
PAGODE • A back end generator using

attribute abstract syntaxes and term rewritings

Annie Despland, Monique Mazaud**

Raymond Rakotozafy,

• L.I.F.O. Universit6 d'Orl6ans

BP 6759, 45067 Orl6ans CEDEX2, France and I.N.R.I.A.
• , I.N.R.I.A. Domaine de Voluceau

BP 105, 78153 Le Chesnay CEDEX, France

A b s t r a c t

A major problem in deriving a compiler from a formal definition is the produc-

tion of correct and efficient object code. We propose a solution to this problem
in the framework of a compiler writing system where the compilation process may
be viewed as successive translations from an attributed abstract syntax to another

abstract syntax. The code-generator generator needs two kinds of specifications :

an attributed abstract syntax (AAS) of the target machine : it is the descrip-

tion of the I .R. given as input to the code-generator.

a target machine description where the basic concepts are hierarchically de-

scribed by tree-patterns. These tree patterns are terms of the target abstract

syntax.

The code generation process is divided into two steps : the instructions selection

process and the register allocation one. The instruction selection process applies

a set of rewriting rules driven by tree templates derived from the target machine
specification to the I .R. term. The register allocation process consists of several

evaluation passes of an attributed grammar derived automatically from the target
machine specification. The first one sets the constraints on temporaries accord-
ing to the whole context, the second one does life-time analysis and packing on

temporaries, the last one assigns effective resources to temporaries.

1 I n t r o d u c t i o n

A compiler, in order to produce code, needs full knowledge not only of the syntax and

the semantics of the source language but also of the s t ruc ture of the target machine and

the semantics of its instruct ion set. Considerable research effort has been invested into

making compiler construct ion as modula r and as au tomat ic as possible.

Tools based on formalisms such as abs t rac t da ta types, a t t r ibu ted g r a m m a r s are

widely known and used to produce front ends. In order to have a uniform approach of

87

the whole compilation process, it would be useful to use the same formalism for the front
end and the back end. An approach using high level semantics has been developped in
MESS [LP 87] but the emphasis had been put essentially on the front-end.

This paper is devoted to the back end of the compiler writing system.
Usually, code generation is converted into a syntactic process using tree structured

patterns describing instructions of the target machine and a tree structured I .R. The
instruction selection is done by covering the input I : R by instruction patterns. Various
works differ by the way in which the instruction set of the target machine is described
and by the pattern matching and transformations used to reduce the I . R tree.

LR(1)-like parsing is used in [GG 78], [GH 84]. Attributed grammars are used in
[GF 82] to add semantic constraints on symbols. In [Cat 80] , [FW 88] subgoals are
selected by use of heuristics to try patterns. In [ESL 89] a reduction algorithm that
computes the best cover tree according to cost function is used.

All these code-generator generators not are generally embedded in a full compiler
writing system using a uniform formal framework. The instruction set of the target

machine, except in the works of Giegerich [Gie 90] is not described by a formal semantics.
It is often obscured by informations related to the reduction algorithm and cannot be
got straightforward from the handbook of the target machine. As a consequence of this
lack of formal semantics, there is no means to prove the correctness of the generated
code.

Our compiler writing system produces a compiler from a specification including
three parts : a source language, a target language definition and the description of the
implementation choices.

The fundamental background of the specifications is that the whole compilation
process is viewed as successive mappings from an abstract data type (A D T) into an

other abstract data type [GDM 84]. The axioms of the various A D T allow to prove
the correctness of each step of the compilation process [DMR 89].

Since an abstract data type without axioms is hardly more than an abstract syn-
tax, the tools used here to handle these specifications are attributed abstract syntaxes
(AAS for abbreviation) and attribute grammars (AG) specifying the mappings be-

tween AASes. An A A S is mainly an abstract syntax with declarations of attributes
attached to phyla. Productions of the A G are operator definitions of the AAS. In the
whole paper, we call semantic rules the attributes definitions related to the productions
of the AG. The system FNC-2 has especially been designed for dealing with these tools
[JP 90].

We focus on the back end of the compiler writing system. It uses the same formal
background as the preceding steps.

The first section presents the code-generator specification for the instruction selec-
tion process. It needs two kinds of specifications :

- an A A S of the target machine : it is the description of the I . R given as input to
the code-generator,

- a target machine description hierarchically structured in three levels [DMR 87].
It consists of a description of the target instruction set and a mapping of the
instruction set into the target AAS (i.e the semantics of the instructions is given
in terms of the target AAS).

88

C o m p i l e r C o m p i l e r C o m p i l e r
Spec i f ica t ion G e n e r a t o r

~ l anguage~- , source orogram

specification of the r ~ ,
translation into -----* @ ~ - ~ / analysis l

.ou~c~ a~.ot..c~ torm.AGll tevaluation of AGll

8~ " ~ re ; es ntaii0n l'implementati°n p - e

[evaluatio n of AG2

target ~ t ! t ADT ~ ~ ~ - - - a r g e t a b t r a c term

I de cripdon i | ~ t A A S) , x arget, _ _ _ i l l target AAS enr[c-e-hd ~targ t e t erm

[enriched target AG3~......~ 1

register allocation
code emission]

I
object code

The second section deals with the code generation mechanism which is divided into
two steps : the instruction selection process and the register allocation process.

The compiler writer describes the semantics of each instruction of the target machine
by a I .R . term. Thus the instruction selection process can be defined formally as a
reverse translation as in [GS 88] [Gie 90], operationally the reverse translation is defined
by a set of tree templates derived from the target machine specification and a set of
rewriting rules that are machine independent. As the description language has a formal
semantics, the correctness of the rewriting rules has been achieved [DMR 89]. They
preserve the semantics of the I .R term.

