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Abstract
Background: Gene set enrichment analysis (GSEA) is a microarray data analysis method that uses
predefined gene sets and ranks of genes to identify significant biological changes in microarray data
sets. GSEA is especially useful when gene expression changes in a given microarray data set is
minimal or moderate.

Results: We developed a modified gene set enrichment analysis method based on a parametric
statistical analysis model. Compared with GSEA, the parametric analysis of gene set enrichment
(PAGE) detected a larger number of significantly altered gene sets and their p-values were lower
than the corresponding p-values calculated by GSEA. Because PAGE uses normal distribution for
statistical inference, it requires less computation than GSEA, which needs repeated computation of
the permutated data set. PAGE was able to detect significantly changed gene sets from microarray
data irrespective of different Affymetrix probe level analysis methods or different microarray
platforms. Comparison of two aged muscle microarray data sets at gene set level using PAGE
revealed common biological themes better than comparison at individual gene level.

Conclusion: PAGE was statistically more sensitive and required much less computational effort
than GSEA, it could identify significantly changed biological themes from microarray data
irrespective of analysis methods or microarray platforms, and it was useful in comparison of
multiple microarray data sets. We offer PAGE as a useful microarray analysis method.

Background
High-throughput technologies such as DNA microarrays
and proteomics are revolutionizing biology and medi-
cine. Global gene expression profiling using microarrays
monitors changes in expression of thousands of genes
simultaneously. At the data acquisition level, gene expres-
sion profiles from a given system should be reproducible
and yield statistically significant changes in gene expres-
sion [1]. The large amounts of data acquired must then be
reduced or "translated" to a smaller set of genes represent-

ing meaningful biological differences between control
and test systems and validated in an experimental or clin-
ical setting [2]. Since inception of the microarray technol-
ogy, significant technological and analytical
improvements have been introduced to meet these chal-
lenges, from experimental design [1], probe-level analysis
of oligonucleotide chips [3,4], data normalization [5], sta-
tistical analysis [6], clustering techniques [7-9], to various
data mining tools [10-12]. A large number of studies used
microarrays successfully to discern changes in gene
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expression patterns either in well defined cellular popula-
tions responding to a specific stimulus in vitro [13,14] or
in complex clinical settings such as cancer and neurologi-
cal diseases [15-17].

While individual microarray studies can be highly inform-
ative, it is generally difficult to compare independently
obtained data sets addressing the same biological prob-
lem [18], regardless of whether the same or different
microarray platform was used [19-23]. The poor congru-
ence of cross-study comparisons was attributed to incor-
rectly annotated probes, non-sequence overlapping but
Unigene-matching probes, variation in experimental con-
ditions, and actual biological variations among different
clinical or experimental materials used [19-23]. Several
new bioinformatics programs have attempted to circum-
vent the variability between different published data sets
at the data acquisition level by comparing gene expression
results for coordinate changes in biological themes [12],
for similarity of significance values for each gene obtained
through meta-analysis methods [15], and for reproduci-
ble gene expression patterns revealed by integrative corre-
lation statistics [24]. Each of the methods revealed some
congruency among the data sets analyzed [12,15,24] indi-
cating that results from various transcriptional profiling
studies can eventually be integrated for better general def-
inition of normal and disease-related processes.

Another challenge of microarray data analysis is that the
majority of genes in any genome-wide transcriptional pro-
file data set are excluded from consideration because they
show only subtle changes in expression. This problem was
recently addressed in a gene expression profiling study of
human diabetic muscles, in which no single gene (out of
over 20,000) showed significant difference in expression
between control and patients groups [25]. Assuming that
gene expression changes can be detected at the level of co-
regulated gene sets rather than individual genes, the
authors devised a new analytical tool, GSEA, that tested
predefined gene sets for association with disease pheno-
types [25]. GSEA successfully detected oxidative phospho-
rylation as a biological theme that coordinately changed
in diabetic muscles [25]. Although subsequent analysis
suggested that the statistical tools used in GSEA may be
biased toward assigning higher enrichment scores to gene
sets of large size [26], the program significantly expands
the potential for discovery of important process or disease
related genes in a given microarray data set.

In the present work we describe a modified gene set
enrichment analysis strategy that improves analysis of
minimally changed gene expression profiles. PAGE
employs fold change between experimental groups or
other parametric data to calculate Z scores of predefined
gene sets and use normal distribution to infer statistical

significance of gene sets. We show here that PAGE has sev-
eral advantages over GSEA and is useful in comparison of
multiple microarray data sets.

