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A b s t r a c t  

A major problem in deriving a compiler from a formal definition is the produc- 

tion of correct and efficient object code. We propose a solution to this problem 
in the framework of a compiler writing system where the compilation process may 
be viewed as successive translations from an attributed abstract syntax to another 

abstract syntax. The code-generator generator needs two kinds of specifications : 

an attributed abstract syntax (AAS) of the target machine : it is the descrip- 

tion of the I .R.  given as input to the code-generator. 

a target machine description where the basic concepts are hierarchically de- 

scribed by tree-patterns. These tree patterns are terms of the target abstract 

syntax. 

The code generation process is divided into two steps : the instructions selection 

process and the register allocation one. The instruction selection process applies 

a set of rewriting rules driven by tree templates derived from the target machine 
specification to the I .R.  term. The register allocation process consists of several 

evaluation passes of an attributed grammar derived automatically from the target 
machine specification. The first one sets the constraints on temporaries accord- 
ing to the whole context, the second one does life-time analysis and packing on 

temporaries, the last one assigns effective resources to temporaries. 

1 I n t r o d u c t i o n  

A compiler,  in order to produce code, needs full knowledge not only of the syntax and 

the semantics  of the source language but  also of the s t ruc ture  of the target  machine  and 

the semantics  of its instruct ion set. Considerable research effort has been invested into 

making  compiler  construct ion as modula r  and as au tomat ic  as possible. 

Tools based on formalisms such as abs t rac t  da ta  types, a t t r ibu ted  g r a m m a r s  are 

widely known and used to produce  front ends. In order to have a uniform approach of 
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the whole compilation process, it would be useful to use the same formalism for the front 
end and the back end. An approach using high level semantics has been developped in 
MESS [LP 87] but the emphasis had been put essentially on the front-end. 

This paper is devoted to the back end of the compiler writing system. 
Usually, code generation is converted into a syntactic process using tree structured 

patterns describing instructions of the target machine and a tree structured I .R.  The 
instruction selection is done by covering the input I : R  by instruction patterns. Various 
works differ by the way in which the instruction set of the target machine is described 
and by the pattern matching and transformations used to reduce the I . R  tree. 

LR(1)-like parsing is used in [GG 78], [GH 84]. Attributed grammars are used in 
[GF 82] to add semantic constraints on symbols. In [Cat 80] , [FW 88] subgoals are 
selected by use of heuristics to try patterns. In [ESL 89] a reduction algorithm that 
computes the best cover tree according to cost function is used. 

All these code-generator generators not are generally embedded in a full compiler 
writing system using a uniform formal framework. The instruction set of the target 

machine, except in the works of Giegerich [Gie 90] is not described by a formal semantics. 
It is often obscured by informations related to the reduction algorithm and cannot be 
got straightforward from the handbook of the target machine. As a consequence of this 
lack of formal semantics, there is no means to prove the correctness of the generated 
code. 

Our compiler writing system produces a compiler from a specification including 
three parts : a source language, a target language definition and the description of the 
implementation choices. 

The fundamental background of the specifications is that the whole compilation 
process is viewed as successive mappings from an abstract data type ( A D T )  into an 

other abstract data type [GDM 84]. The axioms of the various A D T  allow to prove 
the correctness of each step of the compilation process [DMR 89]. 

Since an abstract data type without axioms is hardly more than an abstract syn- 
tax, the tools used here to handle these specifications are attributed abstract syntaxes 
(AAS for abbreviation) and attribute grammars (AG) specifying the mappings be- 

tween AASes.  An A A S  is mainly an abstract syntax with declarations of attributes 
attached to phyla. Productions of the A G  are operator definitions of the AAS.  In the 
whole paper, we call semantic rules the attributes definitions related to the productions 
of the AG. The system FNC-2 has especially been designed for dealing with these tools 
[JP 90]. 

We focus on the back end of the compiler writing system. It uses the same formal 
background as the preceding steps. 

The first section presents the code-generator specification for the instruction selec- 
tion process. It needs two kinds of specifications : 

- an A A S  of the target machine : it is the description of the I . R  given as input to 
the code-generator, 

- a target machine description hierarchically structured in three levels [DMR 87]. 
It consists of a description of the target instruction set and a mapping of the 
instruction set into the target AAS (i.e the semantics of the instructions is given 
in terms of the target AAS ). 
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The second section deals with the code generation mechanism which is divided into 
two steps : the instruction selection process and the register allocation process. 

The compiler writer describes the semantics of each instruction of the target machine 
by a I .R .  term. Thus the instruction selection process can be defined formally as a 
reverse translation as in [GS 88] [Gie 90], operationally the reverse translation is defined 
by a set of tree templates derived from the target machine specification and a set of 
rewriting rules that  are machine independent. As the description language has a formal 
semantics, the correctness of the rewriting rules has been achieved [DMR 89]. They 
preserve the semantics of the I .R  term. 