This step produces a term of the canonical target AAS. It is the target AAS
enriched by some universal operations on temporary ressources and restricted to the
canonical form of instructions and addressing modes. This term is given as input to the
register allocation step which is an evaluation pass of the AG based on the canonical
target AAS, whose semantic rules are automatically generated by the system.

89

2 T h e c o d e - g e n e r a t o r s p e c i f i c a t i o n

2.1 Abstract syntax of the target language

To define the abs t rac t syntax of the target language, the compiler writer must describe

phyla and opera tors , which are respectively similar to non- termlnals and product ions

of a usual context-free g r ammar . The abs t rac t syntax of the target machine mirrors

v i r tua l target machine with e lementary instruct ions (called object modification following

[GDM 84]) acting on cells via e lementary operat ions denoting the access p a t h to these

cells. In such an approach, an instruct ion of the instruct ion set processor is represented

by a modif icat ion or a sequence of modifications. Phy la represent basic concepts of the

target machine such as modifications, addressing modes, operands and cells. Defining

a phy lum involves speci~Ting which opera tors it includes. It follows according to the

machine specification (see §3.1.1).

Object_modif =
Accessmmde =

Operand =
Cell =

seq assign compare branch . . .

dreg_am disp_am postinc_am . . .
const_value cont_of_address index add . . . src

designates_address designates_aregister . . . dst

Phyla represent ing operands and cells are used to designate storages of the target

machine such as registers and m e m o r y locations. Opera tors designate available opera-

tions of the target machine such as :

- the usual modifications :

assign --~ Operand Cell
compare --~ Operand Operand

- the usual ar i thmet ic operat ions :

add --~ Operand Operand

- the dereference and cell constructor operat ions :

cont_of_address --, address

cont_of_dreg - , dregister
designates_aregister -+ aregister

- the operat ions describing access pa th to m e m o r y cells :

index ~ address immediate_value

- the buil t- in operat ions src and dst to introduce an operand in source or dest inat ion

posi t ion :

90

src ~ Access_mode
dst ---* Access.anode

and addressing modes :

Access_mode = areg_am dreg_am predec_am . . .

dreg_am ---, dregister
disp_am --~ aregister immediate_value

postinc_am ~ aregister

Notions such as the size of an operand, the type or the name of a storage, the value

of an address are specified by at tr ibutes at tached to phyla of the target A A S .

2.2 The target machine specification

We provide a language to specify the instruction set processor of a target machine.

The basic concepts used are described by specific constructs of the language : storage

bases, storage classes, value classes, access modes, access classes and instructions. Each

construct is defined by properties such as the size of the associated addressable units or

the semantics of the occurrence of the construct. This semantics is expressed using a

te rm of the target A A S and takes into account its size. As the occurrences of a construct

are related to the size of the addressable units, their semantic descriptions are nearly

identical [DMR 87]. A solution proposed to deal with large algebraic specifications

is the use of parameter izat ion and instantiat ion mechanisms. Such mechanisms fit

very well to our machine specification language. The compiler writer can factor some

instances of a given construct in a generic pa t te rn followed by the possible values of the

generic parameters of the pa t te rn . The system derives from this declaration as many

occurrences of the construct as there are sizes of addressable units asssociated to it.

The instantiat ion mechanism is bound to a name generation mechanism. Throughout

the paper the following notations will be used :

• If n is a name and L is a variable, when L is instantiated by v , n !L builds the

name n_y.

• <S V > means that V is a constant or a variable of sort S.

• All keywords of the language are in bold letters in the following examples.

2.2.1 Storage classes

A component of the physical storage does not represent the same operand depending

on the size associated to the operat ion applied to this operand. For instance, an access

to a register may designate a byte operand, a word operand or a longword operand.

Thus, we define two fundamental concepts : storage base and storage class. A storage

base is defined as a set of smallest addressable units of physical storage. For a given

storage base, the compiler writer must describe as many storage classes as there are

ways to gather storage base elements to represent logical storage units. A storage class

occurrence is characterized by the following propert ies :

91

its denotation,

its storage base viewed as an attribute of a storage class,

basic operations such as the dereference operation, i.e. the access operation to the

contents of an element of the storage class and the cell constructor operation.

In the machine description language, the storage class construct is described using

a predefined keyword :[or each of these properties.
The MC68000 has two kinds of registers : the da ta registers dedicated to data values

and address registers dedicated to addresses. Thus, the compiler writer must declare
the two following storage bases :

Storage_base DREG - - Data registers
Set is { DREG [k] where k in 0 .. 31 }

End
Storage_base AREG - - Address registers

S e t is { AREG [k] where k in 0 .. 13 }
End

Let us consider the storage classes related to the data register storage base. As an

access to a da ta register may represent an access to a byte operand, a word operand

or a long word operand, the compiler writer must declare three storage classes respec-

tively : the dregister_B, the dregister_W and dreg i s te rL storage classes. The use of the

parameter izat ion and instantiat ion mechanisms allows to avoid the repeti t ion of similar

declarations. The compiler writer can declare a generic pa t te rn of a data register storage

class using generic names. The instance par t of the declaration includes the information

needed by the name generation mechanism to build the actual names.

Storage_class
Deno ta t ion < dregister!size Dk>
At t r i bu t e s

SBase = DREG
Opera t ions

dereferenee is

cont_of_dreg!size : dregister ~ immediate_value
cell_constructor is

designates_dreg ! size : dregister ~ dregister
Symbol ic_nota t ion

Dk is DREG [4*k...4*k+tength-1] where k in 0 . . . 7
I n s t a n c e s

s i z e in {B, W, L}
c a s e size is

B : length is 1

W : length is 2
L : length is 4

End c a s e

End

From this pa t te rn , the system deduces the three descriptions of actual storage classes.