Results
Statistical model and selection of minimal gene set size
According to the Central Limit Theorem in statistics, the
distribution of the average of randomly sampled n obser-
vations tends to follow normal distribution as the sam-
pling size n becomes larger, even when the parent
distribution from which the average is calculated is not
normal. The distribution of the average of randomly sam-
pled observations has the same mean as the parent distri-
bution and its variance is equal to the variance of the
parent divided by the sampling size [27]. In other words,
when the mean and variance of the parent distribution
(whether it is normally distributed or not) are µ and σ2 the
average of n observations from the parent distribution
will follow a normal distribution of mean µ and variance
σ2/n when the sampling size n is large enough. In PAGE,
the parent distribution is a distribution of any numerical
values (also termed parameters here) that describe differ-
ential expression of genes among samples in a microarray
data set. Usually, the values are a fold change for an indi-
vidual gene between two experimental groups or they can
be a correlation coefficient between clinical indices and
individual gene expression values in a microarray data set.
In most cases, the distribution of a parameter, i.e., a fold
change values for all genes in a gene set between two
experimental groups, is not normally distributed. How-
ever, as the Central Limit Theorem states, when we sample
n observations from the parent distribution of a parame-
ter, the average of the sampled observations tends to fol-
low the normal distribution as our sampling size n
becomes larger. Here, we define sampled observations as
expression values for randomly chosen individual genes
within pre-defined gene sets, which may be any randomly
chosen groups of genes, groups of genes representing
close family members with similar functions, genes in the
same biological pathway, and so on. If we define a gene
set of sufficiently large size, we can use the normal distri-
bution to test the statistical significance of that gene set.

To determine the minimal gene set size m, we first exam-
ined the distribution pattern of several microarray data
sets. We used fold change between two experimental
groups as a parameter and observed the distribution of
fold change values in a microarray data set. As an example,
we show the distribution of fold change values from
microarray data set that compared gene expression of dia-
betic muscles with that of normal control muscles [25]
(Fig. 1). The histogram of fold change values (Fig. 1A) and
quantile-quantile plot of fold change values against stand-
ard normal distribution (Fig. 1B) suggested that fold
change values were not normally distributed. The null
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Distribution pattern of fold change values in a microarray data and determination of minimal gene set size in PAGEFigure 1
Distribution pattern of fold change values in a microarray data and determination of minimal gene set size in 
PAGE. A and B. A Histogram (A) and a quantile-quantile (Q-Q) plot against standard normal distribution (B) of fold change 
values from microarray data set. The diabetic muscle microarray data set [25] was analyzed as described in Methods section. 
The fold change values between normal and patient groups were calculated and used to draw histogram (A) and Q-Q plot (B). 
C and D. A Histrogram (C) and a Q-Q plot (D) of an average of 10 randomly sampled values from fold change values of dia-
betic muscle microarray data. Kolmogorov-Smirnov normality test was performed with a null hypothesis that distribution is 
normal. For the distribution of fold change values (A and B), the null hypothesis was rejected (D = 0.08, p-value < 2.2e-16). For 
the distribution of an average of 10 randomly sampled values from fold change values (C and D), the null hypothesis was not 
rejected (D = 0.0239, p-value = 0.1783).
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hypothesis that the distribution of fold change values was
normal was rejected by Kolmogorov-Smirnov normality
test (D = 0.08, p-value < 2.2e-16).

Subsequently, we sampled m genes from the parent pop-
ulation of fold change values, calculated the average of the
sampled m observations, and observed the distribution
pattern of the average values. We began from sampling
size two, incremented by one until the sampling size m
became 50. As expected, as the sampling size m increased,
we found that the distribution of the average of sampled
observations became closer to normal. As an example, we
show the distribution of the average with sampling size of
10 (Fig. 1C and 1D). Both histogram (Fig. 1C) and quan-
tile-quantile plot against standard normal distribution
(Fig. 1D) suggested that the distribution of the average of
10 observations was close to normal and the null hypoth-
esis that this distribution was normal was not rejected by
Kolmogorovo-Smirnov normality test (D = 0.0239, p-
value = 0.1783). Based on these observations, we set the
minimal gene set size as 10. We performed the same anal-
ysis with several microarray data sets using diverse data
processing procedures and found similar results (data not
shown).

