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Abstract Handwritten Chinese text recognition (HCTR)
has been an active research topic for decades. However,
most previous studies solely focus on the recognition of
cropped text line images, ignoring the error caused by
text line detection in real-world applications. Although
some approaches aimed at page-level text recognition have
been proposed in recent years, they either are limited
to simple layouts or require very detailed annotations
including expensive line-level and even character-level
bounding boxes. To this end, we propose PageNet for
end-to-end weakly supervised page-level HCTR. PageNet
detects and recognizes characters and predicts the reading
order between them, which is more robust and flexible
when dealing with complex layouts including multi-
directional and curved text lines. Utilizing the proposed
weakly supervised learning framework, PageNet requires
only transcripts to be annotated for real data; however,
it can still output detection and recognition results at
both the character and line levels, avoiding the labor and
cost of labeling bounding boxes of characters and text
lines. Extensive experiments conducted on five datasets
demonstrate the superiority of PageNet over existing weakly
supervised and fully supervised page-level methods. These
experimental results may spark further research beyond the
realms of existing methods based on connectionist temporal
classification or attention. The source code is available at
https://github.com/shannanyinxiang/PageNet.
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1 Introduction

Handwritten Chinese text recognition (HCTR) has been
studied for decades (Graves et al., 2009; Wang et al., 2012;
Zhou et al., 2013; Keysers et al., 2017; Zhang et al., 2018).
However, most previous studies (Yin et al., 2013; Wang
et al., 2012, 2016; Wu et al., 2017; Peng et al., 2019; Su
et al., 2009; Du et al., 2016; Wang et al., 2018, 2020a;
Messina and Louradour, 2015; Wu et al., 2017; Xie et al.,
2020; Xiu et al., 2019; Xie et al., 2019b; Wang et al.,
2020b; Zhu et al., 2020; Luo et al., 2021; Rodriguez-
Serrano et al., 2015; Jaderberg et al., 2016) assume that
text line detection is provided by annotations and only
focus on the recognition of cropped text line images.
Although the accuracy of these line-level methods seems
to be sufficient when combined with language models, they
are limited to the one-dimensional distribution of characters
and are significantly affected by the accuracy of text line
detection in real-world applications. Therefore, handwritten
text recognition at page level has important industrial value
and has recently attracted remarkable research interest. One
category of page-level methods (Huang et al., 2019; Chung
and Delteil, 2019; Carbonell et al., 2019; Yang et al., 2018;
Xie et al., 2019a; Ma et al., 2020; Moysset et al., 2017;
Wigington et al., 2018; Tensmeyer and Wigington, 2019;
Yang et al., 2018; Liu et al., 2021; Feng et al., 2021;
Liu et al., 2020) segments text regions from the full page
and recognizes the text regions, while the others (Yousef
and Bishop, 2020; Bluche, 2016; Bluche et al., 2017)
address page-level text recognition in a segmentation-free
or implicit-segmentation fashion, utilizing connectionist
temporal classification (CTC) (Graves et al., 2006) or
attention mechanism combined with multi-dimensional long
short-term memory.

However, existing page-level methods have several
limitations. First, most of them (Huang et al., 2019; Chung
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and Delteil, 2019; Carbonell et al., 2019; Ma et al., 2020;
Yang et al., 2018; Moysset et al., 2017) cannot be trained
in a weakly supervised manner, i.e., using only line-level or
page-level transcripts. Extra annotations, such as bounding
boxes of text lines or characters, are necessary, but it is
costly to annotate them. The methods proposed by (Xing
et al., 2019; Baek et al., 2019) can produce character
bounding boxes without using corresponding annotations,
but still require bounding box annotations of text lines.
Some studies (Wigington et al., 2018; Tensmeyer and
Wigington, 2019) allow a part of the training data to
be annotated with only transcripts; however, expensive
detection annotations are still required in the remaining
training data. Although the method proposed by (Xie et al.,
2019a) can be trained under weak supervision, it is limited to
a specific layout and segments pages into text lines through
vertical projection. Moreover, the methods proposed by
(Yousef and Bishop, 2020; Bluche, 2016; Bluche et al.,
2017) are trained with transcripts but cannot explicitly
output bounding boxes of characters or text lines. Second,
the reading order problem, which should be a very important
issue for precisely understanding sentences, has rarely been
discussed in previous literature. Retrospectively, most line-
level and page-level methods output recognition results from
left to right. There are also page-level methods (Chung and
Delteil, 2019; Ma et al., 2020) that simply cluster detected
words or characters into text lines based on specifically
designed rules which cannot be generalized to other layouts.
However, the reading order in the real world is significantly
more complex, such as traditional Chinese texts that are read
from top to bottom and curved text lines that are difficult
to detect and recognize. Third, most previous approaches
are not end-to-end trainable, which somewhat undermines
accuracy and efficiency. Some studies (Chung and Delteil,
2019; Moysset et al., 2017) separately train two models
to localize and recognize text lines; however, it may cause
localization errors to propagate to the recognition part. The
Start-Follow-Read model (Wigington et al., 2018) consists
of three sequentially executed sub-networks, resulting in the
inefficiency of the entire process. Finally, most previous
methods are not designed for Chinese texts and thus do
not perform well. Although a few approaches have been
proposed for Chinese documents, they are limited to specific
layouts (Yang et al., 2018; Xie et al., 2019a; Yang et al.,
2018) or require detailed annotations (Ma et al., 2020).

To address the limitations mentioned above, we propose
a novel method named PageNet for end-to-end weakly
supervised page-level HCTR. PageNet performs page-level
text recognition from a new perspective, i.e., detecting and
recognizing characters and predicting the reading order
between them. Three novel components are proposed for
PageNet. The detection and recognition module detects
and recognizes each character on a page. The reading

Table 1 Comparison of the required annotations versus the model
output of existing page-level methods (L: line-level; W: word-level;
C: character-level)

Method
Annotations Outputs

Detection Transcript Detection TranscriptL W or C L W or C
Bluche (2016) ! !

Yousef and Bishop (2020) ! !

Wigington et al. (2018) ! ! !

Huang et al. (2019) ! ! ! !

Ma et al. (2020) ! ! ! ! ! !

Ours " " " "

order module determines the linking relationship between
characters and whether a character is the start/end of a
line. Finally, the graph-based decoding algorithm outputs
detection and recognition results at both the character and
line levels. Each component is seamlessly integrated into
a unified network, which makes it end-to-end trainable
with high efficiency. Generally, expensive bounding box
annotations of characters and text lines are required to train
such a network. To this end, a novel weakly supervised
learning framework, consisting of matching, updating, and
optimization, is proposed to make PageNet trainable under
weak supervision. Bounding box annotations are no longer
required, and only line-level transcripts need to be annotated
for real data.

To the best of our knowledge, PageNet is the first
method to solve page-level HCTR under weak supervision.
Although no bounding box annotation is provided for
real data, our model can still produce rich information
that contains detection and recognition results at both the
character and line levels. Therefore, our method can avoid
the high cost of annotating the bounding boxes. Moreover,
weakly annotated data is easy to obtain from the Internet,
which makes data collection almost free. A comparison
of the required annotations versus the model output is
presented in Table 1. Compared with existing page-level
methods, our method requires fewer annotations but outputs
more information. To the best of our knowledge, PageNet
is also the first method to solve the reading order problem
in page-level HCTR. The reading order problem involves
determining the order in which characters are read. By
utilizing the proposed reading order module and graph-
based decoding algorithm, our model can handle arbitrarily
curved and multi-directional texts. In addition, although the
model is designed for Chinese texts, it can also process
multilingual texts including Chinese and English.

To verify the effectiveness of our method, extensive
experiments are conducted on five datasets, namely CASIA-
HWDB (Liu et al., 2011), ICDAR2013 (Yin et al., 2013),
MTHv2 (Ma et al., 2020), SCUT-HCCDoc (Zhang et al.,
2020), and JS-SCUT PrintCC. Because our model is weakly
supervised, we further propose two evaluation metrics,
termed accurate rate* (AR*) and correct rate* (CR*), for
the situation in which only line-level transcripts are given.



PageNet: Towards End-to-End Weakly Supervised Page-Level Handwritten Chinese Text Recognition 3

The experimental results show that PageNet outperforms
other weakly supervised page-level methods. Compared
with fully supervised approaches, PageNet can also achieve
competitive or better performance. Moreover, PageNet
performs better than existing line-level methods for HCTR
that directly recognize cropped text line images.

In summary, the main contributions of this paper are:
– We propose a novel method named PageNet for end-

to-end weakly supervised page-level HCTR. PageNet
solves page-level text recognition from a new perspec-
tive, namely, detecting and recognizing characters and
predicting the reading order.

– A novel weakly supervised learning framework, con-
sisting of matching, updating, and optimization, is
proposed to make PageNet trainable with only line-
level transcripts annotated for real data. Nevertheless, it
can output detection and recognition results at both the
character and line levels. Therefore, the cost of manual
annotation can be significantly reduced.

– To the best of our knowledge, PageNet is the first
method to address the reading order problem in page-
level HCTR. The model can handle pages with multi-
directional reading order and arbitrarily curved text
lines.

– Extensive experiments on five benchmarks demonstrate
the superiority of PageNet, indicating that it may be a
remarkable step towards a new effective approach to the
page-level HCTR problem.

2 Related Work

2.1 Line-level Handwritten Chinese Text Recognition

The methods for line-level HCTR aim to recognize text
line images, which can be divided into two categories:
segmentation-based and segmentation-free methods.

Segmentation-based methods address this problem
based on oversegmentation or deep detection networks.
The strategy using oversegmentation first obtains con-
secutive oversegments and then searches for the optimal
segmentation-recognition path by integrating classifier out-
puts, geometric context, and linguistic context (Wang et al.,
2012). Wang et al. (2016) improved the oversegmentation
method using deep knowledge training and heterogeneous
convolutional neural networks. Furthermore, based on
oversegmentation methods, Wu et al. (2017) explored neural
network language models and Wang et al. (2020b) proposed
a weakly supervised learning method. However, it is difficult
for these methods to recognize touching and overlapping
characters. Therefore, with the prevalence of deep detection
networks, Peng et al. (2019) proposed a segmentation and
recognition module to detect and recognize characters in an
end-to-end manner.

In addition, there are methods that solve line-level
HCTR from a segmentation-free perspective. The methods
proposed by (Su et al., 2009; Du et al., 2016; Wang
et al., 2018) adopted systems based on hidden Markov
model. Wang et al. (2020a) further introduced writer
adaptation to this type of approach. Combining long short-
term memory recurrent neural network (LSTM-RNN) and
CTC (Graves et al., 2006) is another framework. Messina
and Louradour (2015) used multi-dimensional LSTM-RNN
to resolve line-level HCTR. Wu et al. (2017) proposed a
separable multi-dimensional LSTM-RNN and achieved a
significant improvement compared with previous LSTM-
RNN-based methods. In addition to the methods focusing
on the network architecture, Xie et al. (2020) explored
data preprocessing and augmentation pipelines and achieved
state-of-the-art results. The attention mechanism can also
be used for line-level HCTR. Xiu et al. (2019) explored
the attention-based decoder and proposed a multi-level
multimodal fusion network to incorporate both the visual
and linguistic semantic information.