The specification of the address register class is similar to tha t of the da ta register class.

The only difference is tha t the byte access to an address register is not available.

92

2.2.2 Acces s m o d e s

Let us consider an assignment statement of A to B, we shall state in the sequel that A is

the source operand and B the destination operand of the assignment. In an instruction

context, an operand is designated by an addressing mode. Whereas an addressing mode

in source position designates the contents of a storage, it designates the storage itself in

destination position. A part icular machine has several addressing modes. For a given

addressing mode of the machine, the compiler writer must define as many access modes

as there are associated storage classes. An access mode pa t te rn is specified by :

- a canonical form, representative of the access mode, including its name and its

parameters. These parameters are formal storage or value classes.

- its related attributes : length, format and costs.

- a template that describes the access path to the corresponding operand : the operand

in source (resp. destination) position is defined by the term obtained by applying

the dereferenee (resp. the cell constructor) operation to this template.

As for the storage class construct, the compiler writer can define a formal access

mode. Among the numerous addressing modes of the MC68000, let us consider the

indirect with displacement addressing mode. This access mode has instances which

depend on the size of the location indirectly accessed in source position. Thus the

compiler writer defines a generic access mode pat tern "disp_am!size" parameterized by

the size.

A c c e s s _ m o d e

Canonical_form - - Indirect with displacement access modes

disp_am!size (<aregister_L reg> , <value_W val>)
A t t r i bu t e s

$1ength = size - - length of tile addressable unit
$fmt = ~val(reg)" - - Assembly language format

Templa t e
index (cont_of_areg_L (<aregister reg>), const_value_W (<immediate_value val>))

Ins tances size in {B, W, L}

End

As the template of the previous definition gives an address whose dereference opera-
tor is cont_oLaddress!size and the cell constructor is designates_address!size, the system
derives the two following generic access modes, respectively in destination and source
position :

designates_address!size (
index (cont_of~regL (<aregister reg>), const_valuefi, V (<immediate_value val>)))

cont _of..address!size (
index (cont_of.areg_L (< aregister reg>), const_value_W (<immediat e_value val>)))

This leads to three templates in source position (respectively in destination position) when
the size is instantiated by {B, W, L}. This leads to three templates in source position (respec-
tively in destination position) when the size is instantiated by {B, W, L}. The indirect with

index access mode has instances which depend on the size of the location indirectly accessed in

source position.

93

A c c e s s _ m o d e
C a n o n i c a l _ f o r m - - Indirect with displacement access modes

dindex_am!index_size!size (<aregister_L regl >, < dregister!index_size reg2 >

, <vaiue_B val >)

A t t r i b u t e s
$1ength = size

S fmt = ~ val (regI, reg2.index_size)-

w h e n val = 0 -0 (regl, reg2.index_size)~

T e m p l a t e

index (cont_of_areg_L (< aregister regt >)

, add_L (sign_extend_L (cont_of_dreg!index_size (<dregister reg2>))

, sign_extend_L (const_value_B (<immediate_vMue val>))))

w h e n vM = 0

index (cont_of_areg_L (<aregister r eg l>)

, cont_oLdreg!index_size (<dregister reg2>))

I n s t a n c e s size in {B, W, L}~ index_size in { W, L}

E n d

Notice that an optimizing case is described in the specification of this access mode by the

clause when, if the value of vM is 0.

2 . 2 . 3 A c c e s s classes

The operands of an instruction are access classes which are defined as sets of access modes. An

access class can be also specified by a generic pattern including the instantiation of its elements.

There are as many instances of a generic access class as there are possible sizes of operands.

Access_class

< All_access!size AM >

= dreg_am!size (< dregister!size reg >) w h e r e size in {B, W, L}

= areg_am!size (<aregister!size reg>) w h e r e size in {W, L}

: . . o

E n d

2 . 2 . 4 I n s t r u c t i o n s

An instruction may be characterized by the following properties :

- the access classes defining the operands to which the instructions apply

- its related attributes : format, i.e the syntax in the assembly language, length

- the template describing what is performed by the instruction (it is a term of the abstract

data type)

Nearly every instruction of the target machine may be applied to the different lengths of its

operands. In order to avoid the repetition of such descriptions, the compiler writer specifies a

pattern of an instruction and its instances. Let us consider the move instruction which corre-
sponds to an assignment operation. The size of the instruction may be specified to be a byte, a

word or a longword. We obtain the following specification :

94

Ins t ruc t ion
Canonical_form

move!size (<All_access!size AM1>, <Altdata_access!size AM2>)
A t t r i bu t e s

$1ength = size
Sfmt = -MOVE.$1ength Sfmt(<All_access!size AMI>)

, Sfmt (<Altdata_access!size AM2>)"
Templa t e

assign!size (src (<All_access!size AM 1 >), dst (<Altdata_access!size AhI2>))
Ins tances size in {B, W, L}

End

The addi instruction specifies the addition of an immediate operand to an appropriate
operand of the alterable data access class :

Ins t ruc t ion
Canonical_form

addi!size (<Immediate_access!size AM1>, <Altdata_access!size AM2>)
At t r ibu te s

$1ength = size
Sfmt = "ADDI.$1ength $fmt (<Immediate_a~:cess!size AM1 >)

, Sfmt (<Altdata_access!size AM2>)"

