Ralf, & Gill, Andy (eds), IFL’12:
24th Symposium on Implementation and Application of Functional Languages. LNCS 8241.
Springer.



Accepted for publication in J. of Functional Programming January 2016 Author’s version

PAEAN: Portable, Scalable Runtime Support for Parallel Haskells 35

Du Bois, Andre R., Loidl, Hans-Wolfgang, & Trinder, Phil W. (2002). Thread Migration in a Parallel
Graph Reducer. Pages 199–214 of: IFL’02: International Workshop on the Implementation of
Functional Languages. LNCS 2670. Springer.

Epstein, Jeff, Black, Andrew P., & Peyton-Jones, Simon. (2011). Towards Haskell in the cloud. Pages
118–129 of: Proceedings of the 4th ACM Symposium on Haskell (Haskell’11). ACM.

Fluet, Matthew, Rainey, Mike, Reppy, John, Shaw, Adam, & Xiao, Yingqi. (2007). Manticore:
A Heterogeneous Parallel Language. Pages 37–44 of: DAMP 2007: Workshop on Declarative
Aspects of Multicore Programming. ACM.

Fluet, Matthew, Rainey, Mike, Reppy, John, & Shaw, Adam. (2010). Implicitly threaded Parallelism
in Manticore. Journal of functional programming, 20(5-6), 537–576.

Foltzer, A., Kulkarni, A., Swords, R., Sasidharan, S., Jiang, E., & Newton, R. (2012). A Meta-
scheduler for the Par-monad: Composable Scheduling for the Heterogeneous Cloud. Pages 235–
246 of: ICFP’12: 17th ACM SIGPLAN International Conference on Functional Programming.
ACM.

Geist, Al. (2011). Parallel Virtual Machine. Pages 1647–1651 of: Padua, David (ed), Encyclopedia
of Parallel Computing. Heidelberg/Berlin: Springer.

Gray, Jim. (1985). Why Do Computers Stop and What Can Be Done About It? Tandem Computers,
Technical Report 85.7.

Hallgren, Thomas, Jones, Mark P., Leslie, Rebekah, & Tolmach, Andrew. (2005). A Principled
Approach to Operating System Construction in Haskell. Pages 116–128 of: Danvy, Olivier, &
Pierce, Benjamin C. (eds), ICFP’05: 10th ACM SIGPLAN International Conference on Functional
Programming. ACM.

Hammond, Kevin. 1993 (Sept.). Getting a GRIP. IFL’93: International Workshop on the Parallel
Implementation of Functional Languages. Nijmegen, The Netherlands (draft proceedings).

Hammond, Kevin. (2011). Glasgow Parallel Haskell (GpH). Pages 768–779 of: Padua, David (ed),
Encyclopedia of Parallel Computing. Heidelberg/Berlin: Springer.

Hammond, Kevin, & Peyton Jones, Simon L. (1990). Some Early Experiments on the GRIP Parallel
Reducer. Pages 51–72 of: IFL’90: International Workshop on the Parallel Implementation of
Functional Languages. Nijmegen, The Netherlands.

Hammond, Kevin, & Peyton Jones, Simon L. 1992 (Sept.). Profiling Scheduling Strategies on
the GRIP Multiprocessor. Pages 73–98 of: IFL’92: International. Workshop on the Parallel
Implementation of Functional Languages. Aachener Informatik-Berichte, vol. 92-19.

Klusik, Ulrike, Ortega-Mallén, Yolanda, & Peña Marı́, Ricardo. (1999). Implementing Eden –
or: Dreams Become Reality. Pages 103–119 of: IFL’98: 10th International Workshop on the
Implementation of Functional Languages. LNCS-1595. Springer.

Lameter, Christoph. (2013). NUMA (Non-Uniform Memory Access): An Overview. Acm queue,
11(7), 40:40–40:51.

Li, Peng, Marlow, Simon, Peyton Jones, Simon, & Tolmach, Andrew. (2007). Lightweight
Concurrency Primitives for GHC. Pages 107–118 of: ACM SIGPLAN Workshop on Haskell
(Haskell’07). ACM.

Loidl, Hans-Wolfgang. 1998 (Mar.). Granularity in Large-Scale Parallel Functional Programming.
Ph.D. thesis, Dept. of Computing Science, Univ. of Glasgow.

Loidl, Hans-Wolfgang. (2001). Load Balancing in a Parallel Graph Reducer. Pages 63–74 of:
Hammond, K., & Curtis, S. (eds), SFP’01 — Scottish Functional Programming Workshop. Trends
in Functional Programming, vol. 3. Intellect.

Loidl, Hans-Wolfgang, & Hammond, Kevin. 1994 (Sept.). GRAPH for PVM: Graph Reduction
for Distributed Hardware. IFL’94: International Workshop on the Implementation of Functional
Languages. Norwich, England (draft proceedings).