Furthermore, to utilize both segmentation-based and
segmentation-free methods, Zhu et al. (2020) proposed
to combine these two kinds of approaches using a
convolutional combination strategy.

In contrast to these line-level methods, the proposed
PageNet model recognizes the text directly from the full
page in an end-to-end fashion.

2.2 Page-level Handwritten Text Recognition

The goal of page-level handwritten text recognition is
to recognize handwritten text from the full page. One
category of methods detects text regions and then recognizes
them. Chung and Delteil (2019) developed two separate
components for text localization and recognition. Carbonell
et al. (2019) proposed an end-to-end text detection and
transcription framework wherein the two components are
jointly trained. Huang et al. (2019) further improved
the end-to-end framework using an adversarial feature
enhancing network. Moysset et al. (2017) proposed to
regress the left-side triplets rather than the coordinates of
bounding boxes and determine the end of a line using a
recognizer with an extra end-of-line label. Some methods
for scene text spotting, such as Mask TextSpotter (Lyu
et al., 2018; Liao et al., 2021) and FOTS (Liu et al.,
2018), can also be applied to page-level handwritten text
recognition. For Chinese text, Ma et al. (2020) presented a
historical document processing system that simultaneously
performs layout analysis, character detection, and character
recognition. Yang et al. (2018) proposed a recognition-
guided detector for tight Chinese character detection in
historical documents.

However, detection annotations, such as bounding boxes
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Fig. 1 Overall architecture of PageNet. Based on the features extracted by the backbone network, the detection and recognition module predicts
the character detection and recognition results, while the reading order module predicts the reading order between characters. Combining these
two predictions, the graph-based decoding algorithm outputs the final results containing detection and recognition results at both the character and
line levels.

of text lines or characters, must be provided for the
aforementioned methods. Therefore, some studies have
focused on weakly supervised page-level handwritten
text recognition that requires only transcripts for model
training. Xie et al. (2019a) proposed a method for weakly
supervised character detection in historical documents.
However, this method is limited to a specific layout
and cannot be generalized to unconstrained situations.
Wigington et al. (2018) proposed the Start-Follow-Read
model that requires only a small proportion of data
to be fully annotated and the remaining data to be
weakly annotated. Tensmeyer and Wigington (2019) further
designed a novel alignment algorithm and enabled methods
such as Start-Follow-Read to be trained using transcripts
without line breaks. Combining multi-dimensional LSTM-
RNN with the attention mechanism is another way to solve
weakly supervised page-level handwritten text recognition.
Following this idea, Bluche et al. (2017) and Bluche (2016)
proposed methods for transcribing paragraphs. Furthermore,
OrigamiNet (Yousef and Bishop, 2020) demonstrates that
CTC can also be used for page-level text recognition by
implicitly unfolding the 2-dimensional input signal to 1-
dimensional.

Compared with existing methods, the proposed PageNet
is trained without bounding box annotations for real data
but outputs detection and recognition results at both the
character and line levels. PageNet is also the first method to
solve the reading order problem in page-level HCTR, which
makes the model more robust and flexible.

3 Methodology

Most existing methods solve page-level text recognition
following a top-down pipeline, i.e., text line detection and
recognition. However, curved text lines have become a
major challenge for such methods, and the reading order
problem has rarely been investigated. Moreover, unlike
other languages, Chinese characters are the basic elements
that directly form sentences. Therefore, following a bottom-
up pipeline, we propose PageNet for end-to-end weakly
supervised page-level HCTR.

PageNet performs page-level text recognition from a
new perspective, i.e., detecting and recognizing characters
and predicting the reading order between them, which
enables it to handle pages with multi-directional reading
order and arbitrarily curved text lines. As shown in Fig. 1,
PageNet consists of four parts: (1) the backbone network for
feature extraction, (2) the detection and recognition module
for character detection and recognition, (3) the reading order
module for predicting the reading order between characters,
and (4) the graph-based decoding algorithm that outputs
the final results containing detection and recognition results
at both the character and line levels. The detailed network
architecture of PageNet is shown in Fig. 7. The components
for character detection, character recognition, and reading
order are integrated into a single network that is end-to-end
optimized.

Manual annotations, including expensive line-level and
character-level bounding boxes, are required by most
previous methods. To this end, a novel weakly supervised
learning framework (Fig. 5) is proposed to make PageNet
trainable with only line-level transcripts annotated for real
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Fig. 2 Relationship between the output Obox of CharBox branch and
the coordinates Bbox of bounding boxes.

data, thereby avoiding the labor and cost of labeling
bounding boxes of characters and text lines.

3.1 Backbone Network

Given an image with height H and width W , the backbone
network extracts high-level feature maps of shape W

16 ×
H
16 ×

512. In the following, we denote W
16 as Wg and H

16 as Hg for
convenience.

3.2 Detection and Recognition Module

Following the successful decoupled three-branch design
of our previous work (Peng et al., 2019), the detection
and recognition module is proposed for character detection
and recognition, which consists of character bounding box
(CharBox), character distribution (CharDis), and character
classification (CharCls) branches. We first apply Wg ×Hg
grids to the input image, as shown in the left part of Fig.
2, and denote the grid at the i-th column and j-th row as
G(i, j). Then, the function of each branch is as follows:
CharBox Branch outputs Obox of shape Wg × Hg ×
4. Fig. 2 and Eq. (1) show the relationship between
O(i, j)

box = (x(i, j)o ,y(i, j)o ,w(i, j)
o ,h(i, j)o ) and the coordinate B(i, j)

box =

(x(i, j)b ,y(i, j)b ,w(i, j)
b ,h(i, j)b ) of the bounding box for grid G(i, j).

x(i, j)b = (i−1+ x(i, j)o )/Wg×W,

y(i, j)b = ( j−1+ y(i, j)o )/Hg×H,

w(i, j)
b = w(i, j)

o ,

h(i, j)b = h(i, j)o .

(1)

CharDis Branch produces character distribution Odis of
shape Wg×Hg, where O(i, j)

dis is the confidence that grid G(i, j)

contains characters.
CharCls Branch generates Ocls of shape Wg ×Hg ×Ncls,
where O(i, j)

cls contains the classification probabilities of Ncls

categories for grid G(i, j).

3.3 Reading Order Module

For a line-level recognizer, it is natural to arrange the recog-
nized characters from left to right. However, the situation
becomes significantly more complicated when characters
can be arbitrarily distributed along two dimensions. The
reading order problem has rarely been studied in previous
literature, especially on the task of HCTR. However, this
problem is important for building a flexible and robust page-
level recognizer. Therefore, we propose the reading order
module to solve this problem.

3.3.1 Problem Definition

Given an unordered set of characters, the reading order
problem is to determine the order in which characters
are read. We only investigate the reading order at line
level rather than page level by rearranging the characters
into multiple line-level transcripts. This means that the
characters in one line-level transcript are sorted according
to the reading order, but we do not consider the page-level
reading order between different line-level transcripts. When
a page contains simple layouts, such as only one paragraph,
the page-level reading order can be easily determined
using location information. However, when a page contains
complex layouts, it is usually difficult to determine the page-
level reading order. Different people may read the text lines
in different orders. Moreover, most datasets only provide the
transcript of each line separately.

3.3.2 Our Solution

Most previous methods simply solve the reading order
problem by detecting text lines and recognizing them from
left to right (Moysset et al., 2017; Huang et al., 2019; Lyu
et al., 2018; Liu et al., 2018). However, these methods
have difficulty handling multi-directional and curved text
lines. To solve these issues, as illustrated in Fig. 3, we

Full page Take the first line for example: Reading order

Start of line Linking relationship End of line

: up : right : down : left

: next grid

: current grid

: current 
direction

4-directional reading order

Search paths

start-of-line 
distribution

𝑶𝒔𝒐𝒍： 𝑶𝒓𝒅：
end-of-line 
distribution

𝑶𝒆𝒐𝒍：

Fig. 3 Reading order problem is solved by making three predictions:
(1) Osol : start-of-line distribution, (2) Ord : 4-directional reading order
prediction, and (3) Oeol : end-of-line distribution.
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decompose the reading order problem into three steps: (1)
starting at the start-of-line, (2) finding the next character
according to the linking relationship between characters,
and (3) stopping at the end-of-line. The linking relationship
is further decomposed into the movements from the current
grid to its neighbor step by step. This pipeline makes it
possible to deal with text lines with arbitrary directions and
curves.

Specifically, we solve the reading order problem
by making three predictions, namely the start-of-line
distribution Osol , the 4-directional reading order prediction
Ord , and the end-of-line distribution Oeol . The detailed
network architecture of the reading order module is shown
in Fig. 7(c). Both Osol and Oeol are of shape Wg×Hg, where
O(i, j)

sol and O(i, j)
eol are the confidence that the character in grid

G(i, j) is the start-of-line and the end-of-line, respectively.
The 4-directional reading order prediction Ord is of shape
Wg×Hg× 4, where O(i, j)

rd are the probabilities of the four
directions for grid G(i, j). The four predefined directions are
up, right, down, and left, respectively. If the direction of
grid G(i, j) is right, then the next grid is on its right, i.e.,
the next grid is grid G(i+1, j). The other three directions
can be defined similarly. Thus, from a character, we can
find the next character in the reading order by iteratively
moving from a grid to the next according to the direction
with maximum probability until arriving at a new character,
as illustrated in the visualization of search paths in Fig. 3.

3.4 Graph-based Decoding Algorithm

Based on the predictions from the detection and recognition
module and the reading order module, we propose a novel

Non-maximum suppression

𝑩𝒃𝒐𝒙

𝑶𝒅𝒊𝒔

𝑶𝒄𝒍𝒔

所有刻骨銘
心

都留在
這裡

請放下
去旅行

=。

Nodes

Character detection    
and recognition 

: search path

Edges

𝑶𝒓𝒅

𝑶𝒔𝒐𝒍, 𝑶𝒆𝒐𝒍

: end-of-line
: start-of-line

paths that start at start-of-
line and end at end-of-line

Reading order

Final results

所有刻骨銘心
都留在這裡
請放下
去旅行

character & line-level 
detection

character & line-
level recognition

Fig. 4 Pipeline of the graph-based decoding algorithm. Based on the
outputs from the detection and recognition module and the reading
order module, the graph-based decoding algorithm produces the final
results.

graph-based decoding algorithm to produce the final output
containing detection and recognition results at both the
character and line levels by viewing characters and reading
order as a graph.

As shown in Fig. 4, the graph-based decoding algorithm
consists of the following three steps: (1) the character
detection and recognition results are derived from the
outputs of the detection and recognition module, (2) the
reading order is generated based on the outputs of the
reading order module, and (3) the final results, which
contain detection and recognition results at both the
character and line levels, are obtained by combining the
reading order and the character detection and recognition
results.

3.4.1 Character Detection and Recognition

The detection and recognition module predicts the coor-
dinates Bbox of bounding boxes, the character distribution
Odis, and the classification probabilities Ocls. We use non-
maximum suppression (NMS) (Neubeck and Van Gool,
2006) to remove redundant bounding boxes and obtain
the character detection and recognition results, as shown
in the blue part of Fig. 4. The character detection and
recognition results contain multiple characters with their
bounding boxes and categories.