Comparison of PAGE with GSEA
GSEA calculates an enrichment score (ES) for a given gene
set using rank of genes and infers statistical significance of
each ES against ES background distribution calculated by
permutation of the original data set. In contrast, PAGE cal-
culates a Z score for a given gene set from a parameter such
as fold change value between two experimental groups
and infers statistical significance of the Z score against
standard normal distribution.

To compare the statistical sensitivity of PAGE with that of
GSEA, we analyzed human diabetic muscle microarray
data sets used in the initial description of GSEA [25]. We
calculated fold change values between diabetic muscles
and control muscles as described above, calculated Z

scores and corresponding p-values for each gene set, and
compared these parameters with enrichment scores and
corresponding p-values available as supplementary infor-
mation (Table 1). We found that both PAGE and GSEA
detected OXPHOS_HG-U133A as the most significantly
changed gene set; however, the statistical significance of
PAGE detection of this gene set was much greater, p = 1 ×
10-11 versus p = 0.003. PAGE and GSEA ranked the next
three gene sets, human_mitoDB_6_2002_HG-U133A,
mitochondr_HG-U133A, and
MAP00190_Oxidative_Phosphorylation, as the second
through fourth significant gene sets and again, the statisti-
cal power of PAGE analysis (the p-value) was greater than
that of GSEA (Table 1). Overall, PAGE detected seven gene
sets as statistically significant at p < 0.05 in this data set
whereas GSEA detected only one gene set at this signifi-
cance. For all gene sets, p-values obtained by PAGE analy-
sis PAGE were generally smaller than p-values of
corresponding gene sets obtained by GSEA.

We extended the comparison of PAGE and GSEA to addi-
tional data sets including gene expression profiles of
young and aged muscles from males (GDS 287) and
females (GDS 472), or dermal fibroblasts subjected or not
subjected to oxidative stress (GDS 963n1). Unlike the
analysis shown in Table 1, we applied GSEA here as a mul-
tiple comparison testing tool [28] to directly compare the
ability of both programs to detect multiple significant
gene sets. The results of these analyses are shown in Addi-
tional files 1, 2, 3, 4. In data set GDS 472, PAGE detected
15 out of the first 30 gene sets as significantly up-regulated
versus 1 out of 30 for GSEA (see Additional file 1). The
corresponding numbers in GDS 287 were 26 of 30 for
PAGE and 12 of 30 for GSEA (see Additional file 2). In
data set GDS 963n1, both PAGE and GSEA detected 14
significant gene set out of 32 (see Additional file 3). It
should be noted that the results in Additional files 1, 2, 3
were ranked by the GSEA NE scores. Although in many
cases the same gene sets were identified as significant by
both programs, PAGE generally detected a larger number

Table 1: Comparison of PAGE with GSEA

PAGE GSEA
Gene Set Z score p-value Gene Set ES p-value

OXPHOS_HG-U133A -10.5835 <1.0E-11 OXPHOS_HG-U133A 346.8827 0.003
human_mitoDB_6_2002_HG-U133A -6.7213 1.81E-11 human_mitoDB_6_2002_HG-U133A 215.9424 0.091
mitochondr_HG-U133A -6.4761 9.46E-11 mitochondr_HG-U133A 207.9381 0.087
MAP00190_Oxidative_phosphorylation -4.5745 4.78E-05 c20_U133 181.1569 0.062
c20_U133 -3.7461 0.0002 MAP00190_Oxidative_phosphorylation 148.9061 0.084
c25_U133 -2.7617 0.0058 c22_U133 142.9006 0.028
c21_U133 -2.1116 0.0347 c29_U133 131.4732 0.026
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of significant gene sets than GSEA across the entire range
of GSEA NES. This is illustrated by expressing the results
of the analysis shown in Additional file 3 with gene set
rankings by the PAGE Z score (see Additional file 4).
These results further demonstrate the utility of PAGE for
sensitive detection of significantly altered biological path-
ways in various publicly available microarray data sets.

To further compare statistical robustness of PAGE and
GSEA for detection of minimally changed gene sets we
performed a simulation study using 10 hypothetical
"experimental" and 10 "control" data sets, each contain-
ing expression values for 2,000 genes that were randomly
chosen from standard normal distribution curve (see
Additional file 5). Of the 2000 genes, 20 were designated
as a hypothetical gene set of interest. The method and
parameters of this simulation are described in the legend
to Additional file 5. The simulation indicates that PAGE is
more statistically sensitive than GSEA, being able to detect
the test gene set as significant when the mean difference
between the "experiment" and "control" was as small as
0.25 (see Additional file 5).