This step produces a term of the canonical target AAS.  It is the target AAS 
enriched by some universal operations on temporary ressources and restricted to the 
canonical form of instructions and addressing modes. This term is given as input to the 
register allocation step which is an evaluation pass of the AG based on the canonical 
target AAS,  whose semantic rules are automatically generated by the system. 
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2 T h e  c o d e - g e n e r a t o r  s p e c i f i c a t i o n  

2.1 Abstract syntax of the target language 

To define the abs t rac t  syntax of the target  language, the compiler  writer  must  describe 

phyla  and opera tors ,  which are respectively similar to non- termlnals  and product ions  

of a usual context-free g r ammar .  The abs t rac t  syntax of the target  machine mirrors  

v i r tua l  target  machine with e lementary  instruct ions (called object  modification following 

[GDM 84]) acting on cells via e lementary  operat ions  denoting the access p a t h  to these 

cells. In such an approach,  an instruct ion of the instruct ion set processor is represented 

by a modif icat ion or a sequence of modifications. Phy la  represent  basic concepts of the 

target  machine  such as modifications,  addressing modes,  operands  and cells. Defining 

a phy lum involves speci~Ting which opera tors  it includes. It  follows according to the 

machine  specification (see §3.1.1). 

Object_modif = 
Accessmmde = 

Operand = 
Cell = 

seq assign compare branch . . .  

dreg_am disp_am postinc_am . . .  
const_value cont_of_address index add . . .  src 

designates_address designates_aregister . . .  dst 

Phyla  represent ing operands  and cells are used to designate storages of the target  

machine  such as registers and m e m o r y  locations. Opera tors  designate available opera- 

tions of  the target  machine such as : 

- the usual modifications : 

assign --~ Operand Cell 
compare --~ Operand Operand 

- the usual  ar i thmet ic  operat ions : 

add --~ Operand Operand 

- the dereference and cell constructor  operat ions : 

cont_of_address --, address 

cont_of_dreg - ,  dregister 
designates_aregister -+ aregister 

- the operat ions  describing access pa th  to m e m o r y  cells : 

index ~ address immediate_value 

- the buil t- in operat ions  src and dst to introduce an operand  in source or dest inat ion 

posi t ion : 
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src ~ Access_mode 
dst ---* Access.anode 

and addressing modes : 

Access_mode = areg_am dreg_am predec_am . . .  

dreg_am ---, dregister 
disp_am --~ aregister immediate_value 

postinc_am ~ aregister 

Notions such as the size of an operand,  the type or the name of a storage, the value 

of an address are specified by at tr ibutes at tached to phyla of the target A A S .  

2.2 The target machine specification 

We provide a language to specify the instruction set processor of a target  machine. 

The basic concepts used are described by specific constructs of the language : storage 

bases, storage classes, value classes, access modes, access classes and instructions. Each 

construct  is defined by properties such as the size of the associated addressable units or 

the semantics of the occurrence of the construct.  This semantics is expressed using a 

te rm of the target  A A S  and takes into account its size. As the occurrences of a construct 

are related to the size of the addressable units, their semantic descriptions are nearly 

identical [DMR 87]. A solution proposed to deal with large algebraic specifications 

is the use of parameter izat ion and instantiat ion mechanisms. Such mechanisms fit 

very well to our machine specification language. The compiler writer can factor some 

instances of a given construct  in a generic pa t te rn  followed by the possible values of the 

generic parameters  of the pa t te rn  . The  system derives from this declaration as many 

occurrences of the construct  as there are sizes of addressable units asssociated to it. 

The  instantiat ion mechanism is bound to a name generation mechanism. Throughout  

the paper  the following notations will be used : 

• If n is a name and L is a variable, when L is instantiated by v , n !L  builds the 

name n_y. 

• <S V >  means that  V is a constant or a variable of sort S. 

• All keywords of the language are in bold letters in the following examples. 

2.2.1 Storage classes 

A component  of the physical storage does not represent the same operand depending 

on the size associated to the operat ion applied to this operand. For instance, an access 

to a register may designate a byte  operand, a word operand or a longword operand.  

Thus,  we define two fundamental  concepts : storage base and storage class. A storage 

base is defined as a set of smallest addressable units of physical storage. For a given 

storage base, the compiler writer must describe as many storage classes as there are 

ways to gather  storage base elements to represent logical storage units. A storage class 

occurrence is characterized by the following propert ies : 
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its denotation, 

its storage base viewed as an attribute of a storage class, 

basic operations such as the dereference operation, i.e. the access operation to the 

contents of an element of the storage class and the cell constructor operation. 

In the machine description language, the storage class construct  is described using 

a predefined keyword :[or each of these properties.  
The  MC68000 has two kinds of registers : the da ta  registers dedicated to data values 

and address registers dedicated to addresses. Thus,  the compiler writer must declare 
the two following storage bases : 

Storage_base DREG - - Data registers 
Set is { DREG [k] where  k in 0 .. 31 } 

End  
Storage_base AREG - - Address registers 

S e t  is { AREG [k] where  k in 0 .. 13 } 
End  

Let us consider the storage classes related to the data  register storage base. As an 

access to a da ta  register may represent an access to a byte operand,  a word operand 

or a long word operand,  the compiler writer must declare three storage classes respec- 

tively : the dregister_B, the dregister_W and dreg i s te rL  storage classes. The use of the 

parameter izat ion and instantiat ion mechanisms allows to avoid the repeti t ion of similar 

declarations. The  compiler writer can declare a generic pa t te rn  of a data register storage 

class using generic names. The  instance par t  of the declaration includes the information 

needed by the name generation mechanism to build the actual names. 

