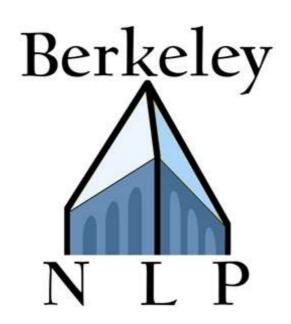
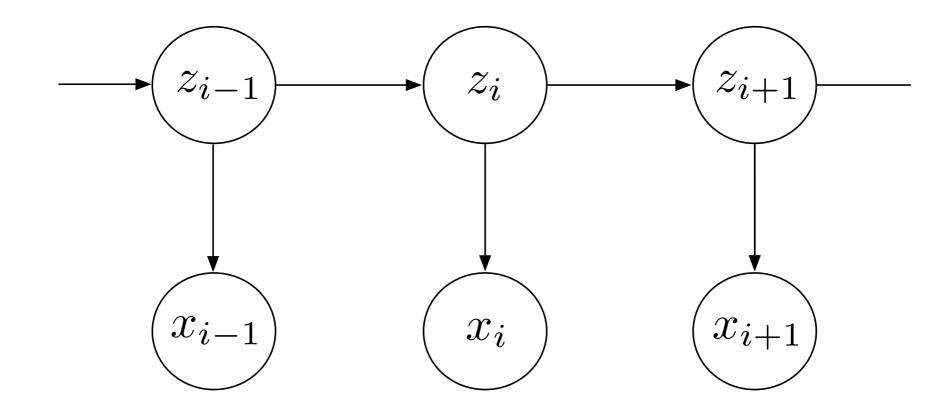
Painless Unsupervised Learning with Features



Taylor Berg-Kirkpatrick Alexandre Bouchard-Côté John DeNero Dan Klein

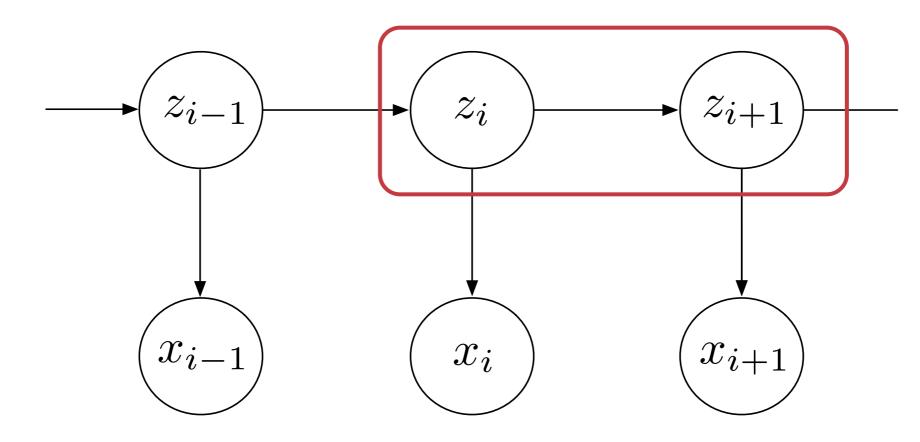
Basic HMM for POS Induction



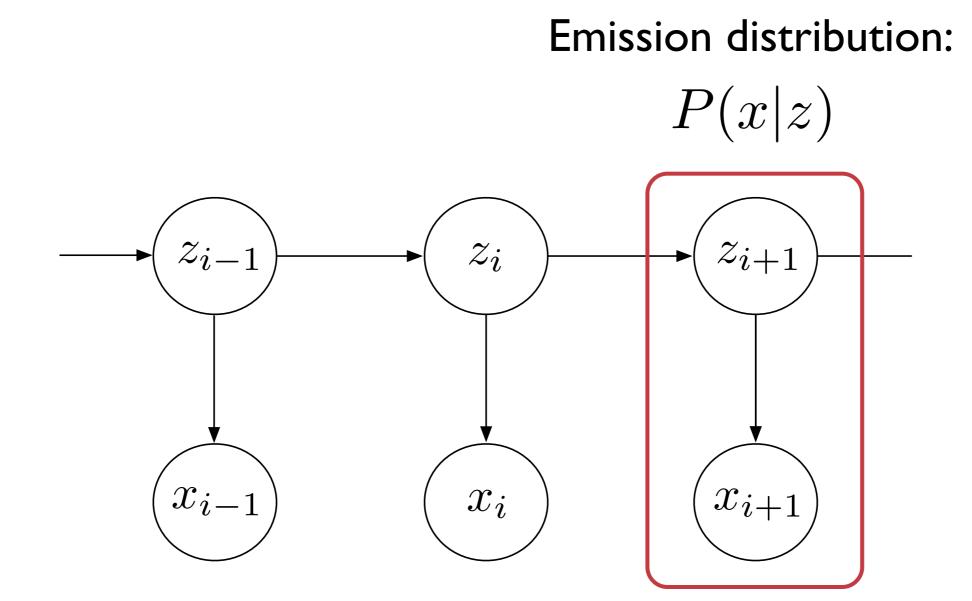
Basic HMM for POS Induction

Transition distribution:

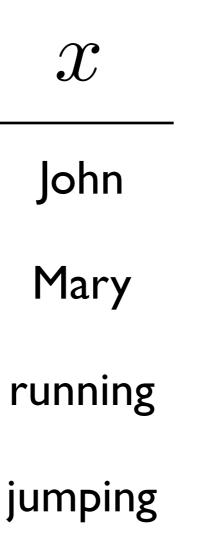
P(z'|z)



Basic HMM for POS Induction

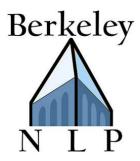




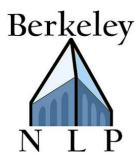




$\theta_{x \mathrm{NNP}}$	x
0.1	John
0.0	Mary
0.2	running
0.0	jumping



$\theta_{x \mathrm{NNP}}$	x	f
0.1	John	+Cap
0.0	Mary	+Cap
0.2	running	+ing
0.0	jumping	+ing

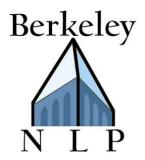


$\theta_{x \mathrm{NNP}}$	${\mathcal X}$	f	$e^{\mathbf{w}^{T}\mathbf{f}}$
0.1	John	+Cap	0.3
0.0	Mary	+Cap	0.3
0.2	running	+ing	0.1
0.0	jumping	+ing	0.1

$$\theta_{x|z} = \frac{\exp(\mathbf{w}^{\mathsf{T}}\mathbf{f}(x,z))}{\sum_{x'} \exp(\mathbf{w}^{\mathsf{T}}\mathbf{f}(x',z))}$$

Unsupervised Learning with Features

Main idea: local multinomials become maxents



Unsupervised Learning with Features

Main idea: local multinomials become maxents

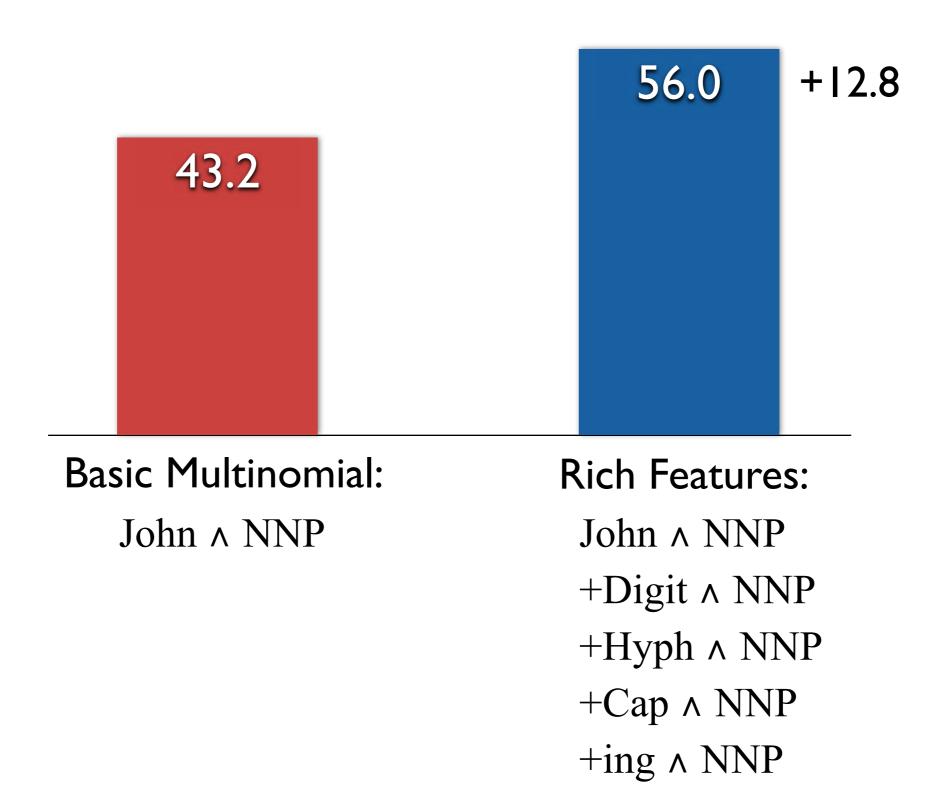
EM + Maxent M-Step = Unsupervised learning w/ features

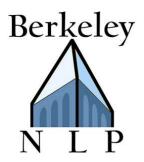
POS Induction Accuracy

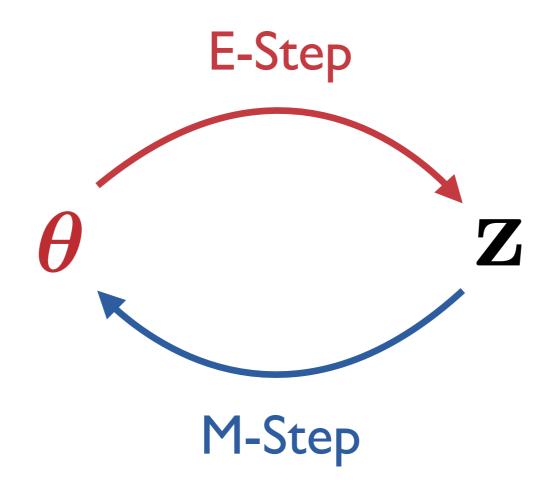
POS Induction Accuracy

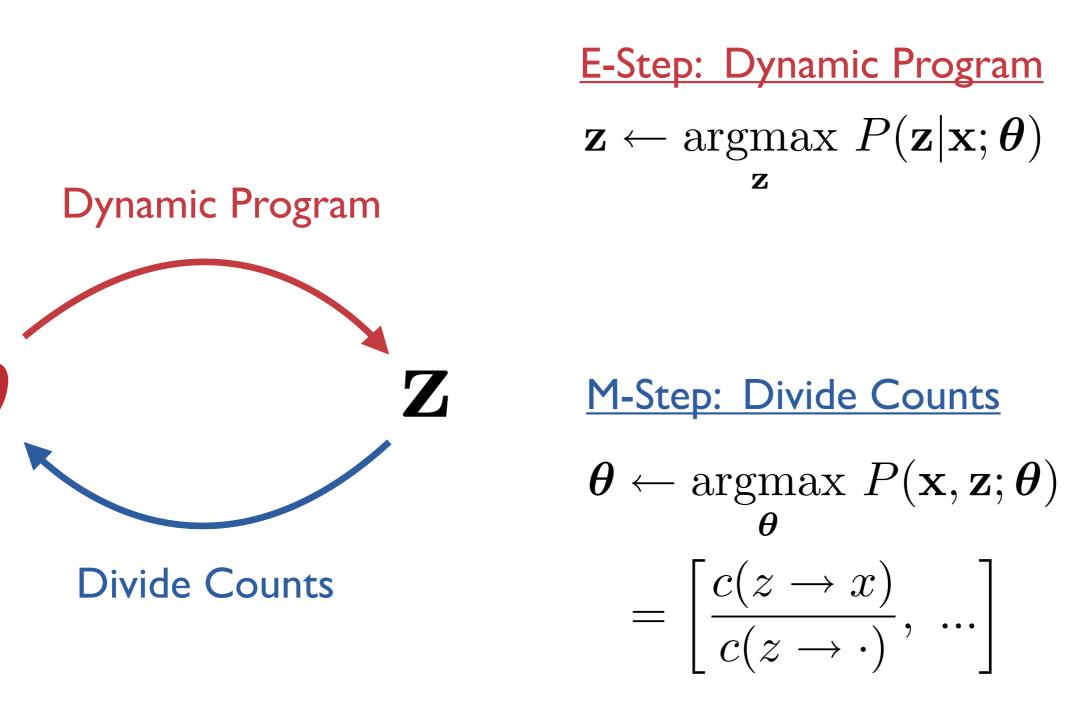
Basic Multinomial: John ^ NNP

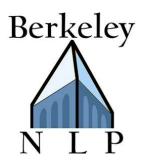
Berkeley N L P N L P

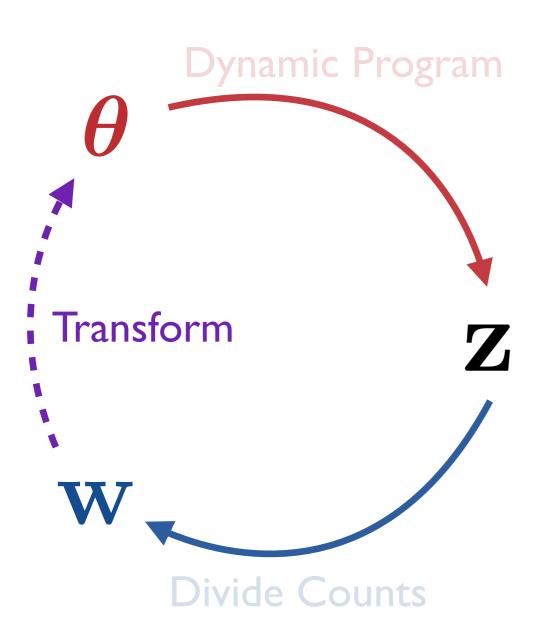










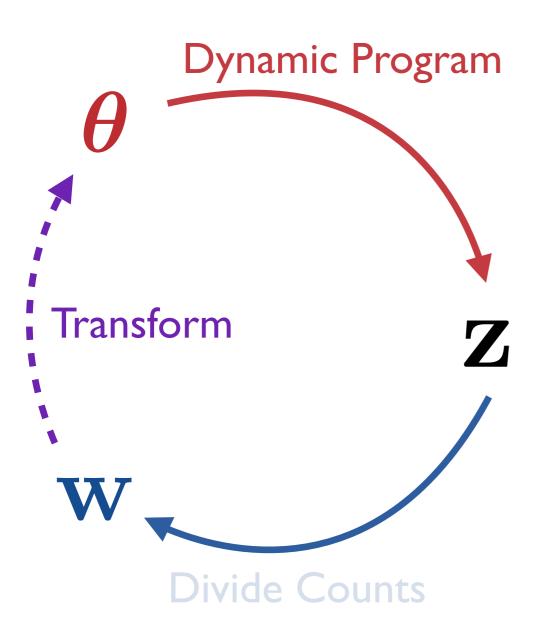


E-Step: Dynamic Program $\mathbf{z} \leftarrow \underset{\mathbf{z}}{\operatorname{argmax}} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})$

M-Step: Divide Counts

 $oldsymbol{ heta} \leftarrow rgmax_{oldsymbol{ heta}} P(\mathbf{x}, \mathbf{z}; oldsymbol{ heta}) \ = \left[rac{c(z
ightarrow x)}{c(z
ightarrow \cdot)}, \ldots
ight]$

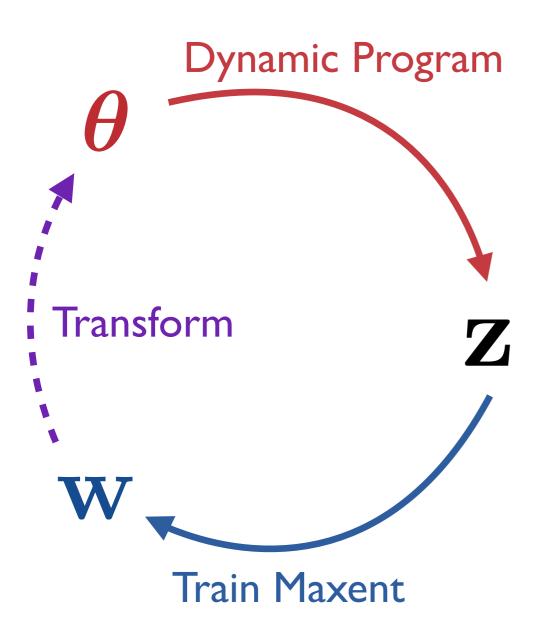




E-Step: Dynamic Program $\mathbf{z} \leftarrow \underset{\mathbf{z}}{\operatorname{argmax}} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})$

M-Step: Divide Counts

 $oldsymbol{ heta} \leftarrow rgmax_{oldsymbol{ heta}} P(\mathbf{x}, \mathbf{z}; oldsymbol{ heta}) \ = \left[rac{c(z
ightarrow x)}{c(z
ightarrow \cdot)}, \ldots
ight]$



E-Step: Dynamic Program $\mathbf{z} \leftarrow \operatorname{argmax}_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})$

M-Step: Train Maxent

 $\mathbf{w} \leftarrow \operatorname*{argmax}_{\mathbf{w}} \log P(\mathbf{x}, \mathbf{z}; \mathbf{w})$

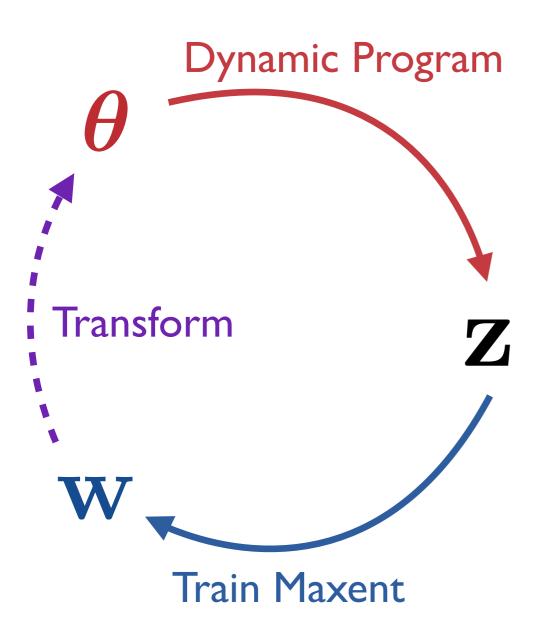
 $\log P(\mathbf{x}, \mathbf{z}; \mathbf{w})$

 $= \sum \log P(x_i | z_i; \mathbf{w}) + \dots$ i

 $\log P(\mathbf{x}, \mathbf{z}; \mathbf{w})$

 $= \sum \log P(x_i|z_i;\mathbf{w}) + \dots$ Maxent training example

 $\log P(\mathbf{x}, \mathbf{z}; \mathbf{w})$ $= \sum \log P(x_i | z_i; \mathbf{w}) + \dots$ Maxent training example $=\sum c(z \rightarrow x) \log P(x|z; \mathbf{w}) + \dots$ z, xMultiplicity

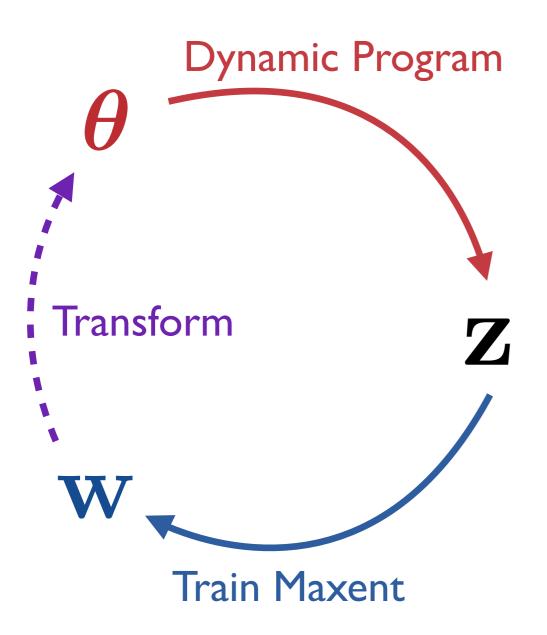


E-Step: Dynamic Program $\mathbf{z} \leftarrow \operatorname{argmax}_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})$

M-Step: Train Maxent

 $\mathbf{w} \leftarrow \operatorname*{argmax}_{\mathbf{w}} \log P(\mathbf{x}, \mathbf{z}; \mathbf{w})$





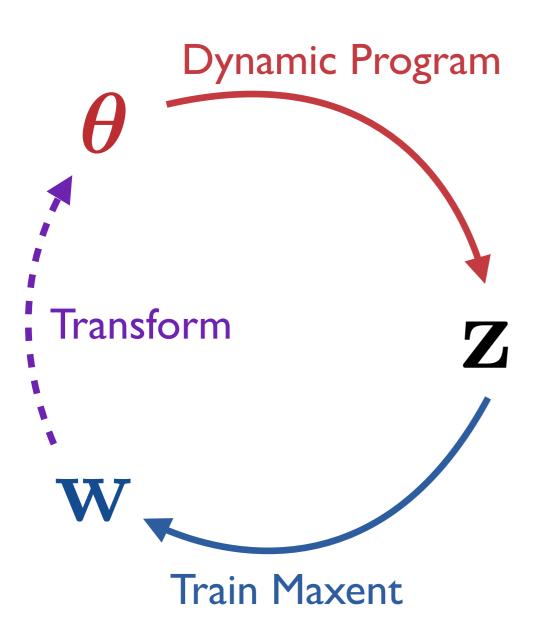
E-Step: Dynamic Program $\mathbf{z} \leftarrow \operatorname*{argmax}_{\mathbf{z}} P(\mathbf{z}|\mathbf{x}; \boldsymbol{\theta})$

M-Step: Train Maxent

 $\mathbf{w} \leftarrow \operatorname*{argmax}_{\mathbf{w}} \log P(\mathbf{x}, \mathbf{z}; \mathbf{w})$

$$\theta_{x|z} \leftarrow \frac{\exp(\mathbf{w}^T \mathbf{f}(x, z))}{\sum_{x'} \exp(\mathbf{w}^T \mathbf{f}(x', z))}$$