Robustness of PAGE across different microarray probe 
analysis methods or different microarray platforms
For a given microarray data set, use of different methods
of data preprocessing, array normalization, and statistical
inference can lead to different end results [3,4,29]. We

tested the general applicability of PAGE to different
Affymetrix probe analysis programs using the Duchenne
muscular dystrophy (DMD) data set GDS 563 which con-
tains 29 CEL files available from Gene Expression Omni-
bus website. Starting with 11 control and 23 DMD sets, we
calculated expression values by MAS5 [30], MBEI [3], and
RMA [4] programs, logarithm transformed expression val-
ues calculated by MAS5 and MBEI by base two, deter-
mined fold changes between two groups, and performed
PAGE with pathway gene sets. With a cut-off p-value of <
0.05, PAGE identified eight significantly impaired gene
sets with MAS5 and RMA platforms and six suppressed
gene sets with MBEI platform, although the next three
gene sets with lower significance derived from MBEI anal-
ysis were the same as those identified with MAS5 or RMA
platforms (Table 2). For significantly induced gene sets,
all three methods identified identical five gene sets (Table
2).

We then tested whether PAGE could detect common bio-
logical themes from microarray data sets produced using
different microarray platforms. We analyzed breast cancer
cell line experiment GSE 1299 in which three different
arrays (U133A, U95A, and Agilent Human cDNA) were
employed with the same RNA to analyze platform
dependency of microarray data [20]. We programmed
PAGE to identify pathway gene sets in each of the data sets
obtained by three microarray platforms used in the

Table 2: Application of PAGE to different Affymetrix probe level analysis methods

MAS5 MBEI RMA

Gene Set Z score p-value Gene Set Z score p-value Gene Set Z score p-value

Inflammatory Response 
Pathway

7.5051 <1.0E-12 Inflammatory 
Responses

7.5195 5.51E-14 Inflammatory Responses 7.3487 2.00E-13

Eicosanoid Synthesis 6.5925 <1.0E-12 Eicosanoid Synthesis 3.8957 9.79E-05 Eicosanoid Synthesis 4.1557 3.24E-05
Complement Activation 
Classical

3.0382 0.0024 Complement 
Activation

3.5487 0.0004 TGF-β Signaling Pathway 3.0438 0.0023

Nucleotide Metabolism 2.0536 0.0400 Nucleotide Metabolism 2.4207 0.0155 Complement Activation 
Classical

2.9402 0.0033

TGF-β Signaling Pathway 1.9758 0.0482 TGF-β Signaling 
Pathway

2.2379 0.0250 Nucleotide Metabolism 2.5867 0.0097

MAPK Cascade -2.2529 0.0243 Glutamate Metabolism -1.7249 0.0846 GPCRs Class A 
Rhodopsin-like

-1.9907 0.0465

Translation Factors -2.3124 0.0208 MAPK Cascade -1.8685 0.0617 MAPK Cascade -2.1306 0.0331
Krebs-TCA Cycle -3.2551 0.0011 Proteasome 

Degradation
-1.9605 0.0499 Krebs-TCA Cycle -2.6076 0.0091

Glycogen Metabolism -3.3488 0.0008 Krebs-TCA Cycle -2.1182 0.0342 Proteasome Degradation -2.7822 0.0054
Proteasome Degradation -3.7468 0.0002 Glycogen Metabolism -2.8330 0.0046 Glycogen Metabolism -2.9328 0.0034
Fatty Acid Degradation -3.8286 0.0001 Fatty Acid Degradation -2.8570 0.0043 Fatty Acid Degradation -3.4024 0.0007
Nuclear Receptors -4.2579 2.06E-05 Nuclear Receptors -3.4686 0.0005 Nuclear Receptors -4.1600 3.18E-05
Electron Transport Chain -6.3789 1.78E-10 Electron Transport 

Chain
-4.2009 2.66E-05 Electron Transport Chain -5.1177 3.09E-07
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experiment. Among significantly down-modulated path-
ways, two pathways (gap_junction proteins-connexins
and cholesterol_biosynthesis) were identified by PAGE as
common to all three microarray platforms (Table 3) and
for up-regulated gene sets, Krebs_TCA was detected with
all three microarray platforms (Table 3).

Application of PAGE to comparing different microarray 
data sets
Comparison of different microarray data sets dealing with
similar biological questions often poses a problem of
poor congruency among data sets when compared at gene
level. We tested whether comparing at gene set level was
better than at individual gene level to reveal congruency
among different microarray data sets.

