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Abstract

In a recent study of large non-null sample covariance matrices, a new sequence of functions gener-

alizing the GUE Tracy-Widom distribution of random matrix theory was obtained. This paper derives

Painlevé formulas of these functions and use them to prove that they are indeed distribution functions.

Applications of these new distribution functions to last passage percolation, queues in tandem and to-

tally asymmetric simple exclusion process are also discussed. As a part of the proof, a representation of

orthogonal polynomials on the unit circle in terms of an operator on a discrete set is presented.

1 Introduction

Let Ai(u) denote the Airy function. It has an integral representation

Ai(u) =
1
2π

∫
ei(ua+ 1

3 a3)da (1.1)

where the integral is over a curve from ∞e5iπ/6 to ∞eiπ/6. The Airy kernel (see, e.g. [13, 27]) is defined as

A(u, v) :=
Ai(u)Ai′(v)−Ai(u)Ai′(v)

u− v
=

∫ ∞

0

Ai(u + z)Ai(z + v)dz. (1.2)

Let Ax be the Airy operator acting on L2((x,∞)) whose kernel is given by A(u, v). Define

F0(x) := det
(
1−Ax

)
. (1.3)

The ‘GUE Tracy-Widom distribution function’ F0(x) is the limiting distribution function of various models

in mathematical physics, probability and statistics (see e.g. [28] and references in it).1 Especially in statis-

tics, the largest eigenvalue of the sample covariance matrix of complex Gaussian samples with the identity

covariance (the so-called null case) is known to have the limiting distribution given by F0(x). An intriguing

result by Tracy and Widom [27] is that the Fredholm determinant has an alternative expression:

F0(x) = det
(
1−Ax

)
= exp

(
−

∫ ∞

x

(s− x)u2(s)ds

)
, (1.4)

∗Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, baik@umich.edu
†2000 Mathematics Subject Classification: 33E17, 60E99, 62E99
1In many literatures, F0 is denoted by F2. In this paper, we reserve F2 for a different function.
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where u(x) is the solution to the Painlevé II equation

u′′ = 2u3 + xu, (1.5)

subject to the condition

u(x) ∼ −Ai(x) as x → +∞. (1.6)

It is known [17] that there is a unique global solution to the equation (1.5) with the condition (1.6), and the

solution satisfies (see, e.g. [17, 10])

u(x) = −Ai(x) + O

(
e−

1
4 x3/2

x1/4

)
, x → +∞ (1.7)

u(x) = −
√
−x

2

(
1 + O

(
1
x2

))
, x → −∞. (1.8)

Recall that Ai(x) ∼ e−
2
3 x3/2

/(2
√

πx1/4) as x → +∞. The right-hand-side of (1.4) provides a practical

formula to plot the graph of F0 numerically.

For m = 1, 2, 3, . . . and for complex numbers w1, w2, . . . , define

s(m)(u;w1, . . . , wm) = s(m)(w1, . . . , wm) :=
1
2π

∫
e

1
3 ia3+iua

m∏

j=1

1
wj + ia

da (1.9)

where the contour is from ∞e5iπ/6 to ∞eiπ/6 such that the poles a = iw1, . . . , iwm lie above the contour.

Also define

t(m)(v; w1, . . . , wm−1) = t(m)(w1, . . . , wm−1) :=
1
2π

∫
e

1
3 ib3+ivb

m−1∏

j=1

(wj − ib)db (1.10)

where the contour is from ∞e5iπ/6 to ∞eiπ/6. Comparing with (1.1), t(m) is a sum of derivatives of the

Airy function. On the other hand, when w1 = · · · = wm = 0, s(m) is a sum of anti-derivatives of the Airy

function. However for general wj ’s, s(m) is a Cauchy-type transform of the integrand of the Airy function.