Templa t e
assign!size (

add!size (src (<Altdata_access!size AM2>), src (<Immediate_access!size AMI>))
, dst (<Altdata_access!size AM2>))

Ins tances size in {B, W, L}
End

The asl instruction specifies the shift of the content of a data register by a quick value :

Ins t ruc t ion

Canonical_form
ast!size (< Quick_access AM1 >, <Dregister_access!size AM2 >)

A t t r ibu te s
$1ength = size
Sfmt = "ASL.$1ength $fmt(<Quick_access AM1>)

, Sfmt (<Dregister_access!size AM2>)"
Templa t e

assign!size (
shift_al!size (src (<Quick_access AMI>), src (<Dregister_access!size AhI2>))
, dst (<Dregister_access!size AM2>))

Ins tances size in {B, W, L}
End

2.3 The canonical target machine A A S

The bottom-up matching process of the I .R is carried out until each modification of the I.R.
is identified to an instruction template. For each modification, in the context of an instruction
template, operand subterms are matched with access mode templates. If they are leaves of

95

the instruction template, they are replaced by their canonical form in the modification, else

the location designated by the access mode is stored in a temporary and the modification is

rewritten using this temporary. The process goes on in order to make the modification closer

to an instruction template. Finally the modification is flattened in a sequence of universal store

trees and an instance of the instruction template [DMR 89]. The universal store trees must be

described. Thus it is necessary to enrich the target machine AAS with corresponding phyla

and operators. The following specification is automatically added by the system.

Exec --* Object_modif

ObjectAnodif = Univ_seq Univ_assign . . .

Univ_seq --+ Object_modif+

Univ_assign --~ Operand Operand

Opera nd = temporary.am . . .

temporary_am ~ Temporary

Temporary = Denotation_Temporary

Denotation_Temporary --*

- - root of the term

2.4 The interface specification

The system needs to link the internal names such as temporary_am, Univ_assign, and the actual

names of the machine specification that become possible synonyms during the rewriting process.

For that purpose, the system uses an interface declaration module specified by the compiler

writer. For the MC68000 it follows :

Univ_seq

Univ_assign

temporary_am (<temporary temp>)

: seq
: assign!size where size in { B, W, L }

: areg_am!size (<aregister!size temp>)

where size in { W, L }

I dreg_am!size (<dregister!size temp>)

where size in {B, W, L} ,

I relative_am!size (<dataJabel!size temp>)

where size in {B, W, L}

2.5 Target templates and a t t r i bu t e grammar derivation

Two modules are used to process the target machine specification and give two outputs, respec-

tively a set of tree patterns and an attributed abstract syntax of the target machine. The first

module builds three families of trees corresponding to access mode templates in source posi-

t.ion and destination position and instruction templates. These families are written into Prolog

clauses [DMR 88]. The properties of these trees derived from the specification are translated in

Prolog clauses. These tree templates are used by the rewriting step to achieve the instruction

selection. The second module builds an AG for FNC-2. The evaluation of the AG achieves the

register allocation step.

96

3 The code-generator generator

3.1 I n s t r u c t i o n s e l ec t i on

For each I . R term~ the rewriting algorithm needs to know the boundary where the access mode

pa t te rn matching can stop and where the instruction pat tern matching can begin. For tlfis pur-

pose, we define a part i t ion of instruction templates into instruction classes that have the same

boundary. Two templates of an instruction class can be represented by a canonicM representa-

tive. The instruction selection algorithm applies a set of rules as specified in [DMR 89]. The

s t rategy of application of the rewriting rules is strongly connected with the notion of canonical

representative of an instruction class which defines the context of the search for access modes.

The variables occur ones in a canonical representative and represent the operands, they are

annota ted by a proper ty source or destination.

3 .1 .1 R e w r i t i n g ru les

Notations Let AN~[~o~rce be the ordered set of access mode pat terns in source position. Let

AMdestination be the ordered set of access mode pat terns in destination position. Let IC be the

ordered set of instruction class pat terns.

In all the following rules, the search for a pat tern of a set of pat terns tha t matches a

term is done by trying the pat terns of the set one after the other, with respect to the set

ordering. Some of the rules are more formally described in . The strategy of application of the

rewriting rules is strongly connected with the notion of canonical representative of an instruction

class which defines the context of the search for access modes. The variables occur ones in a

canonical representative and represent the operands, they are annotated by a proper ty source

or destination.

3 .1 .2 R e w r i t i n g ru les

Notations Let AMso~ce be the ordered set of access mode pat terns in source position. Let

AMdestination be the ordered set of access mode pat terns in destination position. Let IC be the

ordered set of instruction class pat terns.

In all the following rules, the search for a pa t te rn of a set of pat terns tha t matches a term is

done by trying the pat terns of the set one after the other, with respect to the set ordering. Some

of the rules are more formally described in [DMR 89]. The first one describes the replacement

of a subtree which is an instance of an access mode by the instant iated canonical form of this

access mode : informally when matching a tree t with an instruction class pat tern , the source

and dest inat ion position contexts are set according to the position proper ty in the instruction

class pat tern. If there is a subtree t i of t which is an instance of an access mode pa t te rn in

the right position, then t i is replaced]n t by the instant ia ted canonical form of the access

mode pat tern . The instruction class and access mode pat terns are matched with respect to

the ordering of the two sets IC and AM[. We recall here completely the second rule. It gives a

good idea of the use of temporaries. It describes the t ranformation to be done when a subtree

supposed to be an operand in an instruction context is not an instance of an access mode but

has inner subtrees tha t are instances of access modes.