We compared two microarray data sets, GDS 287 and
GDS 472, produced by the same authors using the same
microarray platform Affymetrix U133A (Fig. 2 and Table
4). The data set GDS 287 records differential gene expres-
sion of muscles of young and old aged males, and GDS
472 records differential gene expression of muscles of
young and old aged females. We analyzed both data sets
in the same manner, selected significantly changed genes
(|fold change| > 1.5 and t-test p-value < 0.05), and found
the percentage of genes common to both data sets. Only
12.4% of significantly up-regulated genes occurred in
both data sets and 4.4% of significantly down-regulated
genes occurred in both data sets (Fig. 2A). In contrast,
when we compared both data sets at gene set level, 62.5%

of significantly up-regulated gene sets occurred in both
data sets and 49.6% of significantly down-regulated gene
sets occurred in both data sets (Fig. 2B). Actually, gene set
level comparison correctly pointed out that energy
metabolism such as electron transport, tricarboxylic acid
cycle, and glycolysis was impaired and genes involved in
mRNA processing and cell cycle regulation were up-regu-
lated in both old aged male (GDS 287) and old aged
female (GDS 472) data sets (Table 4).

Discussion
Our initial objectives in developing PAGE were to increase
the statistical power of the existing gene set enrichment
program for analysis of subtle changes in microarray data
and to simplify the laborious computational process
involved. We designed PAGE as a parametric statistical
test that uses normal distribution to infer the statistical
significance of Z scores calculated from actual numerical
parameters such as fold change between two experimental
groups. Distribution-free, non-parametric methods such
as the ones used in GSEA [25,30] make no assumptions
about variability or the form of the population distribu-
tion and are useful when the population distribution is
not normal or unknown. However, because non-paramet-
ric tests use ranks instead of measured values, they tend to
be less powerful, informative, and flexible than corre-
sponding parametric tests [31].

As described earlier, the theoretical basis for using normal
distribution in PAGE is Central Limit Theorem, which

Table 3: Comparison of PAGE results from data sets produced using different microarray platforms

U95A U133A Agilent

Gene Set Z score p-value Gene Set Z score p-value Gene Set Z score p-value

Complement 
Activation Classical

3.0477 0.0023 Krebs TCA Cycle 5.0505 4.41E-07 tRNA Synthetases 3.1714 0.0015

Krebs-TCA Cycle 2.6771 0.0074 Cell Cycle 3.4088 0.0007 Krebs TCA Cycle 3.1291 0.0018
Nuclear Receptors 2.6562 0.0079 Translation Factors 2.8213 0.0048 Proteasome Degradation 1.9894 0.0467
Calcium Channels 1.6956 0.0900 Nuclear Receptors 2.3404 0.0193 Glycolysis and 

Gluconeogenesis
1.5679 0.1169

Apoptosis 1.4085 0.1590 Complement Activation 
Classical

2.2861 0.0223 Steroid Biosynthesis 1.5109 0.1308

TGF Beta Signaling 
Pathway

-1.8580 0.0632 Matrix Metalloproteinases -2.2837 0.0224 Ribosomal Proteins -2.1275 0.0334

Inflammatory Response 
Pathway

-2.2590 0.0239 TGF Beta Signaling Pathway -3.3762 0.0007 Glycogen Metabolism -2.4904 0.0128

Glycogen Metabolism -2.6981 0.0070 Inflammatory Response 
Pathway

-3.5668 0.0004 TGF Beta Signaling 
Pathway

-2.6910 0.0071

Cholesterol 
Biosynthesis

-4.6988 2.62E-06 Cholesterol Biosynthesis -5.8165 6.01E-09 Cholesterol Biosynthesis -4.1642 3.12E-05

Gap Junction Proteins-
Connexins

-5.7792 7.51E-09 Gap Junction Proteins-
Connexins

-6.2689 3.64E-10 Gap Junction Proteins-
Connexins

-6.6162 3.69E-11
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states that when sampling size n is large enough, distribu-
tion of an average of sampled observations is normal
regardless of the nature of parent distribution. In statistics,
sampling size of 30 is generally sufficient, although the
actual sampling size fulfilling Central Limit Theorem is
dictated by how parent distribution is close to normal dis-
tribution. In our case, sampled observations were fold
changes in expression of randomly chosen genes in a
microarray data set grouped into pre-defined randomly
chosen gene sets. We found that sampling size of 10 was
sufficient for demonstrating close to normal distribution
of averages of fold changes of constituent genes in gene
sets as inferred by several normality tests including Kol-
mogorov-Smirnov (Fig. 1C), Anderson-Darling and
Cramer-von Mises (data not shown). In our opinion, the
reason that normality analysis of microarray data sets can
be performed with a much smaller sampling size (10)
than generally required is because parent population of
parameters, i.e., fold changes of all genes being compared
in microarray data sets, is already somewhat close to nor-
mal. Indeed, most fold change values lie in the center
position of the distribution and the proportion of
significantly changed genes decreased along the axis to
both directions (Fig. 1A).

