Painless Unsupervised Learning with Features

Taylor Berg-Kirkpatrick Alexandre Bouchard-Côté John DeNero Dan Klein

Basic HMM for POS Induction

Basic HMM for POS Induction

Transition distribution:

$$
P\left(z^{\prime} \mid z\right)
$$

Basic HMM for POS Induction

Emission distribution:

$$
P(x \mid z)
$$

Parameterization

Key distribution: $P(x \mid \mathrm{NNP})$

> | x |
| :---: |
| John |
| Mary |

running
jumping

Parameterization

Key distribution: $P(x \mid$ NNP $)$

$\frac{\theta_{x \mid \text { NNP }}}{0.1}$	
0.0	
John	
0.2	Mary
running	

0.0 jumping

Parameterization

Key distribution: $P(x \mid \mathrm{NNP})$

$\theta_{x \mid \text { NNP }}$	x	f
0.1	John	+Cap
0.0	Mary	+Cap
0.2	running	+ing
0.0	jumping	+ing

Parametrization

Key distribution: $P(x \mid \mathrm{NNP})$

$$
\begin{array}{rrr}
\mathbf{W}: & + \text { Cap } & +1.2 \\
& + \text { ing } & -0.3
\end{array}
$$

0.0 Mary +Cap 0.3
0.2 running +ing 0.1
0.0 jumping +ing 0.1

Parameterization

W --->--• θ

$$
\theta_{x \mid z}=\frac{\exp \left(\mathbf{w}^{\top} \mathbf{f}(x, z)\right)}{\sum_{x^{\prime}} \exp \left(\mathbf{w}^{\top} \mathbf{f}\left(x^{\prime}, z\right)\right)}
$$

Berkeley
 Unsupervised Learning with Features

Main idea: local multinomials become maxents

Unsupervised Learning with Features

Main idea: local multinomials become maxents

EM + Maxent M-Step = Unsupervised learning w/ features

Berkeley
 POS Induction Accuracy

POS Induction Accuracy

Basic Multinomial:
John \wedge NNP

POS Induction Accuracy

	$56.0+128$
43.2	
Basic Multinomial: John ^ NNP	Rich Features:
	John \wedge NNP
	+ Digit ^ NNP
	+Hyph \wedge NNP
	+Cap \wedge NNP
	+ ing \wedge NNP

Hard EM without Features

Hard EM without Features

E-Step: Dynamic Program

$$
\mathbf{z} \leftarrow \underset{\mathbf{z}}{\operatorname{argmax}} P(\mathbf{z} \mid \mathbf{x} ; \boldsymbol{\theta})
$$

Dynamic Program

M-Step: Divide Counts
$\boldsymbol{\theta} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{argmax}} P(\mathbf{x}, \mathbf{z} ; \boldsymbol{\theta})$

Divide Counts

Z

$$
=\left[\frac{c(z \rightarrow x)}{c(z \rightarrow \cdot)}, \cdots\right]
$$

Berkeley

Hard EM with Features

Hard EM with Features

E-Step: Dynamic Program

Hard EM with Features

E-Step: Dynamic Program

Hard EM with Features

$$
\begin{aligned}
& \log P(\mathbf{x}, \mathbf{z} ; \mathbf{w}) \\
& \quad=\sum_{i} \log P\left(x_{i} \mid z_{i} ; \mathbf{w}\right)+\ldots
\end{aligned}
$$

Hard EM with Features

$$
\begin{aligned}
& \log P(\mathbf{x}, \mathbf{z} ; \mathbf{w}) \\
& =\sum_{i} \underbrace{\log }_{\text {Maxent training example }} \underbrace{P\left(x_{i} \mid z_{i} ; \mathbf{w}\right)+\ldots}
\end{aligned}
$$

Hard EM with Features

$$
\begin{aligned}
& \log P(\mathbf{x}, \mathbf{z} ; \mathbf{w}) \\
& =\sum_{i} \log \underbrace{P}_{\text {Maxent training example }}\left(x_{i} \mid z_{i} ; \mathbf{w}\right)+\ldots
\end{aligned}
$$

$$
=\sum_{z, x} c(z \underbrace{\rightarrow x}_{\text {Multiplicity }}) \log P(x \mid z ; \mathbf{w})+\ldots
$$