Define

Fk(x;w1, . . . , wk)

:= F0(x) · det
(

δmn− <
1

1−Ax
s(m)(w1, . . . , wm), t(n)(w1, . . . , wn−1) >L2((x,∞))

)

1≤m,n≤k

(1.11)

where <,>(x,∞) denotes the real inner product in L2((x,∞));

<
1

1−Ax
s(m)(w1, . . . , wm), t(n)(w1, . . . , wn−1) >L2((x,∞))

=
∫ ∞

x

(
1

1−Ax
s(m)(w1, . . . , wm)

)
(u)t(n)(u; w1, . . . , wn−1)du.

(1.12)

(It is well-known that 1−Ax is invertible.) Set

Fk(x) := Fk(x; 0, 0 . . . , 0), k = 1, 2, . . . . (1.13)
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The functions Fk(x; w1, . . . , wk) were introduced recently in [1] as limits of the distribution functions of the

largest eigenvalues of certain non-null complex sample covariance matrices and also other probability models.

See Section 2 below for more details on the motivations. The purpose of this paper is to find a Painlevé

type formula for Fk(x;w1, · · · , wk) analogous to (1.4). Such formula is used to prove that Fk(x; w1, · · · , wk)

is indeed a distribution. It also allows us to be able to plot the graph of Fk(x).

1.1 Results

1.1.1 Alternative determinantal formula

We first obtain an alternative determinantal formula of Fk(x;w1, . . . , wk). The definition (1.11) involves the

functions s(m) and t(m) and it is not transparent that the formula is symmetric in w1, . . . , wk, which should

be the case from its origin in the sample covariance matrix [1] (see also Section 2 below). This symmetry is

clear in the following theorem.

For a complex number w, set

Cw(u) :=
1
2π

∫
ei( 1

3 a3+ua) 1
w + ia

da (1.14)

where the contour is, as in the definition (1.9) of s(m), from ∞e5iπ/6 to ∞eiπ/6 such that the pole a = iw

lies above the contour. Hence s(1)(u;w1) = Cw1(u). Also note that t(1)(v) = Ai(v).

Theorem 1.1. With above notations, for real x and complex w set

f(x,w) := 1− <
1

1−Ax
Cw, Ai >L2((x,∞))= 1−

∫ ∞

x

(
1

1−Ax
Cw

)
(u)Ai(u)du. (1.15)

For distinct complex numbers w1, . . . , wk,

Fk(x;w1, . . . , wk) = F0(x) ·
det

(
(wm + Dx)n−1f(x,wm)

)
1≤m,n≤k∏

1≤m<n≤k

(wn − wm)
(1.16)

where Dx = ∂
∂x denotes the derivative with respect to x. When some of wj’s coincide, the above formula still

holds by using the l’Hosptial’s rule for the right-hand-side of (3.1).

Remark. P. Deift and A. Its pointed out that this formula resembles the Darboux transformation in the

theory of integrable systems (see e.g., [23]). It would be interesting to identify the above formula in terms

of a Darboux transformation of an integrable system.

This theorem follows from row and column operations of (1.11) exploiting the fact that t(n) is a sum of

derivatives of Ai and that s(m) is a linear combination of Cwj . The proof is given in Section 3.

1.1.2 Painlevé formula

In the next theorem, we show that the function f(x,w) defined in (1.15) is related to the Painlevé II equation.

First we need a definition. Let M(z; x) =
(

M11(z) M12(z)
M21(z) M22(z)

)
be the 2 × 2 matrix-valued solution to the

following Riemann-Hilbert problem:
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• M(z; x) is analytic for z ∈ C \ R and is continuous for z ∈ C \ R

• For z ∈ R,

M+(z; x) = M−(z; x)

(
1 −e−2i( 4

3 z3+xz)

e2i( 4
3 z3+xz) 0

)
(1.17)

where M+(z; x) (resp. M−(z; x)) denotes the limit of M(z′; x) as z′ → z from the bottom (resp. top)

of the contour R.

• M(z; x) → I as z →∞.

The precise statement of the last condition is the following: there is ε > 0 such that M(z; x) = I + O(z−1)

uniformly as z →∞ for z in sectors ε < Arg(z) < π−ε and π+ε < Arg(z) < 2π−ε, and M(z; x) is bounded

for all z ∈ C \ R.