Accepted for publication in J. of Functional Programming January 2016 Author’s version

36 J.Berthold, H.W.Loidl, K.Hammond

Loidl, Hans-Wolfgang, & Hammond, Kevin. (1996). Making a packet: Cost-effective communication
for a parallel graph reducer. Pages 184–199 of: IFL’96: International Workshop on the
Implementation of Functional Languages. LNCS 1268. Bonn/Bad-Godesberg, Germany:
Springer-Verlag.

Loogen, Rita, Ortega-Mallén, Yolanda, & Peña-Marı́, Ricardo. (2005). Parallel Functional
Programming in Eden. Journal of Functional Programming, 15(3), 431–475.

Maier, Patrick, & Trinder, Phil. (2012). Implementing a High-Level Distributed-Memory Parallel
Haskell in Haskell. Pages 35–50 of: Gill, Andy, & Hage, Jurriaan (eds), IFL’12: 24th Symposium
on Implementation and Application of Functional Languages. LNCS 7257. Springer.

Maier, Patrick, Livesey, Daria, Loidl, Hans-Wolfgang, & Trinder, Phil. (2014a). High-Performance
Computer Algebra — A Parallel Hecke Algebra Case Study. Pages 415–426 of: EuroPar’14:
Parallel Processing. LNCS 8632. Springer.

Maier, Patrick, Stewart, Robert, & Trinder, Phil. (2014b). The HdpH DSLs for Scalable Reliable
Computation. Pages 65–76 of: Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell
(Haskell’14). ACM.

Marlow, Simon, & Peyton Jones, Simon. (2011). Multicore Garbage Collection with Local Heaps.
Pages 21–32 of: ISMM ’11: Proceedings of the 10th International Symposium on Memory
Management. ACM.

Marlow, Simon, Peyton Jones, Simon, & Singh, Satnam. (2009). Runtime Support for Multicore
Haskell. Pages 65–78 of: ICFP’09: 14th ACM SIGPLAN International Conference on Functional
Programming. ACM.

Marlow, Simon, Maier, Patrick, Loidl, Hans-Wolfgang, Aswad, Mustafa K., & Trinder, Phil. (2010).
Seq no More: Better Strategies for Parallel Haskell. Pages 91–102 of: Proceedings of the Third
ACM Haskell Symposium (Haskell’10). ACM.

Marlow, Simon, Newton, Ryan, & Peyton Jones, Simon. (2011). A Monad for Deterministic
Parallelism. Proceedings of the 4th ACM Haskell Symposium (Haskell’11). ACM.

Mohr, Eric, Kranz, David A., & Halstead Jr., Robert H. (1991). Lazy Task Creation: A Technique for
Increasing the Granularity of Parallel Programs. IEEE Transactions on Parallel and Distributed
Systems, 2(3), 264–280.

MPI Forum (ed). (2012). MPI: A Message-Passing Interface Standard, Version 3.0. High
Performance Computing Center Stuttgart (HLRS). http://www.mpi-forum.org/docs/.

Peyton Jones, Simon, Clack, Chris, Salkild, Jon, & Hardie, Mark. (1987). GRIP - a High-
Performance Architecture for Parallel Graph Reduction. Pages 98–112 of: Intl. Conf. on
Functional Programming Languages and Computer Architecture (FPCA’87). LNCS 274.
Springer.

Reppy, John, Russo, Claudio, & Xiao, Yingqi. (2009). Parallel Concurrent ML. Pages 257–268 of:
ICFP’09: 14th ACM SIGPLAN International Conference on Functional Programming. ACM.

Sivaramakrishnan, KC, Harris, Tim, Marlow, Simon, & Peyton Jones, Simon. (2013). Composable
Scheduler Activations for Haskell. Tech. rept. Microsoft Research, Cambridge.

Stewart, Robert, Trinder, Phil, & Maier, Patrick. (2012). Supervised Workpools for Reliable
Massively Parallel Computing. Pages 247–262 of: TFP12: International Symposium on Trends
in Functional Programming. LNCS 7829. Springer.

Totoo, Prabhat, & Loidl, Hans-Wolfgang. (2014). Parallel Haskell implementations of the N-body
Problem. Concurrency and Computation: Practice and Experience, 26(4), 987–1019.

Trinder, Phil W., Hammond, Kevin, Loidl, Hans-Wolfgang, & Peyton Jones, Simon. (1998).
Algorithm + Strategy = Parallelism. Journal of Functional Programming, 8(1), 23–60.

Trinder, Philip W., Hammond, Kevin, Mattson Jr., James S., Partridge, Andrew S., & Peyton Jones,
Simon L. (1995). GUM: a Portable Parallel Implementation of Haskell. IFL’95: 7th International
Workshop on the Implementation of Functional Languages. Båstad, Sweden (draft proceedings).