3.4.2 Reading Order

The pipeline for generating the reading order is illustrated in
the orange part of Fig. 4. The three steps are as follows.
Nodes. Each character detection and recognition result is
viewed as a node. Therefore, each node corresponds to a
grid in which the bounding box and category of the related
character are predicted.
Edges. Based on the 4-directional reading order prediction
Ord , we find the next node of every node. Starting at
the corresponding grid of one node, we move into the
neighboring grid step by step according to the direction
with the maximum probability in Ord . If a grid with a
corresponding node is reached, the next node is successfully
found. However, if the search path exceeds the boundary of
the grids or is stuck in a cycle, the next node does not exist.
Reading Order. We distinguish whether a node is the
start-of-line or the end-of-line according to the start-of-line
distribution Osol and the end-of-line distribution Oeol . Then,
the reading order is represented by the paths that start at the
start-of-line and end at the end-of-line.

3.4.3 Final Results

In the reading order, each path represents a text line, and
each node corresponds to a character. After reorganizing the
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Fig. 5 Overall framework of weakly supervised learning.

character detection and recognition results according to the
reading order, the final results are obtained as:

R = {R(p)|1≤ p≤ Nln}, (2)

where Nln is the number of text lines. R(p) contains the
categories and bounding boxes of the characters in the p-th
line, as shown in Eq. (3).

R(p)={(c(p,m),x(p,m),y(p,m),w(p,m),h(p,m))|1≤m≤N(p)
ch }, (3)

where N(p)
ch is the number of characters in the p-th line.

c(p,m) and (x(p,m),y(p,m),w(p,m),h(p,m)) are the category and
bounding box of the m-th character in the p-th line,
respectively, which are defined as:

c(p,m) = argmax1≤c≤Ncls
O(α(p,m),β (p,m),c)

cls , (4)

(x(p,m),y(p,m),w(p,m),h(p,m)) = B(α(p,m),β (p,m))
box , (5)

where (α(p,m),β (p,m)) is the coordinate of the grid
corresponding to the m-th node of the p-th path.

3.5 Weakly Supervised Learning

Normally, training PageNet requires full annotations,
including the bounding boxes and categories of characters.
However, the cost of annotating the bounding box and
category of each character on a page is significantly higher
than only annotating the transcript of each line. Moreover,
line-level transcripts can be obtained almost without cost if
the pages are from published books or historical documents.
There is also a large amount of weakly annotated data on
the Internet that has not been made full use of. Therefore,
in this section, we present a weakly supervised learning
framework, which consists of matching, updating, and

optimization, to make PageNet trainable with only line-level
transcripts annotated for real data. The character-level and
line-level bounding boxes not only no longer need to be
labeled, but can even be automatically annotated through the
proposed weakly supervised learning framework.

3.5.1 Overview

The overall framework of weakly supervised learning is
shown in Fig. 5. The training data consists of synthetic
and real samples. As described in Sec. 4.1, the synthetic
samples have full annotations; therefore, the model can
be normally optimized. However, the annotations of the
real samples only contain line-level transcripts. Thus, three
steps are designed for real samples. (1) Matching: match
the results of PageNet with the line-level transcripts in the
annotations to find reliable results. (2) Updating: Use the
reliable results to update pseudo-labels. The pseudo-labels
are the bounding boxes of the characters in the transcript
annotations. (3) Optimization: Calculate the losses using the
updated pseudo-labels to optimize the parameters. Because
not all the characters have corresponding pseudo-labels, it is
challenging to effectively train the model in such a situation.

3.5.2 Definition of Symbols

For convenience, the symbols are defined as follows.
– Given a real image, PageNet predicts the results R (Eq.

(2)), where c(p,m) and (x(p,m),y(p,m),w(p,m),h(p,m)) are the
category and bounding box of the m-th character in the
p-th line, respectively, as specified in Sec. 3.4.3. Based
on the predicted results, we further define the recognition
result of the p-th line as L(p) = {c(p,m)|1≤ m≤ N(p)

ch }.
– B(p,m)

sco is defined as the score of the bounding box of the
m-th character in the p-th line .
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Algorithm 1: Line Matching
Input: recognition results L, transcripts A
Output: line matches Ml

1 for p = 1 to Nln and q = 1 to N̂ln do
2 M(p,q)

AR ← AR between L(p) and A(q);

3 Sort MAR from large to small, yielding the sorted indices

SAR = {(i(k), j(k))|M(i(k+1), j(k+1))
AR ≤M(i(k), j(k))

AR };
4 for k = 1 to Nln× N̂ln do
5 if M(i(k), j(k))

AR ≥ thAR then
6 if both L(i(k)) and A( j(k)) are not matched then
7 add (i(k), j(k)) to Ml ;

– P(p,m)
sch is defined as the coordinates of the grids in the

search path that starts from the m-th character of the p-th
line.

– The line-level transcript annotations are denoted as A =

{A(q)|1 ≤ q ≤ N̂ln}, where A(q) = {c(q,n)gt |1 ≤ n ≤ N̂(q)
ch }

is the transcript of the q-th line and N̂ln is the total
number of lines. Moreover, c(q,n)gt is the category of the

n-th character in the q-th line, and N̂(q)
ch is the number of

characters in the q-th line.
– The pseudo-label of character c(q,n)gt is the coordinate of

its bounding box A(q,n)
ps = (x(q,n)ps ,y(q,n)ps ,w(q,n)

ps ,h(q,n)ps ). We
further denote the score of A(q,n)

ps as γ(q,n).

3.5.3 Matching

Given the results R and the line-level transcripts A, the aim
of matching is to find reliable character-level results and
their corresponding ground-truth characters. Specifically,
the matching algorithm consists of semantic matching and
spatial matching.
Semantic Matching. In general, correctly recognized
characters also have accurate bounding boxes. Based on this
observation, semantic matching aims to identify correctly
recognized characters in the results. As shown in Fig. 5,
semantic matching is composed of two steps as follows.
(1) Line matching: We match the line-level transcripts A
and the recognition results L by the accurate rate (AR)
(Wang et al., 2012) using Algorithm 1. The algorithm first
calculates the AR between every pair of line-level transcripts
and recognition results, and then obtains matching pairs Ml
in the descending order of all the calculated ARs, where the
threshold thAR is used to filter out poor recognition results.
Specifically, (p,q) ∈Ml indicates that the recognition result
L(p) is matched to the line-level transcript A(q).
(2) Character matching: The characters in each pair of
lines are matched according to the edit distance using
Algorithm 2, where “E”, “S”, “I”, and “D” denote “equal”,
“substitution”, “insertion”, and “deletion”, respectively. The

Algorithm 2: Character Matching
Input: line matches Ml , recognition results L, transcripts A
Output: character matches Mc, consecutive equals Mce

1 foreach (p,q) ∈Ml do
2 compute edit distance between L(p) and A(q);
3 ξ = {ξ (1),ξ (2), ...|ξ ( j) ∈ {“E”,“S”,“I”,“D”}} are the

matching states of L(p);
4 for j = 1 to |ξ | do
5 if ξ ( j) is “E” then
6 ξ ( j) corresponds to c(p,m) = c(q,n)gt ;
7 add (p,m,q,n) to Mc;
8 if ξ ( j+1) is “E” or j = |ξ | then
9 add (p,m) to Mce;

algorithm outputs the character matches Mc and consecutive
equals Mce. Specifically, (p,m,q,n) ∈Mc indicates that the
character c(p,m) in the results is matched to the character
c(q,n)gt in the annotations, and Mce contains the indices of
the character in the results where two consecutive states of
computing edit distance are “equal.”

Spatial Matching. If several same or similar sentences
occur in the line-level transcripts A, it is possible that one
line in the recognition results L is matched to any one of
these sentences. This type of matching ambiguity cannot
be solved using semantic matching. Therefore, spatial
matching is proposed to address this issue. If the character
c(p,m) in the result R is matched to the character c(q,n)gt in
the annotations A, we calculate the intersection over union
(IoU) between bounding boxes (x(p,m),y(p,m),w(p,m),h(p,m))

and A(q,n)
ps . If the IoU is lower than the threshold thIoU ,

the matching pair (p,m,q,n) is removed from the character
matches Mc.

3.5.4 Updating

After matching, the pseudo-labels Aps are updated using
Algorithm 3, where a pseudo-label is either copied from
the predicted bounding box of the matched character or
updated as the weighted sum of the existing pseudo-label
and the predicted bounding box of the matched character.
Specifically, the weight λ is calculated based on the scores
of the predicted bounding box and existing pseudo-label.
Because the predicted bounding boxes or pseudo-labels with
low scores are usually inaccurate and thus should have a
much lower influence on the updated pseudo-labels, the
exponential function and scale factor ε are used to enlarge
the gap between B(p,m)

sco and γ(q,n) when calculating the
weight λ .
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Algorithm 3: Pseudo-label Update
Input: character matches Mc, predicted results R,

pseudo-labels Aps, scores of bounding boxes Bsco,
scores of pseudo-labels γ

Output: updated pseudo-label Aps
1 foreach (p,m,q,n) ∈Mc do
2 if A(q,n)

ps does not exist then
3 A(q,n)

ps = (x(p,m),y(p,m),w(p,m),h(p,m));

4 γ(q,n) = B(p,m)
sco ;

5 else
6 λ = eε×γ(q,n)/(eε×γ(q,n) + eε×B(p,m)

sco );

7 A(q,n)
ps =

λ ×A(q,n)
ps +(1−λ )× (x(p,m),y(p,m),w(p,m),h(p,m));

8 γ(q,n) = λ × γ(q,n)+(1−λ )×B(p,m)
sco ;

3.5.5 Optimization

Because the pseudo-labels Aps may not contain the bounding
box of every character in the line-level transcripts A, it
becomes challenging to effectively optimize the network. In
the following, we introduce how the losses are calculated
for each part of the model when the pseudo-labels are
incomplete.

First, we define Sc as the mapping relationship between
the grids and existing pseudo-labels, which is given by

Sc={(i, j,q,n)|∃A(q,n)
ps ,(d

x(q,n)ps ×Wg

W
e,d

y(q,n)ps ×Hg

H
e) = (i, j)}, (6)

where (i, j,q,n) ∈ Sc means pseudo-label A(q,n)
ps exists and

corresponds to grid G(i, j).
CharDis Branch. For the CharDis branch, it is easy to
find positive samples (Sc) from the existing pseudo-labels.
However, determining negative samples becomes a difficult
problem if not all pseudo-labels exist. In Eq. (7), we view
the grids in the search paths that begin at consecutive equal
characters as negative samples. Because the characters at
two ends of these search paths are matched as “equal”
consecutively, there is no character in these grids. Therefore,
the loss of the CharDis branch is calculated using Eq. (8).

Sn
d = {(i, j)|∃(p,m) ∈Mce,(i, j) ∈ P(p,m)

sch }, (7)

Ldis=−
1

2|Sc| ∑
(i, j,q,n)∈Sc

log(O(i, j)
dis )− 1

2|Sn
d |

∑
(i, j)∈Sn

d

log(1−O(i, j)
dis ).