It is clear that the statistical tools used in PAGE direct the
program to analysis of pre-defined gene sets in microarray
data sets rather than individual genes. This design was

intentional. Regardless of the experimental paradigm, the
majority of the cellular transcripts analyzed for
differential expression on genome-wide microarray chips
such as the Affymetrix 133A/B show statistically insignifi-
cant changes. For example, our analysis of gene expression
profile of HIV-1-infected astrocytes on U133A/B detected
about 740 different transcripts with fold changes of > 2 or
< -2 and p ≤ 0.05 [32]. This result also means that the sig-
nals obtained with over 40,000 other probes on the chips
in these experiments were not considered as significant.
Thus, many potentially relevant but subtle changes in bio-
logical systems may not be readily detectable by individ-
ual gene analysis of differentially expressed gene lists.
PAGE, like GSEA [25], attempts to resolve this problem by
utilizing the phenomenon of gene co-regulation. In com-
plex biological systems, many genes belonging to the
same family and performing similar functions or genes
acting in the same biological pathway are co-regulated.
Conversely, in disease states, these genes may be
coordinately dysregulated. Characterization of gene co-
regulation (or co-dysregulation) under different physio-
logical and pathological conditions is an important
research problem that can now be approached by bioin-
formatics tools [33]. The assumption behind the gene set
enrichment concept is that the statistical significance of
coordinated changes in a set of co-regulated genes will be
greater than that for individual genes in the set. This
assumption was at least in part validated by applications

Table 4: Comparison of two microarray data sets at gene set level

GDS 287 GDS 472
Gene Set Z score p-value Z score p-value

mRNA processing 4.0322 0.0001 3.2288 0.0012
cell cycle 3.0715 0.0021 3.1127 0.0019
mRNA catabolism 2.2233 0.0262 2.9762 0.0029
mRNA splicing 5.9613 3.00E-09 2.8041 0.0050
nuclear mRNA splicing_via spliceosome 6.3123 2.75E-10 2.6642 0.0077
regulation of cyclin dependent protein kinase activity 2.1343 0.0328 2.5703 0.0102
G1 phase of mitotic cell cycle 2.5482 0.0108 2.5361 0.0112
negative regulation of cell proliferation 3.0116 0.0026 2.0812 0.0374
cholesterol metabolism 2.2758 0.0229 2.0312 0.0422

blood coagulation -2.6705 0.0076 -2.0119 0.0442
protein folding -2.1739 0.0297 -2.1045 0.0353
regulation of blood pressure -3.0984 0.0019 -2.3543 0.0186
carboxylic acid transport -2.9366 0.0033 -2.8088 0.0050
signal transduction -2.5917 0.0095 -3.0115 0.0026
glycolysis -4.0631 4.84E-05 -5.3157 1.06E-07
tricarboxylic acid cycle -2.2914 0.0219 -6.3019 2.94E-10
electron transport -3.9150 0.0001 -6.9442 3.81E-12
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of GSEA and seems to be borne out for PAGE as well (this
work). In fact, we consider PAGE (as well as GSEA) not
only as a program for detecting correlations between
experimental conditions and changes in behavior of
known gene sets containing co-regulated genes, but also
as a tool for intentional search for novel gene co-regula-
tion (or co-dysregulation) in microarray data sets as part
of testable hypotheses.

It may be considered paradoxical to apply a statistical test
based on normal distribution to an explicit goal of detect-
ing sets of co-regulated, that is, interdependent genes. The
normal distribution paradigm requires that sampled
observations are independent and identically distributed,
or IID. However, we would like to argue that gene depend-
ency caused by co-regulation in a given microarray data
set should be regarded as rare, and thus statistically

Comparison of different microarray data sets at gene set level shows better congruence than comparison at gene levelFigure 2
Comparison of different microarray data sets at gene set level shows better congruence than comparison at 
gene level. A. Comparison of two different microarray data sets at gene level. Two microarray data sets, GDS 287 (Muscle 
function and aging-Male) and GDS 472 (Muscle function and aging-Female) were analyzed, significantly changed genes (|fold 
change| > 1.5 and t-test p < 0.05) from each data set were selected, and the percentage of common gene lists for both data 
sets was calculated. B. Comparison at gene set level. We first performed PAGE on the two microarray data sets, selected sig-
nificant gene sets (p < 0.05), and calculated percentage of common gene sets for both data sets.