Storage_class 
Deno ta t ion  < dregister!size Dk> 
At t r i bu t e s  

SBase = DREG 
Opera t ions  

dereferenee is 

cont_of_dreg!size : dregister ~ immediate_value 
cell_constructor is 

designates_dreg ! size : dregister ~ dregister 
Symbol ic_nota t ion  

Dk is DREG [4*k...4*k+tength-1] where  k in 0 . . .  7 
I n s t a n c e s  

s i z e  in {B, W, L} 
c a s e  size is 

B : length is 1 

W : length is 2 
L : length is 4 

End  c a s e  

End 

From this pa t te rn ,  the system deduces the three descriptions of actual  storage classes. 

The  specification of the address register class is similar to tha t  of the da ta  register class. 

The  only difference is tha t  the byte  access to an address register is not available. 



92 

2.2.2 Acces s  m o d e s  

Let us consider an assignment statement of A to B, we shall state in the sequel that  A is 

the source operand and B the destination operand of the assignment. In an instruction 

context,  an operand is designated by an addressing mode. Whereas an addressing mode 

in source position designates the contents of a storage, it designates the storage itself in 

destination position. A part icular  machine has several addressing modes. For a given 

addressing mode of the machine, the compiler writer must  define as many access modes 

as there are associated storage classes. An access mode pa t te rn  is specified by : 

- a canonical form, representative of the access mode, including its name and its 

parameters. These parameters are formal storage or value classes. 

- its related attributes : length, format and costs. 

- a template that describes the access path to the corresponding operand : the operand 

in source (resp. destination) position is defined by the term obtained by applying 

the dereferenee (resp. the cell constructor) operation to this template. 

As for the storage class construct,  the compiler writer can define a formal access 

mode. Among the numerous addressing modes of the MC68000, let us consider the 

indirect with displacement addressing mode. This access mode has instances which 

depend on the size of the location indirectly accessed in source position. Thus the 

compiler writer defines a generic access mode pat tern  "disp_am!size" parameterized by 

the size. 

A c c e s s _ m o d e  

Canonical_form - - Indirect with displacement access modes 

disp_am!size ( <aregister_L reg> , <value_W val>) 
A t t r i bu t e s  

$1ength = size - - length of tile addressable unit 
$fmt = ~val(reg)" - - Assembly language format 

Templa t e  
index ( cont_of_areg_L (<aregister reg>), const_value_W (<immediate_value val>)) 

Ins tances  size in {B, W, L} 

End 

As the template  of the previous definition gives an address whose dereference opera- 
tor is cont_oLaddress!size and the cell constructor  is designates_address!size, the system 
derives the two following generic access modes, respectively in destination and source 
position : 

designates_address!size ( 
index (cont_of~regL (<aregister reg>), const_valuefi, V (<immediate_value val>))) 

cont _of..address!size ( 
index (cont_of.areg_L (< aregister reg>), const_value_W (<immediat e_value val>))) 

This leads to three templates in source position (respectively in destination position) when 
the size is instantiated by {B, W, L}. This leads to three templates in source position (respec- 
tively in destination position) when the size is instantiated by {B, W, L}. The indirect with 

index access mode has instances which depend on the size of the location indirectly accessed in 

source position. 
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A c c e s s _ m o d e  
C a n o n i c a l _ f o r m  - - Indirect with displacement access modes 

dindex_am!index_size!size ( <aregister_L regl >, < dregister!index_size reg2 > 

, <vaiue_B val >)  

A t t r i b u t e s  
$1ength = size 

S fmt  = ~ val (regI, reg2.index_size)- 

w h e n  val = 0 -0 (regl, reg2.index_size)~ 

T e m p l a t e  

index (cont_of_areg_L (< aregister regt >) 

, add_L (sign_extend_L (cont_of_dreg!index_size (<dregister reg2>)) 

, sign_extend_L (const_value_B ( <immediate_vMue val>)))) 

w h e n  vM = 0 

index (cont_of_areg_L (<aregister r eg l>)  

, cont_oLdreg!index_size ( <dregister reg2>)) 

I n s t a n c e s  size in {B, W, L}~ index_size in { W, L} 

E n d  

Notice that an optimizing case is described in the specification of this access mode by the 

clause when, if the value of vM is 0. 

2 . 2 . 3  A c c e s s  classes 

The operands of an instruction are access classes which are defined as sets of access modes. An 

access class can be also specified by a generic pattern including the instantiation of its elements. 

There are as many instances of a generic access class as there are possible sizes of operands. 