E-Step: Dynamic Program

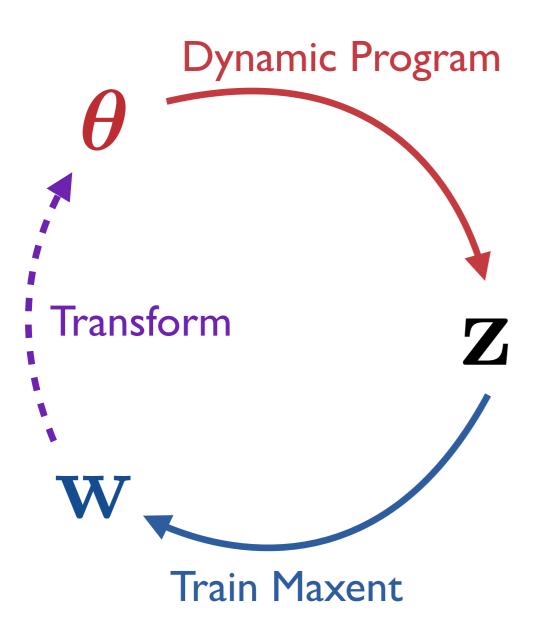
 $\mathbf{z} \leftarrow \operatorname*{argmax}_{\mathbf{z}} P(\mathbf{z} | \mathbf{x}; \boldsymbol{\theta})$

M-Step: Train Maxent

 $\mathbf{w} \leftarrow \operatorname*{argmax}_{\mathbf{w}} \log P(\mathbf{x}, \mathbf{z}; \mathbf{w})$

$$\theta_{x|z} \leftarrow \frac{\exp(\mathbf{w}^T \mathbf{f}(x, z))}{\sum_{x'} \exp(\mathbf{w}^T \mathbf{f}(x', z))}$$





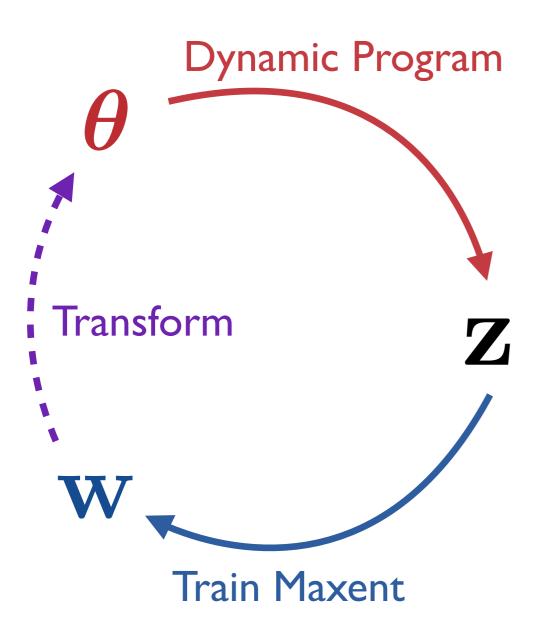
E-Step: Dynamic Program $e(z \to x) \leftarrow \mathbb{E}[c(z \to x)]$

M-Step: Train Maxent

 $\mathbf{w} \leftarrow \operatorname*{argmax}_{\mathbf{w}} \log P(\mathbf{x}, \mathbf{z}; \mathbf{w})$

$$\theta_{x|z} \leftarrow \frac{\exp(\mathbf{w}^T \mathbf{f}(x, z))}{\sum_{x'} \exp(\mathbf{w}^T \mathbf{f}(x', z))}$$





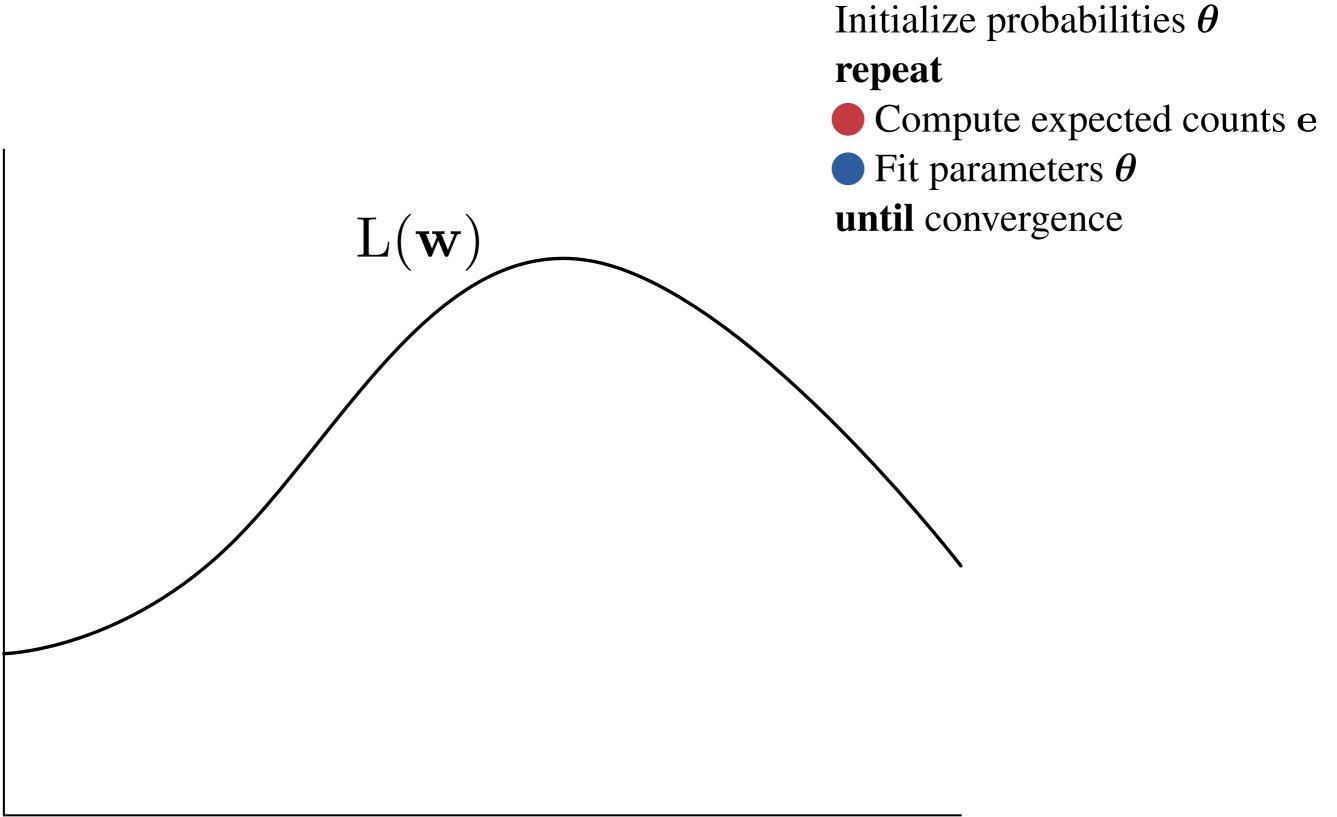
E-Step: Dynamic Program $e(z \rightarrow x) \leftarrow \mathbb{E}[c(z \rightarrow x)]$

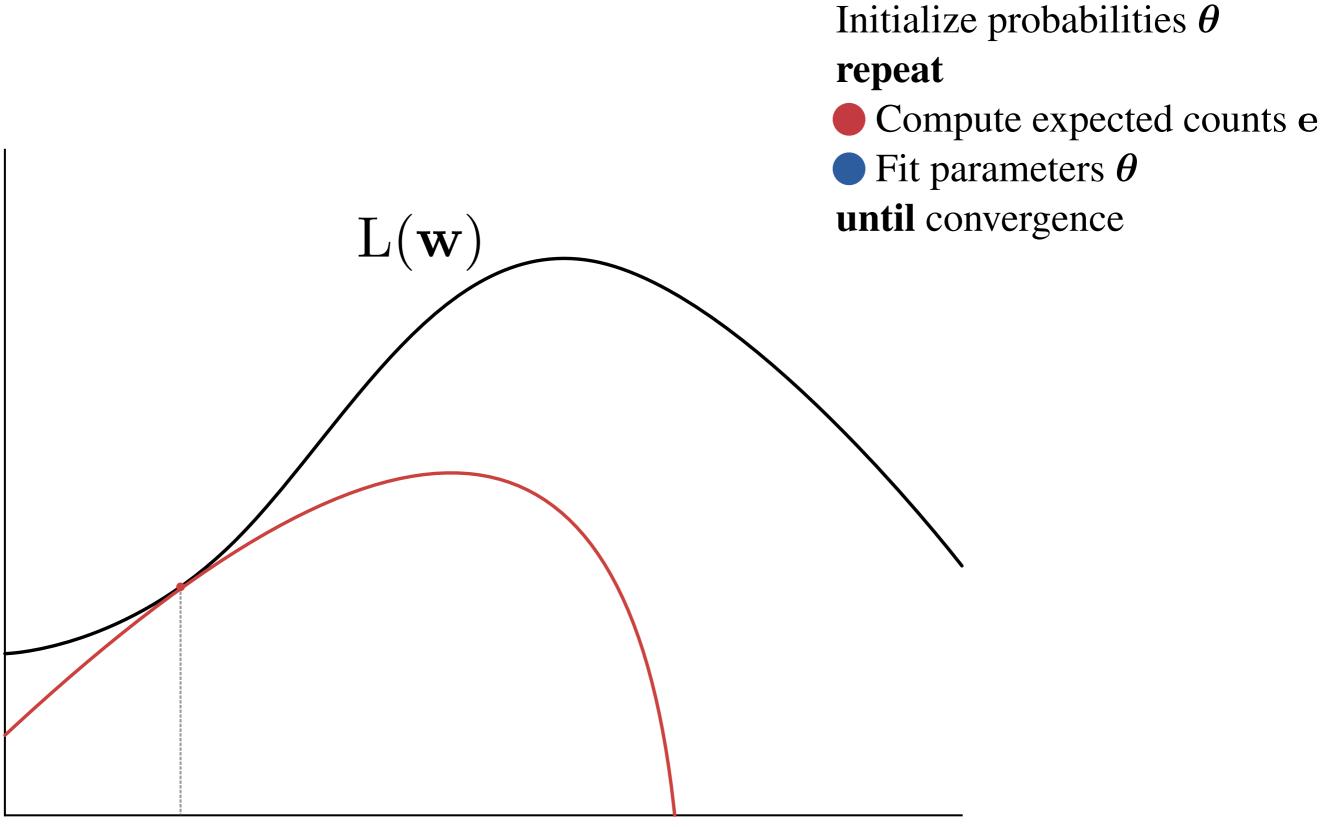
M-Step: Train Maxent

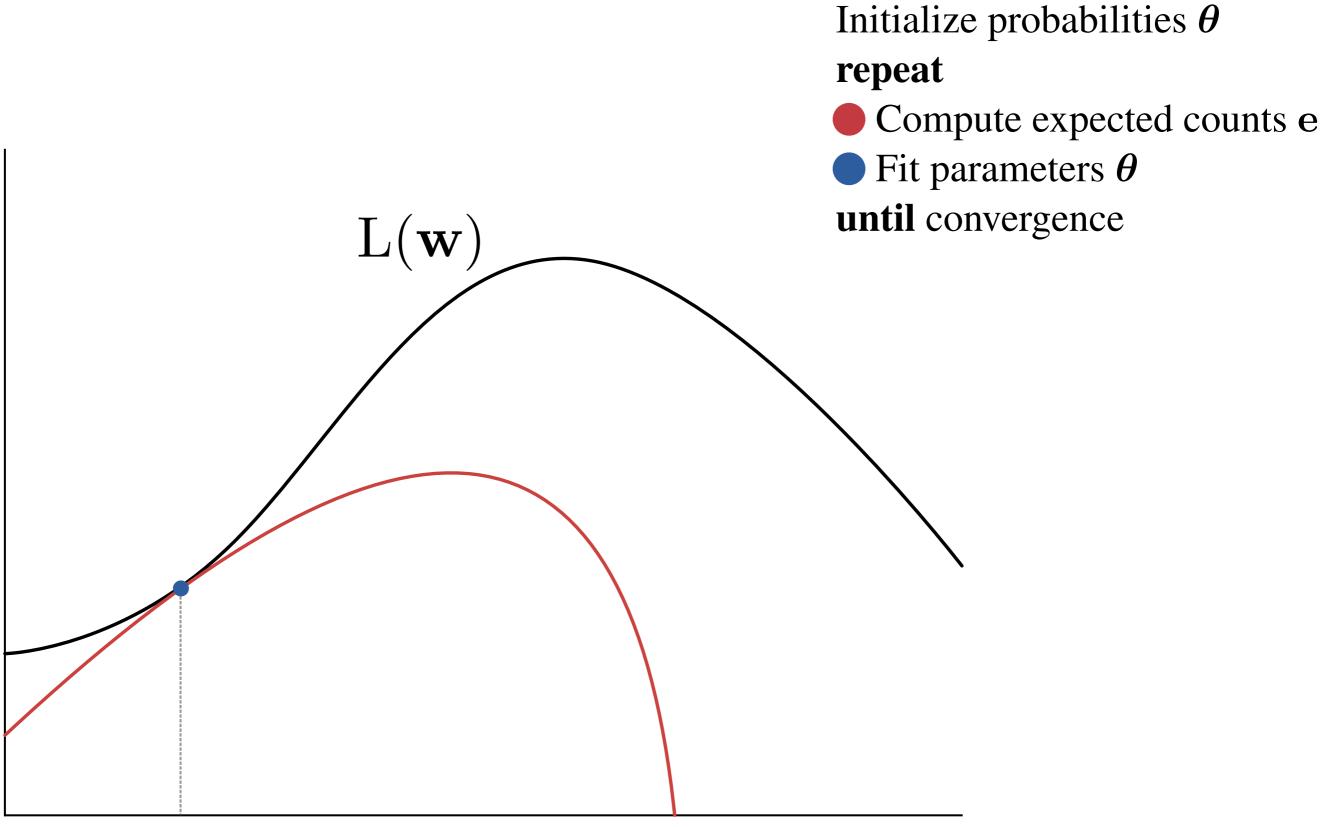
 $\mathbf{w} \leftarrow \operatorname*{argmax}_{\mathbf{w}} \mathbb{E} \big[\log P(\mathbf{x}, \mathbf{z}; \mathbf{w}) \big]$

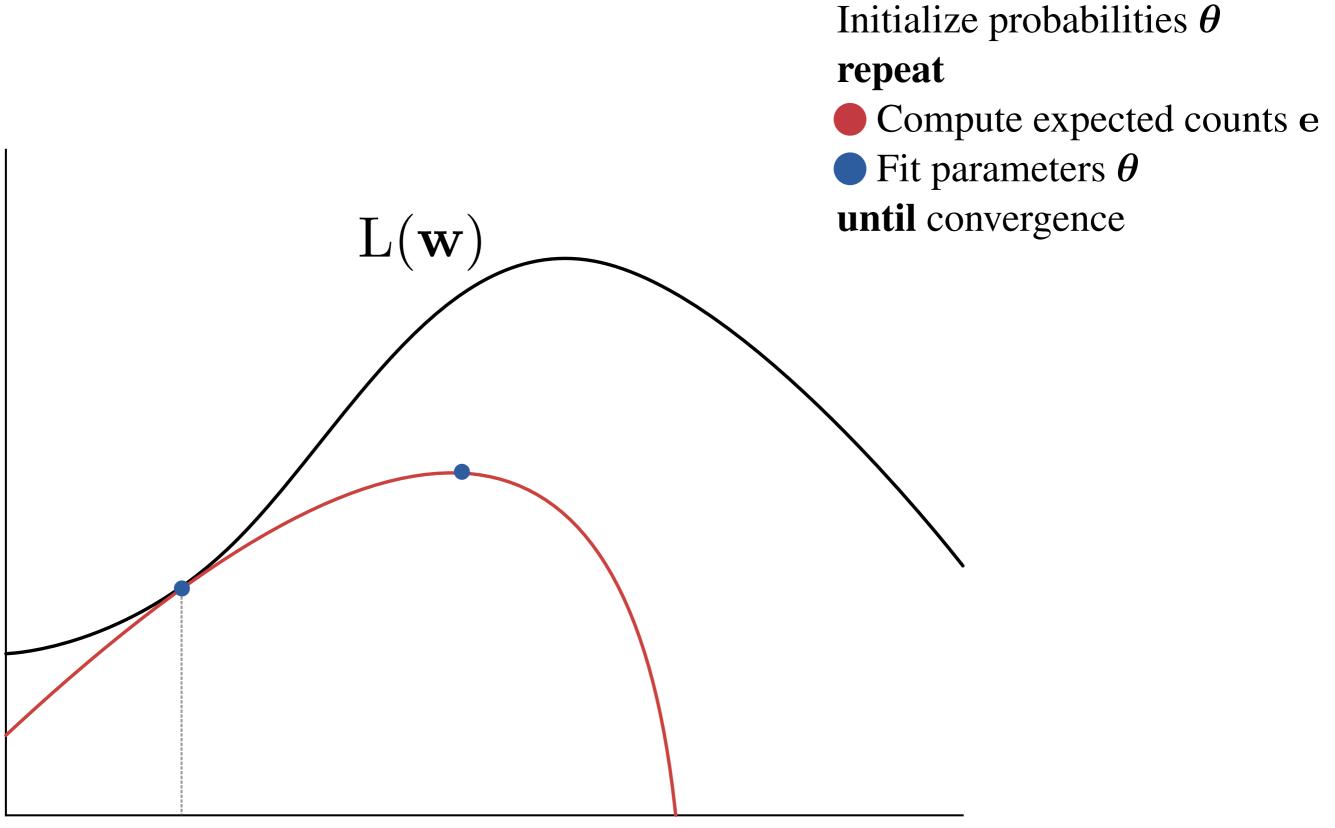
$$\theta_{x|z} \leftarrow \frac{\exp(\mathbf{w}^T \mathbf{f}(x, z))}{\sum_{x'} \exp(\mathbf{w}^T \mathbf{f}(x', z))}$$

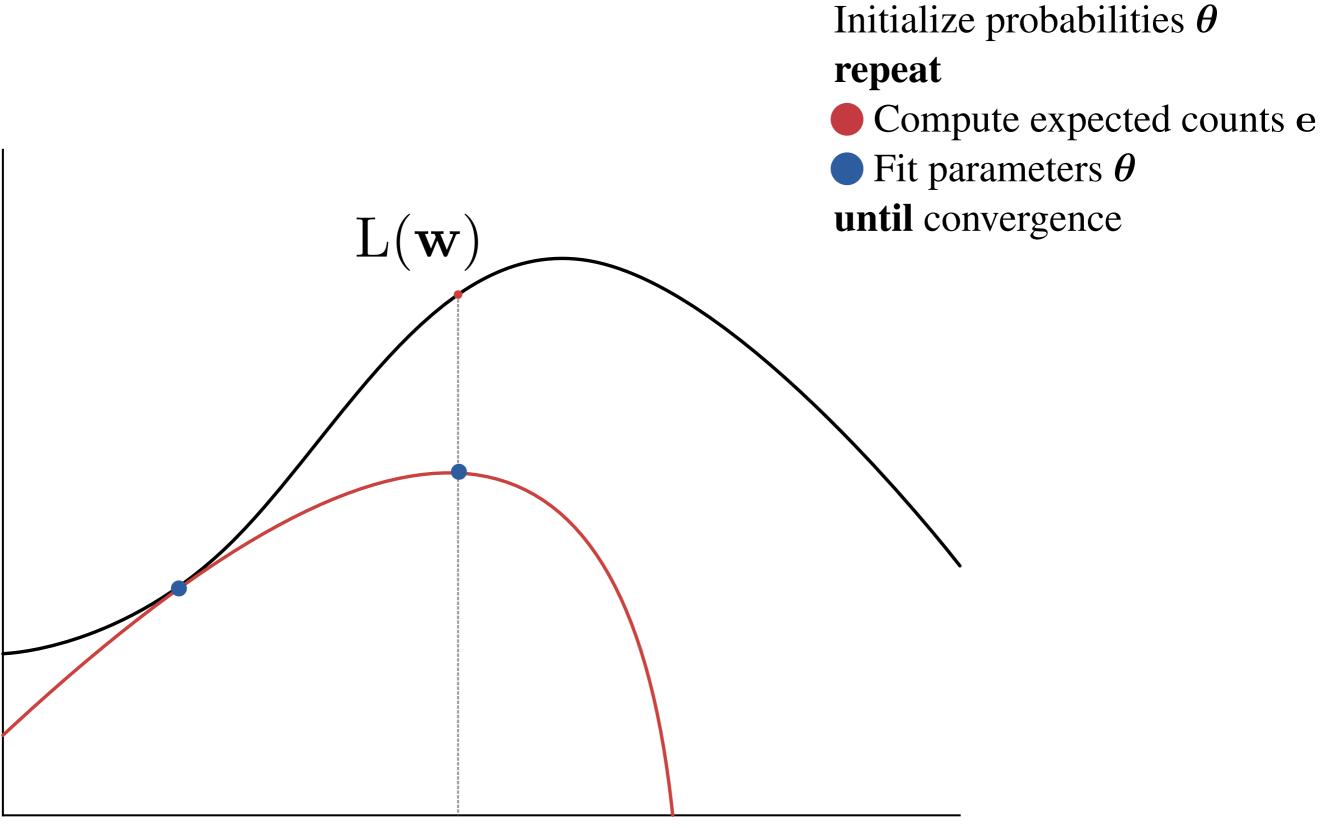
Initialize probabilities θ repeat Compute expected counts e Fit parameters θ until convergence