Rule R2

When matching a tree t with an instruction class pattern, if we find a subtree t i of t which

is not an instance of an access mode pattern, then starting from the leaves of tl, we look for the

97

biggest subtree tij o f t i which is an instance of an access mode in source position. A univer..al

assignment tree is built whose source operand is the instantiated canonical form of the acee.<~

mode corresponding to tij and whose destination operand is the reference to a new temporary

location. The subtree tij is replaced in t i by the temporary access mode in source position applied

to this new temporary location. The universal assignment tree and the rewritten tree are rooted

by a universal sequence operator.

Let t be the tree to transform, supppose there exist T E IC and a substitution aIc

such that cqc = { < Ai, ti > } I Ai E Var(T), 1 < i < n with a Ic(T) = t

and suppose there exists t i such that < Ai, t i > E alC , and if the context of ,-Xi in T is the

position pos and such that for all A E AMpo~ there exists no substitution p such that p(A) =

t i. Then if there exist :

1. a largest subtree tlj starting from the leaves of t i,

2. and B E AMso~ce

3. and a substitution 7 such that 3'(B) = tij.

we define tile rewriting of the tree t by :

t --* Univ_seq(Univ_assign(7(can(B)), ~(dst(temporary_am(< temporary 0 >))))

, t / [t i j= £(src(temporary_am(< temporary 0 >)))])

where 6 is the substitution : ~ = { < 0, tmpa > } where t m p a is a new temporary location.

The rules described in [DMR 89] only deals with terms whose subtrees considered as operands

in an instruction context are nested access mode instances.

When the compiler writer describes the translation of an expression from the source A A S to

the target A A S , the term produced contains embedded arithmetic and access path operators.

Thus it is necessary to specifl" rules to deal with nested arithmetic operators. Informally. when

in an instruction context, a subtree t i cannot be reduced to an access mode instance using the

rules of [DMR 89], then starting from the leaves of ti, we took for the biggest subtree tij of t i

which match the left son of an arithmetic instruction A. First the subtree of tij corresponding

to the source operand modified by the instruction is saved in a temporary, second the subtree

of ti3 is replaced by the reference to the temporary in source position, third an instance of A

is generated using tij and fourth, tij is replaced by the reference to the temporary in source

position,

I

°i °
~ _ L

AM1 A M 2

U~v ,s~q

I
I ~ 'i j

Univ_assign assign L assign

I I
AM I dst add_I, ~ t •

I ~ I I
ten'qx)rarL~ i I t~aporary_am m'c

I ~c AM2 l I
temporary tmpI i temporary mapl temporm'y am

ten'qx, rary mn [

I temporary tmpl temporary tmpl

98

3 .1 .3 E x a m p l e

Let us consider a short piece of program written in the Pascal-like language :

integer J , K ;

array X(10) ;
begin

K : = X (J) ; - - (1)

end.

If the base of the main program is located in the address register a6 and local variables have
negative offsets, the corresponding target term of statement (t) is the following :

assign_L (
cont _of.address_L (

index (cont_of_areg_L (<aregister, a6>))
, a d d i (

sub_L (
shift_aLL (const_quick_vahe (<quick_value, 2>))

, cont_of_address_L (
index (cont_of_aregi (<aregister, a6>))

, const_value_W(<immediate_value, - 4 >))))
, const_value_L(<immediate_value, 4>)))

, const_value_L(<immediate_value, -48>)))))
, designates_address_L (

index (cont_of_areg_L (<aregister, a6>))

, const_value_W(<immediate_value,-8>)))))

The modification is matched with instructions templates. The second offspring of the

shiff_al_L node is an instance of a disp_am_L access mode. There are no access mode templates
with shift_aLL as root. But the subtree rooted with shift_aLL is the left son of an arithmetic
instruction (asl §1.1.2.d). Thus the last rule can he applied. It is repeated successively on the
nodes sub_L and add_l;. The tree resulting from the rewriting steps is the following :

Univ_seq (
, Univ_assign (src (disp_am_L (<aregister, a6>, <immediate_value_W,-4>))

, dst (temporary_am (<temporary, tmp0>)))
, assign_L (

shift_aLL (src (quick_am (<quick_value, 2>))
, src (temporary_am (<temporary, trap0>)))

, dst (temporary_am (<temporary, tmp0>)))
, Univ_assign (src (temporary_am (<temporary, tmp0>))

, dst (temporary_am (<temporary, t m p l >)))
, assign_L (

sub_L (src (temporary.am (<temporary, tmpl))
, src (immediate_val_am (<immedia.te_vMue_L, 4>)))

, dst (temporary_am (<temporary, t rap1>)))

99

, Univ_assign (src (temporary_am (<temporary, trap1>))

, dst (temporary_am (<temporary, tmp2>)))

, assign_L (
add_L (src (temporary_am (<temporary, tmp2))

, src (immediate_val_am (<immediate_value_L, -48>)))

, dst (temporary_am (<temporary, trap2>)))

, assignL (src (dindex_am_when_W_L (<aregister_L, a6>
, <dregister_W, tmp2>,

<immediate_value_B, 0>))

, dst (disp_am_.L (<aregister_L, a6>,
<immediate_value_W, -8 >))))

The output of the rewriting step is a term of the canonical AAS where each subtree is an
instance of the canonical form of an instruction. This term is given as input to the register

allocation step. According to the handbook the compiler writer describes various instructions

with the same name but with the different access classes operands. As the system needs to

identify an instruction by single name, it renames all instructions. Thus the preceding sub
instruction gets the internal name sub2. The final form of the rewriting tree is the following :

Univ_seq (
Univ_assign (disp_am_L (< aregister_L, a6 >, <immediate_value_W, -4 >))

, temporary_am (<temporary, trap0>)))