Access_class  

< All_access!size AM > 

= dreg_am!size (<  dregister!size reg >) w h e r e  size in {B, W, L} 

= areg_am!size (<aregister!size reg>) w h e r e  size in {W, L} 

: . . o  

E n d  

2 . 2 . 4  I n s t r u c t i o n s  

An instruction may be characterized by the following properties : 

- the access classes defining the operands to which the instructions apply 

- its related attributes : format, i.e the syntax in the assembly language, length 

- the template describing what is performed by the instruction (it is a term of the abstract 

data type) 

Nearly every instruction of the target machine may be applied to the different lengths of its 

operands. In order to avoid the repetition of such descriptions, the compiler writer specifies a 

pattern of an instruction and its instances. Let us consider the move instruction which corre- 
sponds to an assignment operation. The size of the instruction may be specified to be a byte, a 

word or a longword. We obtain the following specification : 
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Ins t ruc t ion  
Canonical_form 

move!size (<All_access!size AM1>, <Altdata_access!size AM2>) 
A t t r i bu t e s  

$1ength = size 
Sfmt = -MOVE.$1ength Sfmt(<All_access!size AMI>) 

, Sfmt (<Altdata_access!size AM2>)" 
Templa t e  

assign!size (src (<All_access!size AM 1 >), dst (<Altdata_access!size AhI2>)) 
Ins tances  size in {B, W, L} 

End  

The addi instruction specifies the addition of an immediate operand to an appropriate 
operand of the alterable data access class : 

Ins t ruc t ion  
Canonical_form 

addi!size ( <Immediate_access!size AM1>, <Altdata_access!size AM2>) 
At t r ibu te s  

$1ength = size 
Sfmt = "ADDI.$1ength $fmt (<Immediate_a~:cess!size AM1 > ) 

, Sfmt (<Altdata_access!size AM2>)" 

Templa t e  
assign!size ( 

add!size (src ( <Altdata_access!size AM2>), src ( <Immediate_access!size AMI>)) 
, dst (<Altdata_access!size AM2>)) 

Ins tances  size in {B, W, L} 
End 

The asl instruction specifies the shift of the content of a data register by a quick value : 

Ins t ruc t ion  

Canonical_form 
ast!size ( < Quick_access AM1 >, <Dregister_access!size AM2 >) 

A t t r ibu te s  
$1ength = size 
Sfmt = "ASL.$1ength $fmt(<Quick_access AM1> ) 

, Sfmt (<Dregister_access!size AM2>)" 
Templa t e  

assign!size ( 
shift_al!size (src ( <Quick_access AMI>),  src ( <Dregister_access!size AhI2>)) 
, dst (<Dregister_access!size AM2>)) 

Ins tances  size in {B, W, L} 
End  

2.3 The canonical target  machine A A S  

The bottom-up matching process of the I .R is carried out until each modification of the I.R. 
is identified to an instruction template. For each modification, in the context of an instruction 
template, operand subterms are matched with access mode templates. If they are leaves of 
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the instruction template, they are replaced by their canonical form in the modification, else 

the location designated by the access mode is stored in a temporary and the modification is 

rewritten using this temporary. The process goes on in order to make the modification closer 

to an instruction template. Finally the modification is flattened in a sequence of universal store 

trees and an instance of the instruction template [DMR 89]. The universal store trees must be 

described. Thus it is necessary to enrich the target machine AAS with corresponding phyla 

and operators. The following specification is automatically added by the system. 

Exec --* Object_modif 

ObjectAnodif = Univ_seq Univ_assign . . .  

Univ_seq --+ Object_modif+ 

Univ_assign --~ Operand Operand 

Opera nd = temporary.am . . .  

temporary_am ~ Temporary 

Temporary = Denotation_Temporary 

Denotation_Temporary --* 

- - root of the term 

2.4 The interface specification 

The system needs to link the internal names such as temporary_am, Univ_assign, and the actual 

names of the machine specification that become possible synonyms during the rewriting process. 

For that purpose, the system uses an interface declaration module specified by the compiler 

writer. For the MC68000 it follows : 

Univ_seq 

Univ_assign 

temporary_am (<temporary temp>) 

: seq 
: assign!size where  size in { B, W, L } 

: areg_am!size (<aregister!size temp>) 

where  size in { W, L } 

I dreg_am!size (<dregister!size temp>) 

where  size in {B, W, L} , 

I relative_am!size (<dataJabel!size temp>) 

where  size in {B, W, L} 

2.5 Target templates  and a t t r i bu t e  grammar derivation 

Two modules are used to process the target machine specification and give two outputs, respec- 

tively a set of tree patterns and an attributed abstract syntax of the target machine. The first 

module builds three families of trees corresponding to access mode templates in source posi- 

t.ion and destination position and instruction templates. These families are written into Prolog 

clauses [DMR 88]. The properties of these trees derived from the specification are translated in 

Prolog clauses. These tree templates are used by the rewriting step to achieve the instruction 

selection. The second module builds an AG for FNC-2. The evaluation of the AG achieves the 

register allocation step. 
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3 The code-generator generator 

3.1 I n s t r u c t i o n  s e l ec t i on  

For each I . R  term~ the rewriting algorithm needs to know the boundary where the access mode 

pa t te rn  matching can stop and where the instruction pat tern matching can begin. For tlfis pur- 

pose, we define a part i t ion of instruction templates into instruction classes that  have the same 

boundary. Two templates of an instruction class can be represented by a canonicM representa- 

tive. The instruction selection algorithm applies a set of rules as specified in [DMR 89]. The 

s t rategy of application of the rewriting rules is strongly connected with the notion of canonical 

representative of an instruction class which defines the context of the search for access modes. 

The variables occur ones in a canonical representative and represent the operands,  they are 

annota ted  by a proper ty  source or destination. 