This is the Riemann-Hilbert problem for the Painlevé II equation when the so-called monodromy data

satisfies p = −q = 1 and r = 0 [18, 11, 10]. It is known that there is a unique solution to this Riemann-Hilbert

problem. Moreover, as z →∞, there is an expansion of form

M(z; x) = I +
M1(x)

z
+ O

(
1
z2

)
, M1(x) =

1
2i

(
−v(x) u(x)

−u(x) v(x)

)
(1.18)

where u(x) is the solution of the Painlevé II equation (1.5) satisfying (1.6), and

v(x) =
∫ x

∞
u(s)2ds. (1.19)

The following theorem shows that f(x, w) is expressible in terms of the Riemann-Hilbert problem for

Painlevé II equation.

Theorem 1.2. The function f(x,w) defined in (1.15) satisfies the following:

f(x,w) =





M22(− 1
2 iw;x), Re(w) > 0

−M21(− 1
2 iw; x)e

1
3 w3−xw, Re(w) < 0.

(1.20)

Note that from the jump condition (1.17), f(x,w) is continuous for w ∈ R, and hence is an entire function

in w.

Together with Theorem 1.1, Theorem 1.2 yields the desired Painlevé II formula of Fk(x; w1, . . . , wk),

which is the main result of this paper.

Corollary 1.3. The function Fk(x; w1, . . . , wk) defined by (1.11) is equal to (1.16) with f(x, w) given

by (1.20).

The function given in the right-hand-side of (1.20) had previously appeared in [4] (equation (2.22))

and [3] (equation (3.5)) as a limiting function for a last passage site percolation model. In the context of

symmetrized random permutations and last passage percolation models, [4, 3] showed, among other things,

the k = 1 case of Corollary 1.3;

F1(x,w1) = F0(x)f(x, w1) (1.21)

where f(x,w) given by the right-hand-side of (1.20). This paper proves that the general case is expressible

in terms of derivatives of the same function f(x,w).
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1.1.3 Properties of f(x.w)

The papers [4, 3] proved several properties of the function defined by the right-hand-side of (1.20). By

setting w 7→ 1
2w in Lemma 2.1 of [4] or Lemma 3.1 of [3], we find the following properties of f(x,w). The

following complementary function is useful: set

g(x,w) :=





M12(− 1
2 iw; x), Re(w) > 0

−M11(− 1
2 iw;x)e

1
3 w3−xw, Re(w) < 0.

(1.22)

Lemma 1.4 ([4, 3]). The following holds.

(i). f(x,w), g(x,w) are real for w ∈ R.

(ii). For each fixed w ∈ C, as x → +∞

f(x,w) = 1 + O(e−cx3/2
), (1.23)

g(x,w) = −e
1
3 w3−xw

(
1 + O(e−cx3/2

)
)

(1.24)

and as x → −∞,

f(x,w) ∼ 1√
2
e

1
6 w3− 1

6 |x|3/2+ 1
2 |x|w−w2|x|1/2

(1.25)

g(x,w) ∼ − 1√
2
e

1
6 w3− 1

6 |x|3/2+ 1
2 |x|w−w2|x|1/2

. (1.26)

(iii).

lim
w→+∞

f(x,w) = 1, lim
w→+∞

g(x,w) = 0, (1.27)

lim
w→−∞

f(x,w) = 0, lim
w→−∞

g(x,w) = 0, (1.28)

f(x, 0) = E(x), g(x, 0) = −E(x), (1.29)

where

E(x) := exp
{∫ ∞

x

u(s)ds

}
. (1.30)

(E(x) was denoted by E(x)2 in [4, 3].)