202 18127

M F

Up genes
A

B

Down genes

318 25813

M F

Up gene sets Down gene sets

50 2865

M F M F

53 68 85

54/437 = 12.4% 26/602=4.4%

130/208=62.5% 136/274=49.6%
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significant. In developing this program, we started with a
basic assumption, a null-hypothesis, that all genes in a
given microarray data set are independent of each other
and identically distributed, that is, they are not co-regu-
lated. With given gene sets as testable hypotheses, we then
tested whether there is a significant shift of behavior of
genes as a group. When we observed a significant change
in a given gene set, we rejected the null-hypothesis and
concluded that those genes in a gene set are co-regulated
and dependent on each other. We found that with the sta-
tistical tools we used, we matched and in most cases
exceeded the ability of GSEA to detect co-regulated genes.

In a direct comparison of PAGE and GSEA using pub-
lished data bases, the p-values of PAGE were lower than
the respective p values obtained by GSEA and as a result,
the number of gene sets that can be considered signifi-
cantly changed was larger (Table 1 and see Additional files
1, 2, 3, 4). Similar results were obtained in an extensive
simulation study (see Additional file 5). This confirms
that similar to other applications [31] the parametric sta-
tistical test is more powerful than the non-parametric
method when applied to gene set enrichment analysis
Two other features of PAGE facilitate the computational
process involved in running the program. First, because
PAGE uses standard normal distribution as a background
distribution, there is no need for the preceding permuta-
tion step required for this calculation in GSEA [25]. This
reduces computation time at least 1,000 times when one
performs 1,000 permutation of data set to get a back-
ground distribution. Secondly, the Z score of PAGE is two-
tailed, showing gene sets of both increased and decreased
expression in a single analysis. In one-tailed programs
[11,12,25], the entire process from ranking gene lists to
class permutation and statistical inference must be
repeated after analysis in one direction. Thus PAGE is a
statistically powerful gene set enrichment analysis tool
with features that decrease the computational burden of
such programs and increase the amount of information
obtained per one analysis.

With wider availability of the gene microarray technology,
there is an exponential increase in publicly accessible
microarray data bases obtained on different platforms, by
different laboratories, and addressing a variety of biologi-
cal questions. A number of increasingly advanced data
analysis tools have been developed to begin to compare
and integrate this diverse and often incompatible infor-
mation, including programs to identify biological themes
instead of differentially expressed gene lists [12,25] or
programs which identify significant genes displaying con-
sistent changes across biologically different systems
[15,24]. Each approach was shown to lead to better con-
gruency among diverse data sets than would be achieved
by direct comparison of data sets, whether in demonstrat-

ing common transcriptional profiles of prostate cancer
[34], common molecular markers of lung cancer [15], or
a common biological theme in diabetic muscle [25].

We have found that PAGE also can be applied to integra-
tive data analysis across various microarray platforms and
biological systems. As with GSEA [25] or EASE [12], the
key to PAGE utility for this purpose is the ability of the
program to compare microarray data sets for gene sets
rather than individual genes. Our results indicate that
PAGE works well with different probe level analysis meth-
ods (Table 2) and different microarray platforms (Table
3), in each case being able to identify several common
biological pathways in the same starting material tested
irrespective of the platform or primary analytical method
used. Gene set analysis by PAGE was also far more dis-
criminatory than individual gene analysis in finding com-
mon biological pathway changes in different microarray
data sets generated to address the same biological ques-
tion, the difference between young and aged muscles (Fig.
2 and Table 4). Another feature of PAGE that is useful for
comparison of multiple microarray data sets is the Z score.
Z score is a normalized and linear-scale value which is
microarray platform independent and which is conven-
ient to use as an input for subsequent analysis. It is possi-
ble to generate a data matrix containing Z scores of pre-
defined gene sets of multiple data sets obtained on differ-
ent microarray platforms and then perform cluster analy-
sis to identify gene sets of specific interest or to identify
relationships among data sets. We applied this approach
recently to cluster analysis of multiple microarray data sets
of macrophages infected with bacteria, protozoa, HIV-1,
or treated with cytokines, and identified gene sets that
were specifically changed in HIV-1-infected cells (S.-Y.
Kim and M.J. Potash, unpublished), suggesting that the Z
score system of PAGE will be useful for asking broad bio-
logical questions.