3 .1 .1  R e w r i t i n g  ru les  

Notations Let AN~[~o~rce be the ordered set of access mode pat terns  in source position. Let 

AMdestination be the ordered set of access mode pat terns  in destination position. Let IC be the 

ordered set of instruction class pat terns.  

In all the following rules, the search for a pat tern of a set of pat terns  tha t  matches a 

term is done by trying the pat terns  of the set one after the other, with respect to the set 

ordering. Some of the rules are more formally described in . The strategy of application of the 

rewriting rules is strongly connected with the notion of canonical representative of an instruction 

class which defines the context of the search for access modes. The variables occur ones in a 

canonical representative and represent the operands,  they are annotated by a proper ty  source 

or destination. 

3 .1 .2  R e w r i t i n g  ru les  

Notations Let AMso~ce be the ordered set of access mode pat terns  in source position. Let 

AMdestination be the ordered set of access mode pat terns  in destination position. Let IC be the 

ordered set of instruction class pat terns.  

In all the following rules, the search for a pa t te rn  of a set of pat terns  tha t  matches a term is 

done by trying the pat terns  of the set one after the other, with respect to the set ordering. Some 

of the rules are more formally described in [DMR 89]. The first one describes the replacement 

of a subtree which is an instance of an access mode by the instant iated canonical form of this 

access mode : informally when matching a tree t with an instruction class pat tern ,  the source 

and dest inat ion position contexts are set according to the position proper ty  in the instruction 

class pat tern.  If there is a subtree t i of t which is an instance of an access mode pa t te rn  in 

the right position, then t i is replaced ]n t by the instant ia ted canonical form of the access 

mode pat tern .  The instruction class and access mode pat terns  are matched with respect to 

the ordering of the two sets IC and AM[. We recall here completely the second rule. It gives a 

good idea of the use of temporaries.  It describes the t ranformation to be done when a subtree 

supposed to be an operand in an instruction context is not an instance of an access mode but 

has inner subtrees tha t  are instances of access modes. 

Rule  R2 

When matching a tree t with an instruction class pattern, if  we find a subtree t i of t which 

is not an instance of an access mode pattern, then starting from the leaves of tl, we look for the 
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biggest subtree tij o f t  i which is an instance of an access mode in source position. A univer..al 

assignment tree is built whose source operand is the instantiated canonical form of the acee.<~ 

mode corresponding to tij and whose destination operand is the reference to a new temporary 

location. The subtree tij is replaced in t i by the temporary access mode in source position applied 

to this new temporary location. The universal assignment tree and the rewritten tree are rooted 

by a universal sequence operator. 

Let t be the tree to transform, supppose there exist T E IC and a substitution aIc 

such that  cqc = { < Ai, ti > } I Ai E Var(T), 1 < i < n with a Ic(T)  = t 

and suppose there exists t i such that < Ai, t i > E alC , and if the context of ,-Xi in T is the 

position pos and such that  for all A E AMpo~ there exists no substitution p such that p(A) = 

t i. Then if there exist : 

1. a largest subtree tlj starting from the leaves of t i, 

2. and B E AMso~ce 

3. and a substitution 7 such that 3'(B) = tij. 

we define tile rewriting of the tree t by : 

t --* Univ_seq(Univ_assign(7(can(B)), ~(dst(temporary_am(< temporary 0 >))))  

, t / [ t i j=  £(src(temporary_am(< temporary 0 > )))]) 

where 6 is the substitution : ~ = { < 0, tmpa  > } where t m p a  is a new temporary location. 

The rules described in [DMR 89] only deals with terms whose subtrees considered as operands 

in an instruction context are nested access mode instances. 

When the compiler writer describes the translation of an expression from the source A A S  to 

the target A A S ,  the term produced contains embedded arithmetic and access path operators. 

Thus it is necessary to specifl" rules to deal with nested arithmetic operators. Informally. when 

in an instruction context, a subtree t i cannot be reduced to an access mode instance using the 

rules of [DMR 89], then starting from the leaves of ti, we took for the biggest subtree tij of t i 

which match the left son of an arithmetic instruction A. First the subtree of tij corresponding 

to the source operand modified by the instruction is saved in a temporary, second the subtree 

of ti3 is replaced by the reference to the temporary in source position, third an instance of A 

is generated using tij and fourth, tij is replaced by the reference to the temporary in source 

position, 

I 
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I ~c AM2 l I 
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ten'qx, rary mn [ 

I temporary tmpl temporary tmpl 
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3 .1 .3  E x a m p l e  

Let us consider a short piece of program written in the Pascal-like language : 

integer J , K ; 

array X(10) ; 
begin 

K : =  X ( J )  ; -  - (1 )  

end. 