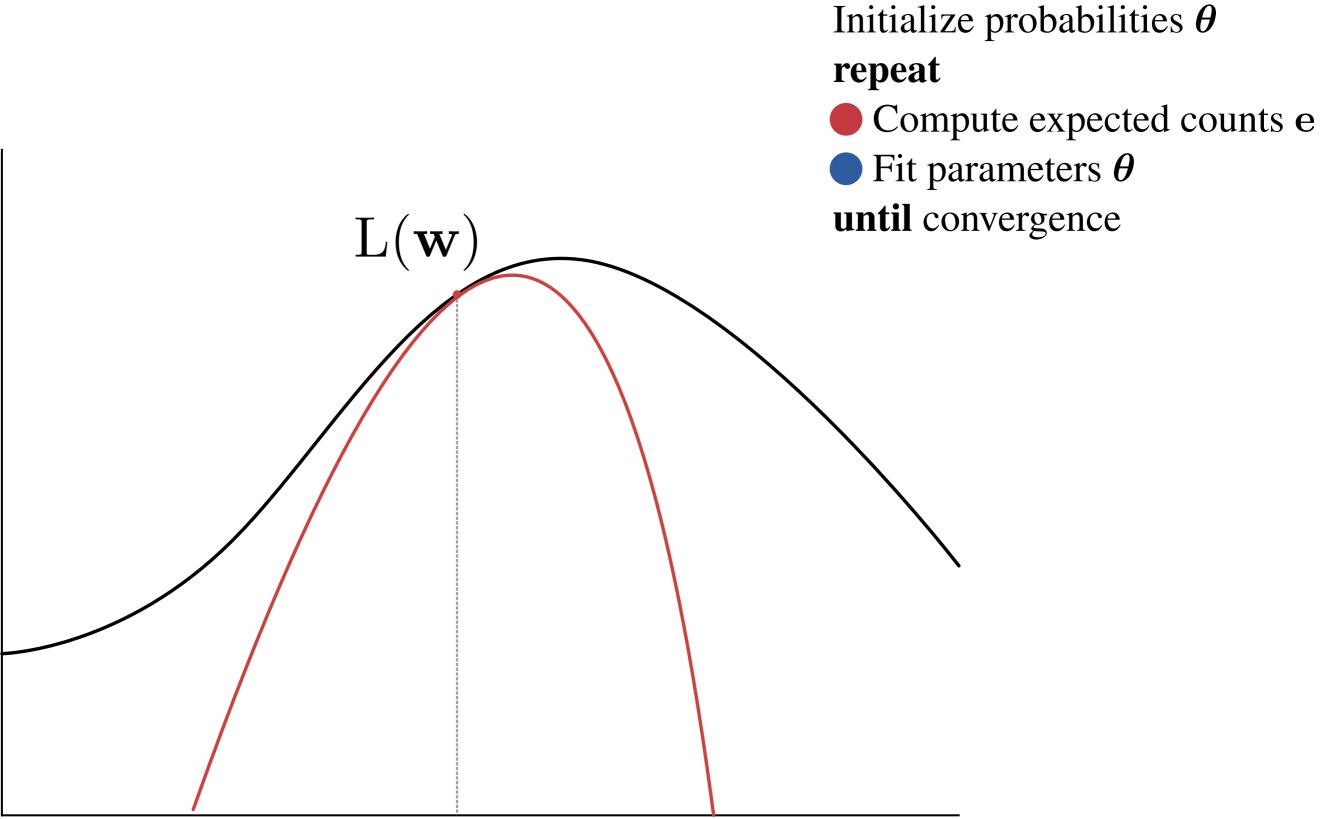


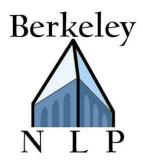


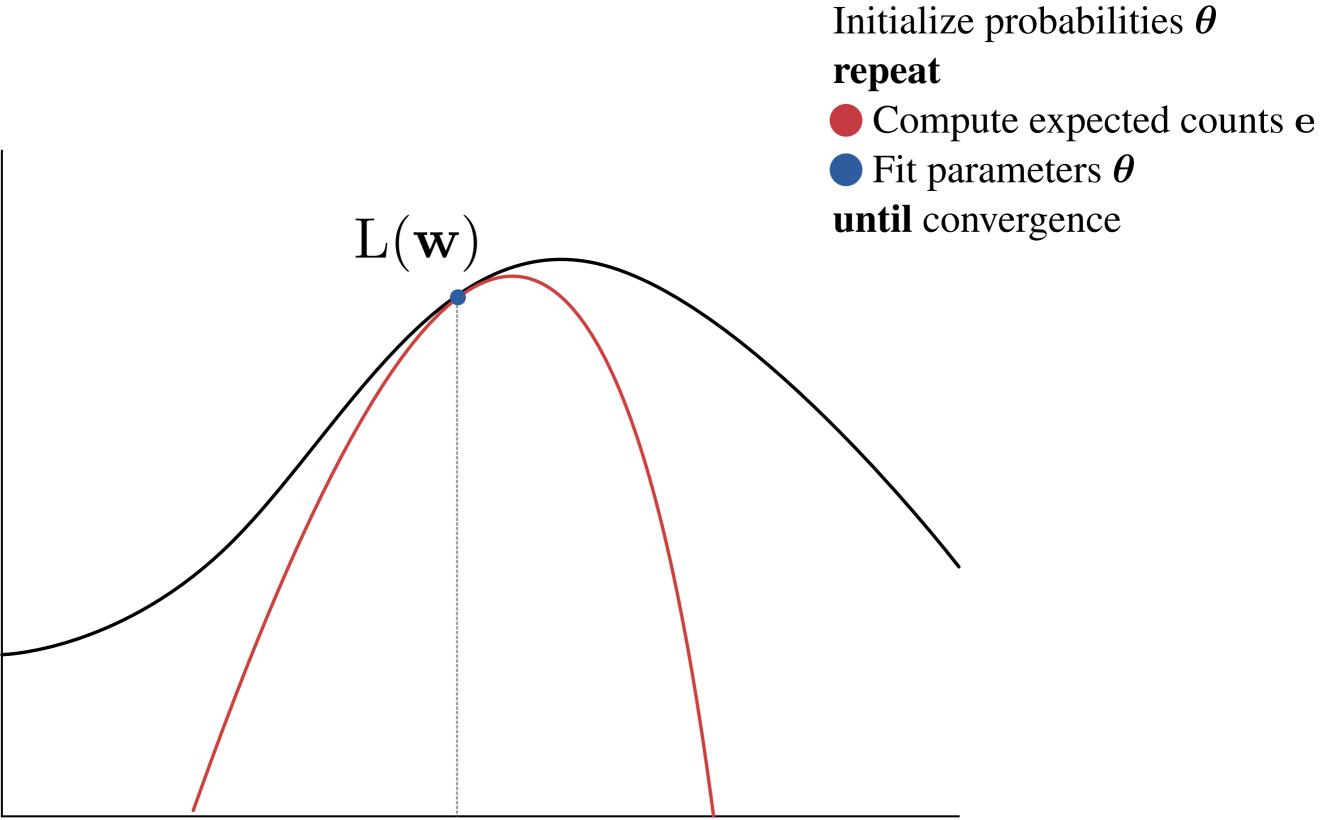


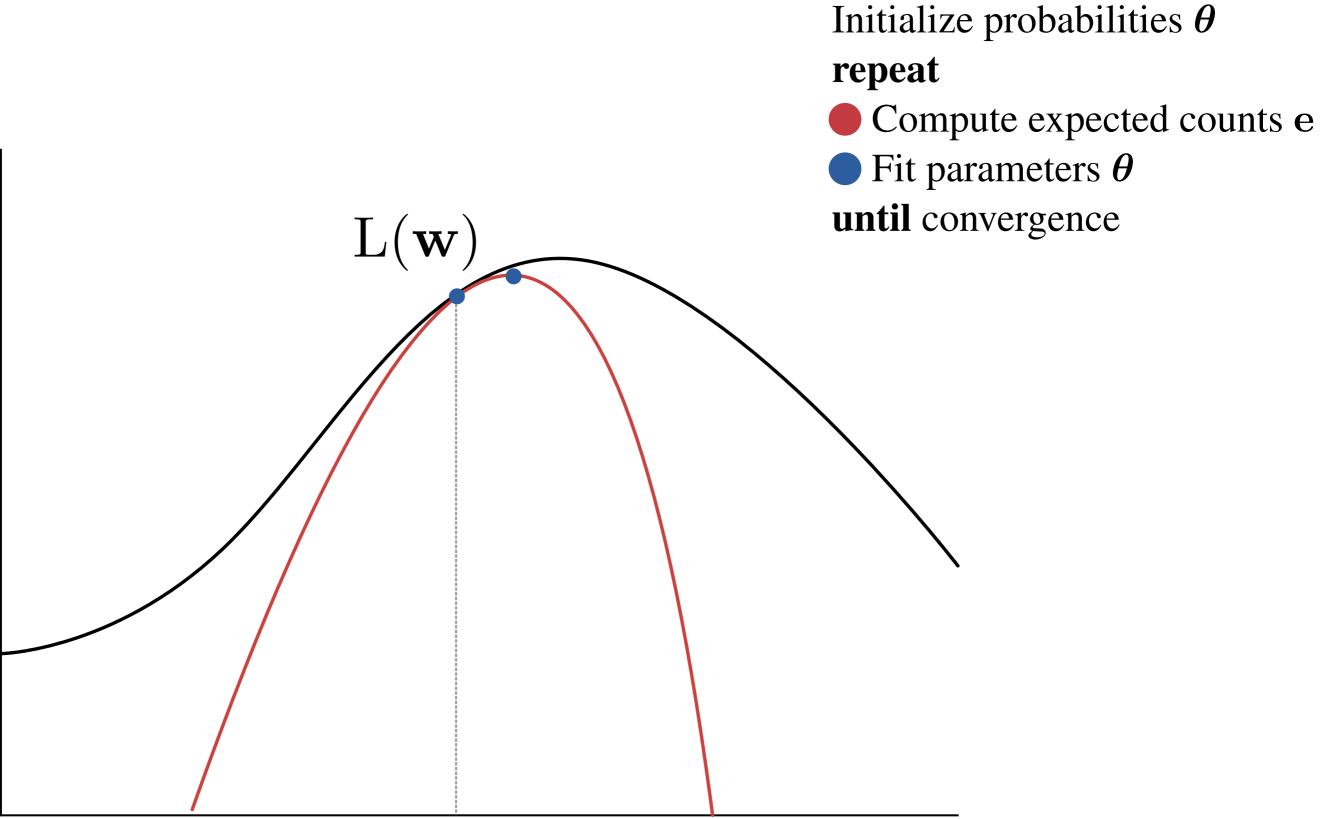


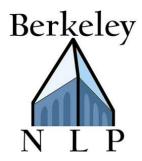


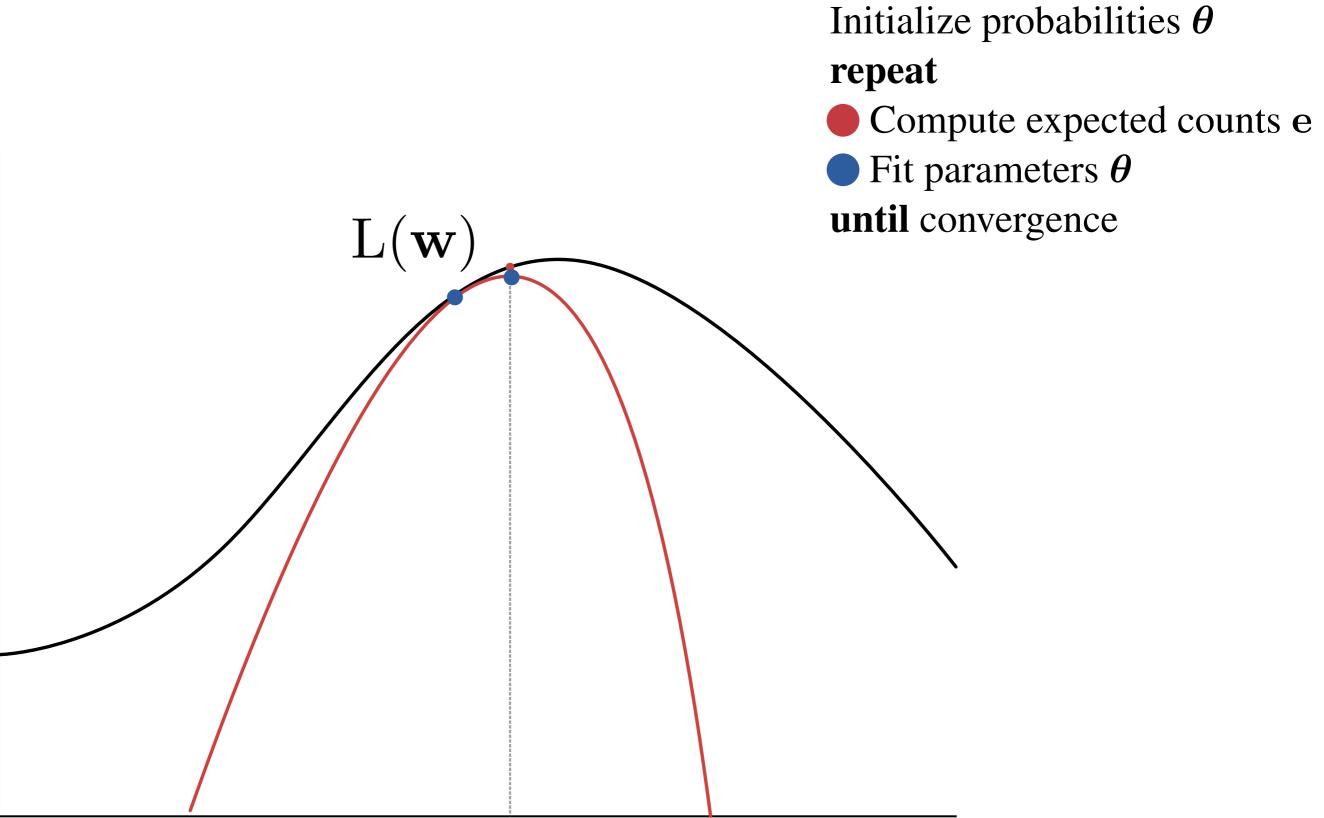


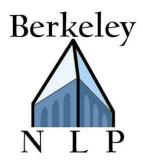






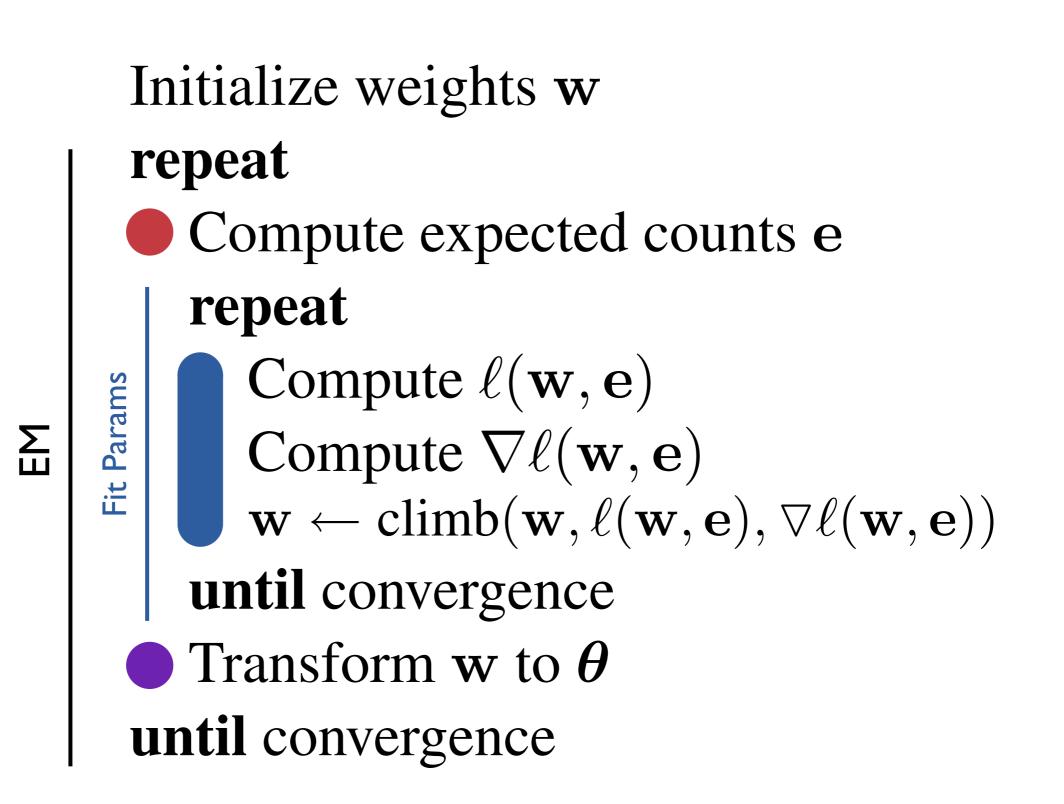


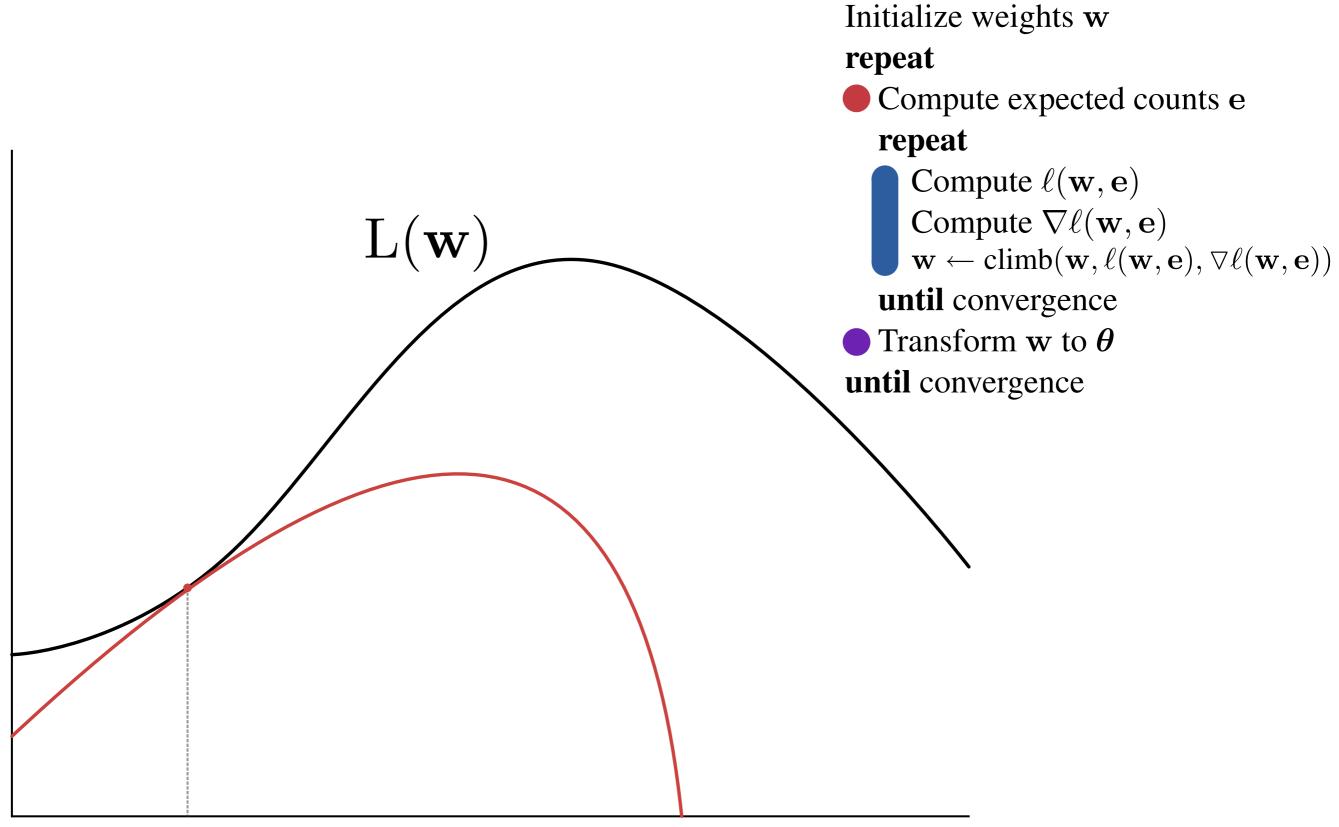


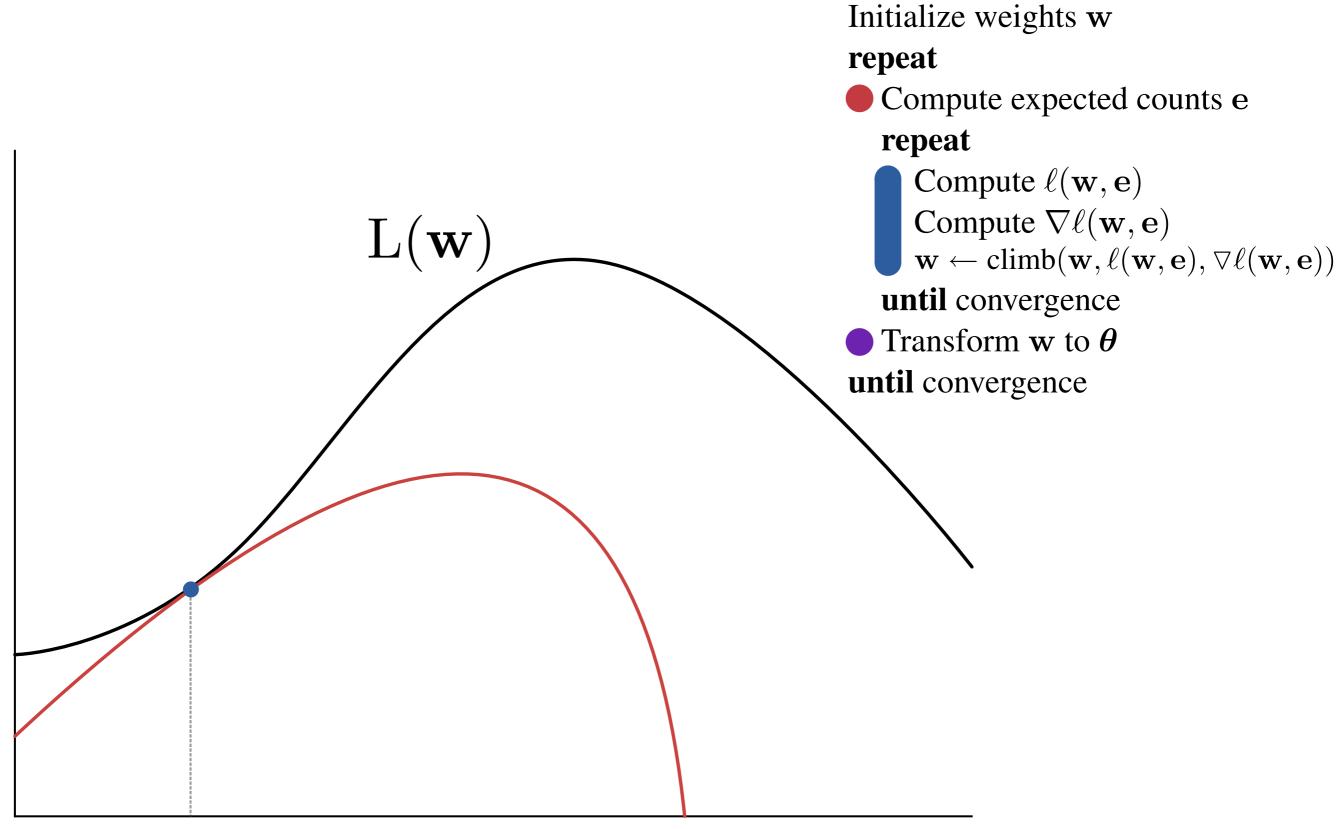


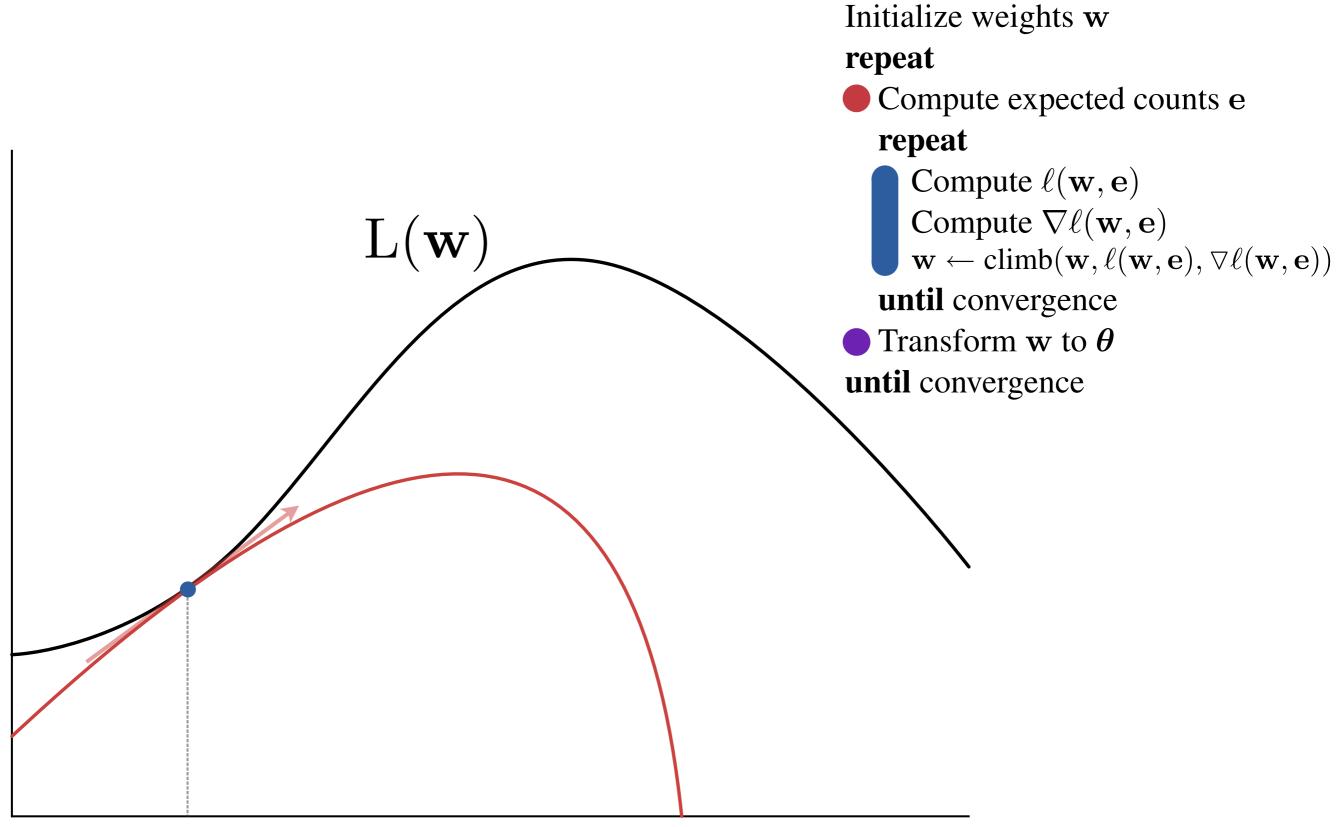
 $\Sigma \begin{bmatrix} \text{Initialize probabilities } \boldsymbol{\theta} \\ \textbf{repeat} \\ \textbf{Compute expected counts e} \\ \textbf{Fit parameters } \boldsymbol{\theta} \\ \textbf{until convergence} \end{bmatrix}$

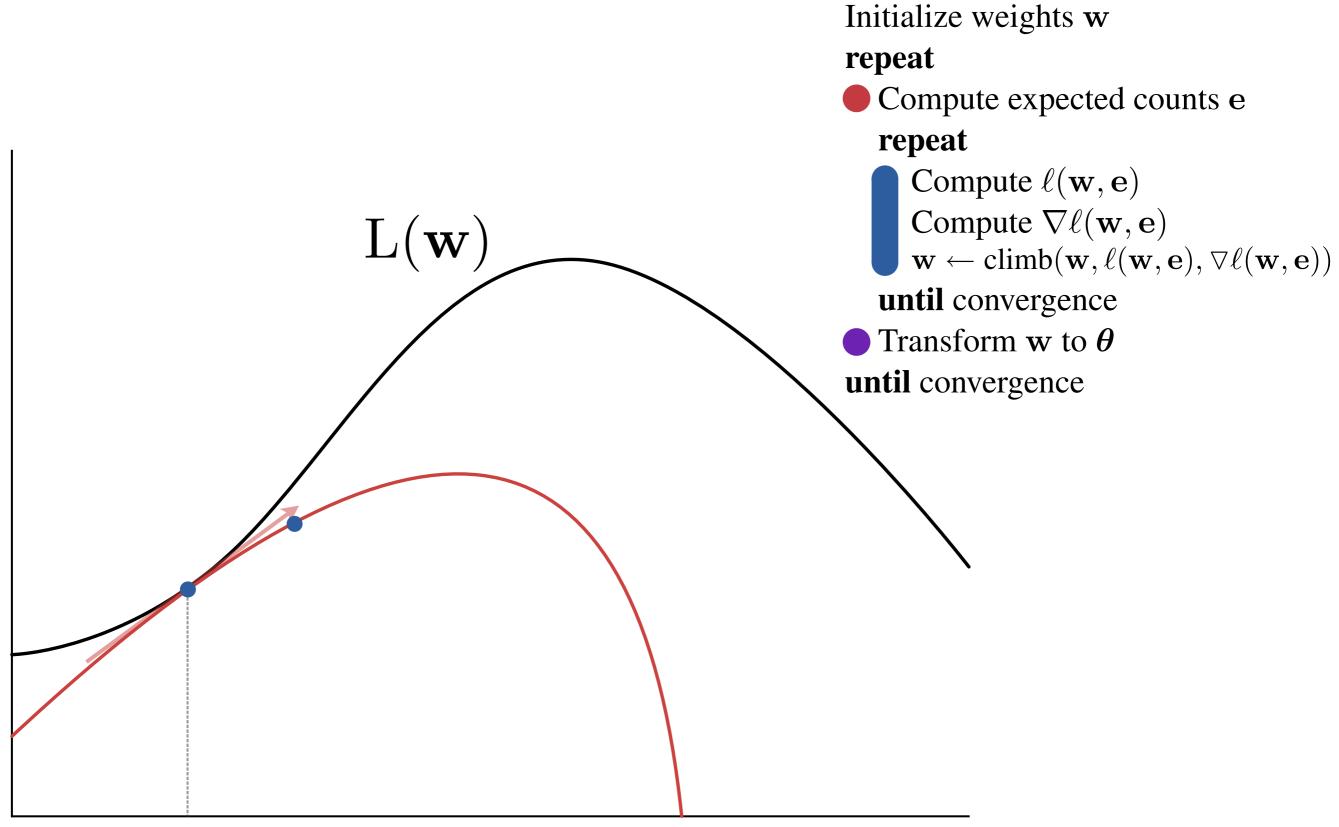
Initialize weights w
repeat
Compute expected counts e
Fit parameters w
Transform w to θ
until convergence