(8)

CharBox Branch. First, each existing pseudo-label A(q,n)
ps is

transformed back to O(q,n)
ps using Eq. (1) inversely. The loss

of the CharBox branch is then calculated as the mean square
error between every O(q,n)

ps generated from the existing
pseudo-labels and its corresponding output O(i, j)

box of the

CharBox branch:

Lbox =
1
|Sc| ∑

(i, j,q,n)∈Sc

(O(i, j)
box −O(q,n)

ps )Wbox(O
(i, j)
box −O(q,n)

ps )T , (9)

where Wbox is a diagonal matrix. The elements on the
diagonal are the weights (δx,δy,δw,δh) that are set to
(1,1,0.1,0.1).
CharCls Branch. For each existing pseudo label A(q,n)

ps , we
can obtain the character classification probabilities O(i, j)

cls
at its corresponding grid G(i, j) (Eq. 6) and the ground-
truth character category c(q,n)gt . Thus, the loss of the CharCls
branch is calculated as the cross entropy loss between them:

Lcls =−
1
|Sc|∑(i, j,q,n)∈Sc

log(O
(i, j,c(q,n)gt )

cls ). (10)

Start-of-Line. For the start-of-line distribution Osol , if
the pseudo-label of the first character in a line exists,
its corresponding grid is selected as a positive sample.
The grids corresponding to other existing pseudo-labels
are regarded as negative samples. Therefore, the loss is
calculated as

Sp
s = {(i, j)|∃(i, j,q,n) ∈ Sc,n = 1}, (11)

Sn
s = {(i, j)|∃(q,n),(i, j,q,n) ∈ Sc}−Sp

s , (12)

Lsol =−
1

2|Sp
s | ∑

(i, j)∈Sp
s

log(O(i, j)
sol )− 1

2|Sn
s |

∑
(i, j)∈Sn

s

log(1−O(i, j)
sol ),

(13)

where the subtraction in Eq. (12) means removing the
elements in Sp

s from {(i, j)|∃(q,n),(i, j,q,n) ∈ Sc}.
End-of-Line. The loss Leol of the end-of-line distribution
Oeol can be obtained similarly to Lsol , by viewing the grids
corresponding to the pseudo-labels of the last characters of
lines as positive samples and those corresponding to other
pseudo-labels as negative samples.
4-Directional Reading Order. For the 4-directional reading
order predictions Ord , we randomly generate paths Srd
between the grids corresponding to consecutive pseudo-
labels using Algorithm 4, where (i, j,d) ∈ Srd indicates that
grid G(i, j) with d direction is in the paths. Then the loss is
given by

Lrd =− 1
|Srd |∑(i, j,d)∈Srd

log(O(i, j,d)
rd ). (14)

Total Loss. The total loss Ltotal is given by Eq. (15). The
model parameters are optimized to minimize the loss.

Ltotal = Lbox +Lcls +Ldis +Lsol +Leol +Lrd , (15)

where the total loss is the simple sum of all the loss
terms. Although the performance may be improved when
the weighting factors for the loss terms are carefully tuned
on the target dataset, we formulate our method in a more
generic manner.
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Algorithm 4: Paths Generating
Input: pseudo-labels Aps
Output: paths Srd

1 Drd = {(0,−1),(1,0),(0,1),(−1,0)};
2 for q = 1 to N̂ln and n = 1 to N̂(q)

ch do
3 if A(q,n)

ps exists and A(q,n+1)
ps exists then

4 (i, j) = (d x(q,n)ps ×Wg
W e,d y(q,n)ps ×Hg

H e);

5 (s, t) = (d x(q,n+1)
ps ×Wg

W e,d y(q,n+1)
ps ×Hg

H e);
6 ζ = |s− i|+ |t− j|;
7 initialize a ζ ×1 vector~x with sgn(s− i);
8 initialize a ζ ×1 vector~y with 0;
9 randomly set |t− j| elements in~y to sgn(t− j), and

set the elements at the same indices in~x to 0;
10 for k = 1 to ζ do
11 d← the index of (~x(k),~y(k)) in Drd ;
12 add (i, j,d) to Srd ;
13 (i, j) = (i, j)+(~x(k),~y(k));

4 Experiments

4.1 Dataset

CASIA-HWDB (Liu et al., 2011) is a large-scale Chinese
handwriting database. We use two offline databases,
namely CASIA-HWDB1.0-1.2 and CASIA-HWDB2.0-
2.2. CASIA-HWDB1.0-1.2 contains 3,895,135 isolated
character samples. CASIA-HWDB2.0-2.2 contains 5,091
pages.
ICDAR2013 (Yin et al., 2013) includes a page-level dataset
(ICDAR13) and a single character dataset (ICDAR13-SC).
There are 300 pages in ICDAR13 and 224,419 character
samples in ICDAR13-SC. The number of character cate-
gories is 7,356 when conducting experiments on CASIA-
HWDB and ICDAR2013.
MTHv2 (Ma et al., 2020) contains 3,199 pages of historical
documents, including 2,399 pages for training and 800
pages for testing. There are 6,762 categories of characters
in MTHv2.
SCUT-HCCDoc (Zhang et al., 2020) contains 12,253
camera-captured documents with 6,109 categories of char-
acters. The training and testing sets contain 9,801 images
and 2,452 images, respectively.
JS-SCUT PrintCC is an in-house dataset that consists of
398 scanned images of printed documents. The images are
divided into 348 for training and 50 for testing. There are
2,652 character classes in the dataset.
Synthetic Dataset. As shown in Fig. 6, we synthesize
four datasets, namely CASIA-SR, MTH-SFB, HCCDoc-
SFB, and JS-SF. “SR” and “SF” denote synthesizing using
character samples from real isolated character databases
and font files, respectively. The datasets whose names end
with “B” are synthesized using background images rather

(a) CASIA-SR (b) MTH-SFB

(c) HCCDoc-SFB (d) JS-SF

Fig. 6 Example images from CASIA-SR, MTH-SFB, HCCDoc-SFB,
and JS-SF.

than a white background. We adopt 101 font files and 32
background images that are downloaded from the Internet
without using knowledge about real datasets. Specifically,
the font files are randomly selected from the free fonts
of the FounderType website1. The background images are
chosen from the pictures obtained by searching for “paper”
on the Internet because our work is aimed at document
recognition. For the CASIA-SR dataset, single character
samples from CASIA-HWDB1.0-1.2 are used. All synthetic
datasets have full annotations, i.e., line-level transcripts and
bounding boxes of characters. Despite the different layouts
of the real datasets, all four synthetic datasets follow a
simple synthesis procedure. First, we synthesize text lines
with randomly selected characters and obliquities. Note
that no corpus is used when synthesizing these text lines.
Afterwards, multiple text lines are combined to form a page.
There is also no perspective transformation or illumination
applied to the synthetic image.

4.2 Training Strategy

Directly training the randomly initialized PageNet using the
proposed weakly supervised learning framework will lead
to unsatisfactory performance. This is because of the low
accuracy of the model and the lack of pseudo-labels during
early iterations. Therefore, an improved training strategy
is proposed, which consists of pretraining, initializing, and
training stages. First, in the pretraining stage, the model is
pretrained using synthetic samples. Then, in the initializing
stage, the procedure is the same as Fig. 5 but without the
optimization, which means that the pseudo-labels are not
used to train the model. However, a part of the pseudo-
labels is initialized and updated during the initializing stage.

1 http://www.foundertype.com/
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(a) Backbone

(b) Detection and recognition module

(c) Reading order module

: convolution layer

: feature map

k: the size of kernels
s: stride
p: padding

: residual
connection

+ : element-wise add

C : concatenation

CharBox CharDis CharCls

k: 4 × 1 × 1, s: 1, p: 0 k: 1 × 1 × 1, s: 1, p: 0 k: 𝑁𝑐𝑙𝑠 × 1 × 1, s: 1, p: 0

k: 4 × 1 × 1, s: 1, p: 0 k: 1 × 1 × 1, s: 1, p: 0 k: 1 × 1 × 1, s: 1, p: 0

Fig. 7 Detailed network architecture.

Finally, the training stage is exactly the procedure shown in
Fig. 5.

4.3 Implementation Details

4.3.1 Network Architecture

The detailed network architecture is illustrated in Fig. 7.
The architecture of the backbone follows the previous
work (Peng et al., 2019), which is verified to be effective
for HCTR. It can also be easily changed to a standard
backbone, such as ResNet (He et al., 2016). In the detection
and recognition module, the interaction between the three
branches is the same as that in the segmentation and
recognition module (Peng et al., 2019). First, the feature
Fbox from the CharBox branch and the feature Fcls from the
CharCls branch each go through a 1× 1 convolution layer.
Then, the two output features and the feature from the last
convolution layer of the CharDis branch are element-wise
added, yielding the feature Fdis.

4.3.2 Graph-based Decoding Algorithm

Score of Bounding Boxes. In Sec. 3.4.1, NMS is used
to remove redundant bounding boxes. The confidence in
the character distribution Odis can be used as the score
of bounding boxes. However, following the segmentation
and recognition module (Peng et al., 2019), semantic
information is integrated into the score of bounding boxes.
Specifically, the score is the weighted sum of the character
distribution confidence and maximum classification proba-
bility. The weight of the character distribution confidence is
set to 0.8 following Peng et al. (2019).
Edges. As shown in the search path of Fig. 4, the next node
should be at the next grid of the final grid in the search
path. However, this is too strict and the 4-directional reading
order prediction Ord must be very accurate. Therefore, the
next node is only required to be in the 4-neighborhoods of

the final grid in the search path. Furthermore, we limit the
maximum number of steps in a search path for acceleration.
Start-of-Line and End-of-Line. In Sec. 3.4.2, a node
is identified as the start-of-line or the end-of-line if the
corresponding confidence in Osol or Oeol is greater than 0.9.
Special Property of Graph. In page-level documents, a
character has at most one previous character and one next
character. Therefore, for a node in the graph, we must ensure
that there is at most one edge in and one edge out. If there
are multiple nodes in the 4-neighborhoods of the final grid
in the search path and the direction of the final grid does
not point to any one of them, the node whose corresponding
bounding box has the highest score is selected. If there are
multiple edges ending at the same node, the edge whose
slope is closest to the slopes of the previous edges in the
path is maintained.

4.3.3 Weakly Supervised Learning

The threshold thAR in Algorithm 1, thIoU in spatial
matching, and the scale factor ε in Algorithm 3 are set to
0.3, 0.5 and 10, respectively.