If the base of the main program is located in the address register a6 and local variables have 
negative offsets, the corresponding target term of statement ( t )  is the following : 

assign_L ( 
cont _of.address_L ( 

index ( cont_of_areg_L (<aregister, a6>)) 
, a d d i  ( 

sub_L ( 
shift_aLL (const_quick_vahe (<quick_value, 2>))  

, cont_of_address_L ( 
index ( cont_of_aregi (<aregister, a6>))  

, const_value_W( <immediate_value, - 4 > ))) ) 
, const_value_L( <immediate_value, 4>)))  

, const_value_L( <immediate_value, -48>))))) 
, designates_address_L ( 

index ( cont_of_areg_L (<aregister, a6>)) 

, const_value_W( <immediate_value,-8>)))))  

The modification is matched with instructions templates. The second offspring of the 

shiff_al_L node is an instance of a disp_am_L access mode. There are no access mode templates 
with shift_aLL as root. But the subtree rooted with shift_aLL is the left son of an arithmetic 
instruction (asl §1.1.2.d). Thus the last rule can he applied. It is repeated successively on the 
nodes sub_L and add_l;. The tree resulting from the rewriting steps is the following : 

Univ_seq ( 
, Univ_assign ( src ( disp_am_L (<aregister, a6>, <immediate_value_W,-4>)) 

, dst ( temporary_am (<temporary,  tmp0>)))  
, assign_L ( 

shift_aLL (src ( quick_am (<quick_value, 2>))  
, src (temporary_am (<temporary,  trap0>)))  

, dst ( temporary_am (<temporary,  tmp0>)))  
, Univ_assign ( src ( temporary_am (<temporary,  tmp0>))  

, dst ( temporary_am (<temporary,  t m p l > ) ) )  
, assign_L ( 

sub_L (src ( temporary.am (<temporary,  tmpl ) )  
, src (immediate_val_am (<immedia.te_vMue_L, 4>)))  

, dst ( temporary_am (<temporary,  t rap1>)))  



99 

, Univ_assign ( src ( temporary_am (<temporary, trap1>)) 

, dst ( temporary_am (<temporary, tmp2>)))  

, assign_L ( 
add_L (src ( temporary_am (<temporary, tmp2)) 

, src (immediate_val_am ( <immediate_value_L, -48>))) 

, dst ( temporary_am (<temporary, trap2>))) 

, assignL (src ( dindex_am_when_W_L (<aregister_L, a6> 
, <dregister_W, tmp2>, 

<immediate_value_B, 0>)) 

, dst ( disp_am_.L (<aregister_L, a6>, 
<immediate_value_W, -8 > )))) 

The output of the rewriting step is a term of the canonical AAS where each subtree is an 
instance of the canonical form of an instruction. This term is given as input to the register 

allocation step. According to the handbook the compiler writer describes various instructions 

with the same name but with the different access classes operands. As the system needs to 

identify an instruction by single name, it renames all instructions. Thus the preceding sub 
instruction gets the internal name sub2. The final form of the rewriting tree is the following : 

Univ_seq ( 
Univ_assign (disp_am_L (< aregister_L, a6 >, <immediate_value_W, -4 >)) 

, temporary_am (<temporary, trap0>))) 

, asl_L (quick_am_L (<quick_value, 2>)) 

, temporary_am (<temporary, trap0>))) 
, Univ_assign (temporary_am (<temporary, trap0>)) 

, temporary_am (<temporary, tmpl>) ) )  
, sub2_L (immediate_val_ami (<immediate_value_L, 4>)) 

, temporary_am (<temporary, tmp l>) )  

, Univ_assign (temporary_am (<temporary, trap1>) 

, temporary_am (<temporary, trap2>)) 
, addi_L (immediate_val_am (<immediate_value_L,-48>) 

, temporary_am (<temporary, trap2>)) 
, move_L (dindex_am_when_W_L (<aregister_.L, a6>, <dregister_W, trap2> 

, disp_amL(<aregister_L, a6>, <immediate_value_W,-8>))) 

3.2 Register allocation 

At the end of the instruction selection step, each subtree of the sequence is an instance of an 
instruction template. But the leaves of each instruction instance are either actual resources or 

temporary resources. Thus it is necessary to bind each temporary with an actual resource, i.e. a 

right storage class, an available element of this storage class. As the instruction selection process 
creates a very large number of temporaries, it is necessary to pack temporaries that are not live 

simultaneously into the same name. This needs contextual information. This information is 
evaluated and processed by means of the AAS generated from the target machine description. 

3.2.1 Binding 

During a first pass, the compound attribute ($h-cs and Ss-cs) gathers the constraints on tempo- 

raries at the root. This value is assigned to the global attribute Ssymtab which is inherited into 
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each offspring of the sequence in order to replace each temporary access mode by the convenient 
access mode. These parts of semantic rules allow to build Ss-cs at the root of the tree. 

w h e r e  Exec ~ Object_modif use 

Sh-cs (Object_modif) := empty-table ; 

Ssymtab (Object_modif):= Ss-cs (Object_modif) 

end  w h e r e  

w h e r e  Univ_seq -~ Object_modif+ u s e  

Ss-cs (Univ_seq) := case arity is 

0 : Sh-temp-cs (Univ_seq) ; 

o t h e r  : Ss-temp-cs (Object_modif.last) ; 

end  case 

$h-cs := case position is 

f irst  $h-temp-cs (Univ_seq) ; 

o t h e r  Ss-temp-cs (Object_modif.teft) ; 

end  ease 

end  w h e r e  ; 

Each offspring of an instruction of the A A S  is decorated by the $class attribute ; whose 

value is the intersection of the access class of the operand with the set of access modes of the 

interface (see §1.1.4). 