, asl_L (quick_am_L (<quick_value, 2>))

, temporary_am (<temporary, trap0>)))
, Univ_assign (temporary_am (<temporary, trap0>))

, temporary_am (<temporary, tmpl>)))
, sub2_L (immediate_val_ami (<immediate_value_L, 4>))

, temporary_am (<temporary, tmp l>))

, Univ_assign (temporary_am (<temporary, trap1>)

, temporary_am (<temporary, trap2>))
, addi_L (immediate_val_am (<immediate_value_L,-48>)

, temporary_am (<temporary, trap2>))
, move_L (dindex_am_when_W_L (<aregister_.L, a6>, <dregister_W, trap2>

, disp_amL(<aregister_L, a6>, <immediate_value_W,-8>)))

3.2 Register allocation

At the end of the instruction selection step, each subtree of the sequence is an instance of an
instruction template. But the leaves of each instruction instance are either actual resources or

temporary resources. Thus it is necessary to bind each temporary with an actual resource, i.e. a

right storage class, an available element of this storage class. As the instruction selection process
creates a very large number of temporaries, it is necessary to pack temporaries that are not live

simultaneously into the same name. This needs contextual information. This information is
evaluated and processed by means of the AAS generated from the target machine description.

3.2.1 Binding

During a first pass, the compound attribute ($h-cs and Ss-cs) gathers the constraints on tempo-

raries at the root. This value is assigned to the global attribute Ssymtab which is inherited into

100

each offspring of the sequence in order to replace each temporary access mode by the convenient
access mode. These parts of semantic rules allow to build Ss-cs at the root of the tree.

w h e r e Exec ~ Object_modif use

Sh-cs (Object_modif) := empty-table ;

Ssymtab (Object_modif):= Ss-cs (Object_modif)

end w h e r e

w h e r e Univ_seq -~ Object_modif+ u s e

Ss-cs (Univ_seq) := case arity is

0 : Sh-temp-cs (Univ_seq) ;

o t h e r : Ss-temp-cs (Object_modif.last) ;

end case

$h-cs := case position is

f irst $h-temp-cs (Univ_seq) ;

o t h e r Ss-temp-cs (Object_modif.teft) ;

end ease

end w h e r e ;

Each offspring of an instruction of the A A S is decorated by the $class attribute ; whose

value is the intersection of the access class of the operand with the set of access modes of the

interface (see §1.1.4).

w h e r e Univ_assign ---+

$class (Operand.1) :=

$class (Operand.2) :=

end w h e r e ;

w h e r e asl

$class (Operand.1) :=

$class (Operand.2) :=

end w h e r e ;

w h e r e sub2 --*

$class (Operand.1) :=

$class (Operand.2) :=

end w h e r e ;

w h e r e addi

$class (Operand.1) :=

$class (Operand.2) :=

end w h e r e ;

Operand Operand use

Quick_access_interface ;

Alt dat a_accessinterface ;

Operand Operand use
Quick_access_interface ;

Alt dat a_access_int erface ;

Operand Operand use

All_access_interface ;

Dregister .access_int efface ;

Operand Operand use

Immediate_access..interface ;

Altdata_access.Jnterface ;

The intersection of the access classes Altmem, Dregister, Altdata are automatically com-
puted and are respectively defined by :

All_access-interface

Dregister_access-interface

Alt dat a_access-interface

= [dreg_am_B, dreg2~m_W,dreg_am_L,

areg_am_W, areg_am_L, relative_dlab_am_~,V];

= [dreg_amA3, dreg_am_W, dreg_am_L] ;

= [dreg_am_B, dreg_am_W, dreg_am_L] ;

The insertion of a constraint on a temporary is done in the nutl-ary rule describing a tem-

porary. The lookup function which searches for the identifier related to the denotation of a
temporary and returns the constant [] if the search fails.

101

w h e r e Denotation_temporary --* use

Ss-cs := let info := lookup ($id (Denotation_temporary), Sh-cs (Denotation_temporary))

in if info = [] t h e n

if Suniv_assign_son (Denotation_temporary) t h e n

- - if the temporary is the son of a universal assignment,

- - the information binding to it is All_access-interface

insert ($id (Denotation_temporary), All_access-interface

, Sh-cs (Denotation_temporary))

- elsif $univ_assign_son (Denotation_temporary)

t h e n Sh-cs
else replaceinfo ($class , $id (Denotation_temporary)

, Sh-cs (Denotation_temporary))

- - replace the information related to the temporary by the intersection of the

- - constraints related to the left hand side instructions with that of current one

e n d w h e r e ;

For instance, in the asl tree, the constraint for trap0 is Dregister_access-interface which binds

the temporary trap0 with a long data register as the size of the instruction is long. In the same

way, the constraint for trap1 in the sub ~:ree is Altdata_access-interface which binds also tmpl

with a long data register, trap2 is bound with a long data register because of the constraints on

the second operand of an addi instruction.