(iv). For all x ∈ R and w ∈ C,

∂

∂x

(
f(x,w)
g(x,w)

)
=

(
0 u(x)

u(x) −w

) (
f(x,w)
g(x,w))

)
, (1.31)

∂

∂w

(
f(x,w)
g(x,w)

)
=

(
(u(x))2 −wu(x)− u′(x)

−wu(x) + u′(x) w2 − x− (u(x))2

)(
f(x, w)
g(x, w)

)
. (1.32)

(v).

f(x,w) = −g(x,−w)e
1
3 w3−xw, (1.33)

g(x,w) = −f(x,−w)e
1
3 w3−xw. (1.34)
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(vi). For each fixed y ∈ R, as w → −∞,

f(y
√
|w|+ w2, w) → erf(y) =

1√
2π

∫ y

−∞
e−

1
2 s2

ds, (1.35)

g(y
√
|w|+ w2, w) ∼ −e

2
3 |w|3+

√
2y|w|3/2

. (1.36)

Note that (1.31) and (1.32) are the Lax pair equations for the Painlevé II equation. Hence Theorem 1.1,

Theorem 1.2 and Lemma 1.4 yields that Fk(x;w1, . . . , wk) is expressible in terms of the Lax pair equations

of the Painlevé II equation.

Remark. After this paper was completed, Harold Widom found a different proof of (1.31) and (1.32) for

f(x,w) defined by (1.15) and g(x,w) defined by g(x,w) = −(
1

1−Ax
Cw

)
(x) using the method of [27]. The

proof of Widom is algebraic and is more direct. On the other hand, the current paper proves a general

identity and then takes a limit as outlined in subsection 1.2 below.

From (1.31) and (1.32), f(x, w) itself satisfies a second order linear differential equations in x and w with

coefficients involving u(x).

Corollary 1.5. Denoting ∂
∂xf(x,w) = f ′(x,w) and ∂

∂wf(x,w) = ḟ(x,w), f satisfies

−f ′′ +
(

u′

u
− w

)
f ′ + u2f = 0 (1.37)

and

−f̈ +
(

u

wu + u′
+ w2 − x

)
ḟ +

(
− u3

wu + u′
+ u4 + xu2 − (u′)2

)
f = 0. (1.38)

Together with the initial conditions f(x, 0) = E(x) and ḟ(x, 0) = (u2(x)+u′(x))E(x), (1.38) may provide

a numerical way to compute the function f(x, w), and hence Fk(x;w1, . . . , wk).

1.1.4 Formula of Fk(x)

When w1 = · · · = wk = 0, using the l’Hospitals’ rule in (1.16),

Fk(x) = Fk(x; 0, 0, . . . , 0) =
1∏k−1

j=0 j!
F0(x) · det

(
Dm−1

w

{
(w + Dx)n−1f(x,w)

}∣∣
w=0

)

1≤m,n≤k

. (1.39)

By using (1.31), (1.32) and (1.29), one can in principle compute the determinant. The first three functions

are

F1(x) = F0(x)E(x),

F2(x) = F0(x)E(x)2
{
1 + u(x + 2u2 + 2u′)

}
,

F3(x) = F0(x)E(x)3
{
1 + 2u(x + 2u2 + 2u′) +

1
2
(u2 − u′)(x + 2u2 + 2u′)2

}
.

(1.40)

Using the numerical evaluation of the Painlevé solution u(x) which is available at the website of M. Prähofer

(http://www-m5.ma.tum.de/KPZ), these formulas provide a convenient way to plot the graphs of Fk. Figure 1

is the graphs of the density function d
dxFj(x) for j = 0, 1, 2, 3. Note that the function moves to the right as

the index k increases. The numerical means and the standard deviations of Fk(x) are the following:
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Figure 1: Graph of d
dxFj(x), j = 0, 1, 2, 3 from the left to the right

mean standard deviation

F0 -1.771. . . 0.90. . .

F1 -0.494. . . 1.11. . .

F2 0.543. . . 1.18. . .

F3 1.445. . . 1.21. . .

1.1.5 Fk are distribution functions

The Painlev’e formula obtained above can be used to prove that Fk(x; w1, . . . , wk) is indeed a distribution

function.

Corollary 1.6. The function Fk(x; w1, . . . , wk) is a distribution for real w1, . . . , wk.