w h e r e  Univ_assign ---+ 

$class (Operand.1) := 

$class (Operand.2) := 

end  w h e r e  ; 

w h e r e  asl 

$class (Operand.1) := 

$class (Operand.2) := 

end  w h e r e  ; 

w h e r e  sub2 --* 

$class (Operand.1) := 

$class (Operand.2) := 

end  w h e r e  ; 

w h e r e  addi 

$class (Operand.1) := 

$class (Operand.2) := 

end  w h e r e  ; 

Operand Operand use 

Quick_access_interface ; 

Alt dat a_accessinterface ; 

Operand Operand use 
Quick_access_interface ; 

Alt dat a_access_int erface ; 

Operand Operand use 

All_access_interface ; 

Dregister .access_int efface ; 

Operand Operand use 

Immediate_access..interface ; 

Altdata_access.Jnterface ; 

The intersection of the access classes Altmem, Dregister, Altdata are automatically com- 
puted and are respectively defined by : 

All_access-interface 

Dregister_access-interface 

Alt dat a_access-interface 

= [dreg_am_B, dreg2~m_W,dreg_am_L, 

areg_am_W, areg_am_L, relative_dlab_am_~,V]; 

= [dreg_amA3, dreg_am_W, dreg_am_L] ; 

= [dreg_am_B, dreg_am_W, dreg_am_L] ; 

The insertion of a constraint on a temporary is done in the nutl-ary rule describing a tem- 

porary. The lookup function which searches for the identifier related to the denotation of a 
temporary and returns the constant [ ] if the search fails. 
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w h e r e  Denotation_temporary --* use 

Ss-cs := let info := lookup ($id (Denotation_temporary), Sh-cs (Denotation_temporary)) 

in if info = [] t h e n  

if Suniv_assign_son (Denotation_temporary) t h e n  

- - if the temporary is the son of a universal assignment, 

- - the information binding to it is All_access-interface 

insert ($id (Denotation_temporary), All_access-interface 

, Sh-cs (Denotation_temporary)) 

- elsif  $univ_assign_son (Denotation_temporary) 

t h e n  Sh-cs 
else replaceinfo ($class , $id (Denotation_temporary) 

, Sh-cs (Denotation_temporary)) 

- - replace the information related to the temporary by the intersection of the 

- - constraints related to the left hand side instructions with that  of current one 

e n d  w h e r e  ; 

For instance, in the asl tree, the constraint for trap0 is Dregister_access-interface which binds 

the temporary trap0 with a long data register as the size of the instruction is long. In the same 

way, the constraint for trap1 in the sub ~:ree is Altdata_access-interface which binds also tmpl  

with a long data  register, trap2 is bound with a long data register because of the constraints on 

the second operand of an addi instruction. 

The overloading of the denotation of a temporary is done by looking for the information 

coupled to the name of the temporary in the global attribute Ssymtab. 

w h e r e  Denotation_temporary --* use  

$term := let info : info-binding :=lookup ($id (Denotation_temporary) 

, Ssymtab (Denotation_temporary)) 
in if info = Aregister_access-interface 

t h e n  Temporary-union (Denotation_aregister ( ) 

w i th  Stype := aregister, $id := $id (Denotation_temporary) 

e n d  w i t h  ) 

elsif  info = Dregister.~ccess-interface 

t h e n  Temporary-union (Denotation_dregister ( ) 

w i t h  Stype := dregister, $id := $id (Denotation_temporary) 
end  w i t h  ) 

else Temporary-union (Denotation_temporary ( ) 

w i t h  Stype := temporary, $id := $id (Denotation_temporary) 

end  wi th  ) 

e n d  if ; 

end  w h e r e  ; 

The overloading of the temporary access mode is done using the union of types. 

w h e r e  Temporary_am - ,  Temporary use 

Sterm := case  $term-Temporary(Temporary) is 

Temporary-union(X : Temporary) : temporary_am(X) ; 

Temporary-union(X : Dregister) : dreg_am(X) ; 
Temporary-union(X : Aregister) : areg_am(X); 

o t h e r  : null-Operand( ) ; 

end  ease ; 
end  w h e r e  ; 
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seq ( 

Thus after the binding step, the term becomes : 

move_L (disp_ami (<aregister_L, a6>, <immediate_value.W,-4>) 
, dreg_am (<dregister_L, trap0>)) 

, asl_L (quick_am_L (<quick_value, 2>) 
, dreg_am (<dregister_L, tmp0>)) 

, move_L (dreg_am (<dregister_L, tmp0>) 
, dreg_am (<dreglster_L, tmpl>))  

, sub2_L (immediate_val_am~ (<immediate_value_L, 4>) 
, dreg_am (<dregister_L, tmpl>))  

, move_L (dreg_am (<dregister_L, tmpl>)  
, dreg_am (<dregister_L, trap2>)) 

, addi_L (immediate_val_am (<immediate_value_L, -48>) 
, dreg_am (<dregister_L, trap2>)) 

, move_L (dindex_am_when_L_L (<aregister_L, a6> 
, <dregister_L, trap2>), <immediate_value_B, 0>) 
, disp_am_L(<aregister_L, a6>, <immediate_value_W,-8>))) 