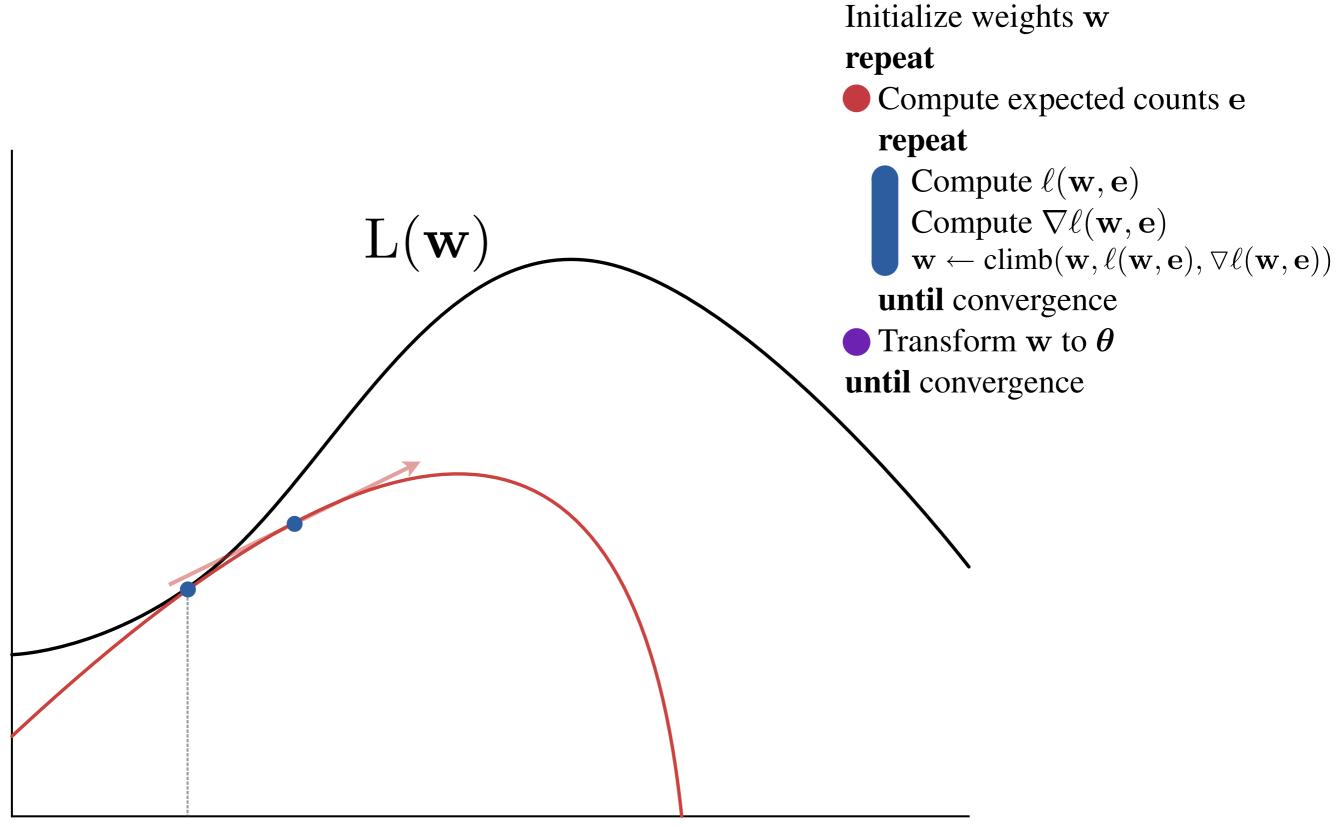


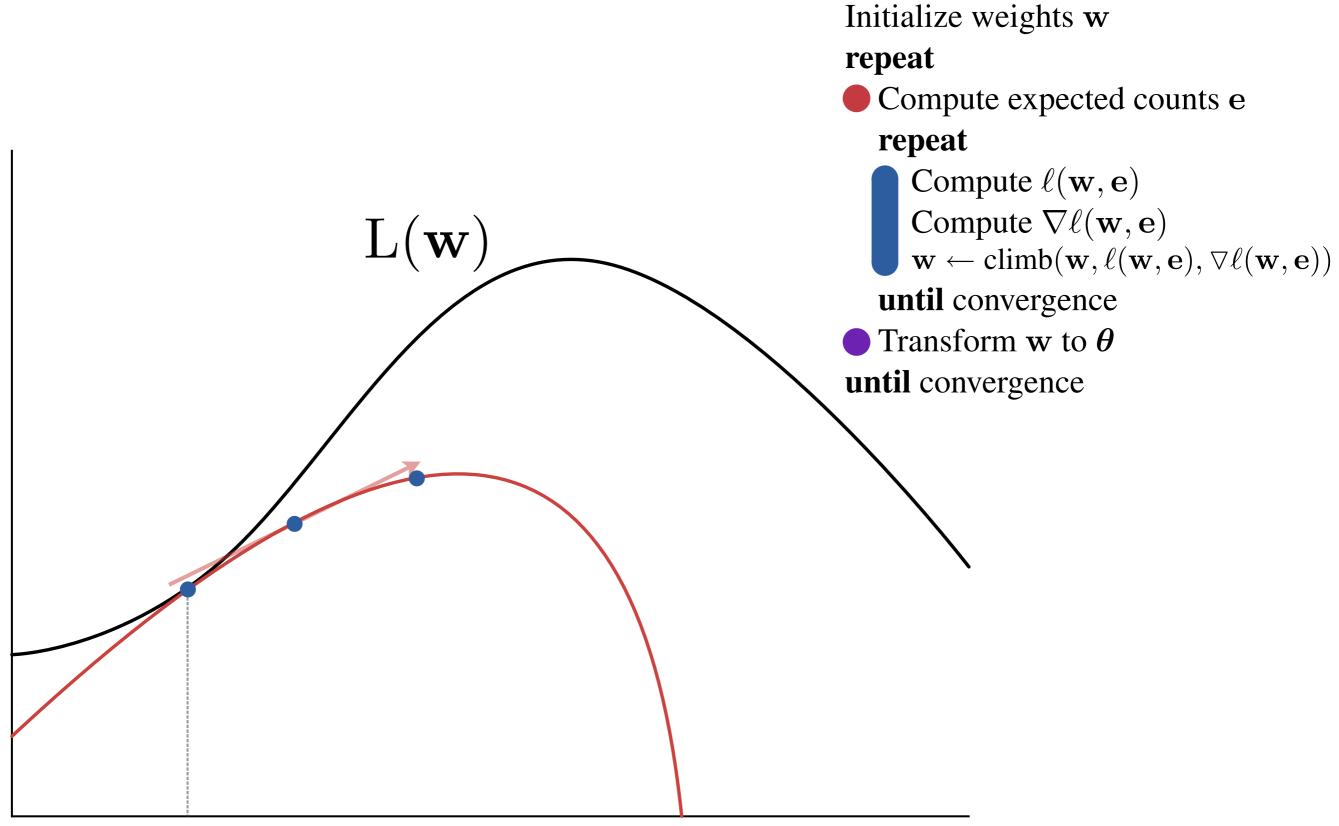


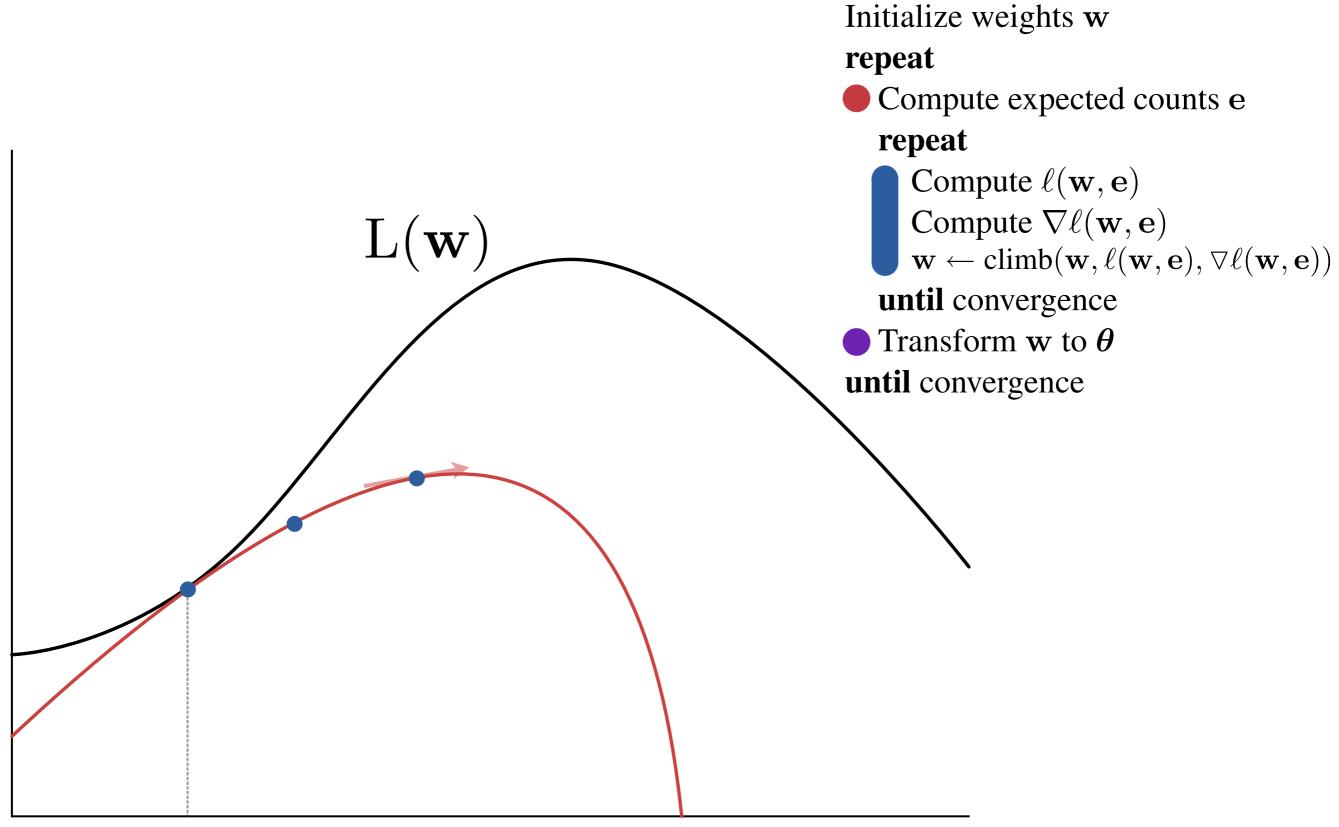


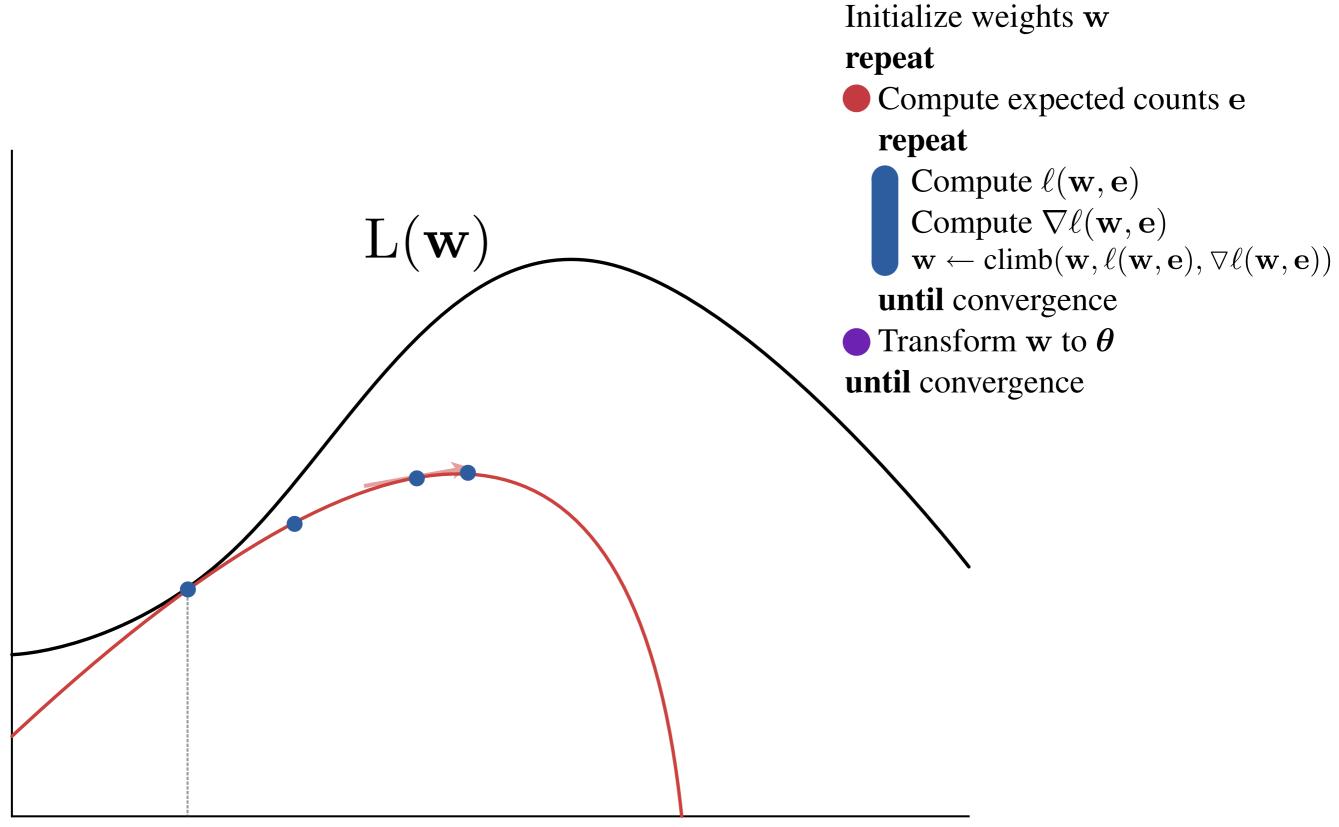


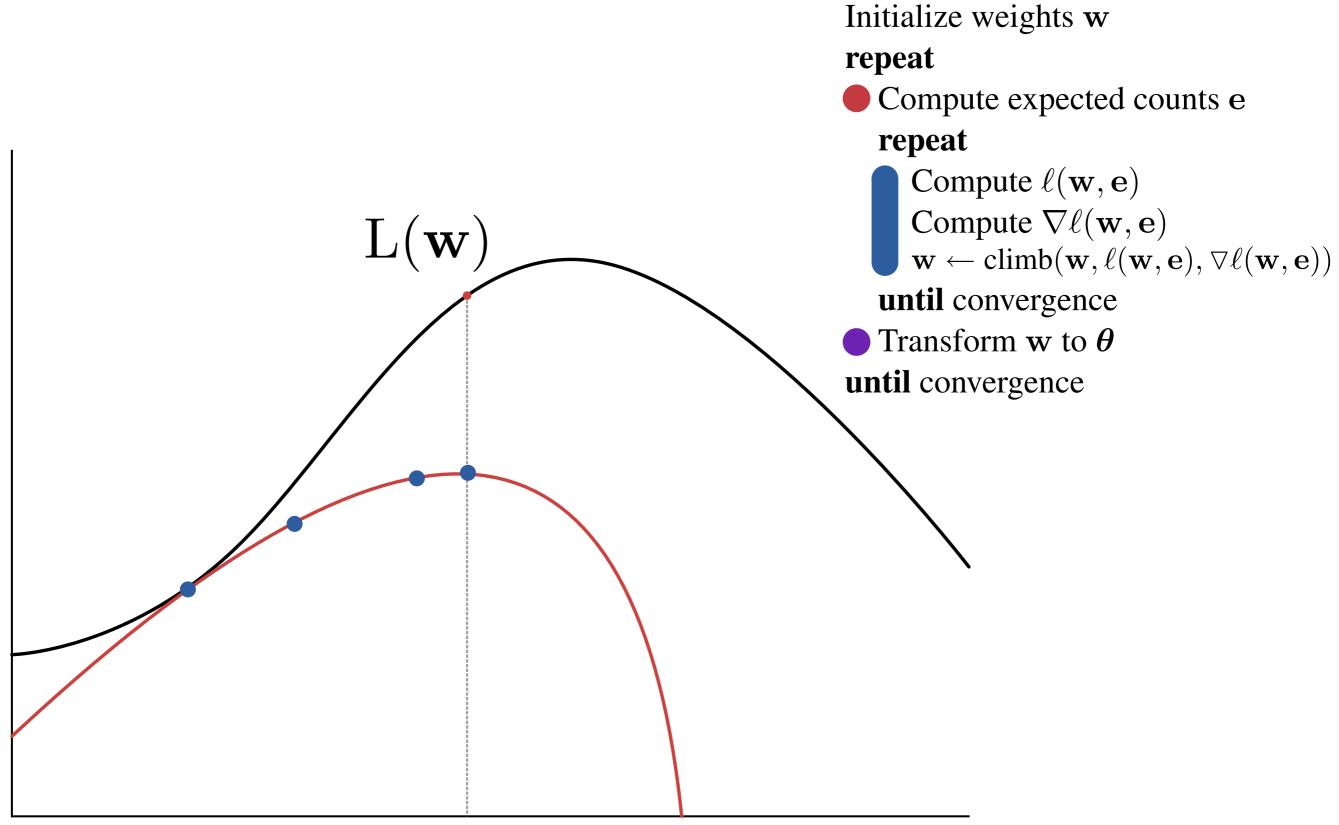


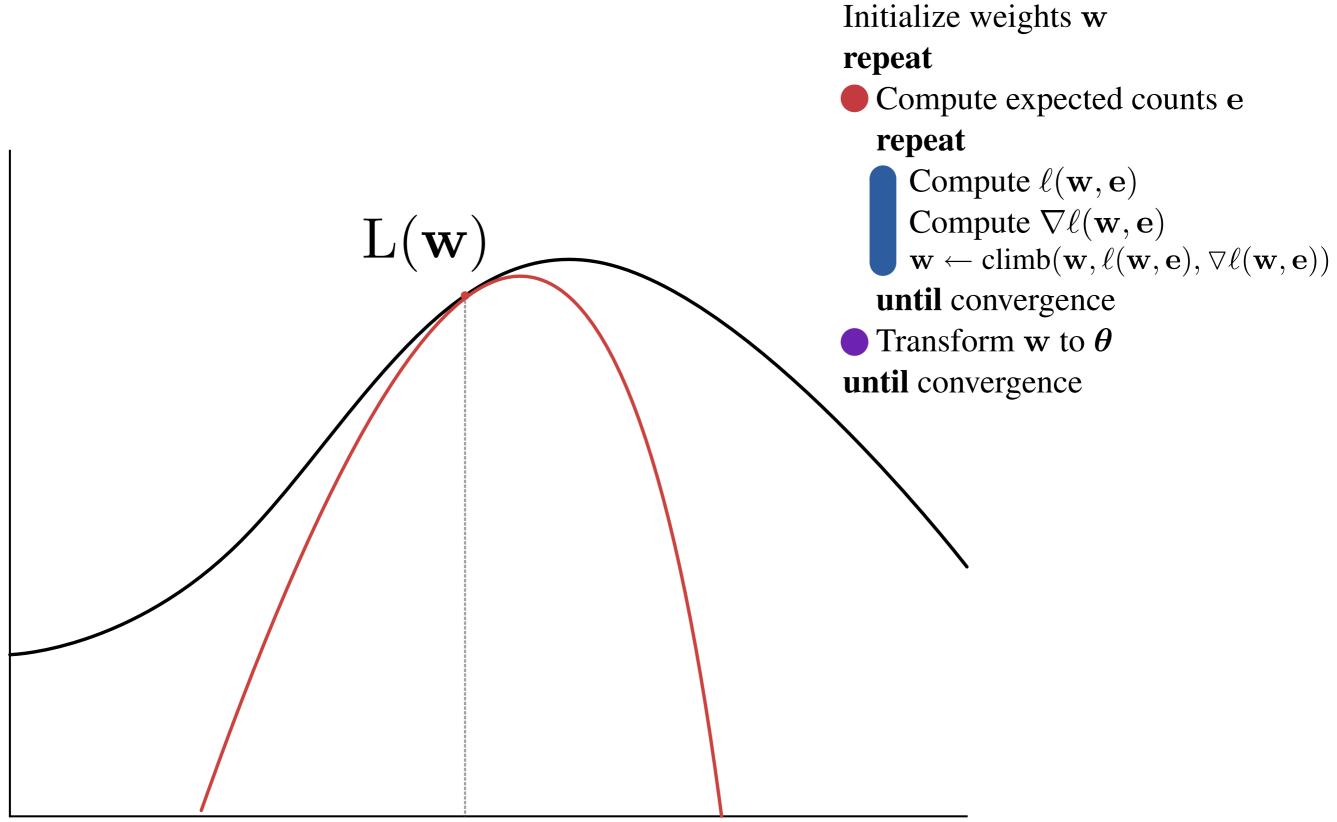


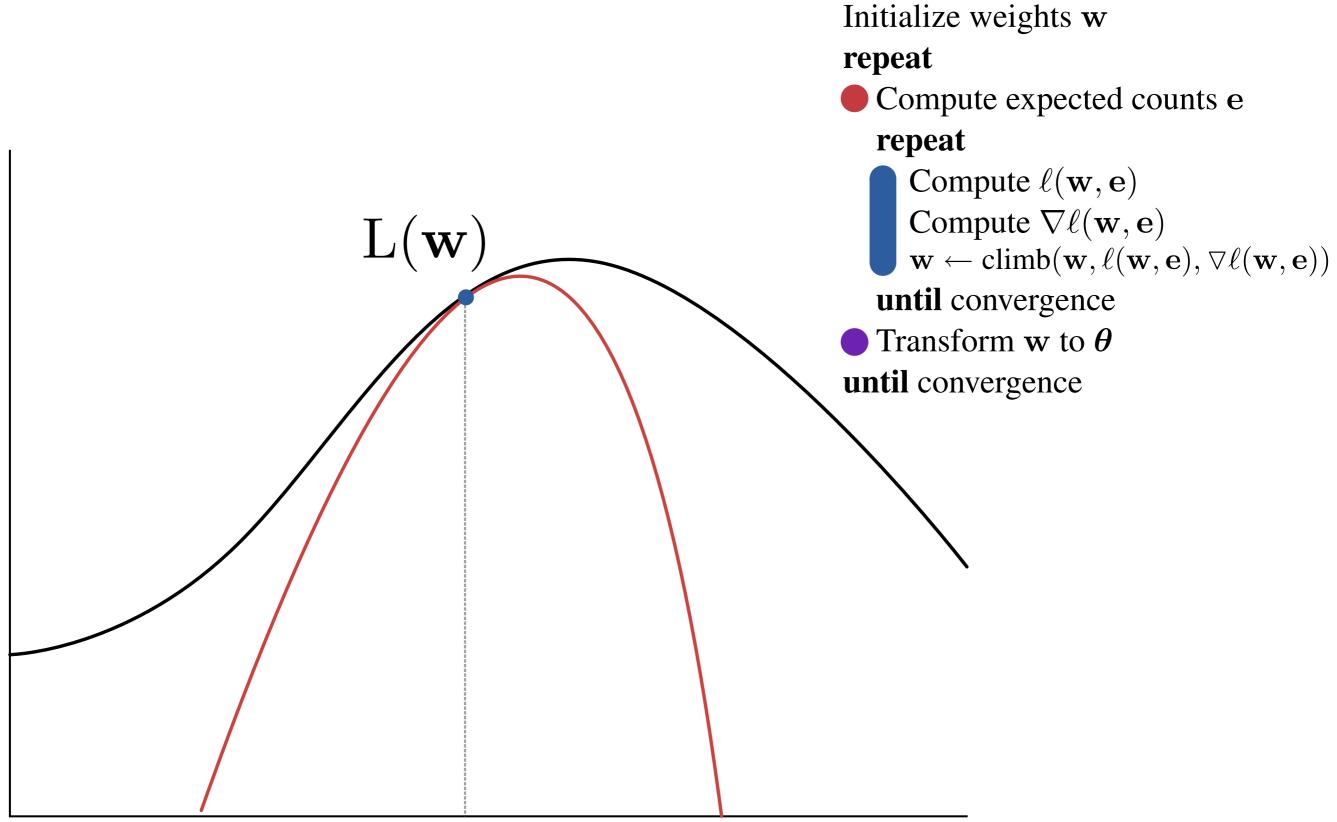


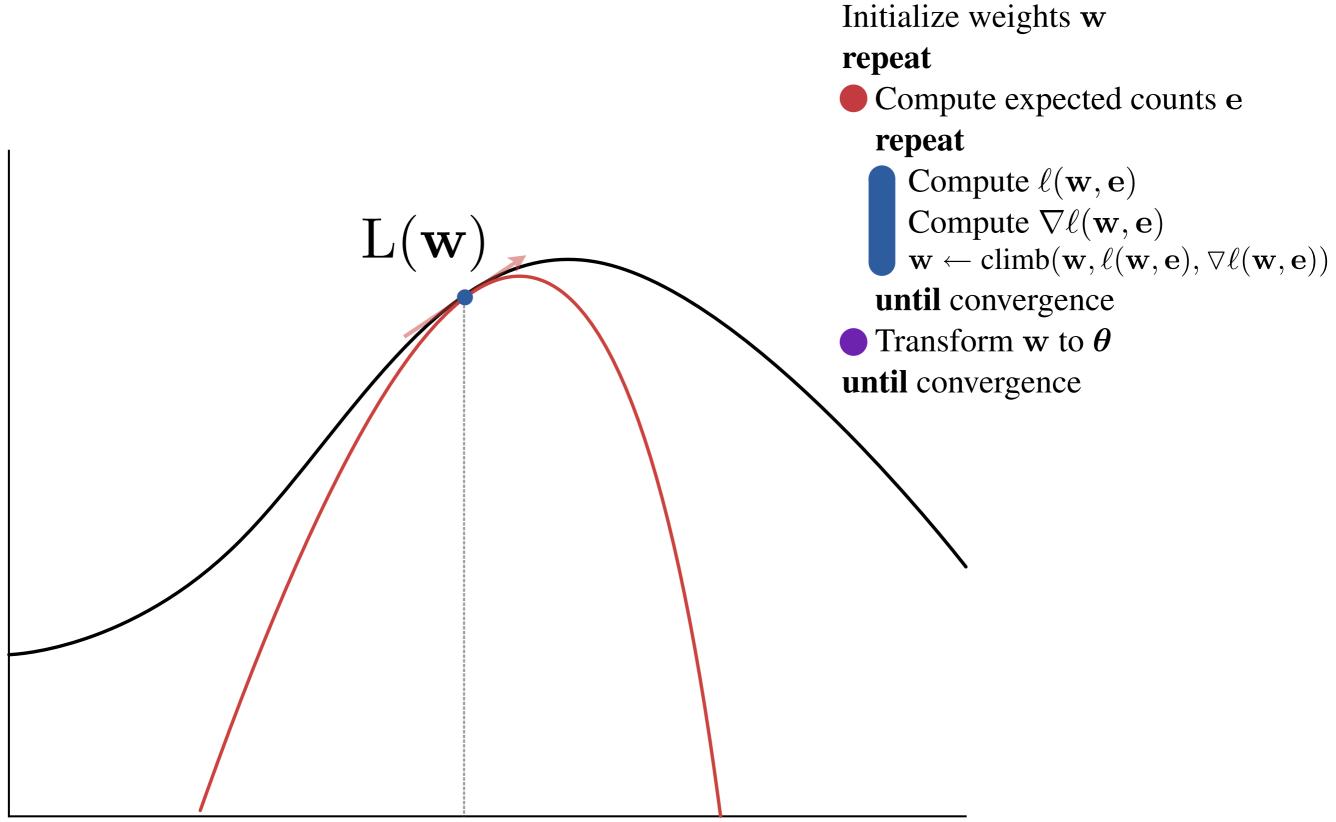


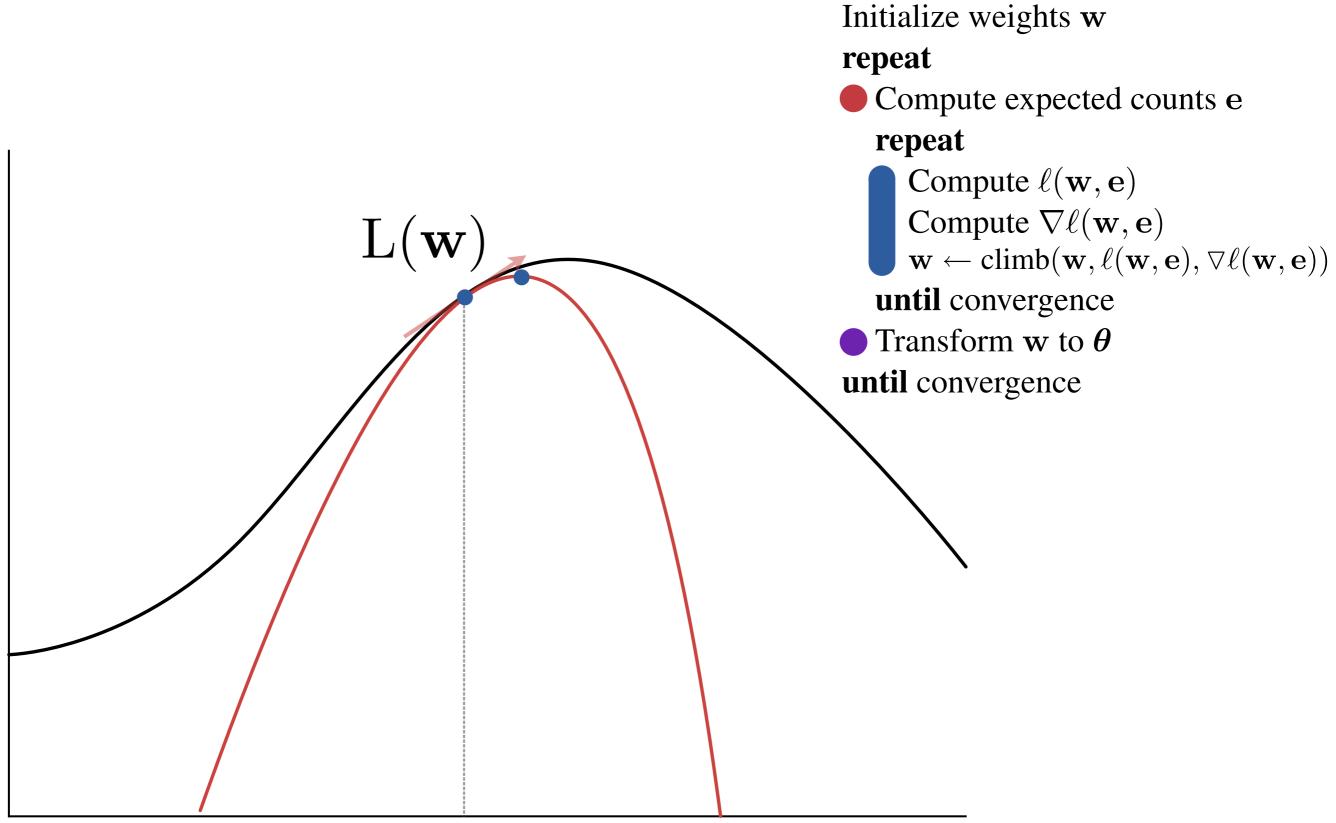


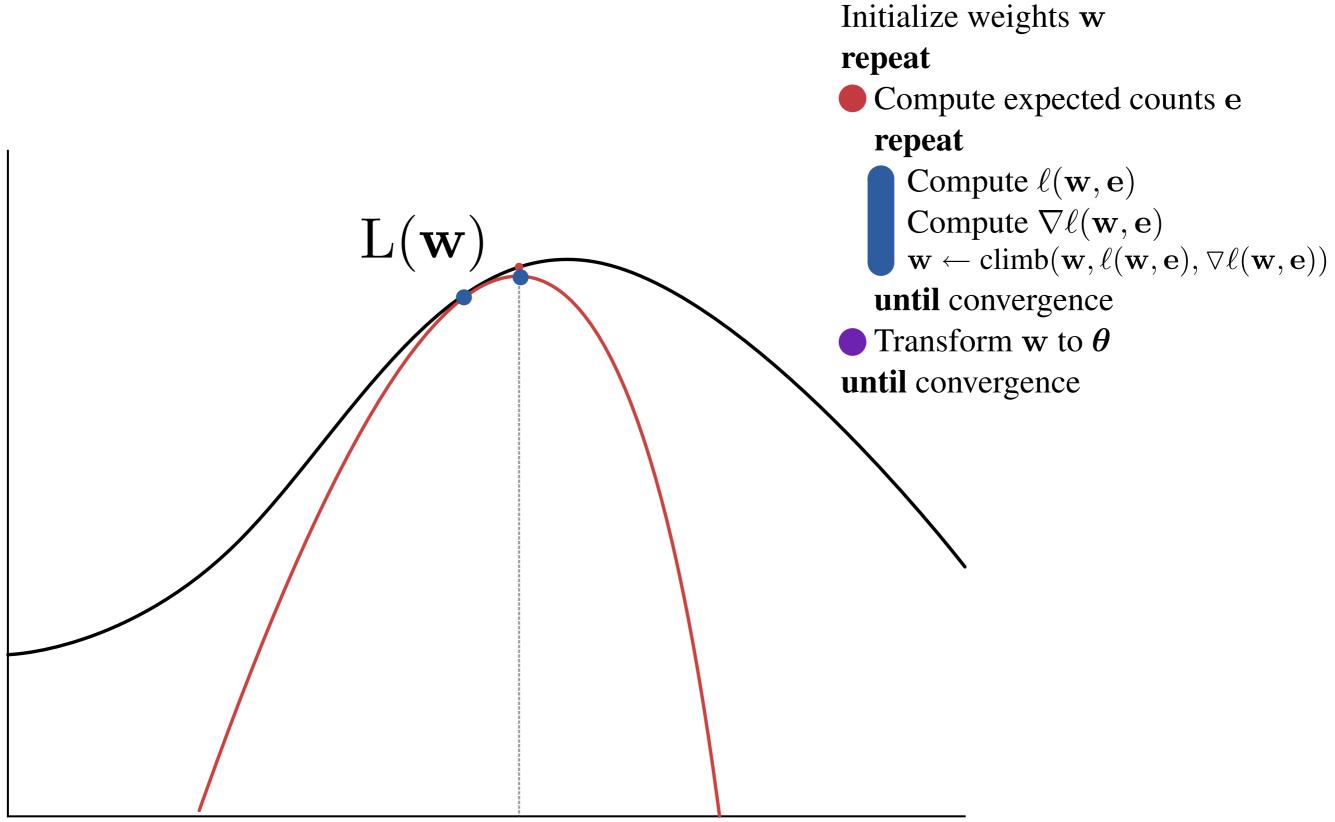












EM w/ Features

Initialize weights w

repeat

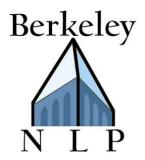
- Compute expected counts e repeat
 - Compute $\ell(\mathbf{w}, \mathbf{e})$ Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$ $\mathbf{w} \leftarrow \text{climb}(\mathbf{w}, \ell(\mathbf{w}, \mathbf{e}), \nabla \ell(\mathbf{w}, \mathbf{e}))$ until convergence Transform \mathbf{w} to $\boldsymbol{\theta}$
- until convergence