Proof. In [1], the function Fk(x;w1, . . . , wk) are shown to be continuous, non-decreasing and converges to 1

as x → +∞ (see the paragraph after (25)). We need to show that Fk(x; w1, . . . , wk) → 0 as x → −∞. From

(1.25), all entries of the determinant in both (1.16) and (1.39) are in absolute value less than or equal to

Ce−c|x|3/2
for some constants C, c > 0 as x → −∞. Also F0(x) ≤ Ce−c|x|3 for some other constants C, c > 0

(see e.g. (2.13) of [4]). Hence Fk(x; w1, . . . , wk) = O(e−c|x|3) for some constant c > 0 as x → −∞.

1.2 Outline of the proof and orthogonal polynomials on the unit circle

Theorem 1.1 is obtained by applying a sequence of row and column operations to the determinant (1.11).

This part is the main bulk of the paper and the proof is given in Section 3.

The proof of Theorem 1.2 is indirect. We use a representation of orthogonal polynomials on the unit

circle in terms of an operator on a discrete set. Since such a representation may be interesting in itself, we

state it here. This formula follows from a general identity (see (4.1) below) between Toeplitz determinants
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and Fredholm determinants on integer lattice obtained by Geronimo and Case [14], and also independently

by Borodin and Okounkov [7] (see also [6, 9] for shorter proofs).

Set N0 := N ∪ {0}. Let φ(z) be a function which is positive on the unit circle. For simplicity of

argument, we assume that φ(z) is analytic in neighborhood of the unit circle. Let φ = φ+φ− be a Wiener-

Hopf factorization of φ where φ+ extends to a non-vanishing analytic function interior of the circle and φ−
extends to a non-vanishing analytic function exterior of the circle. Set

ψ(z) :=
φ+(z)
φ−(z)

. (1.41)

For a function f(z) on the unit circle, fk denotes its kth Fourier coefficient:

fk :=
∫

|z|=1

z−kf(z)
dz

2πiz
. (1.42)

Proposition 1.7. Let πn(z) be the monic orthogonal polynomial on the unit circle with respect to the measure

φ(z) dz
2πiz , and let π∗n(z) = znπn( 1

z ) be its ∗-transform. For φ satisfying above conditions,

π∗n(z) = e−
P∞

k=1(log φ)kzk

{
1− <

1
1− PnABPn

PnQ,PnR >`2(N0)

}
, |z| < 1, (1.43)

where <,>`2(N0) is the real inner product on `2(N0), Pn is the projection on the set {n, n+1, n+2, . . . }, the

operators A,B : `2(N0) → `2(N0) are defined by the kernels

A(j, m) = (ψ−1)j+m+1, B(m, k) = ψ−m−k−1 (1.44)

and the functions Q,R ∈ `2(N0) are given by

Q(j) = (ψ−1)j+1, R(k) =
(

z

· − z
ψ(·)

)

−k−1

=
∫

|b|=1

bk+1 z

b− z
ψ(b)

db

2πib
. (1.45)

On the other hand,

πn(z) = zne−
P∞

k=1(log φ)−kz−k

{
1− <

1
1− PnABPn

PnU,PnV >`2(N0)

}
, |z| > 1, (1.46)

where

U(j) =
( ·

z − ·ψ
−1(·)

)

j+1

=
∫

|a|=1

a−j−1 a

z − a

1
ψ(a)

da

2πia
, V (k) = ψ−k−1, (1.47)

Remark. (i) As π∗n(z) is an entire function, the formula (1.43) also holds for a region of |z| ≥ 1 to which the

right-hand-side of (1.43) is analytically continued. (ii) The conditions for φ above can be weakened, but we

do not discuss such an issue in this paper. (iii) Recall that Wiener-Hopf factorizations of φ are different by a

factor of a multiplicative constant. However, since A and B have both factors ψ−1 and ψ, respectively, the

operator AB is unaffected by a different choice of φ+ and φ−. The inner products in (1.43) and (1.46) also

remain the same even if ψ is multiplied by a constant. Therefore, (1.43) and (1.46) does not depend on the

choice of a Wiener-Hopf factorization of φ.