4.3.4 Experiment Settings

We implement our method with PyTorch and conduct
experiments using an NVIDIA RTX 2080ti GPU with 11GB
of memory. Stochastic gradient descent with a batch size
of 1 is used to optimize the network. Both the pretraining
and training stages contain 300,000 iterations, and the
learning rate is initialized to 0.01 and multiplied by 0.1 after
100,000, 200,000, and 275,000 iterations. The initializing
stage contains 75,000 iterations and the learning rate is set
to 0.0001. During the initializing and training stages, the
probabilities of loading real samples and synthetic samples
are 0.7 and 0.3, respectively. In the training stage, following
existing methods (Xie et al., 2020; Baek et al., 2019), we
use synthetic samples in addition to real samples to increase
the diversity of training data and improve the stability of
training. No validation set is adopted. All the training and
testing images are resized to normalize their widths while
maintaining their aspect ratios. The pixel value of the input
image is normalized to the range of [0, 1]. Gaussian noise
with a mean of 0 and a variance of 0.01 is applied to the
synthetic images. Other settings for specific experiments are
listed as follows, where the image width is estimated based
on the number of characters on a page. Because Chinese
characters are composed of complicated strokes, we should
ensure that the characters are recognizable with the given
input size, as well as consider training efficiency.
ICDAR13. The model is trained using 5,091 real samples
from CASIA-HWDB2.0-2.2 and 20,000 synthetic samples
from CASIA-SR. The testing is conducted on 300 samples
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from ICDAR13. The width of the input image is normalized
to 1,920 pixels.
MTHv2. We use the train set of MTHv2 and 10,000 samples
from MTH-SFB to train the model and test it on the test set
of MTHv2. The width of the input image is normalized to
2,960 pixels.
SCUT-HCCDoc. The model is trained using the training
images from SCUT-HCCDoc and 20,000 synthetic images
from HCCDoc-SFB. The test set of SCUT-HCCDoc is used
to evaluate the model. The width of the input image is
normalized to 1,600 pixels. Note that we adopt 4× iterations
in the training stage of this experiment owing to the more
complex scenarios and larger scale of SCUT-HCCDoc.
JS-SCUT PrintCC. The model is trained using the training
samples from JS-SCUT PrintCC and 10,000 synthetic
samples from JS-SF. The trained model is evaluated on the
test samples of JS-SCUT PrintCC. The width of the input
image is normalized to 2,080 pixels.

4.4 Evaluation Metrics

Our method requires only line-level transcripts to be
annotated for real data. However, there is no metric to
evaluate the performance when only line-level transcripts
are annotated. To this end, we propose two evaluation
metrics termed accurate rate* (AR*) and correct rate*
(CR*). First, a matching algorithm, which is the same
as Algorithm 1 but without filtering out poor recognition
results at line 5, is executed, yielding line matches M∗l .
Moreover, we define S∗R and S∗A as the indices of unpaired
lines in the results and annotations, respectively. Then AR*
and CR* are given by

N∗Ie = ∑(p,q)∈M∗l
IE(L(p),A(q))+∑i∈S∗R

N(i)
ch , (16)

N∗De = ∑(p,q)∈M∗l
DE(L(p),A(q))+∑i∈S∗A

N̂(i)
ch , (17)

N∗Se = ∑(p,q)∈M∗l
SE(L(p),A(q)), (18)

N∗total = ∑i N̂(i)
ch , (19)

AR∗ = (N∗total −N∗Ie−N∗De−N∗Se)/N∗total , (20)

CR∗ = (N∗total −N∗De−N∗Se)/N∗total , (21)

where the functions IE, DE, and SE compute the number
of insertion, deletion, and substitution errors between the
two input sequences, respectively. The errors between every
matching pair are accumulated, and all the characters of the
unpaired lines in the results and annotations are viewed as
insertion and deletion errors, respectively. Compared with
the vanilla accurate rate (AR) and correct rate (CR) (Wang
et al., 2012) for line-level text recognition which indicates
only text recognition performance, the proposed AR* and
CR* for page-level text recognition considers both text
detection and recognition.

4.5 Line-level Detection and Recognition

4.5.1 Performance on ICDAR13 Dataset

In Table 2, we compare the line-level detection and
recognition results of our approach with existing page-level
methods on the ICDAR13 dataset. The page-level methods
include fully supervised approaches such as Det + Recog,
Mask TextSpotter (Lyu et al., 2018; Liao et al., 2021),
and FOTS (Liu et al., 2018), as well as weakly supervised
approaches such as Start-Follow-Read (Wigington et al.,
2018) and OrigamiNet (Yousef and Bishop, 2020). The
method denoted as Det + Recog is the combination of two
independently trained models which are a Mask R-CNN (He
et al., 2017) (for text line detection) and a recognizer (Xie
et al., 2020) (for text line recognition). The recognizer (Xie
et al., 2020) achieves state-of-the-art performance on the
text line recognition task of ICDAR13, as shown in Table
4. The fully supervised methods are trained using CASIA-
SR and fully annotated CASIA-HWDB2.0-2.2, whereas the
weakly supervised methods are trained using CASIA-SR
and weakly annotated CASIA-HWDB2.0-2.2.

In addition to the proposed AR* and CR*, other
evaluation metrics adopted in Table 2 are as follows. (1)
Because there is only one paragraph on each page of
ICDAR13, page-level transcript annotations and recognition
results can be easily obtained. Thus, we calculate the page-
level AR and CR in Table 2. (2) The normalized edit distance
(NED) is calculated following the evaluation protocol of
task 4 in (Zhang et al., 2019), which considers both text
line detection and recognition. Because the results of our
method and the annotations of ICDAR13 only provide the
bounding boxes of characters, the bounding box of a text
line is calculated as the rotated rectangle with the minimum
area enclosing the characters of this text line. (3) Precision,
recall, and f-measure are used to evaluate the performance
of text line detection with an IoU threshold of 0.5.

As shown in Table 2, compared with existing page-
level methods including three fully supervised methods, the
proposed PageNet with weak supervision achieves state-of-
the-art performance in terms of both end-to-end recognition
and text line detection. For Det + Recog, although text line
detection seems to be accurate in terms of f-measure, it is
common that the bounding box of one text line contains
the noise from other text lines and does not entirely cover
the characters at both ends, which affects the accuracy
of recognition. For the two end-to-end methods, namely
Mask TextSpotter and FOTS, the large number of categories
and the diversity of writing styles of Chinese texts make
recognition a heavy burden for model optimization and their
feature sharing mechanism. OrigamiNet performs page-
level text recognition by unfolding 2-dimensional features
to 1-dimensional. However, in contrast to English texts,



PageNet: Towards End-to-End Weakly Supervised Page-Level Handwritten Chinese Text Recognition 13

Table 2 Comparison with existing page-level methods on ICDAR13

Supervision Method End-to-End Recognition Text Line Detection
AR* CR* AR CR NED Precision Recall F-measure

Full
Det + Recog (He et al., 2017; Xie et al., 2020) 88.36 89.09 88.39 89.08 88.27 99.54 99.88 99.71
Mask TextSpotter (Lyu et al., 2018) 49.48 57.95 50.60 58.29 50.40 91.21 96.77 93.91
FOTS (Liu et al., 2018) 67.20 67.75 67.32 67.82 65.89 98.64 97.29 97.96

Weak
Start-Follow-Read (Wigington et al., 2018) 82.60 83.42 82.91 83.55 82.35 99.88 98.89 99.39
OrigamiNet (Yousef and Bishop, 2020) - - 5.99 5.99 - - - -
PageNet (Ours) 92.83 93.23 92.86 93.24 92.49 99.56 99.94 99.75

Table 3 Comparison with existing page-level methods on MTHv2, SCUT-HCCDoc, and JS-SCUT PrintCC datasets

Supervision Method MTHv2 SCUT-HCCDoc JS-SCUT PrintCC
AR* CR* AR* CR* AR* CR*

Full Det + Recog (He et al., 2017; Shi et al., 2017) 94.50 95.29 83.44 87.97 94.68 95.03
FOTS (Liu et al., 2018) 87.97 89.25 66.61 70.01 94.19 94.31

Weak
Start-Follow-Read (Wigington et al., 2018) 69.54 73.11 56.29 61.26 81.36 82.47
OrigamiNet (Yousef and Bishop, 2020) 9.72 9.83 30.55 30.97 44.09 45.72
PageNet (Ours) 93.76 95.23 77.95 82.15 97.25 98.19

each Chinese character itself is a complex 2-dimensional
structure, which may make this mechanism difficult to work.

4.5.2 Performance on Other Datasets

The quantitative results of our method and existing page-
level methods on MTHv2, SCUT-HCCDoc, and JS-SCUT
PrintCC are listed in Table 3, where Det + Recog is the
combination of a Mask R-CNN (He et al., 2017) (for text
line detection) and a CTC-based recognizer (Shi et al., 2017)
(for text line recognition). The fully supervised methods are
trained using both synthetic data and real fully annotated
data, whereas the weakly supervised methods are trained
using both synthetic data and real weakly annotated data.

The proposed metrics AR* and CR* are reported in
Table 3, as they are verified to be effective by Table 2
and require fewer annotations compared with other metrics.
In particular, for the JS-SCUT PrintCC dataset that only
provides line-level transcript annotations, only AR* and
CR* can be calculated. Other metrics, such as page-level AR
and CR, are not applicable to these three datasets because
the annotations do not provide the reading order between
text lines. However, because OrigamiNet can only be trained
with page-level transcripts, we concatenate the line-level
transcripts in the annotations based on the spatial location
and obtain fake page-level transcripts. Therefore, the results
of OrigamiNet are actually page-level AR and CR.

Compared with the fully supervised methods, our
method can achieve competitive performance. Specifically,
compared with Det + Recog, our method achieves lower
accuracy on MTHv2 and SCUT-HCCDoc but performs
better on JS-SCUT PrintCC. This is because MTHv2 and
SCUT-HCCDoc contain significantly more complex layouts
than JS-SCUT PrintCC, which is a big challenge for

the weakly supervised learning. In contrast, the text line
detection part of Det + Recog can be trained significantly
better under full supervision.

Compared with the weakly supervised methods, our
method achieves the best performance. For Start-Follow-
Read, the complex layouts lead to the failure of its
line follower and end-of-line determination. However, our
method can still maintain a relatively high accuracy owing
to the bottom-up design and the effectiveness of the reading
order module and the graph-based decoding algorithm.

Unlike other datasets, JS-SCUT PrintCC has three
unique characteristics: (1) it contains printed documents,
(2) 30% of the text lines are totally in English, and (3) the
training set of real data is much smaller than other datasets.
Therefore, the best result achieved on JS-SCUT PrintCC
verifies the capability of our method on printed documents,
multilingual texts, and few training samples.

4.5.3 Comparison with Line-level Methods

In Table 4, we compare our method with existing line-level
methods on ICDAR13 which directly recognize the text line
images cropped from the full pages based on the detection
annotations. Although more stringent AR* and CR* take
both text line detection and recognition into consideration,
our method still achieves the best performance without
language model compared with the results reported in
previous literature.

4.5.4 Incorporation with Language Models

The proposed graph-based decoding algorithm can also
use n-gram language models to improve the recognition
performance. For the p-th path in the reading order, the grids
corresponding to the nodes and the grids in the search paths
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Table 4 Comparison with existing line-level methods on ICDAR13
(LM: language model)

Method Without LM With LM
AR CR AR CR

Yin et al. (2013) - - 86.73 88.76
Messina and Louradour (2015) 83.50 - 89.40 -
Wu et al. (2017) 86.64 87.43 90.38 -
Du et al. (2016) 83.89 - 93.50 -
Wang et al. (2016) 88.79 90.67 94.02 95.53
Wu et al. (2017) - - 96.20 96.32
Wang et al. (2018) 89.66 - 96.47 -
Wang et al. (2020a) 91.58 - 96.83 -
Peng et al. (2019) 89.61 90.52 94.88 95.51
Xiu et al. (2019) 88.74 - 96.35 -
Xie et al. (2020) 91.55 92.13 96.72 96.99
Wang et al. (2020b) 87.00 89.12 95.11 95.73
Zhu et al. (2020) 90.86 - 94.00 -

PageNet (Ours) AR* CR* AR* CR*
92.83 93.23 96.24 96.66

are concatenated as

grids(p) ={(α(p,1),β (p,1))}⊕P(p,1)
sch ⊕ ...