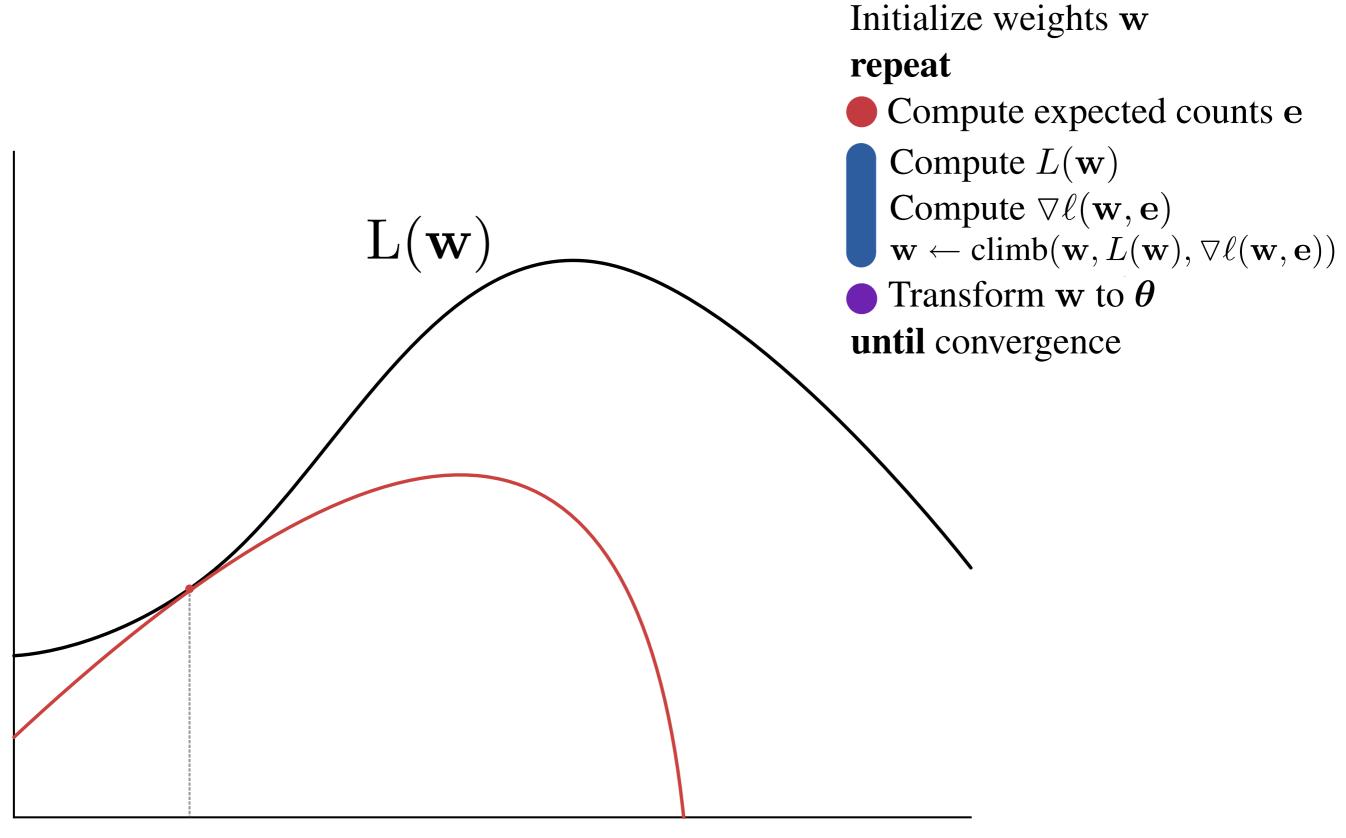
DG w/ Features

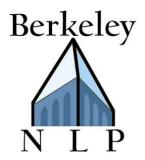
Initialize weights w
repeat
Compute expected counts e

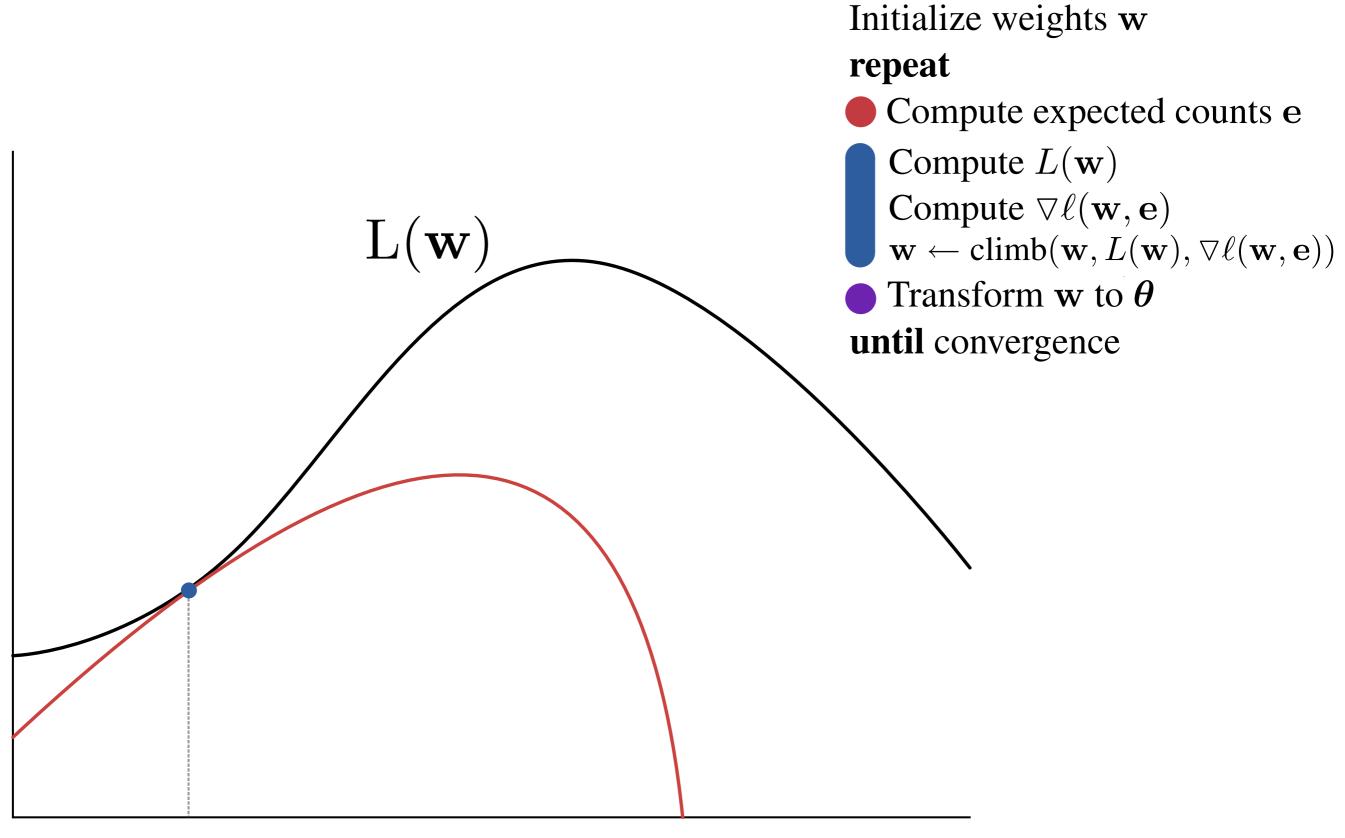
Compute $L(\mathbf{w})$ Compute $\nabla \ell(\mathbf{w}, \mathbf{e})$ $\mathbf{w} \leftarrow \text{climb}(\mathbf{w}, L(\mathbf{w}), \nabla \ell(\mathbf{w}, \mathbf{e}))$