Conclusion
The increasing use of microarrays comparing a carefully
selected baseline to transformed tissue, differentiated tis-
sue, or pathogen-infected tissue among others is creating
a truly global database of gene expression profiles. Inte-
grative analysis of this immense amount of information
by programs such as EASE [12], meta-analysis of microar-
rays [15], or GSEA [25] begins to discern general patterns
governing fundamental and disease-related biological
processes. The program described here, parametric analy-
sis of gene set enrichment analysis or PAGE is statistically
sensitive and requires less computation than many other
programs. PAGE identified significantly changed
biological themes from microarray data set irrespective of
microarray data analysis methods or microarray plat-
forms. PAGE identified more common biological themes
in different microarray data sets addressing the same
Page 9 of 12
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biological problem than analysis of individual gene level.
Finally, the Z score of PAGE is a normalized, linear scale
value that can be used in subsequent meta-analysis. We
offer PAGE as a useful microarray analysis tool.

Methods
Data sets
The microarray data set, GSEA results for NGT versus
DM2, and probe sets corresponding to gene sets of
Mootha et al. [25] were downloaded from the authors'
website [35]. Microarray data sets of the muscle function
and aging studies (GDS 287 and GDS 472) [36,37], Duch-
enne muscular dystrophy (DMD) study (GDS 563) and
breast cancer cell line experiment (GSE 1299) [20] were
downloaded from Gene Expression Omnibus [38]
website.

Analysis of Microarray Data
Each Affymetrix microarray data set was normalized to
have mean expression value of 1,000. Expression values
below 100 were floored to 100 and then all expression
values were transformed by logarithm base two. Fold
change between two experimental groups was measured
to identify differentially expressed genes and unpaired t-
test was used to infer statistical significance of differen-
tially expressed genes.

Parametric Analysis of Gene Set Enrichment (PAGE)
We created predefined gene sets for major mammalian
Affymetrix platforms (human: U133A, U95A, HuFL6800;
mouse: M74Av2; and rat: U34) from corresponding
Affymetrix annotation files [39] with gene ontology (GO)
biological processes, GO cellular components, GO molec-
ular functions, and pathways as the main categories.

Z score for each gene set was calculated as follows. First,
from input data containing fold change values for each
genes between two experimental groups, mean of total
fold change values (µ) and standard deviation of total fold
change values (δ) of a given microarray data set were cal-
culated. Then, when the mean of fold change values of
genes for a given gene set was Sm and the size of a given
gene set was m, the Z score was calculated as Z = (Sm –
µ)*m1/2 / δ

The statistical tools within the Microsoft Excel program
were used to calculate p-values from Z scores. We used an
R package nortest [40] to test whether a given distribution
is different from standard normal distribution or not. The
R statistical programming language [40] was used for gen-
eral statistical analysis and computing.

Implementation of PAGE
PAGE was written in the freely available Python program-
ming language [41] applicable to most computer plat-

forms and operating systems including Windows,
Macintosh, and LINUX/UNIX. We also prepared stand-
alone Windows-executable PAGE program using py2exe
tool [42].

Availability and requirements
• Project name: PAGE

• Project home page: In construction

• Operating system: Platform independent

• Programming language: Python, Windows-executable
through py2exe [42]

• Other requirements: None

• License: None

• Any restrictions to use by non-academics: None

• The Python script PAGE is available from SYK upon
request

• The beta version of GSEA is now available at [43]

Authors' contributions
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uscript. DJV supervised the development of PAGE method
and wrote the manuscript. All authors read and approved
the final manuscript.
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38. Gene Expression Omnibus (GEO)   [http://
www.ncbi.nlm.nih.gov/geo]

39. Affymetrix – NetAffyx Analysis Center   [http://www.affyme
trix.com/analysis/index.affx]

40. The Comprehensive R Archive Network   [http://www.cran.r-
project.org]

41. Python Programming Language   [http://www.python.org]
42. py2exe   [http://starship.python.net/crew/theller/py2exe/]
43. Gene Set Enrichment Analysis – Broad   [http://

www.broad.mit.edu/personal/aravind/GSEA/software/
software_index.html]
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