3.3  Life-time analysis of temporaries 

The rewriting process creates as many n~mes of temporaries as required. All temporaries can not 
be held in registers and a great amount of space will have to be allocated. In order to decrease the 
number of temporaries, those that are not live simultaneously and whose constraint intersection 

is not empty can be packed into the same name. On the example, as the intervals definition 
of tmp0, tmpl,  trap2 are disjoint and all three of them are bounded to dregister_L, they can 
be packed into the same name trap0. It follows that the third and the fifth move that now 
become move from trap0 to trap0 are no more useful and are deleted. The life-time analysis of 
the temporaries constitutes another pass of the AG related to the canonical AAS. The life-time 
analysis coupled with the d~ta dependence graph of temporaries lead to rearrange the ordering 
of instructions in such a way that inside a block, physical adjacency of two instructions follows 
more closely data flow adjacently. This gives more efficient packing of temporaries. Let us 
consider the following term obtained after instruction selection. 

Univ_seq ( 
(a) , Univ_assign (disp_am_I, (<aregister_L, a6>, <immediate_value_W,-i2>) 

, temporary_am (<temporary, trap1>)) 
(b) , addi_L (immediate_val_am_L (<immediate_value_L, 24>) 

, temporary_am (<temporary, trap1>)) tmpl 
(c) , Univ_assign (disp_am_L (<aregister_L, a6>, <immediate_value_W, 12>) 

, temporary_am (< temporary, trap2>)) 
(d) , Univ_assign (temporary_am (<temporary, t lnpl>) 

, temporary_am (<temporary, tmp3>)) 
(e) , muLL (disp_amL (<aregister_L, a6>, <immediate_value_W,-4>) 

, temporary_am (<temporary', trap3>)) 
(f) , Univ_assign (temporary_am (<temporary, tmp3>) trap3 

, areg_ind_am_L (<aregister_L, trap2>)) 

binding (tmpl)  = { aregister_L, relative_dlab_am_L } 
binding (trap2) = { aregister_L } 
binding (tmp3) = { dregister_L } 

tmp2 
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No packing is possible here as tmpl  and trap2 are live simultaneously and tmpl  and trap3 have 

incompatible constraints. The data dependency graph is as follows : 

y 
(b) ..___-.-.4~d) "''~e) 

(a) S (c) 

The code is reordered : when a node depends from two branches, the longest branch is first 

written. The code is now the following after a new life-time analysis : 

(a) 
(b) 
(d) 
(e) 
(c) 
(f) 

trap1 

trap3 trap2 

Now trap1 and trap2 can be packed into the same name with the constraint aregister_L. 
Note that the move (d) can not be removed and is used for the purpose of conversion between 

an address register and a data register. As the consequence of life-time analysis and packing of 

temporaries, some classical peephole optimization have no more to be apply inside a block, for 

instance a sequence of two moves from register to register transformed in a single move under 

hypothesis of live or dead register [DF 84]. 

3.3.1 Register assignment a n d  c o d e  emission 

- register assignment. According to the available storages, first for each temporary, we 

pick the storage class related to the cheapest access mode of the preceding set. Then we 

choose the name of an actual available location of this storage class for the temporary. In 

the first example, there is a strong constraint on trap1 which must be a data register. If 

the first free data register is dO , the register assignment is done for trap0 this way. 

code produc t ion .  The code emission is achieved by a decompilation process of the tree 

decorated by the format and the code operation attributes. Such a process is carried out 

using the PPAT (a Pretty Printer for Attributed Tree) module of FNC-2. 

Thus, after the binding and the register assignment steps, the code emitted is : 

MOVE.L -4(a6) ,  dO 
ASL.L #2,  dO 
SUBI.L #1, dO 

ADDI.L # - 4 8 ,  dO 

MOVE.L 0(a6,d0.L), -8(a6)  
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4 Conc lus ion  

We have provided ways to specify compilers within the framework of a compiler writing system 
using AAS and A G  with the background of abstract data types. The code-generator generator 
PAGODE is integrated using the same tools and formalism. Thus, each step of the compilation 

process is the mapping from a term of an A D T  to a term of another A D T .  In such a way. 
correctness proof of each step can be done [DMR 89]. 

The instruction selection process corresponds to a set of rewriting rules currently imple- 
mented in Prolog. We envisage more powerful tree pattern matching techniques such as in 

[DMR 89]. 
The instruction selection process corresponds to a set of rewriting rules currently imple- 

mented in Prolog. V~e envisage more powerful tree pattern matching tedmiques such as in 

[WW 88] to increase the efficiency of the instruction selection process. 

A work currently in progress aims at infering peephole optimizing rules from the target 

machine specification. 

Except in works of Fraser [FW 88] which aim at infering automatic peephole rules integrated 

in the code-generator system, peephole optimizations are done after code emission. 

In our framework, each tree of the sequence is no more than one instance of an instruction 

after the instruction selection step. As temporaries stand for register or memory cell, it is 

possible to specify some general rules patterns for peephole especially for register tranfers. This 

rule can be used before register assignment or when instantiated by a coherent set of registers, 

access modes and instructions give transformation rules on the code itself. 

Besides such global rule patterns, more machine specific peephole rules can be deduced from 

the machine description. One family of rules can be obtained using the semantics of the side 

effect operators involved in some access mode templates as predecrement. Another family of 
rules involved consecutive branch instructions. 
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