Hard EM with Features

E-Step: Dynamic Program

Hard EM with Features

E-Step: Dynamic Program

$\mathbf{z} \leftarrow \underset{\mathbf{z}}{\operatorname{argmax}} P(\mathbf{z} \mid \mathbf{x} ; \boldsymbol{\theta})$

M-Step: Train Maxent
$\mathbf{w} \leftarrow \underset{\mathbf{w}}{\operatorname{argmax}} \log P(\mathbf{x}, \mathbf{z} ; \mathbf{w})$
Transform Parameters
$\theta_{x \mid z} \leftarrow \frac{\exp \left(\mathbf{w}^{T} \mathbf{f}(x, z)\right)}{\sum_{x^{\prime}} \exp \left(\mathbf{w}^{T} \mathbf{f}\left(x^{\prime}, z\right)\right)}$

EM with Features

E-Step: Dynamic Program

$\mathbf{z} \leftarrow \operatorname{argmax} P(\mathbf{z} \mid \mathbf{x} ; \boldsymbol{\theta})$
M-Step: Train Maxent
$\mathbf{w} \leftarrow \operatorname{argmax} \log P(\mathbf{x}, \mathbf{z} ; \mathbf{w})$

Transform Parameters

$$
\theta_{x \mid z} \leftarrow \frac{\exp \left(\mathbf{w}^{T} \mathbf{f}(x, z)\right)}{\sum_{x^{\prime}} \exp \left(\mathbf{w}^{T} \mathbf{f}\left(x^{\prime}, z\right)\right)}
$$

EM with Features

E-Step: Dynamic Program

$$
\begin{aligned}
& e(z \rightarrow x) \leftarrow \mathbb{E}[c(z \rightarrow x)] \\
& \underline{\text { M-Step: Train Maxent }}
\end{aligned}
$$

$\mathbf{w} \leftarrow \operatorname{argmax} \log P(\mathbf{x}, \mathbf{z} ; \mathbf{w})$

Transform Parameters

$$
\theta_{x \mid z} \leftarrow \frac{\exp \left(\mathbf{w}^{T} \mathbf{f}(x, z)\right)}{\sum_{x^{\prime}} \exp \left(\mathbf{w}^{T} \mathbf{f}\left(x^{\prime}, z\right)\right)}
$$

EM with Features

E-Step: Dynamic Program

$$
e(z \rightarrow x) \leftarrow \mathbb{E}[c(z \rightarrow x)]
$$

M-Step: Train Maxent

$$
\mathbf{w} \leftarrow \underset{\mathbf{w}}{\operatorname{argmax}} \mathbb{E}[\log P(\mathbf{x}, \mathbf{z} ; \mathbf{w})]
$$

Transform Parameters

$$
\theta_{x \mid z} \leftarrow \frac{\exp \left(\mathbf{w}^{T} \mathbf{f}(x, z)\right)}{\sum_{x^{\prime}} \exp \left(\mathbf{w}^{T} \mathbf{f}\left(x^{\prime}, z\right)\right)}
$$