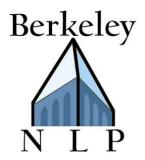
• Transform w to θ until convergence

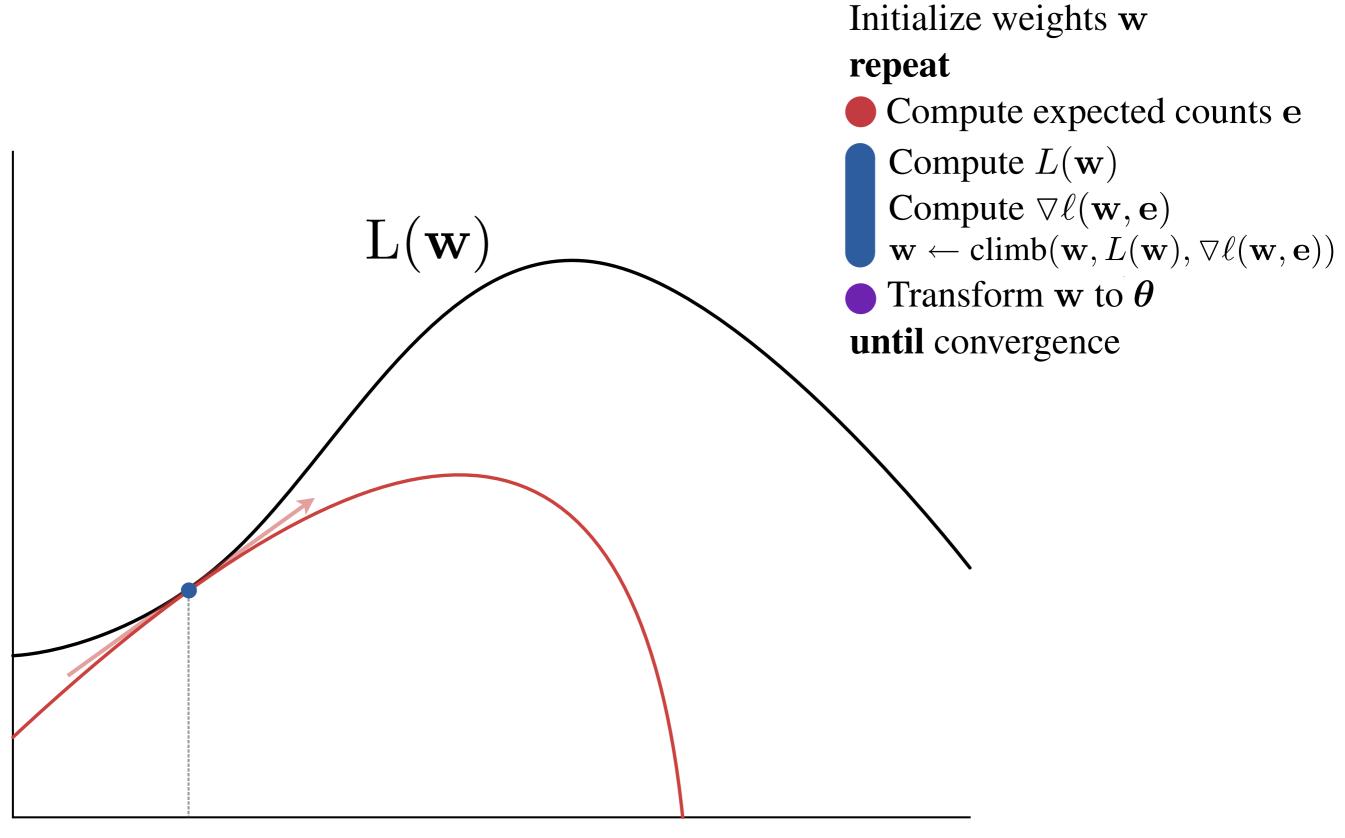


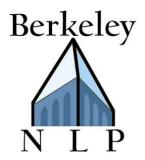


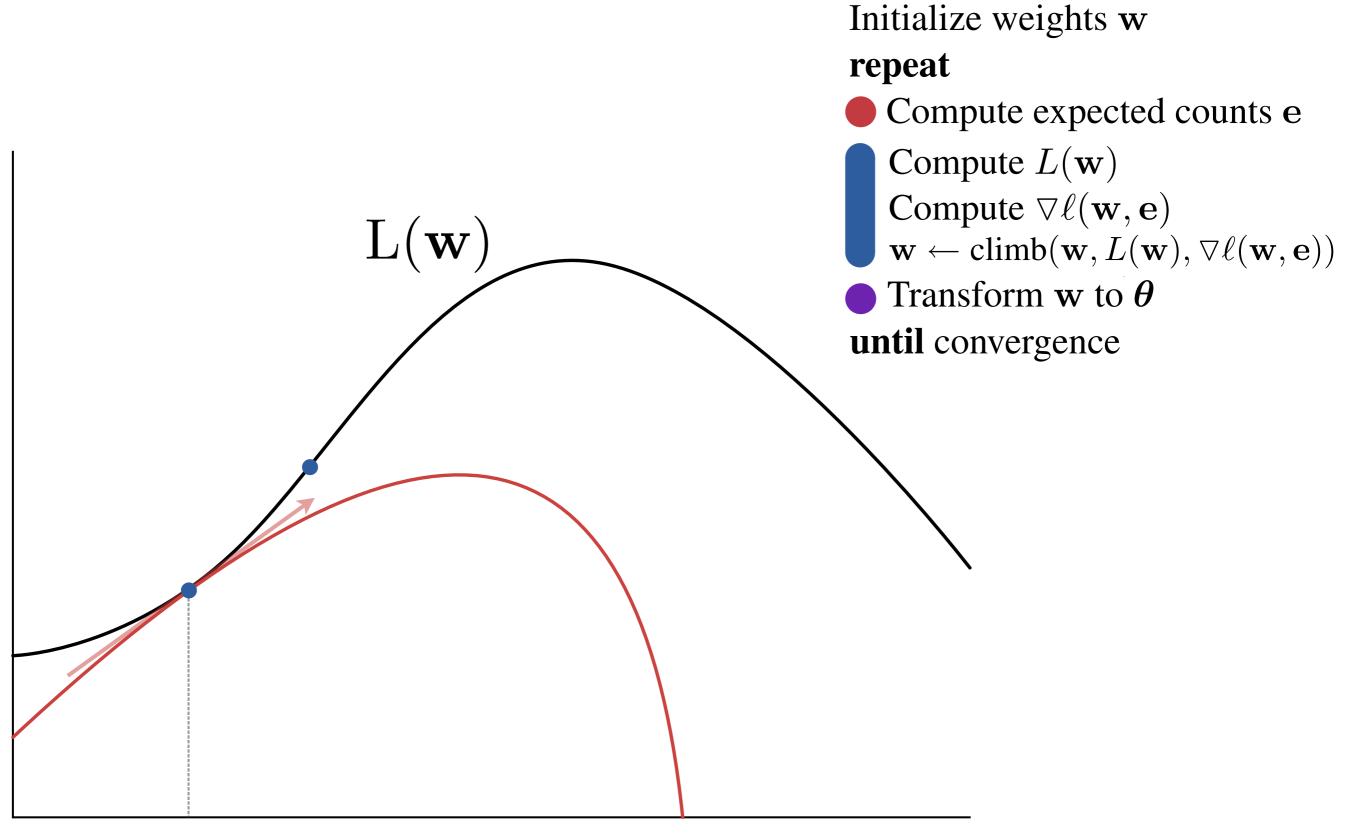


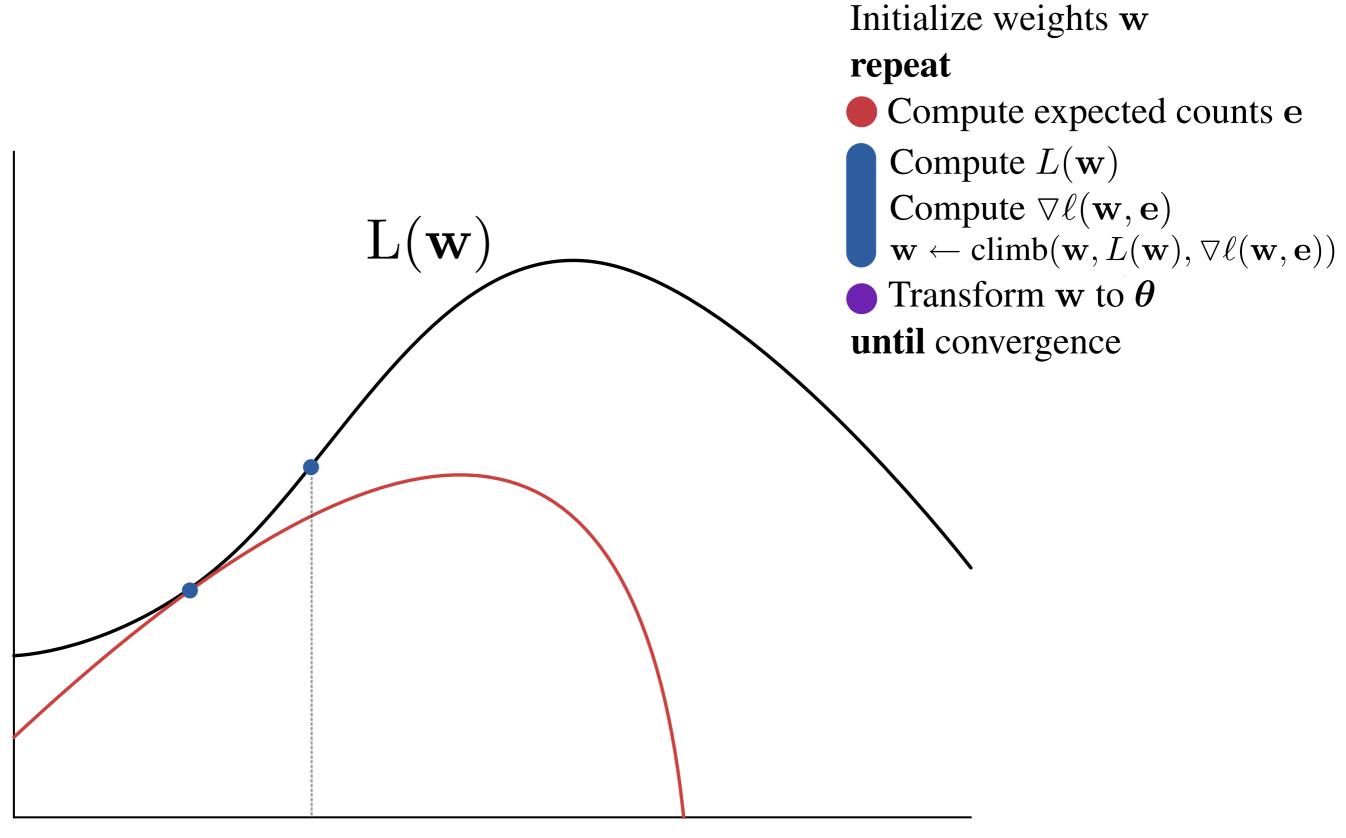


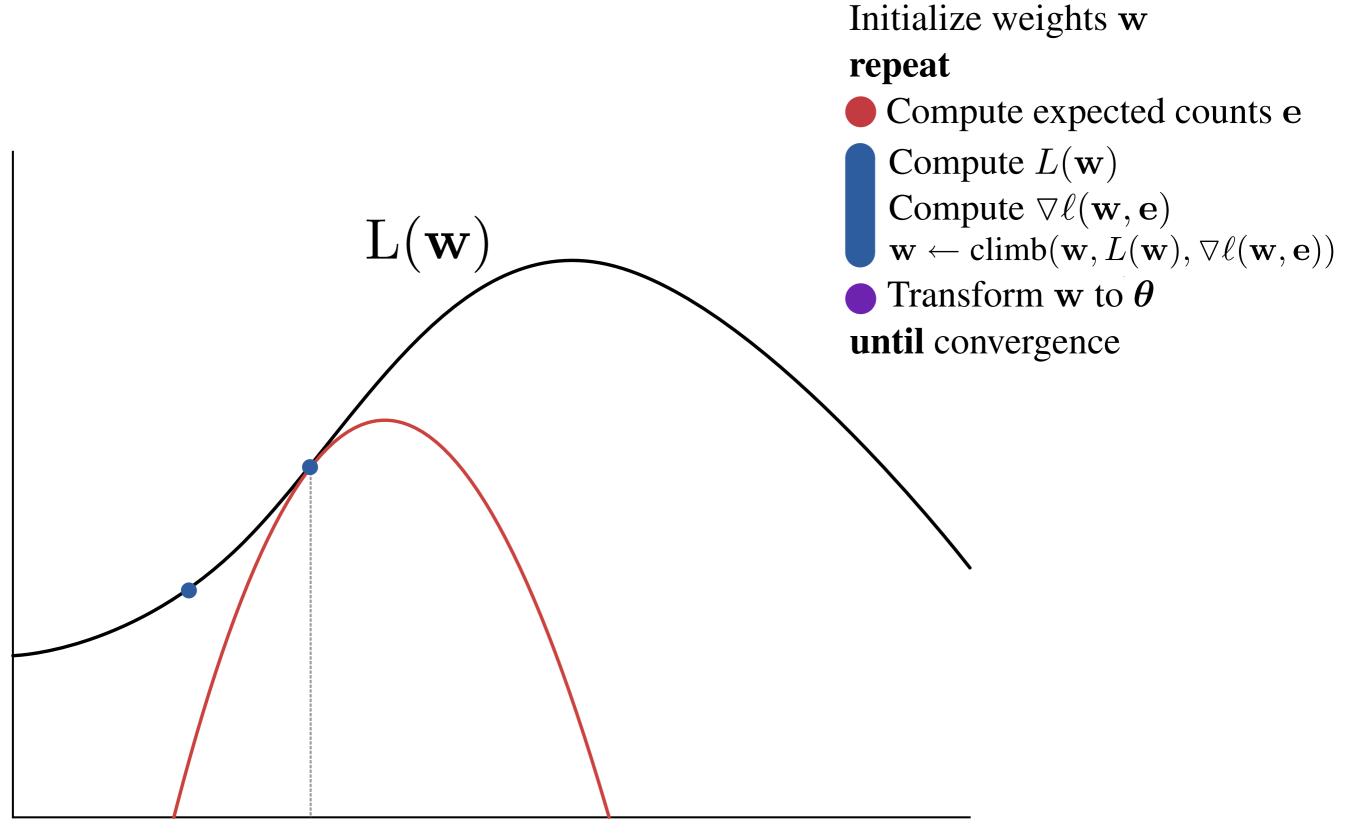


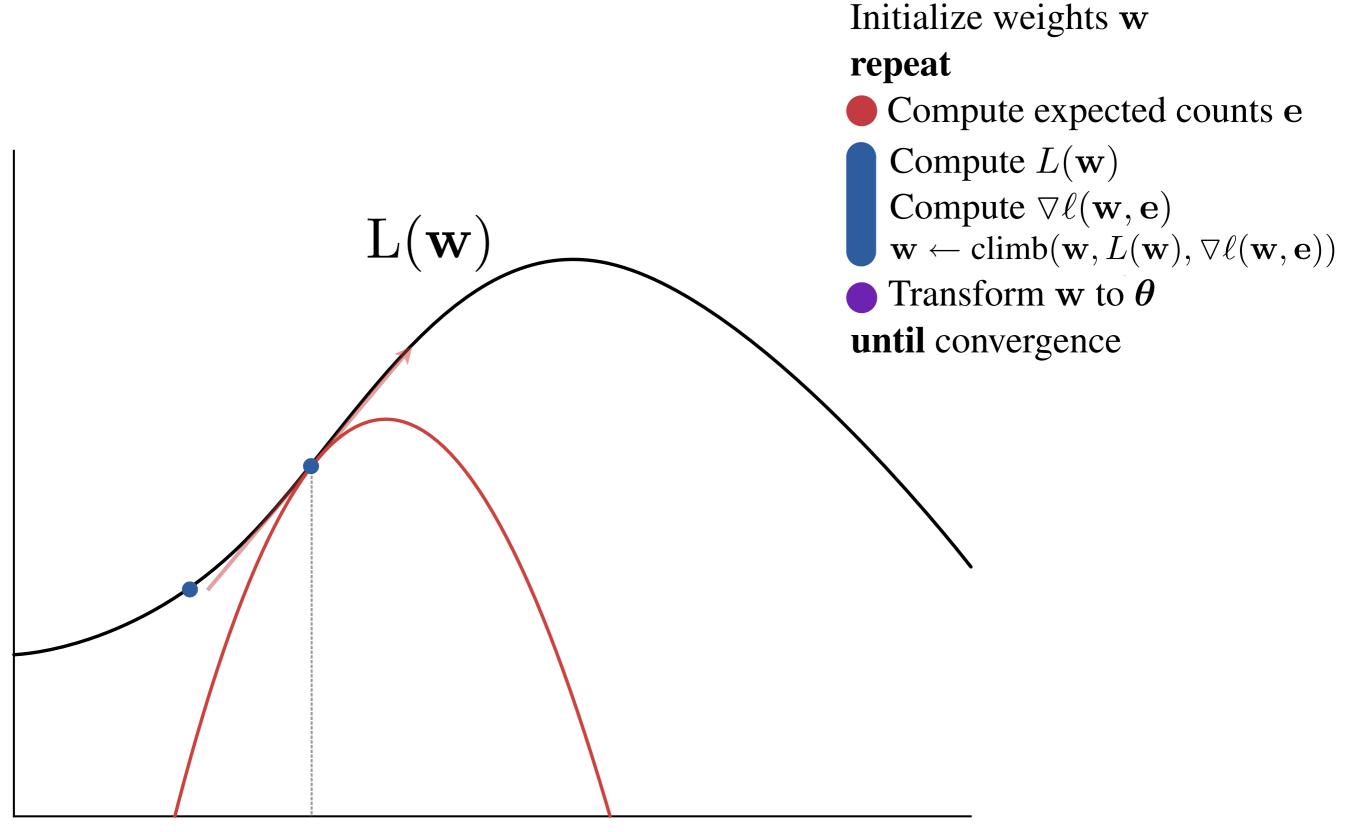


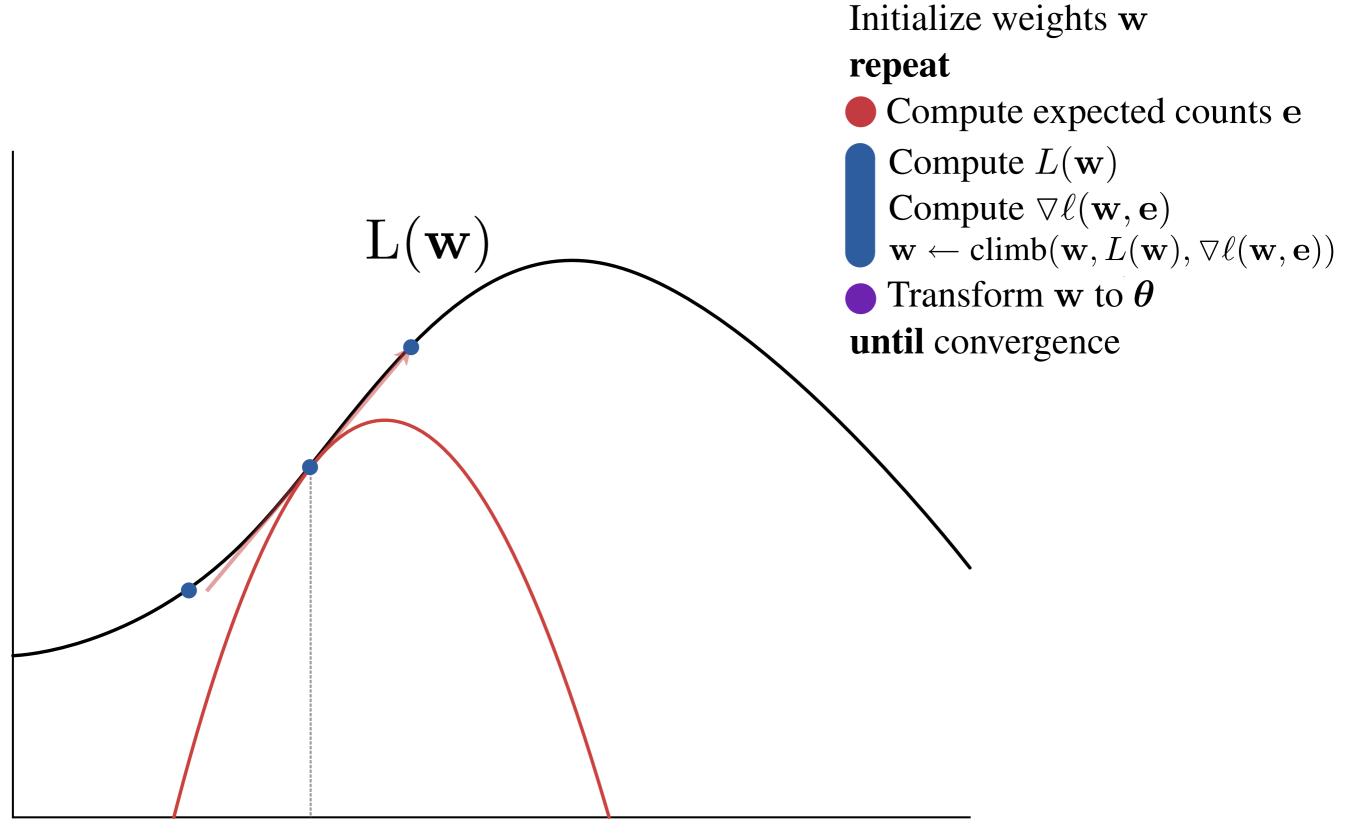


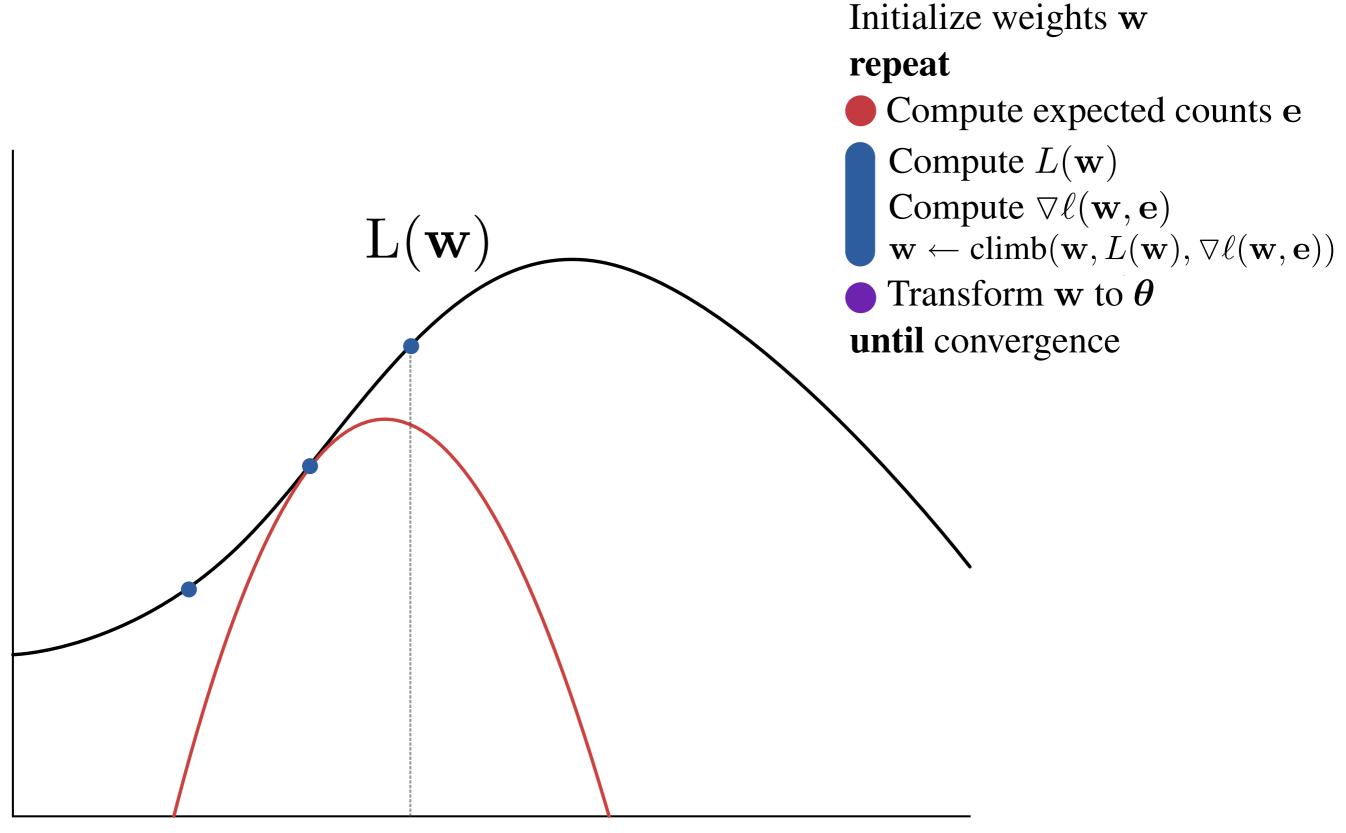










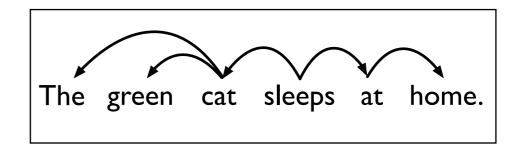


Unsupervised Induction Tasks

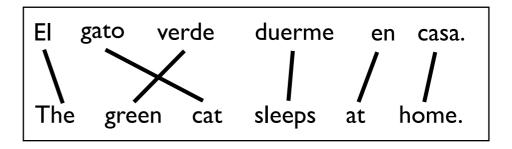
POS Induction:

DT	JJ	NN	VBZ	IN	NN
The	green	cat	sleeps	at	home.

Grammar Induction:



Word Alignment:



Word Segmentation:

[The][green][cat]

DT JJ NN VBZ IN NN The green cat sleeps at home.

DT JJ NN VBZ IN NN The green cat sleeps at home.

Key distribution: P(John|NN)

DT JJ NN VBZ IN NN The green cat sleeps at home.

Key distribution: P(John|NN)Features:

Basic:John \wedge NNContains-Digit:+Digit \wedge NNContains-Hyphen:+Hyph \wedge NNInitial-Capital:+Cap \wedge NNSuffix:+ing \wedge NN

DT	JJ	NN	VBZ	IN	NN
The	green	cat	sleeps	at	home.

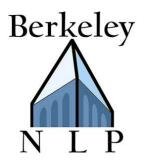
Many-to-I Accuracy

Features:

Basic:	John ^ NNP
Contains-Digit:	+Digit ^ NNP
Contains-Hyphen:	+Hyph \land NNP
Initial-Capital:	+Cap ∧ NNP
Suffix:	+ing ∧ NNP

Data:

Train and test on entire WSJ No tagging dictionary 45 POS tags



DT	JJ	NN	VBZ	IN	NN
The	green	cat	sleeps	at	home.

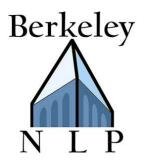
Features:

Basic:	John ^ NNP
Contains-Digit:	+Digit ^ NNP
Contains-Hyphen:	+Hyph ^ NNP
Initial-Capital:	+Cap ^ NNP
Suffix:	+ing ^ NNP

Data:

Train and test on entire WSJ No tagging dictionary 45 POS tags

Many-to-I Accuracy



DT	JJ	NN	VBZ	IN	NN
The	green	cat	sleeps	at	home.

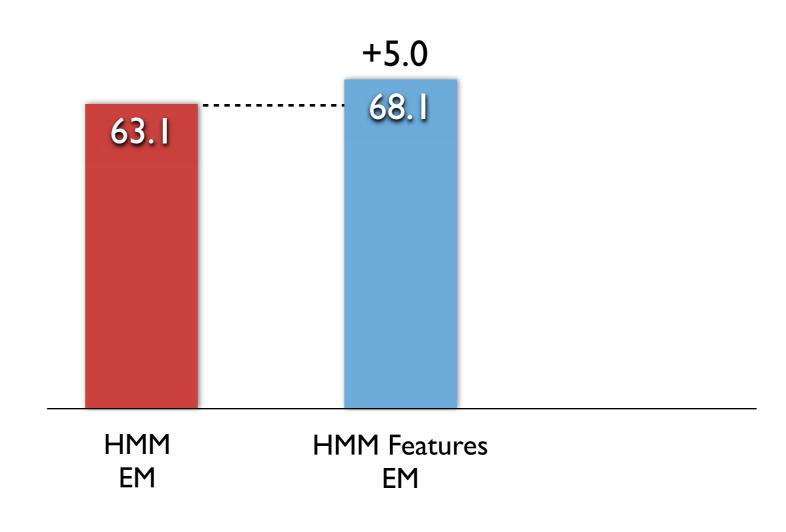
Features:

Basic:	John ^ NNP
Contains-Digit:	+Digit ^ NNP
Contains-Hyphen:	+Hyph \land NNP
Initial-Capital:	+Cap ∧ NNP
Suffix:	+ing ∧ NNP

Data:

Train and test on entire WSJ No tagging dictionary 45 POS tags