⊕{(α(p,N(p)
ch ),β (p,N(p)

ch ))}⊕P
(p,N(p)

ch )

sch ,
(22)

where the elements in grids(p) are the coordinates of the
grids. Specifically, as defined in Sec. 3.4.3 and 3.5.2, N(p)

ch
is the number of characters in the p-th line, (α(p,m),β (p,m))

is the coordinate of the grid corresponding to the m-th
character of the p-th line, and P(p,m)

sch contains the coordinates
of the grids in the search path starting from the m-th
character of the p-th line. Every element of grids(p) can
be viewed as a time step similar to the decoding process of
line-level recognizers. For each (i, j) ∈ grids(p), the blank
probability is 1−O(i, j)

dis and the classification probabilities

of Ncls categories are O(i, j)
cls . Then, we use a trigram language

model generated from the same corpus as (Xie et al., 2018)
and a decoding algorithm proposed by (Graves and Jaitly,
2014) to obtain the recognition result of the p-th line. As
shown in Table 4, the language model significantly improves
the recognition performance, boosting AR* from 92.83% to
96.24%.

4.6 Character-level Detection and Recognition

Because the annotations of ICDAR13 and CASIA-HWDB2.0-
2.2 contain the bounding boxes of characters, we can
compare the character-level detection and recognition
results of our approach with two representative object
detection methods, namely Faster R-CNN (Ren et al., 2017)
and YOLOv3 (Redmon and Farhadi, 2018). These two
methods are trained using CASIA-SR and fully annotated
CASIA-HWDB2.0-2.2, whereas PageNet is trained using
CASIA-SR and weakly annotated CASIA-HWDB2.0-2.2.

In Table 5, there are two versions of Faster R-CNN
and YOLOv3. The one marked with DetOnly is trained
to only detect characters, whereas the other marked with
7356C needs to classify 7,356 categories of characters in
addition. There are also two sets of evaluation metrics. The
one denoted as DetOnly evaluates the character detection
regardless of the classification, whereas the other denoted as
7356C requires not only the detection is accurate but also the
classification is correct. All evaluation metrics are calculated
with an IoU threshold of 0.5.

As shown in Table 5, PageNet achieves better DetOnly
and 7356C performances than Faster R-CNN (7356C)
and YOLOv3 (7356C). Even compared with Faster R-
CNN (DetOnly) and YOLOv3 (DetOnly), PageNet can still
achieve comparable DetOnly performance. Note that Faster
R-CNN and YOLOv3 are trained with full annotations
(containing character bounding boxes), whereas our method
is trained under weak supervision (without bounding box
annotations). It can be concluded that the decoupled three-
branch design of the detection and recognition module can
handle the task of character-level detection and recognition
very well, especially when the number of categories is
very large. Moreover, the proposed weakly supervised
learning framework can effectively train the model using
only transcript annotations.

4.7 Visualizations

The visualization results are shown in Fig. 8. It can be seen
that the character detection and recognition results and the
reading order can be accurately predicted, although there is
no bounding box annotation for real data.

Table 5 Comparison of character-level detection and recognition result on ICDAR13

Supervision Method DetOnly 7356C
Precision Recall F-measure Precision Recall F-measure

Full

Faster R-CNN (DetOnly) (Ren et al., 2017) 98.93 92.12 95.41 - - -
Faster R-CNN (7356C) (Ren et al., 2017) 95.61 89.83 92.63 88.85 83.48 86.08
YOLOv3 (DetOnly) (Redmon and Farhadi, 2018) 93.94 98.25 96.05 - - -
YOLOv3 (7356C) (Redmon and Farhadi, 2018) 89.56 92.16 90.84 66.32 68.24 67.26

Weak PageNet (Ours) 95.72 94.91 95.31 90.89 90.12 90.50
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Fig. 8 Visualization results of PageNet. For each pair of images, the left is the character detection and recognition results and the right is the
predicted reading order. In the visualization of the reading order, each circle represents a character (orange circle: start-of-line; green circle: end-
of-line). From the first row to the fourth row, the images are from ICDAR13, MTHv2, SCUT-HCCDoc, and JS-SCUT PrintCC, respectively. In
the last row, the character recognition results of the images from JS-SCUT PrintCC are not visualized, because the characters are too small and
densely distributed. Zoom in for a better view.

The synthetic images of MTHv2 and SCUT-HCCDoc
are synthesized by simply placing characters from font
files on simple backgrounds. However, the visualization
results demonstrate that our method learns to handle diverse
handwriting styles, complex backgrounds and layouts, vari-
ous perspective transformations, and uneven illuminations
in real samples through the proposed weakly supervised
learning framework. As shown in the visualization results
from JS-SCUT PrintCC, our method can also process
multilingual texts including both Chinese and English.

4.8 Experiments on Weakly Supervised Learning

4.8.1 Effectiveness of Semantic Matching

In Sec. 3.5.3, semantic matching is proposed to find reliable
character-level results, which consists of line matching
based on AR and character matching based on edit distance.
However, some existing methods (Xing et al., 2019; Baek
et al., 2019) simply use the length of predictions to
determine the reliable results. Therefore, we compare our
semantic matching with two algorithms following their
ideas, which are Page-level Length and Line-level Length.
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Table 6 Comparison of different matching and updating algorithms on ICDAR13

Part Algorithm AR* CR*

Semantic Matching Page-level Length (Xing et al., 2019; Baek et al., 2019) 15.18 15.54
Line-level Length (Xing et al., 2019; Baek et al., 2019) 41.90 44.70

Spatial Matching No Spatial Matching 91.62 92.11

Updating
Replace (Xing et al., 2019; Baek et al., 2019; Wigington et al., 2018) 12.24 64.53
Average 91.58 92.28
Fixed Ratio 91.51 92.17

Ours 92.83 93.23

Specifically, in Page-level Length, the predicted results
are regarded as reliable if the total number of characters on a
page in the predictions is equal to that in the annotations. For
Line-level Length, because the bounding box annotations
of text lines required by (Xing et al., 2019; Baek et al.,
2019) are not used in our method, we first perform line
matching using Algorithm 1. Then, a line-level result is
viewed as reliable if the lengths of it and the matched line-
level transcript are equal.

The results of our approach and the other two algorithms
are presented in Table 6. It can be seen that our semantic
matching outperforms both Page-level Length and Line-level
Length by a large margin.

4.8.2 Effectiveness of Spatial Matching

Spatial matching is proposed to solve the matching
ambiguity of semantic matching as described in Sec. 3.5.3.
As shown in Table 6, the performance decreases from
92.83% to 91.62% when spatial matching is removed.

We also provide qualitative results of spatial matching
in Fig. 9. The page in Fig. 9(a) is from SCUT-HCCDoc
and contains several lines with identical or similar contents.
When conducting semantic matching, owing to the lack of
location information in the annotations, one line-level result
at the same location may be matched to different line-level
transcripts with similar contents at different iterations. Then,
the updating algorithm will cause inaccurate pseudo-labels,
as shown in Fig. 9(b). Spatial matching can prevent incorrect

(a) Image (b) No spatial matching (c) Spatial matching

Fig. 9 (a): Original image. (b): The visualization of pseudo-labels
without spatial matching. (c): The visualization of pseudo-labels with
spatial matching.

matches and result in accurate pseudo-labels, as shown in
Fig. 9(c).

4.8.3 Effectiveness of Updating

To verify the effectiveness of our updating algorithm,
we compare it with three algorithms denoted as Replace,
Average, and Fixed Ratio, which replace lines 6-8 of
Algorithm 3 with Eq. (23), (24), and (25), respectively.

A(q,n)
ps = (x(p,m),y(p,m),w(p,m),h(p,m)), (23)

A(q,n)
ps =

k
k+1
∗A(q,n)

ps +
1

k+1
∗(x(p,m),y(p,m),w(p,m),h(p,m)),

(24)

A(q,n)
ps =0.9∗A(q,n)

ps +0.1∗(x(p,m),y(p,m),w(p,m),h(p,m)), (25)

where k is the number of times A(q,n)
ps has been updated.

The results in Table 6 show that our updating algorithm
achieves the best performance. Especially compared with
the Replace algorithm which is commonly adopted by
previous methods (Xing et al., 2019; Baek et al., 2019;
Wigington et al., 2018), our updating algorithm exhibits
a significant improvement in performance. The Replace
algorithm directly copies the new matched bounding boxes
from the results as the updated pseudo-labels, which
makes the model training easily interfered with by poor
predictions. Fig. 10 shows the curves of AR* and CR* on
ICDAR13 during the training stage when using the Replace
algorithm. It can be seen that as the training progresses,

0 50000 100000 150000 200000 250000 300000
Iterations
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Fig. 10 Curves of AR* and CR* on ICDAR13 during the training stage
when using the Replace algorithm.
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Table 7 Performance of PageNet under different supervision

Supervision ICDAR13 MTHv2
AR* CR* AR* CR*

Full 91.37 91.88 93.81 95.54
Weak 92.83 93.23 93.76 95.23

annotation pseudo-label annotation pseudo-label
(a) (b)

Fig. 11 Visualizations of bounding boxes from annotations and
pseudo-labels.

the performance decreases, eventually converging at 12.24%
AR*.

4.8.4 Comparison with Fully Supervised Learning

Because the CASIA-HWDB2.0-2.2 and MTHv2 datasets
provide character-level bounding box annotations, we
present the results of our method under full supervision in
Table 7. Compared with the weakly supervised PageNet, the
fully supervised counterpart uses annotated bounding boxes
of real samples for loss calculation instead of leveraging
the proposed weakly supervised learning framework. As for
other details, the models under different supervision share
the same settings.

As shown in Table 7, compared with the fully
supervised counterpart, the weakly supervised PageNet
achieves better performance on ICDAR13 and comparable
performance on MTHv2, which demonstrates the success
of the proposed weakly supervised learning framework. The
automatically generated pseudo-labels can avoid inaccurate
and inappropriate bounding boxes in manual annotations.
In Fig. 11(a), the pseudo-labels are more accurate than the
annotations. In Fig. 11(b), the bounding box annotations
of punctuations in CASIA-HWDB2.0-2.2 are usually very
small, which makes it difficult for the detection part to
converge, but the pseudo-labels can avoid such inappropriate
annotations. Furthermore, the iteratively updated pseudo-
labels may serve as data augmentation. Although the
images remain unchanged, the annotations are changeable
at different iterations, which can improve the robustness of
the model.

4.8.5 Ablation Experiments on Training Strategy

In Table 8, ablation experiments on the training strategy
are conducted using ICDAR13. The results show that the
proposed training strategy, which consists of pretraining,
initializing, and training stages as described in Sec.
4.2, achieves the best performance. The pretraining and

Table 8 Ablation experiments on the training strategy (evaluated on
ICDAR13)

Pretraining Initializing Training AR* CR*
X 64.94 65.27

X 80.17 85.60
X X 91.57 92.15
X X X 92.83 93.23

initializing stages are aimed at improving the efficiency of
the training stage. Specifically, if the pretraining stage is not
adopted, the model at early iterations cannot correctly detect
and recognize any characters; thus, the real samples loaded
at early iterations are wasted because there is no pseudo-
label generated. If the initializing stage is not adopted,
the early iterations of the training stage will be wasted
on assigning the first round of pseudo-labels to the real
samples.