EM without Features

Initialize probabilities $\boldsymbol{\theta}$ repeat

Compute expected counts e

- Fit parameters $\boldsymbol{\theta}$
until convergence

EM without Features

Initialize probabilities $\boldsymbol{\theta}$ repeat
Compute expected counts e

- Fit parameters $\boldsymbol{\theta}$ until convergence

EM without Features

Initialize probabilities $\boldsymbol{\theta}$ repeat
Compute expected counts e

- Fit parameters $\boldsymbol{\theta}$ until convergence

EM without Features

Initialize probabilities $\boldsymbol{\theta}$ repeat
Compute expected counts e

- Fit parameters $\boldsymbol{\theta}$ until convergence

EM without Features

Initialize probabilities $\boldsymbol{\theta}$ repeat
Compute expected counts e

- Fit parameters $\boldsymbol{\theta}$ until convergence

EM without Features

Initialize probabilities $\boldsymbol{\theta}$ repeat
Compute expected counts e

- Fit parameters $\boldsymbol{\theta}$ until convergence

EM without Features

Initialize probabilities $\boldsymbol{\theta}$

repeat

Compute expected counts e

- Fit parameters $\boldsymbol{\theta}$ until convergence

EM without Features

Initialize probabilities $\boldsymbol{\theta}$

repeat

Compute expected counts e

- Fit parameters $\boldsymbol{\theta}$ until convergence

EM without Features

Initialize probabilities $\boldsymbol{\theta}$

repeat

Compute expected counts e

- Fit parameters $\boldsymbol{\theta}$ until convergence

EM without Features

Initialize probabilities $\boldsymbol{\theta}$ repeat
Compute expected counts e

- Fit parameters $\boldsymbol{\theta}$ until convergence

EM without Features

Initialize probabilities $\boldsymbol{\theta}$

 $\sum_{\Psi} \left\lvert\, \begin{aligned} & \text { repeat } \\ & \bigcirc \begin{array}{l}\text { Compute expected counts } \mathbf{e} \\ \text { Fit parameters } \boldsymbol{\theta} \\ \text { until convergence }\end{array}\end{aligned}\right.$
EM with Features

Initialize weights \mathbf{w}
$\left\lvert\, \begin{aligned} & \text { repeat } \\ & \text { Compute expected counts } \mathbf{e}\end{aligned}\right.$
\sum_{w} Fit parameters \mathbf{w}
Transform w to $\boldsymbol{\theta}$
until convergence

EM with Features

Initialize weights \mathbf{w}

repeat

Compute expected counts e repeat Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$ $\mathbf{w} \leftarrow \operatorname{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence
Transform w to $\boldsymbol{\theta}$ until convergence

EM with Features

Initialize weights w repeat
Compute expected counts e repeat
Compute $\ell(\mathbf{w}, \mathbf{e})$
Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$
$\mathbf{w} \leftarrow \operatorname{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence
Transform w to $\boldsymbol{\theta}$
until convergence

EM with Features

Initialize weights w repeat
Compute expected counts e repeat
Compute $\ell(\mathbf{w}, \mathbf{e})$
Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$
$\mathbf{w} \leftarrow \operatorname{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence
Transform w to $\boldsymbol{\theta}$
until convergence

EM with Features

Initialize weights w repeat
Compute expected counts e repeat
Compute $\ell(\mathbf{w}, \mathbf{e})$
Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$
$\mathbf{w} \leftarrow \operatorname{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence
Transform w to $\boldsymbol{\theta}$
until convergence

EM with Features

Initialize weights w repeat
Compute expected counts e repeat
Compute $\ell(\mathbf{w}, \mathbf{e})$
Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$
$\mathbf{w} \leftarrow \operatorname{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence
Transform w to $\boldsymbol{\theta}$
until convergence

EM with Features

Initialize weights w repeat
Compute expected counts e repeat
Compute $\ell(\mathbf{w}, \mathbf{e})$
Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$
$\mathbf{w} \leftarrow \operatorname{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence
Transform w to $\boldsymbol{\theta}$
until convergence

EM with Features

Initialize weights w repeat
Compute expected counts e repeat
Compute $\ell(\mathbf{w}, \mathbf{e})$
Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$
$\mathbf{w} \leftarrow \operatorname{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence
Transform w to $\boldsymbol{\theta}$
until convergence

EM with Features

Initialize weights w repeat
Compute expected counts e repeat
Compute $\ell(\mathbf{w}, \mathbf{e})$
Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$
$\mathbf{w} \leftarrow \operatorname{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence
Transform w to $\boldsymbol{\theta}$
until convergence

EM with Features

Initialize weights w repeat
Compute expected counts e repeat
Compute $\ell(\mathbf{w}, \mathbf{e})$
Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$
$\mathbf{w} \leftarrow \operatorname{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence

- Transform w to $\boldsymbol{\theta}$
until convergence

EM with Features

Initialize weights w repeat
Compute expected counts e repeat
Compute $\ell(\mathbf{w}, \mathbf{e})$
Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$
$\mathbf{w} \leftarrow \operatorname{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence

- Transform w to $\boldsymbol{\theta}$
until convergence

EM with Features

Initialize weights w repeat
Compute expected counts e repeat

EM with Features

Initialize weights w repeat
Compute expected counts e repeat

EM with Features

Initialize weights w repeat
Compute expected counts e repeat

EM with Features

Initialize weights w repeat
Compute expected counts e repeat

EM with Features

Initialize weights w repeat
Compute expected counts e repeat

Direct Gradient with Features

EM w/ Features

Initialize weights w

repeat

- Compute expected counts \mathbf{e} repeat
Compute $\ell(\mathbf{w}, \mathbf{e})$
Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$
$\mathrm{w} \leftarrow \operatorname{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$
until convergence
- Transform w to $\boldsymbol{\theta}$
until convergence