Many-to-I Accuracy





DT	JJ	NN	VBZ	IN	NN
The	green	cat	sleeps	at	home.

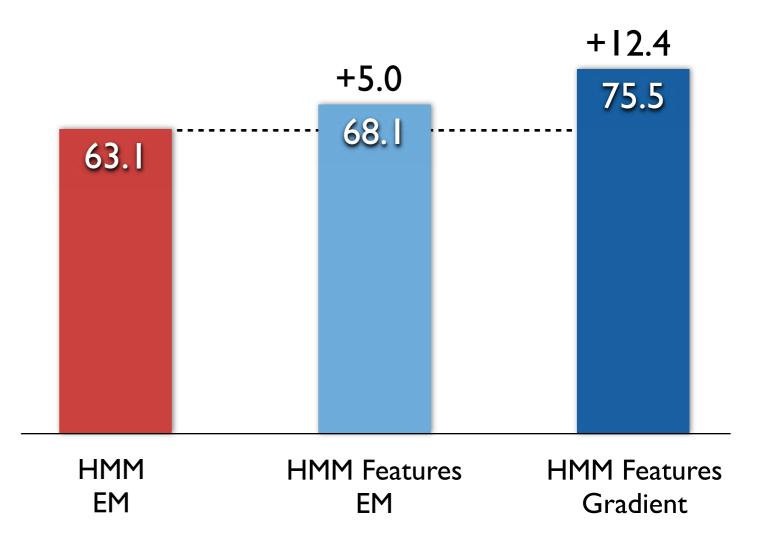
Features:

Basic:	John ^ NNP
Contains-Digit:	+Digit ^ NNP
Contains-Hyphen:	+Hyph ^ NNP
Initial-Capital:	+Cap ^ NNP
Suffix:	+ing ∧ NNP

Data:

Train and test on entire WSJ No tagging dictionary 45 POS tags

Many-to-I Accuracy



POS Induction Results

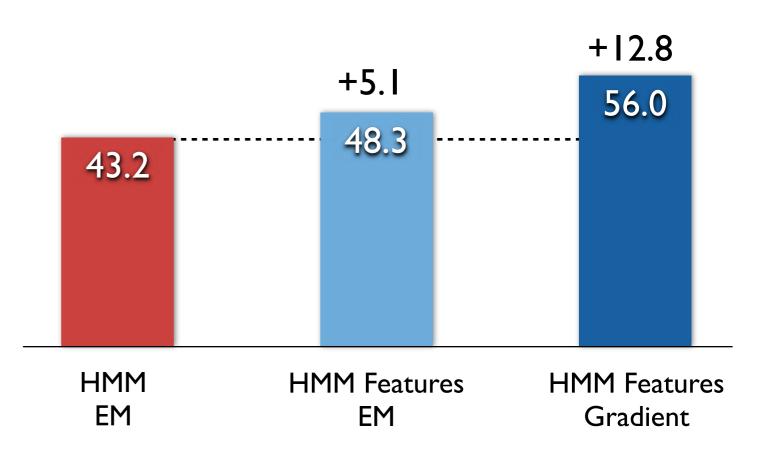
DT	JJ	NN	VBZ	IN	NN
The	green	cat	sleeps	at	home.

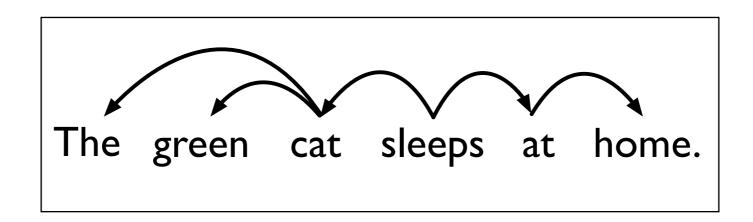
Features:

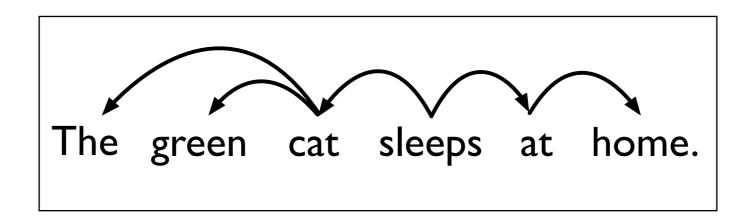
Basic:	John ^ NNP
Contains-Digit:	+Digit ^ NNP
Contains-Hyphen:	+Hyph ^ NNP
Initial-Capital:	+Cap ∧ NNP
Suffix:	+ing ∧ NNP

Data:

Train and test on entire WSJ No tagging dictionary 45 POS tags I-to-I Accuracy

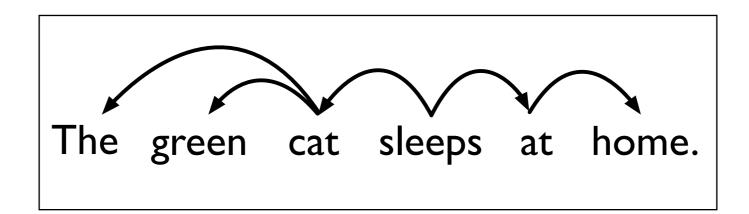






Key distributions: P(JJ|NN) P(stop|NN)

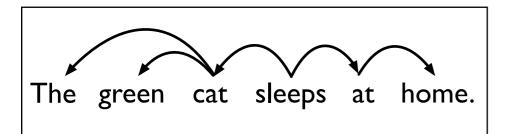




Key distributions: P(JJ|NN) P(stop|NN)

Features:

Basic:	JJ ∧ NN, JJ ∧ NNS
Noun:	JJ ∧ Noun
Verb:	JJ ^ Verb
Noun-verb:	JJ ^ NounOrVerb



Features:

Basic:JJ ∧ NN, JJ ∧ NNSNoun:JJ ∧ NounVerb:JJ ∧ VerbNoun-verb:JJ ∧ NounOrVerb

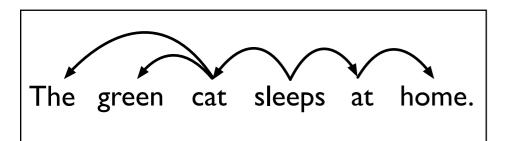
Data:

- Train WSJ10 Sec. 2-21 CTB10 Sec. 1-270
- Tune WSJ10 Sec. 22 CTB10 Sec. 400-454
- Test WSJ10 Sec. 23 CTB10 Sec. 271-300

English Directed Accuracy

Chinese Directed Accuracy

47.8



Features:

Basic:	$JJ \land NN, JJ \land NNS$
Noun:	JJ ∧ Noun
Verb:	JJ ^ Verb
Noun-verb:	JJ ∧ NounOrVerb

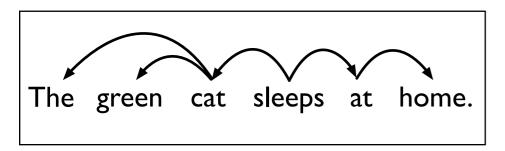
Data:

- Train WSJ10 Sec. 2-21 CTB10 Sec. 1-270
- Tune WSJ10 Sec. 22 CTB10 Sec. 400-454
- Test WSJ10 Sec. 23 CTB10 Sec. 271-300

Chinese Directed Accuracy

English Directed Accuracy

47.8

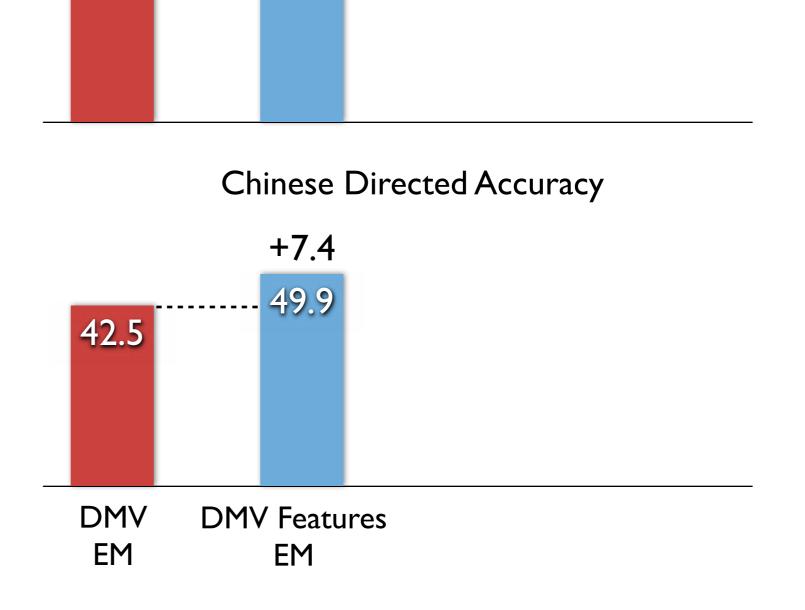


Features:

Basic:	$JJ \land NN, JJ \land NNS$
Noun:	JJ ∧ Noun
Verb:	JJ ^ Verb
Noun-verb:	JJ ^ NounOrVerb

Data:

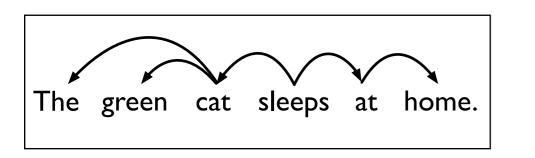
- Train WSJ10 Sec. 2-21 CTB10 Sec. 1-270
- Tune WSJ10 Sec. 22 CTB10 Sec. 400-454
- Test WSJ10 Sec. 23 CTB10 Sec. 271-300