The overloading of the denotation of a temporary is done by looking for the information

coupled to the name of the temporary in the global attribute Ssymtab.

w h e r e Denotation_temporary --* use

$term := let info : info-binding :=lookup ($id (Denotation_temporary)

, Ssymtab (Denotation_temporary))
in if info = Aregister_access-interface

t h e n Temporary-union (Denotation_aregister ()

w i th Stype := aregister, $id := $id (Denotation_temporary)

e n d w i t h)

elsif info = Dregister.~ccess-interface

t h e n Temporary-union (Denotation_dregister ()

w i t h Stype := dregister, $id := $id (Denotation_temporary)
end w i t h)

else Temporary-union (Denotation_temporary ()

w i t h Stype := temporary, $id := $id (Denotation_temporary)

end wi th)

e n d if ;

end w h e r e ;

The overloading of the temporary access mode is done using the union of types.

w h e r e Temporary_am - , Temporary use

Sterm := case $term-Temporary(Temporary) is

Temporary-union(X : Temporary) : temporary_am(X) ;

Temporary-union(X : Dregister) : dreg_am(X) ;
Temporary-union(X : Aregister) : areg_am(X);

o t h e r : null-Operand() ;

end ease ;
end w h e r e ;

102

seq (

Thus after the binding step, the term becomes :

move_L (disp_ami (<aregister_L, a6>, <immediate_value.W,-4>)
, dreg_am (<dregister_L, trap0>))

, asl_L (quick_am_L (<quick_value, 2>)
, dreg_am (<dregister_L, tmp0>))

, move_L (dreg_am (<dregister_L, tmp0>)
, dreg_am (<dreglster_L, tmpl>))

, sub2_L (immediate_val_am~ (<immediate_value_L, 4>)
, dreg_am (<dregister_L, tmpl>))

, move_L (dreg_am (<dregister_L, tmpl>)
, dreg_am (<dregister_L, trap2>))

, addi_L (immediate_val_am (<immediate_value_L, -48>)
, dreg_am (<dregister_L, trap2>))

, move_L (dindex_am_when_L_L (<aregister_L, a6>
, <dregister_L, trap2>), <immediate_value_B, 0>)
, disp_am_L(<aregister_L, a6>, <immediate_value_W,-8>)))

3.3 Life-time analysis of temporaries

The rewriting process creates as many n~mes of temporaries as required. All temporaries can not
be held in registers and a great amount of space will have to be allocated. In order to decrease the
number of temporaries, those that are not live simultaneously and whose constraint intersection

is not empty can be packed into the same name. On the example, as the intervals definition
of tmp0, tmpl, trap2 are disjoint and all three of them are bounded to dregister_L, they can
be packed into the same name trap0. It follows that the third and the fifth move that now
become move from trap0 to trap0 are no more useful and are deleted. The life-time analysis of
the temporaries constitutes another pass of the AG related to the canonical AAS. The life-time
analysis coupled with the d~ta dependence graph of temporaries lead to rearrange the ordering
of instructions in such a way that inside a block, physical adjacency of two instructions follows
more closely data flow adjacently. This gives more efficient packing of temporaries. Let us
consider the following term obtained after instruction selection.

Univ_seq (
(a) , Univ_assign (disp_am_I, (<aregister_L, a6>, <immediate_value_W,-i2>)

, temporary_am (<temporary, trap1>))
(b) , addi_L (immediate_val_am_L (<immediate_value_L, 24>)

, temporary_am (<temporary, trap1>)) tmpl
(c) , Univ_assign (disp_am_L (<aregister_L, a6>, <immediate_value_W, 12>)

, temporary_am (< temporary, trap2>))
(d) , Univ_assign (temporary_am (<temporary, t lnpl>)

, temporary_am (<temporary, tmp3>))
(e) , muLL (disp_amL (<aregister_L, a6>, <immediate_value_W,-4>)

, temporary_am (<temporary', trap3>))
(f) , Univ_assign (temporary_am (<temporary, tmp3>) trap3

, areg_ind_am_L (<aregister_L, trap2>))

binding (tmpl) = { aregister_L, relative_dlab_am_L }
binding (trap2) = { aregister_L }
binding (tmp3) = { dregister_L }

tmp2

t03

No packing is possible here as tmpl and trap2 are live simultaneously and tmpl and trap3 have

incompatible constraints. The data dependency graph is as follows :

y
(b) ..___-.-.4~d) "''~e)

(a) S (c)

The code is reordered : when a node depends from two branches, the longest branch is first

written. The code is now the following after a new life-time analysis :

(a)
(b)
(d)
(e)
(c)
(f)

trap1

trap3 trap2

Now trap1 and trap2 can be packed into the same name with the constraint aregister_L.
Note that the move (d) can not be removed and is used for the purpose of conversion between

an address register and a data register. As the consequence of life-time analysis and packing of

temporaries, some classical peephole optimization have no more to be apply inside a block, for

instance a sequence of two moves from register to register transformed in a single move under

hypothesis of live or dead register [DF 84].

3.3.1 Register assignment a n d c o d e emission

- register assignment. According to the available storages, first for each temporary, we

pick the storage class related to the cheapest access mode of the preceding set. Then we

choose the name of an actual available location of this storage class for the temporary. In

the first example, there is a strong constraint on trap1 which must be a data register. If

the first free data register is dO , the register assignment is done for trap0 this way.

code produc t ion . The code emission is achieved by a decompilation process of the tree

decorated by the format and the code operation attributes. Such a process is carried out

using the PPAT (a Pretty Printer for Attributed Tree) module of FNC-2.

Thus, after the binding and the register assignment steps, the code emitted is :

MOVE.L -4(a6) , dO
ASL.L #2, dO
SUBI.L #1, dO

ADDI.L # - 4 8 , dO

MOVE.L 0(a6,d0.L), -8(a6)

104

4 Conc lus ion

We have provided ways to specify compilers within the framework of a compiler writing system
using AAS and A G with the background of abstract data types. The code-generator generator
PAGODE is integrated using the same tools and formalism. Thus, each step of the compilation

process is the mapping from a term of an A D T to a term of another A D T . In such a way.
correctness proof of each step can be done [DMR 89].