DG w/ Features

Initialize weights \mathbf{w} repeat

- Compute expected counts \mathbf{e}

Compute $L(\mathbf{w})$
Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$
$\mathbf{w} \leftarrow \operatorname{climb}(\mathbf{w}, L(\mathbf{w}), \nabla \ell(\mathbf{w}, \mathbf{e}))$

- Transform w to $\boldsymbol{\theta}$
until convergence

Unsupervised Induction Tasks

POS Induction:

```
[cccccc
```

Grammar Induction:

Word Alignment:

Word Segmentation:
[The][green][cat]

POS Induction Results

```
DT JJ NN VBZ IN NN
The green cat sleeps at home.
```


POS Induction Results

$$
\begin{array}{|cccccc}
\text { DT } & J J & \text { NN } & \text { VBZ } & \text { IN } & \text { NN } \\
\text { The green } & \text { cat } & \text { sleeps } & \text { at } & \text { home. }
\end{array}
$$

Key distribution: $\quad P($ John \mid NN $)$

POS Induction Results

DT JJ NN VBZ IN NN
 The green cat sleeps at home.

Key distribution: $\quad P($ John $\mid \mathrm{NN})$

Features:

Basic:
Contains-Digit: $\quad+$ Digit \wedge NN
Contains-Hyphen: +Hyph ^ NN
Initial-Capital: $\quad+\mathrm{Cap} \wedge \mathrm{NN}$
Suffix:

John \wedge NN

+ ing ^ NN

POS Induction Results

```
DT JJ NN VBZ IN NN
The green cat sleeps at home.
```


Features:

Basic:	John \wedge NNP
Contains-Digit:	+ Digit \wedge NNP
Contains-Hyphen:	+ Hyph \wedge NNP
Initial-Capital:	+ Cap \wedge NNP
Suffix:	+ ing \wedge NNP

Data:

Train and test on entire WSJ
No tagging dictionary
45 POS tags

Many-to-I Accuracy

POS Induction Results

```
DT JJ NN VBZ IN NN
The green cat sleeps at home.
```


Features:

Basic:	John \wedge NNP
Contains-Digit:	+ Digit \wedge NNP
Contains-Hyphen:	+ Hyph \wedge NNP
Initial-Capital:	+ Cap \wedge NNP
Suffix:	+ ing \wedge NNP

Data:

Train and test on entire WSJ
No tagging dictionary

45 POS tags

Many-to-I Accuracy

POS Induction Results

DT JJ NN VBZ IN NN
The green cat sleeps at home.

Features:

Basic:
Contains-Digit: $\quad+$ Digit \wedge NNP
Contains-Hyphen: $\quad+$ Hyph \wedge NNP Initial-Capital: Suffix:

John \wedge NNP

+ Cap \wedge NNP
+ ing \wedge NNP

Many-to-I Accuracy

Data:

Train and test on entire WSJ
No tagging dictionary
45 POS tags

POS Induction Results

```
DT JJ NN VBZ IN NN
The green cat sleeps at home.
```


Features:

Basic:
Contains-Digit: $\quad+$ Digit \wedge NNP
Contains-Hyphen: $\quad+$ Hyph \wedge NNP Initial-Capital: Suffix:

John \wedge NNP

+ Digit \wedge NNP
+ Hyph \wedge NNP
+ Cap \wedge NNP
+ ing \wedge NNP

Data:

Train and test on entire WSJ
No tagging dictionary
45 POS tags

Many-to-I Accuracy

POS Induction Results

```
DT JJ NN VBZ IN NN
The green cat sleeps at home.
```


Features:

Basic:
Contains-Digit: $\quad+$ Digit \wedge NNP
Contains-Hyphen: $\quad+$ Hyph \wedge NNP Initial-Capital: $\quad+\mathrm{Cap} \wedge$ NNP Suffix:

John \wedge NNP

+ ing \wedge NNP

Data:

Train and test on entire WSJ
No tagging dictionary
45 POS tags

Grammar Induction Results

Grammar Induction Results

Key distributions: $\quad P(\mathrm{JJ} \mid \mathrm{NN}) P($ stop $\mid \mathrm{NN})$