4.9 Experiments on Reading Order

4.9.1 Multi-directional Reading Order

Most existing methods simply arrange the recognized
characters in a text line from left to right, ignoring the
complex reading order in the real world. However, taking
advantage of the proposed reading order module and graph-
based decoding algorithm, our method is able to recognize
pages with multi-directional reading order.

For further verification, a multi-directional reading order
experiment is conducted on ICDAR13. All the training and
testing images are rotated clockwise by 90◦, 180◦, and 270◦,

(a) 0◦ (b) 180◦

(c) 90◦ (d) 270◦

Fig. 12 Reading orders predicted by PageNet of the same image
rotated by different degrees, where each circle represents a character
(orange circle: start-of-line; green circle: end-of-line).
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Table 9 Performance of PageNet on multi-directional texts

Supervision 0◦ 90◦ 180◦ 270◦ Total
AR* CR* AR* CR* AR* CR* AR* CR* AR* CR*

Full 89.41 90.29 89.50 90.38 89.43 90.32 89.39 90.32 89.43 90.33
Weak 89.48 90.46 89.55 90.52 89.55 90.52 89.49 90.50 89.52 90.50

but the reading order in the annotations remains unchanged.
Using the original data and three rotated versions, we train
and evaluate two models that are under full and weak
supervision, respectively. Note that each of the two models
is trained for all the four directions.

The experimental results are presented in Table 9. The
performance of one model on the rotated data is comparable
to that on the unrotated data, and the total performance still
maintains a high accuracy. The predicted reading orders of
the same image rotated by different angles are visualized in
Fig. 12. It can be seen that the reading order is correctly
predicted for all directions.

4.9.2 Curved Text Lines

We also conduct experiments on curved text lines. Both
the training and testing sets are synthetic pages containing
curved text lines, where the y coordinate of the character
in a text line is a sine function of the x coordinate.
To avoid overfitting, the training set uses the character
samples from CASIA-HWDB1.0-1.2, while the testing set
uses the character samples from ICDAR13-SC. Because
the synthetic data has full annotations, the model is fully
supervised. The AR* and CR* on the testing set are 94.04%
and 94.36%, respectively. In addition, Fig. 13 shows the
visualization results. Owing to the bottom-up design and
strong reading order predicting mechanism, curved text lines
can be effectively recognized by our method.

Fig. 13 Visualization results of a page containing curved text lines.
The two images present character-level detection and recognition
results (left) and reading order (right). In the visualization of reading
order, each circle represents a character (orange circle: start-of-line;
green circle: end-of-line).

Table 10 Comparison of different decoding algorithms

Algorithm ICDAR13 SCUT-HCCDoc
AR* CR* AR* CR*

Rule-based 75.28 82.62 68.49 77.45
Ours 92.83 93.23 77.95 82.15

4.10 Experiments on Decoding Algorithm

In Table 10, we compare the graph-based decoding
algorithm with the rule-based algorithm. The rule-based
algorithm groups the characters based on their vertical
coordinates and reorders the characters in each group
according to their horizontal coordinates. It can be seen
that the proposed graph-based decoding algorithm achieves
significantly better performance owing to the effective
design of the reading order prediction.

4.11 Automatic Labeling

Another potential application of the proposed weakly
supervised learning framework is automatic labeling. Given
the line-level transcripts of a page, the bounding boxes of
characters can be automatically annotated by the pseudo-
labels generated by our method.

Fig. 14 illustrates the automatically generated annota-
tions for CASIA-HWDB2.0-2.2. After the training stage,
98.75% of the characters in CASIA-HWDB2.0-2.2 have
corresponding pseudo-labels, and the average IoU between
the pseudo-labels and ground-truth bounding boxes is
86.45%, which indicates the high quality of automatic
labeling.

To verify the applicability of automatically generated
annotations, we replace the original annotations of CASIA-
HWDB2.0-2.2 with automatically labeled bounding boxes.

Fig. 14 Automatically generated annotations for CASIA-HWDB2.0-
2.2.
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Table 11 Effectiveness of automatically labeled annotations. This
table presents the character detection performance on ICDAR13 when
Faster R-CNN is trained using different annotations. The performance
using original annotations is copied from Table 5.

Annotations Precision Recall F-measure
Original 98.93 92.12 95.41
Automatically labeled 97.70 91.78 94.64

Then, a Faster R-CNN (Ren et al., 2017) is trained to
detect characters using CASIA-HWDB2.0-2.2 with new
annotations and CASIA-SR, and is tested on ICDAR13. As
shown in Table 11, compared with the Faster R-CNN using
original annotations, the counterpart using automatically
labeled annotations achieves comparable performance on
character detection.

4.12 Effects of Synthetic Data

Recently, in order to improve the performance of text
detection and recognition, many methods (Jaderberg et al.,
2014; Gupta et al., 2016; Zhan et al., 2018) have been
proposed for data synthesis. However, taking advantage of
the proposed weakly supervised learning framework, the
performance of our method does not rely heavily on the
quality of synthetic data. For our method, the synthetic data
are synthesized following a simple and unified procedure for
all real datasets, which greatly reduces the labor required to
design specific synthesis methods for different scenarios.

We analyze the effects of different synthetic data
in Table 12. Compared with CASIA-SR, CASIA-SF is
synthesized using character samples from font files rather
than real character samples. Obviously, CASIA-SR is more
similar to the real data than CASIA-SF. Compared with
the performance without synthetic data, Det + Recog
performs better using CASIA-SR but worse using CASIA-

Table 12 Effects of different synthetic data (evaluated on ICDAR13)

Method Synthetic Data AR* CR*

Det + Recog
No synthetic data 86.27 87.37
CASIA-SR 88.36 (2.09↑) 89.09 (1.72↑)
CASIA-SF 86.14 (0.13↓) 87.30 (0.07↓)

PageNet
No synthetic data1 87.03 87.63
CASIA-SR 92.83 (5.80↑) 93.23 (5.60↑)
CASIA-SF 89.56 (2.53↑) 90.52 (2.89↑)

1 PageNet without synthetic data is trained under full supervision.

SF. However, PageNet with CASIA-SR and CASIA-SF both
achieve significantly better results than the one without
synthetic data.

Furthermore, in Table 13, we compare the performances
of the pretrained models using synthetic data and the final
models after the training stage. Despite the performances of
the pretrained models, the final results are greatly improved
by the weakly supervised learning.

Based on the above results, we can conclude that
the proposed weakly supervised learning framework can
effectively learn usable information from synthetic data and
adapt to different scenarios, which makes it less dependent
on the quality of synthetic data.

4.13 Discussion

Generalization ability is an important issue in real-world
applications. In the following, we discuss the generalization
ability of our method based on the above methodology and
experimental results.

As described in Sec. 3, our method is formulated in
a general manner without using prior knowledge of any
specific dataset. Each component of our method is designed
based on the general properties of the documents rather than
considering only specific scenarios.

Extensive experiments are conducted using five datasets
that cover most document scenarios. Specifically, CASIA-
HWDB2.0-2.2 and ICDAR13 contain scanned documents
with cursive handwritten characters and diverse writing
styles, MTHv2 contains historical documents with severe
degradation, SCUT-HCCDoc contains camera-captured hand-
written documents with various illuminations, perspectives,
and backgrounds, and JS-SCUT PrintCC contains multilin-
gual printed documents including English and Chinese. The
experimental results (Tables 2, 3, and 4) and visualizations
(Fig. 8) demonstrate that our method achieves promising
performance on all these datasets.

Additional experiments in Sec. 4.9 verify the effective-
ness of our method on multi-directional reading order and
arbitrarily curved text lines. Furthermore, the experiments in
Sec. 4.12 demonstrate that our method is less dependent on
the quality of synthetic data. Although all synthetic samples
are synthesized in a very simple manner as described in Sec.
4.1 instead of using advanced synthesis approaches that are

Table 13 Improvement of the final model compared with the pretrained model

Model
ICDAR13 MTHv2 SCUT-HCCDoc JS-SCUT PrintCCCASIA-SR CASIA-SF
AR* CR* AR* CR* AR* CR* AR* CR* AR* CR*

Pretrained Model 63.62 64.00 38.70 39.01 54.30 61.61 29.93 32.94 75.99 79.51
Final Model 92.83 93.23 89.56 90.52 93.76 95.23 77.95 82.15 97.25 98.19
Improvement 45.92% 45.67% 131.42% 132.04% 72.67% 54.57% 160.44% 149.39% 27.98% 23.49%
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specifically designed, our method can work well on all the
benchmark datasets.

Therefore, it may be safe to say that our method can
be easily generalized to different scenarios. Nevertheless,
the method in this paper is mainly for document-based
text recognition. It may be less effective for other complex
scenarios such as end-to-end scene text recognition, which
is still an open problem that deserves further study.

5 Conclusion

In this paper, we propose PageNet for solving end-to-
end weakly supervised page-level handwritten Chinese text
recognition from a new perspective. With only line-level
transcripts annotated for real data, PageNet is able to end-
to-end predict detection and recognition results at both the
character and line levels, as well as the important reading
order of each text line. Extensive experiments on five
datasets, including CASIA-HWDB, ICDAR2013, MTHv2,
SCUT-HCCDoc, and JS-SCUT PrintCC, demonstrate that
our method can achieve state-of-the-art performance, even
when compared with fully supervised methods. We further
show that the proposed PageNet can surpass the line-level
methods of handwritten Chinese text recognition which
directly recognize the pre-supplied cropped text line images.
It is worth mentioning that our method can serve as
an automatic annotator that can produce highly accurate
character-level bounding boxes. As there are thousands of
web images with only transcript labels on the Internet,
the powerful generalization ability of PageNet exhibits its
promising potential in real-world applications. We hope that
this work opens up new possibilities for end-to-end weakly
supervised page-level text recognition.

Acknowledgement

This research is supported in part by NSFC (Grant No.:
61936003), GD-NSF (no.2017A030312006, No.2021A1515
011870), and the Science and Technology Foundation
of Guangzhou Huangpu Development District (Grant
2020GH17).