The instruction selection process corresponds to a set of rewriting rules currently imple-
mented in Prolog. We envisage more powerful tree pattern matching techniques such as in

[DMR 89].
The instruction selection process corresponds to a set of rewriting rules currently imple-

mented in Prolog. V~e envisage more powerful tree pattern matching tedmiques such as in

[WW 88] to increase the efficiency of the instruction selection process.

A work currently in progress aims at infering peephole optimizing rules from the target

machine specification.

Except in works of Fraser [FW 88] which aim at infering automatic peephole rules integrated

in the code-generator system, peephole optimizations are done after code emission.

In our framework, each tree of the sequence is no more than one instance of an instruction

after the instruction selection step. As temporaries stand for register or memory cell, it is

possible to specify some general rules patterns for peephole especially for register tranfers. This

rule can be used before register assignment or when instantiated by a coherent set of registers,

access modes and instructions give transformation rules on the code itself.

Besides such global rule patterns, more machine specific peephole rules can be deduced from

the machine description. One family of rules can be obtained using the semantics of the side

effect operators involved in some access mode templates as predecrement. Another family of
rules involved consecutive branch instructions.

References

[Cat 80]

[Dr 841

[DF 84]

[DMR 87]

[DMR 88]

Cattell R. G. G. : Automatic Derivation of Code Generators from Machine De-

scription. ACM Transactions on Programming Languages and Systems, Vol. 2,

No.2, pp173-199, April 1980.

Davidson J.W., Fraser C.W. : Automatic Generation of Peephole Optimizations.

Proceedings of the SIGPLAN 84 Symposium on Compiler Construction, ACM Vol.

19, 6, pp. 111-116, June 1984.

Davidson J.W., Fraser C.W. : Automatic Generation of Peephole Optimizations.

Proceedings of the SIGPLAN 84 Symposium on Compiler Construction, ACM Vol.
19, 6, pp. 111-116, June 1984.

Despland A., Mazaud M., Rakotozaary R. : Code generator generation based on

template-driven target term rewriting. Proceedings of Rewriting Techniques and

Applications, Bordeaux, France, May 1987 in LNCS no pp 105-120.

Despland A., Mazaud M., Rakotozafy R. : An implementation of retargetable code
generators in Prolog. Proceedings of the International Workshop on Programming

Language Implementation and Logic Programming, Orleans, France, May 1988 in

LNCS no 348 pp 81-104.

t05

[DXI 89]

[Des 82]

[ESL 89]

[FW 88]

[Gan Gie 82]

[GDM 84]

[GF 82]

[GG 78]

[GH 84]

[Gie 90]

[GS 88]

[JP 90]

[LP 87]

[ww 88]

Despland A., Mazaud M., Rakotozafy R. : Using rewriting techniques to produre

code-generators and proving them correct. Rapport de Recherche INRIA RR 1016.

1989, to appear in Science of Computer Programming.

Deschamp Ph. : PERLUETTE : a compiler producing system using ADTs. Pro-

ceedings of International Symposium on Programming, Turin. April 1982.

Emmetmann H., SchrSrer F-W., Landwehr R. : BEG Generator for Efficient Back

Ends. Proceedings of the SIGPLAN 8g, Symposium on Compiler Construction,

Portland, 21-23 June 1989.

Fraser C.W., Wendt A.L. : Automatic Generation of Fast Optimizing Code Gen-

erators. Proceedings of the SIGPLAN 88 Symposium on Compiler Construction,

Sigplan Notices Vot. 23, 7, pp. 79-84, June 1988.

Ganzinger H, Giegerich R. : A truly Generative Semantics-Directed Compiler Gen-
erator. Proceedings of the SIGPLAN 82, Symposium on Compiler Construction,

ACM SIGPLAN Vol. 17, 6. June 1982.

Gaudel M. C., Deschamp Ph, Mazaud M. : Compiler Construction From High

Level Specification. Automatic Program Construction Techniques, Macmillan Inc,
1984.

Ganapathi M., Fischer C.N. : Descriptive-Driven Code Generation Using at-
tributed Grammars. Conference of the Nineth Annual ACM Symposium on Pro-

gramming Languages.

Graham S.L, Glanville R. S. A New Method for Compiler Code Generation. Con-
ference Record of the Proceedings of the Fifth Annual ACM Symposium on Prin-

ciples of Programming Languoges, pp 231-240, January 1978.

Graham S. L., Henry R. R. & At : Experiment with a Graham-Glanville Style Code
generator. Proceedings of the SIGPLAN 84 Symposium on Compiler Construction,

ACM Vol.. 19, 6, June 1984.

Giegerich R. On the structure of Verifiable Code Generator Specifications Pro-

ceedings of the SIGPLAN 90 Symposium on Compiler Construction, ACM Vol..
25, 6, June 1990.

Giegerich R., Schmat K. Code Selection Techniques : Pattern Matching, Tree

Parsing, and Inversion of Derivors. Proceedings of the ESOP'88 Nancy, France,
March 88 in LNCS no 217 pp 247-268.

Jourdan M., Parigot D., Julle' C., Durin D., Le Bellec C : Design, Implementa-
tion and Evaluation of the FNC-2 Attribute Grammar System Proceedings of the

SIGPLAN 90 Symposium on Compiler Construction, ACM Vol.. 25, 6, June 1990.

Lee P., Pleban U. : A Realistic Compiler Generator Based on High-Level Se-
mantics. Conference Proceedings of the Fourteenth Annual ACM Symposium on

Principles of Programming Languages, January 1987 pp 284-295.

Weisgerber B., Wilhelm R. Two tree pattern matchers for code selection in Com-

pilers Compilers and High Speed Compilation. Berlin oct 88, D. Hammer, ed in
LNCS no 371 pp 215-229.