Grammar Induction Results

Key distributions: $P(\mathrm{JJ} \mid \mathrm{NN}) P($ stop $\mid \mathrm{NN})$

Features:

Basic:	$\mathrm{JJ} \wedge$ NN, JJ \wedge NNS
Noun:	$\mathrm{JJ} \wedge$ Noun
Verb:	$\mathrm{JJ} \wedge$ Verb
Noun-verb:	$\mathrm{JJ} \wedge$ NounOrVerb

Grammar Induction Results

English Directed Accuracy

Features:

Basic: $\quad J J \wedge N N, J J \wedge N N S$
Noun: JJ ^ Noun
Verb: JJ ^ Verb
Noun-verb: JJ ^ NounOrVerb

> Chinese Directed Accuracy

Data:

Train WSJIO Sec. 2-2 1
CTBIO Sec. I-270
Tune WSJIO Sec. 22
CTBIO Sec. 400-454
Test WSJIO Sec. 23
CTBIO Sec. 27I-300

Grammar Induction Results

Features:

Basic:
Noun:
$\mathrm{JJ} \wedge \mathrm{NN}, \mathrm{JJ} \wedge \mathrm{NNS}$

Verb:
JJ ^ Noun

Noun-verb: JJ ^ NounOrVerb

Data:

Train WSJIO Sec. 2-21
CTBIO Sec. I-270
Tune WSJIO Sec. 22
CTBIO Sec. 400-454
Test WSJIO Sec. 23
CTBIO Sec. 27I-300

English Directed Accuracy
47.8

Chinese Directed Accuracy
42.5

DMV
EM

Grammar Induction Results

Features:

Basic:
Noun:
$\mathrm{JJ} \wedge \mathrm{NN}, \mathrm{JJ} \wedge \mathrm{NNS}$
Verb:
JJ ^ Noun

Noun-verb: JJ ^ NounOrVerb

Data:

Train WSJIO Sec. 2-2I
CTBIO Sec. I-270
Tune WSJIO Sec. 22
CTBIO Sec. 400-454
Test WSJIO Sec. 23
CTBIO Sec. 27I-300

English Directed Accuracy

Chinese Directed Accuracy

Grammar Induction Results

Features:

Basic:
Noun:
$\mathrm{JJ} \wedge \mathrm{NN}, \mathrm{JJ} \wedge \mathrm{NNS}$
Verb:
JJ ^ Noun

Noun-verb: JJ ^ NounOrVerb

Data:

Train WSJIO Sec. 2-2I
CTBIO Sec. I-270
Tune WSJIO Sec. 22
CTBIO Sec. 400-454
Test WSJIO Sec. 23
CTBIO Sec. 27I-300

Chinese Directed Accuracy

Grammar Induction Results

Features:

Basic:
Noun:
$\mathrm{JJ} \wedge \mathrm{NN}, \mathrm{JJ} \wedge \mathrm{NNS}$
Verb:
JJ ^ Noun

Noun-verb: JJ ^ NounOrVerb

Data:

Train WSJIO Sec. 2-2I
CTBIO Sec. I-270
Tune WSJIO Sec. 22
CTBIO Sec. 400-454
Test WSJIO Sec. 23
CTBIO Sec. 27I-300

Chinese Directed Accuracy

Word Alignment Results

Word Alignment Results

Key distribution: $\quad P$ (gato \mid cat $)$

Word Alignment Results

Key distribution: P (gato|cat)

Features:

Basic:
Edit-Distance: \quad edit(gato,cat) $=2$
Dictionary: $\quad($ gato,cat $) \in$ Dict
Stem: gato $\wedge+$ stem (cat)
Prefix: \quad gato $\wedge+\mathrm{ca}$

Word Alignment Results

Alignment Error Rate

Features:

Basic:	gato \wedge cat
Edit-Distance:	edit(gato,cat $)=2$
Dictionary:	$($ gato,cat $) \in$ Dict
Stem:	gato $\wedge+$ stem $(c a t)$
Prefix:	gato $\wedge+\mathrm{ca}$

Data:

Train IOK sentences of FBIS
Chinese-English newswire
Test NIST 2002 Chinese-English dev set

Word Alignment Results

Alignment Error Rate

Features:

Basic:	gato \wedge cat
Edit-Distance:	edit(gato,cat) $=2$
Dictionary:	$($ gato, $c a t) \in$ Dict
Stem:	gato $\wedge+$ stem $(c a t)$
Prefix:	gato $\wedge+\mathrm{ca}$

Data:

Train IOK sentences of FBIS
Chinese-English newswire

Test NIST 2002 Chinese-English dev set

Word Alignment Results

Features:

Basic:	gato \wedge cat
Edit-Distance:	edit(gato,cat) $=2$
Dictionary:	$($ gato,cat $) \in$ Dict
Stem:	gato $\wedge+$ stem $(c a t)$
Prefix:	gato $\wedge+\mathrm{ca}$

Data:

Train IOK sentences of FBIS
Chinese-English newswire

Test NIST 2002 Chinese-English dev set

Word Alignment Results

Alignment Error Rate

Features:

Basic:	gato \wedge cat
Edit-Distance:	edit(gato,cat) $=2$
Dictionary:	$($ gato,cat $) \in$ Dict
Stem:	gato $\wedge+$ stem $(c a t)$
Prefix:	gato $\wedge+\mathrm{ca}$

Data:

Train IOK sentences of FBIS
Chinese-English newswire

Test NIST 2002 Chinese-English dev set

Word Alignment Results

Alignment Error Rate

Features:

Test NIST 2002 Chinese-English dev set

Word Segmentation Results

Word Segmentation Results

$$
[\mathrm{T} h \mathrm{e}][\mathrm{gr} \mathrm{e} \text { e } \mathrm{n}][\mathrm{c} \mathrm{a} \mathrm{t}]
$$

Key distribution: $\quad P$ (running)

Word Segmentation Results

$$
[\mathrm{T} h \mathrm{e}][\mathrm{gr} \mathrm{e} e \mathrm{n}]\left[\begin{array}{ll}
\mathrm{c} & \mathrm{a}
\end{array}\right]
$$

Key distribution: $\quad P$ (running)

Features:

Basic:
Length:
Num-Vowels:
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: + IN
running
length(running) $=7$
numV(running) $=2$

Berkeley
 Word Segmentation Results

[The][green][cat]
Token FI

Features:

```
Basic: running
Length: length(running) = 7
Num-Vowels: numV(running) =2
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix:+IN
```


Data:

Train and test on phonetic version of Bernstein-Ratner corpus

Word Segmentation Results

```
[Th e][lggre e n l
```


Features:

Basic:
Length:
Num-Vowels:
running
length(running) $=7$
numV(running) $=2$
+rAn
$:+\mathrm{IN}$

Data:

Train and test on phonetic version of Bernstein-Ratner corpus
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Token FI

Unigram
EM

Berkeley
 Word Segmentation Results

[T he][green][cat]
Token FI

Features:

Basic:
Length:
Num-Vowels: numV(running) $=2$
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

Train and test on phonetic version of Bernstein-Ratner corpus
+7.6
running
length(running) $=7$

Word Segmentation Results

$\left[T h e d\left[\begin{array}{llll}g & r & e & e\end{array}\right]\left[\begin{array}{lll}c & a & t\end{array}\right]\right.$

Features:

Basic:
Length:
Num-Vowels: \quad numV(running) $=2$
Coarse-Phono-Prefix: +rAn
Coarse-Phono-Suffix: +IN

Data:

Train and test on phonetic version of Bernstein-Ratner corpus

Token FI

Berkeley
 Apply to New Models

I. Take a generative model

Apply to New Models

I. Take a generative model
2. Brainstorm features local to the component multinomials

Apply to New Models

I. Take a generative model
2. Brainstorm features local to the component multinomials
3. Run this algorithm

Apply to New Models

I. Take a generative model
2. Brainstorm features local to the component multinomials
3. Run this algorithm
4. Crush your baseline

- State-of-the-art results

Conclusion

- State-of-the-art results
- Can implemented using off-the-shelf NLP tools

Conclusion

- State-of-the-art results
- Can implemented using off-the-shelf NLP tools
- Directly optimizing data-likelihood can outperform EM

Conclusion

- State-of-the-art results
- Can implemented using off-the-shelf NLP tools
- Directly optimizing data-likelihood can outperform EM
- Works on a wide range of induction tasks

Conclusion

Thanks!