English Directed Accuracy

+0.5

48.3

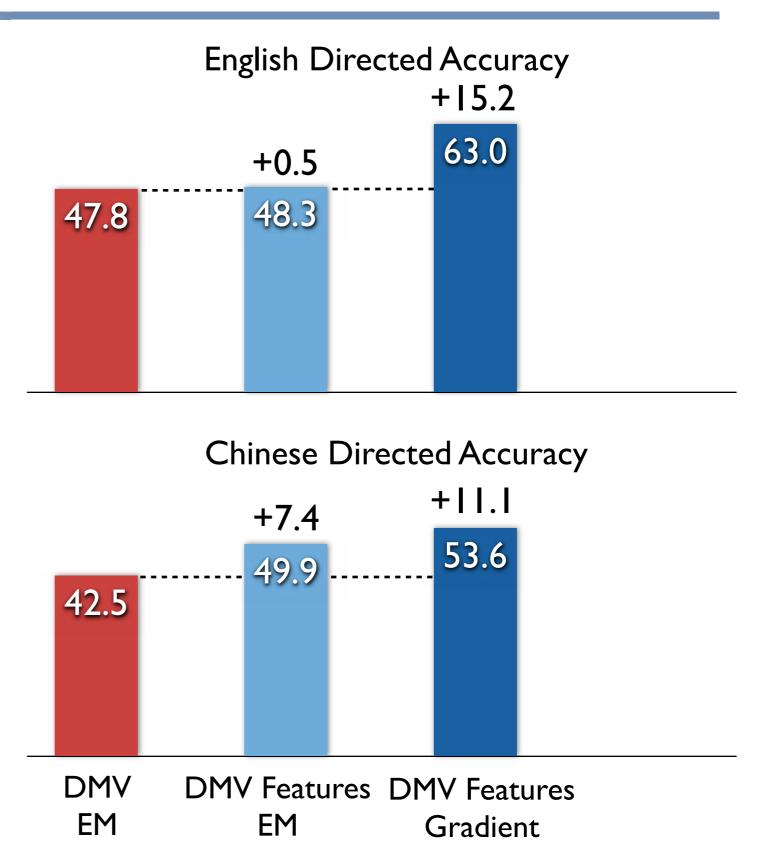


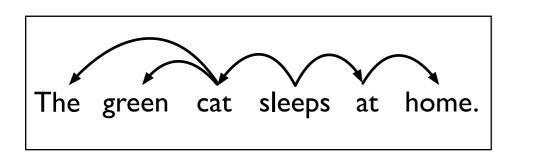
Features:

Basic: $JJ \land NN, JJ \land NNS$ Noun: $JJ \land Noun$ Verb: $JJ \land Verb$ Noun-verb: $JJ \land NounOrVerb$

Data:

- Train WSJ10 Sec. 2-21 CTB10 Sec. 1-270
- Tune WSJ10 Sec. 22 CTB10 Sec. 400-454
- Test WSJ10 Sec. 23 CTB10 Sec. 271-300



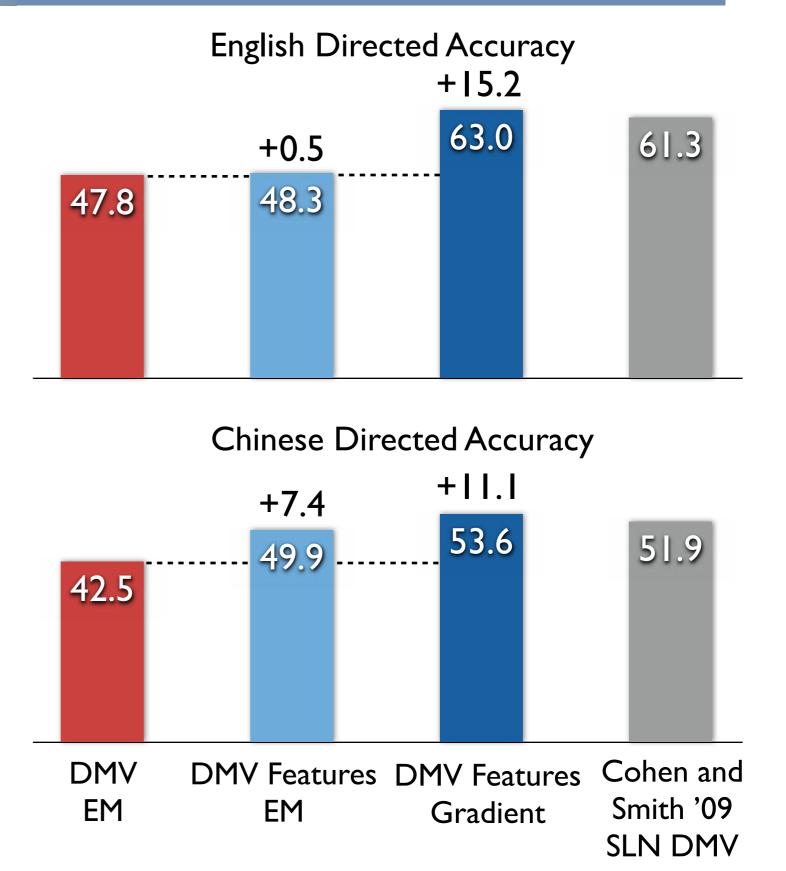


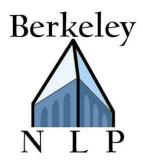
Features:

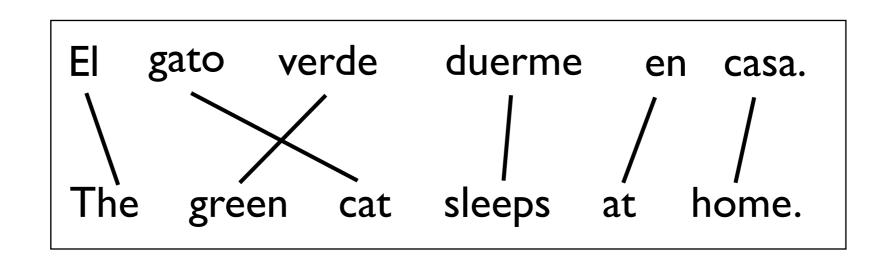
Basic: $JJ \land NN, JJ \land NNS$ Noun: $JJ \land Noun$ Verb: $JJ \land Verb$ Noun-verb: $JJ \land NounOrVerb$

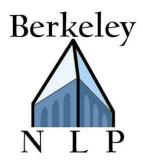
Data:

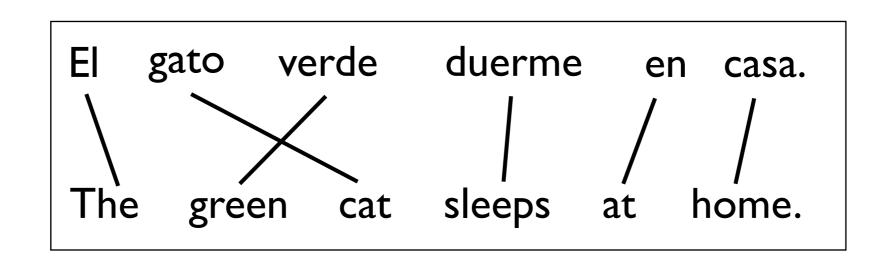
- Train WSJ10 Sec. 2-21 CTB10 Sec. 1-270
- Tune WSJ10 Sec. 22 CTB10 Sec. 400-454
- Test WSJ10 Sec. 23 CTB10 Sec. 271-300



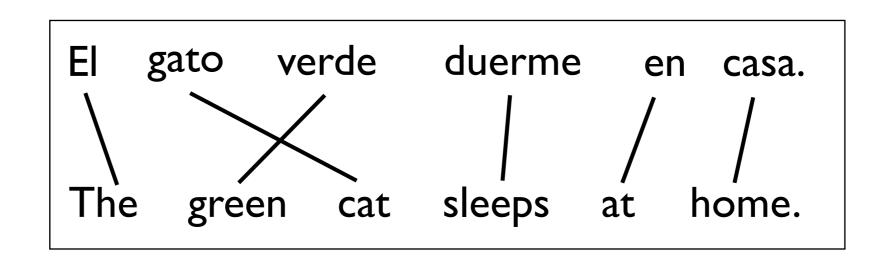








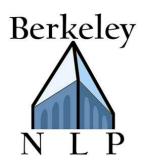
Key distribution: P(gato|cat)

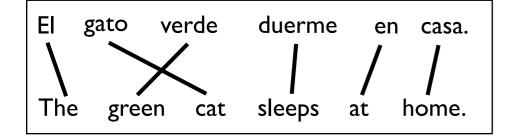


Key distribution: P(gato|cat)

Features:

Basic:gato \wedge catEdit-Distance:edit(gato,cat) = 2Dictionary:(gato,cat) \in DictStem:gato \wedge +stem(cat)Prefix:gato \wedge +ca





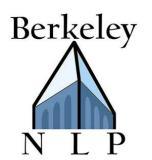
Alignment Error Rate

Features:

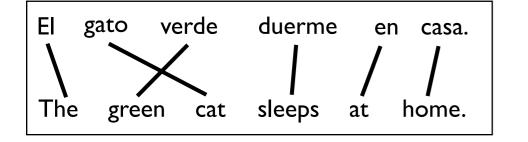
Basic:	gato <pre>^ cat</pre>
Edit-Distance:	edit(gato,cat) = 2
Dictionary:	$(gato, cat) \in Dict$
Stem:	gato <pre>^ +stem(cat)</pre>
Prefix:	gato ∧ +ca

Data:

- Train 10K sentences of FBIS Chinese-English newswire
- Test NIST 2002 Chinese-English dev set



38.0



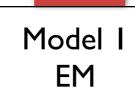
Alignment Error Rate

Features:

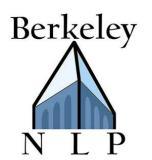
Basic:	gato ^ cat
Edit-Distance:	edit(gato,cat) = 2
Dictionary:	$(gato, cat) \in Dict$
Stem:	gato <pre>^ +stem(cat)</pre>
Prefix:	gato ∧ +ca

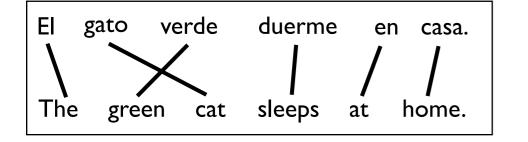
Data:

Train 10K sentences of FBIS Chinese-English newswire



Test NIST 2002 Chinese-English dev set





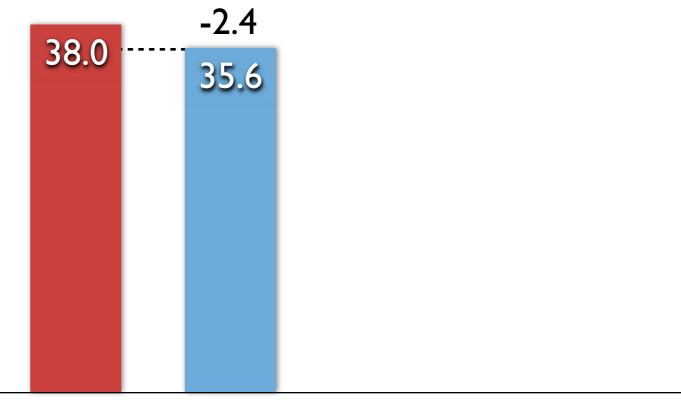
Features:

Basic:	gato \land cat
Edit-Distance:	edit(gato,cat) = 2
Dictionary:	$(gato, cat) \in Dict$
Stem:	gato <pre>^ +stem(cat)</pre>
Prefix:	gato ∧ +ca

Data:

Train 10K sentences of FBIS Chinese-English newswire

Alignment Error Rate

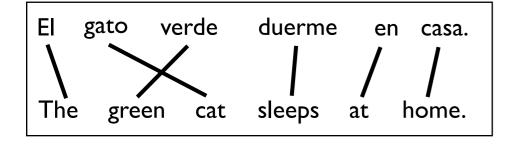


Model I Model I Features EM EM

Test NIST 2002 Chinese-English dev set

Berkeley

Word Alignment Results



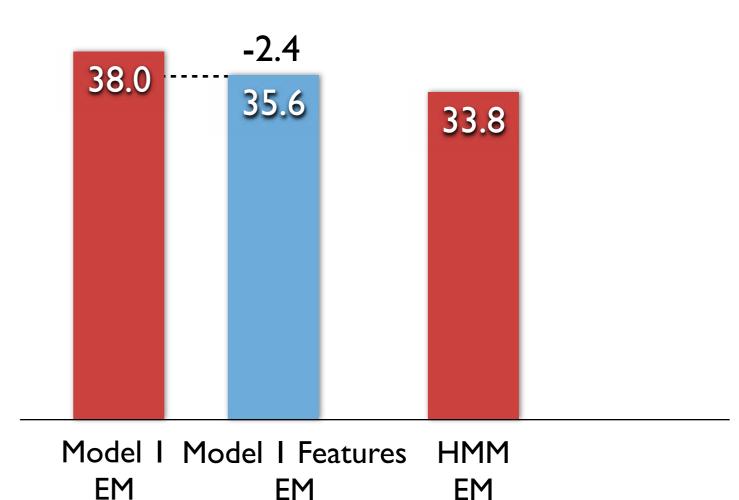
Features:

Basic:	gato ∧ cat
Edit-Distance:	edit(gato,cat) = 2
Dictionary:	$(gato, cat) \in Dict$
Stem:	gato <pre>^ +stem(cat)</pre>
Prefix:	gato ∧ +ca

Data:

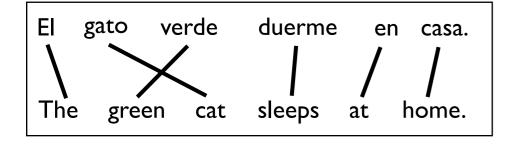
- Train 10K sentences of FBIS Chinese-English newswire
- Test NIST 2002 Chinese-English dev set

Alignment Error Rate



Berkeley

Word Alignment Results



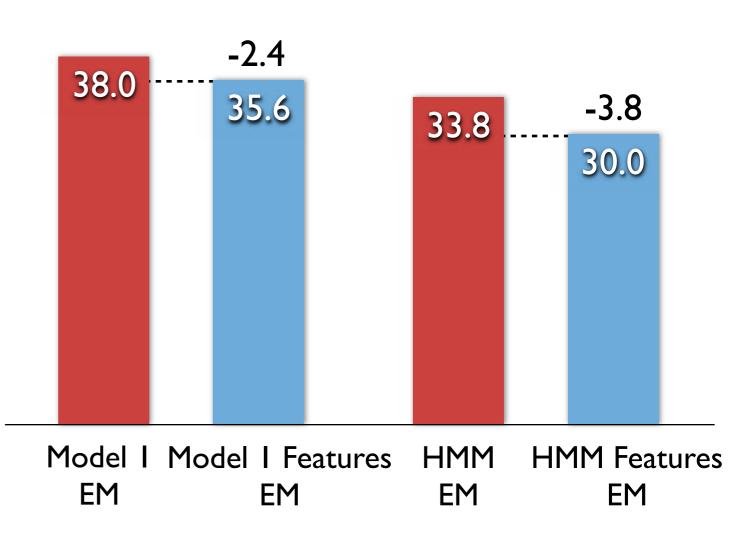
Features:

Basic:	gato <pre>^ cat</pre>
Edit-Distance:	edit(gato,cat) = 2
Dictionary:	$(gato, cat) \in Dict$
Stem:	gato <pre>^ +stem(cat)</pre>
Prefix:	gato ∧ +ca

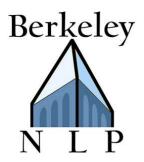
Data:

- Train 10K sentences of FBIS Chinese-English newswire
- Test NIST 2002 Chinese-English dev set

Alignment Error Rate



[The][green][cat]



Key distribution: P(running)

Key distribution: P(running)

Features:

Basic:runningLength:length(running) = 7Num-Vowels:numV(running) = 2Coarse-Phono-Prefix:+rAnCoarse-Phono-Suffix:+IN

[The][green][cat]

Token FI

Features:

Basic:	running
Length:	length(running) = 7
Num-Vowels:	numV(running) = 2
Coarse-Phono-Prefix:	+rAn
Coarse-Phono-Suffix:	+IN

Data:

Train and test on phonetic version of Bernstein-Ratner corpus

[The][green][cat]

Features:

Basic:	running
Length:	length(running) = 7
Num-Vowels:	numV(running) = 2
Coarse-Phono-Prefix:	+rAn
Coarse-Phono-Suffix:	+IN

Data:

Train and test on phonetic version of Bernstein-Ratner corpus

Unigram EM

76.9

Token FI

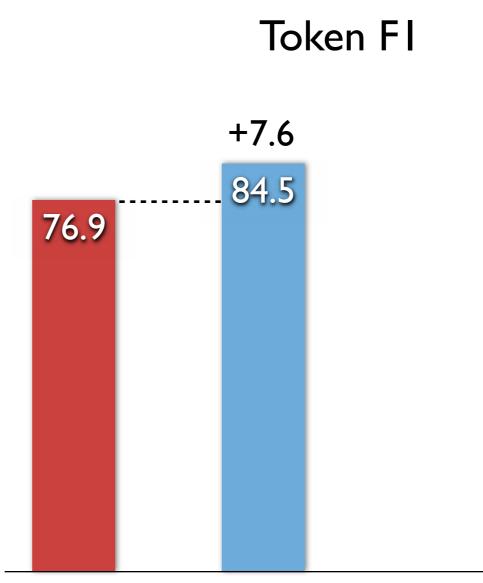
[The][green][cat]

Features:

Basic:	running
Length:	length(running) = 7
Num-Vowels:	numV(running) = 2
Coarse-Phono-Prefix:	+rAn
Coarse-Phono-Suffix:	+IN

Data:

Train and test on phonetic version of Bernstein-Ratner corpus



Unigram Unigram Features EM EM

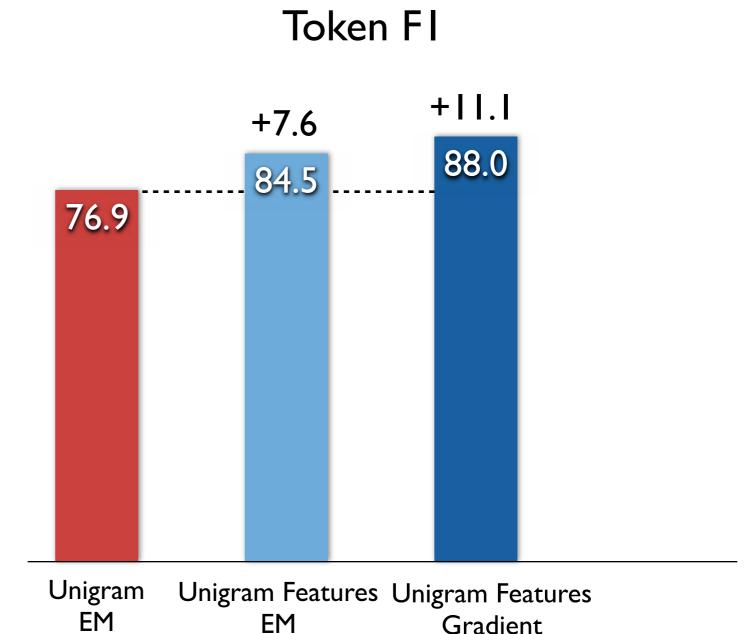
[The][green][cat]

Features:

Basic:	running
Length:	length(running) = 7
Num-Vowels:	numV(running) = 2
Coarse-Phono-Prefix:	+rAn
Coarse-Phono-Suffix:	+IN

Data:

Train and test on phonetic version of Bernstein-Ratner corpus



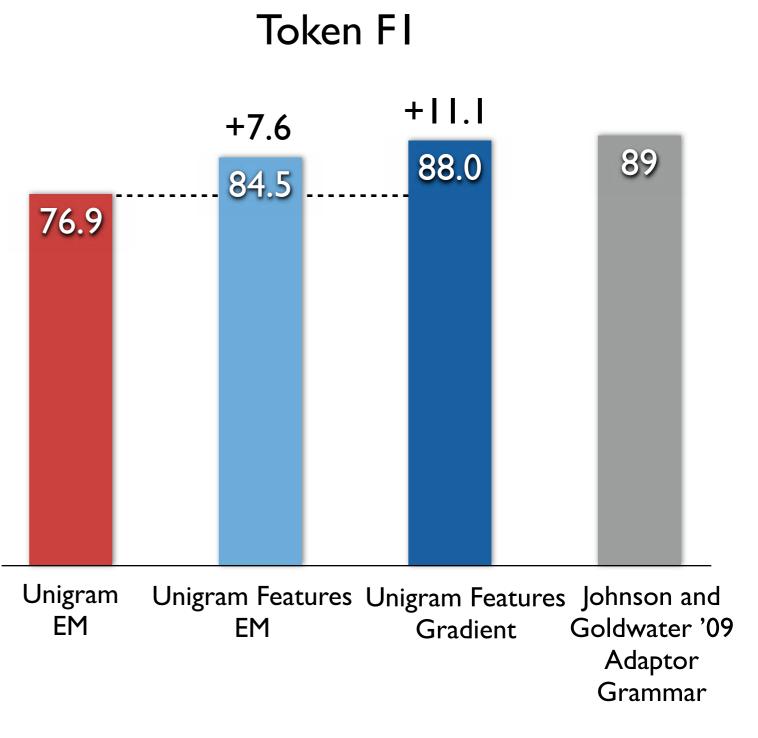
[The][green][cat]

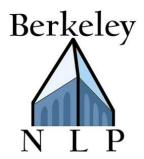
Features:

Basic:	running
Length:	length(running) = 7
Num-Vowels:	numV(running) = 2
Coarse-Phono-Prefix:	+rAn
Coarse-Phono-Suffix:	+IN

Data:

Train and test on phonetic version of Bernstein-Ratner corpus





Apply to New Models

I. Take a generative model

- I. Take a generative model
- 2. Brainstorm features local to the component multinomials

- I. Take a generative model
- 2. Brainstorm features local to the component multinomials
- 3. Run this algorithm

- I. Take a generative model
- 2. Brainstorm features local to the component multinomials
- 3. Run this algorithm
- 4. Crush your baseline

• State-of-the-art results

- State-of-the-art results
- Can implemented using off-the-shelf NLP tools

- State-of-the-art results
- Can implemented using off-the-shelf NLP tools
- Directly optimizing data-likelihood can outperform EM

- State-of-the-art results
- Can implemented using off-the-shelf NLP tools
- Directly optimizing data-likelihood can outperform EM
- Works on a wide range of induction tasks

Thanks!