References

Rodriguez-Serrano JA, Gordo A, Perronnin F (2015) Label embed-
ding: A frugal baseline for text recognition. International Journal
of Computer Vision 113(3):193–207

Jaderberg M, Simonyan K, Vedaldi A, Zisserman A (2016) Reading
text in the wild with convolutional neural networks. International
Journal of Computer Vision 116(1):1–20

Feng W, Yin F, Zhang XY, He W, Liu CL (2021) Residual dual scale
scene text spotting by fusing bottom-up and top-down processing.
International Journal of Computer Vision 129(3):619–637

Liu Z, Lin G, Goh WL (2020) Bottom-up scene text detection with
Markov clustering networks. International Journal of Computer
Vision pp 1–24

Liu Y, He T, Chen H, Wang X, Luo C, Zhang S, Shen C, Jin L (2021)
Exploring the capacity of an orderless box discretization network
for multi-orientation scene text detection. International Journal of
Computer Vision 129(6):1972–1992

Luo C, Lin Q, Liu Y, Jin L, Shen C (2021) Separating content from
style using adversarial learning for recognizing text in the wild.
International Journal of Computer Vision 129(4):960–976

Baek Y, Lee B, Han D, Yun S, Lee H (2019) Character region
awareness for text detection. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pp 9365–9374

Bluche T (2016) Joint line segmentation and transcription for end-
to-end handwritten paragraph recognition. In: Proceedings of
Advances in Neural Information Processing Systems, pp 838–846

Bluche T, Louradour J, Messina R (2017) Scan, Attend and Read: End-
to-end handwritten paragraph recognition with MDLSTM attention.
In: Proceedings of International Conference on Document Analysis
and Recognition, vol 01, pp 1050–1055

Carbonell M, Mas J, Villegas M, Fornés A, Lladós J (2019) End-to-
end handwritten text detection and transcription in full pages. In:
Proceedings of International Conference on Document Analysis and
Recognition Workshops, vol 5, pp 29–34

Chung J, Delteil T (2019) A computationally efficient pipeline
approach to full page offline handwritten text recognition. In:
Proceedings of International Conference on Document Analysis and
Recognition Workshops, vol 5, pp 35–40

Du J, Zi-Rui Wang, Zhai J, Hu J (2016) Deep neural network
based hidden Markov model for offline handwritten Chinese text
recognition. In: Proceedings of IEEE International Conference on
Pattern Recognition, pp 3428–3433

Graves A, Jaitly N (2014) Towards end-to-end speech recognition
with recurrent neural networks. In: Proceedings of International
Conference on Machine Learning, pp 1764–1772

Graves A, Fernández S, Gomez F, Schmidhuber J (2006) Connectionist
temporal classification: labelling unsegmented sequence data
with recurrent neural networks. In: Proceedings of International
Conference on Machine Learning, pp 369–376

Graves A, Liwicki M, Fernández S, Bertolami R, Bunke H, Schmid-
huber J (2009) A novel connectionist system for unconstrained
handwriting recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence 31(5):855–868

Gupta A, Vedaldi A, Zisserman A (2016) Synthetic data for text
localisation in natural images. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pp 2315–2324

He K, Gkioxari G, Dollar P, Girshick R (2017) Mask R-CNN. In:
Proceedings of IEEE International Conference on Computer Vision,
pp 2961–2969

Huang Y, Xie Z, Jin L, Zhu Y, Zhang S (2019) Adversarial
feature enhancing network for end-to-end handwritten paragraph
recognition. In: Proceedings of International Conference on
Document Analysis and Recognition, pp 413–419

Jaderberg M, Simonyan K, Vedaldi A, Zisserman A (2014) Synthetic
data and artificial neural networks for natural scene text recognition.
In: Proceedings of Advances in Neural Information Processing
Systems Deep Learn. Workshop

Keysers D, Deselaers T, Rowley HA, Wang L, Carbune V (2017)
Multi-language online handwriting recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence 39(6):1180–1194

Liao M, Lyu P, He M, Yao C, Wu W, Bai X (2021) Mask
TextSpotter: An end-to-end trainable neural network for spotting
text with arbitrary shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence 43(2):532–548

Liu C, Yin F, Wang D, Wang Q (2011) CASIA online and offline
Chinese handwriting databases. In: Proceedings of International



PageNet: Towards End-to-End Weakly Supervised Page-Level Handwritten Chinese Text Recognition 21

Conference on Document Analysis and Recognition, pp 37–41
Liu X, Liang D, Yan S, Chen D, Qiao Y, Yan J (2018) FOTS: Fast

oriented text spotting with a unified network. In: Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, pp
5676–5685

Lyu P, Liao M, Yao C, Wu W, Bai X (2018) Mask TextSpotter: An
end-to-end trainable neural network for spotting text with arbitrary
shapes. In: Proceedings of European Conference on Computer
Vision, pp 67–83

Ma W, Zhang H, Jin L, Wu S, Wang J, Wang Y (2020) Joint
layout analysis, character detection and recognition for historical
document digitization. In: Proceedings of International Conference
on Frontiers in Handwriting Recognition, pp 31–36

Messina R, Louradour J (2015) Segmentation-free handwritten
Chinese text recognition with LSTM-RNN. In: Proceedings of
International Conference on Document Analysis and Recognition,
pp 171–175

Moysset B, Kermorvant C, Wolf C (2017) Full-page text recognition:
Learning where to start and when to stop. In: Proceedings of
International Conference on Document Analysis and Recognition,
vol 01, pp 871–876

Neubeck A, Van Gool L (2006) Efficient non-maximum suppression.
In: Proceedings of IEEE International Conference on Pattern
Recognition, pp 850–855

Peng D, Jin L, Wu Y, Wang Z, Cai M (2019) A fast and accurate
fully convolutional network for end-to-end handwritten Chinese
text segmentation and recognition. In: Proceedings of International
Conference on Document Analysis and Recognition, pp 25–30

Redmon J, Farhadi A (2018) YOLOv3: An incremental improvement.
arXiv preprint arXiv:180402767

Ren S, He K, Girshick R, Sun J (2017) Faster R-CNN: Towards real-
time object detection with region proposal networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 39(6):1137–
1149

Shi B, Bai X, Yao C (2017) An end-to-end trainable neural network for
image-based sequence recognition and its application to scene text
recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 39(11):2298–2304

Su TH, Zhang TW, Guan DJ, Huang HJ (2009) Off-line recognition
of realistic Chinese handwriting using segmentation-free strategy.
Pattern Recognition 42(1):167–182

Tensmeyer C, Wigington C (2019) Training full-page handwritten
text recognition models without annotated line breaks. In:
Proceedings of International Conference on Document Analysis and
Recognition, pp 1–8

Wang Q, Yin F, Liu C (2012) Handwritten Chinese text recognition
by integrating multiple contexts. IEEE Transactions on Pattern
Analysis and Machine Intelligence 34(8):1469–1481

Wang S, Chen L, Xu L, Fan W, Sun J, Naoi S (2016) Deep knowledge
training and heterogeneous CNN for handwritten Chinese text
recognition. In: Proceedings of International Conference on
Frontiers in Handwriting Recognition, pp 84–89

Wang ZR, Du J, Wang WC, Zhai JF, Hu JS (2018) A comprehensive
study of hybrid neural network hidden Markov model for offline
handwritten Chinese text recognition. International Journal on
Document Analysis and Recognition 21(4):241–251

Wang ZR, Du J, Wang JM (2020a) Writer-aware CNN for parsimo-
nious HMM-based offline handwritten Chinese text recognition.
Pattern Recognition 100:107102

Wang ZX, Wang QF, Yin F, Liu CL (2020b) Weakly supervised
learning for over-segmentation based handwritten Chinese text
recognition. In: Proceedings of International Conference on
Frontiers in Handwriting Recognition, pp 157–162

Wigington C, Tensmeyer C, Davis B, Barrett W, Price B, Cohen
S (2018) Start, Follow, Read: End-to-end full-page handwriting
recognition. In: Proceedings of European Conference on Computer

Vision, pp 367–383
Wu Y, Yin F, Chen Z, Liu C (2017) Handwritten Chinese text

recognition using separable multi-dimensional recurrent neural
network. In: Proceedings of International Conference on Document
Analysis and Recognition, vol 01, pp 79–84

Wu YC, Yin F, Liu CL (2017) Improving handwritten Chinese
text recognition using neural network language models and
convolutional neural network shape models. Pattern Recognition
65:251–264

Xie C, Lai S, Jin L, Liao Q (2020) High performance offine
handwritten Chinese text recognition with a new data preprocessing
and augmentation pipeline. In: Proceedings of International
Workshop on Document Analysis Systems, pp 45–59

Xie Z, Sun Z, Jin L, Ni H, Lyons T (2018) Learning spatial-
semantic context with fully convolutional recurrent network for
online handwritten Chinese text recognition. IEEE Transactions on
Pattern Analysis and Machine Intelligence 40(8):1903–1917

Xie Z, Huang Y, Jin L, Liu Y, Zhu Y, Gao L, Zhang X (2019a) Weakly
supervised precise segmentation for historical document images.
Neurocomputing 350:271–281

Xie Z, Huang Y, Zhu Y, Jin L, Liu Y, Xie L (2019b) Aggregation
cross-entropy for sequence recognition. In: Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition, pp 6538–
6547

Xing L, Tian Z, Huang W, Scott MR (2019) Convolutional character
networks. In: Proceedings of IEEE International Conference on
Computer Vision, pp 9126–9136

Xiu Y, Wang Q, Zhan H, Lan M, Lu Y (2019) A handwritten Chinese
text recognizer applying multi-level multimodal fusion network. In:
Proceedings of International Conference on Document Analysis and
Recognition, pp 1464–1469

Yang H, Jin L, Huang W, Yang Z, Lai S, Sun J (2018) Dense and tight
detection of Chinese characters in historical documents: Datasets
and a recognition guided detector. IEEE Access 6:30174–30183

Yang H, Jin L, Sun J (2018) Recognition of Chinese text in historical
documents with page-level annotations. In: Proceedings of Inter-
national Conference on Frontiers in Handwriting Recognition, pp
199–204

Yin F, Wang Q, Zhang X, Liu C (2013) ICDAR 2013 Chinese hand-
writing recognition competition. In: Proceedings of International
Conference on Document Analysis and Recognition, pp 1464–1470

Yousef M, Bishop TE (2020) OrigamiNet: Weakly-supervised,
segmentation-free, one-step, full page text recognition by learning
to unfold. In: Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pp 14710–14719

Zhan F, Lu S, Xue C (2018) Verisimilar image synthesis for accurate
detection and recognition of texts in scenes. In: Proceedings of
European Conference on Computer Vision, pp 249–266

Zhang H, Liang L, Jin L (2020) SCUT-HCCDoc: A new benchmark
dataset of handwritten Chinese text in unconstrained camera-
captured documents. Pattern Recognition 108:107559

Zhang R, Zhou Y, Jiang Q, Song Q, Li N, Zhou K, Wang L, Wang
D, Liao M, Yang M, Bai X, Shi B, Karatzas D, Lu S, Jawahar CV
(2019) ICDAR 2019 robust reading challenge on reading Chinese
text on signboard. In: Proceedings of International Conference on
Document Analysis and Recognition, pp 1577–1581

Zhang X, Yin F, Zhang Y, Liu C, Bengio Y (2018) Drawing and
recognizing Chinese characters with recurrent neural network.
IEEE Transactions on Pattern Analysis and Machine Intelligence
40(4):849–862

Zhou X, Wang D, Tian F, Liu C, Nakagawa M (2013) Handwritten
Chinese/Japanese text recognition using semi-Markov conditional
random fields. IEEE Transactions on Pattern Analysis and Machine
Intelligence 35(10):2413–2426

Zhu ZY, Yin F, Wang DH (2020) Attention combination of sequence
models for handwritten Chinese text recognition. In: Proceedings of



22 Dezhi Peng et al.

International Conference on Frontiers in Handwriting Recognition,
pp 288–294

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image
recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp 770–778