Remark. After this paper was completed, it turned out during a conversation with Andrei Mart́ınez-

Finkelstein that (1.46) appeared in [22] in a very different form. In the first formula of the equation (32) of
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[22], the authors found a series expansion for π(z). However one can check that the series is precisely what

one would obtain once the Neuman series of the operator PnABPn is taken in (1.46). The proof of [22] is

based on a Riemann-Hilbert method. By turning the argument backward, it is also possible to prove the

identity of Geromino-Case and Borodin-Okounkov using a Riemann-Hilbert method. This will appear in a

future work.

We regard (1.43) as an identity. We take a special choice of φ and then take a limit of both sides of the

identity (1.43). A steepest-descent analysis shows that the right-hand-side converges to the formula (1.15).

On the other hand, a Riemann-Hilbert asymptotic analysis to the left-hand-side yields the Painlevé formula

(1.20). Hence the identity (1.20) follows from the identity between the orthogonal polynomials and their

operator representation.

This paper is organized as follows. In Section 2, we present the statistical and probabilistic models in

which the distributions Fk(x; w1, . . . , wk) appear. The proof of Theorem 1.1 is given in Section 3. Section 4

proves Proposition 1.7 and Section 5 proves Theorem 1.2.

Acknowledgments. The authors would like to thank P. Deift, A. Its, A. Mart́ınez-Finkelshtein, B. Simon

and H. Widom for useful conversations and communications. This work was supported in part by NSF Grant

#DMS-0350729 and the AMS Centennial Fellowship.

2 Models

We discuss several statistics and probability models in which Fk’s appear.

2.1 Non-null complex sample covariance matrices

Let M ≥ N ≥ 1 be integers. Let ~y1, . . . , ~yM be independent complex Gaussian N × 1 column vectors with

mean ~µ and population covariance Σ: the density of ~y1 is

p(~y1) =
1

(2π)N/2(detΣ)1/2
e−

1
2 (~y1−~µ)∗Σ−1(~y1−~µ) (2.1)

where ∗ denotes the complex transpose. Denote by Ȳ the sample mean Ȳ := 1
M (~y1 + · · · + ~yM ) and by

X = [~y1 − Ȳ , . . . , ~yM − Ȳ ] the (centered) M ×N sample matrix. Define the sample covariance matrix by

S =
1
M

XX∗. (2.2)

When the covariance matrix Σ is the identity matrix, the distribution of the eigenvalues of S is sometimes

called the Laguerre unitary ensemble and is well-studied in the random matrix theory (see e.g. [12]). In

particular, as M, N → ∞ while M/N = γ2 is in a compact subset of [1,∞), the largest eigenvalue λmax

satisfies the limit law (see e.g. [13, 19])

P
((

λmax − (1 + γ−1)2)
) · γ

(1 + γ)4/3
M2/3 ≤ x

)
→ F0(x), (2.3)

where F0(x) is the Tracy-Widom distribution (1.3).
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Johnstone [21] proposed the study of the so-called the ‘spiked population model’ where the covariance

matrix Σ is a finite rank perturbation of the identity matrix. For possible applications of the spiked pop-

ulation model in statistics, finance and telecommunications, see the references in [21] and [1]. For spiked

population models, it is interesting to determine the effect of non-unit eigenvalues of the covariance matrix

on the largest eigenvalue of the sample covariance matrix. For complex Gaussian samples, [1] determined the

critical value of the non-unit covariance eigenvalue. When some of the non-unit eigenvalues of the covariance

matrix are above the critical value, λmax behaves differently from (2.3). The function Fk(x) is the limiting

distribution of the λmax when the largest eigenvalue of the covariance matrix is of multiplicity k and is equal

to the critical value.

Let `1 ≥ · · · ≥ `r > 0 be the non-unit eigenvalues of Σ where r is independent of M and N .

Theorem 2.1 (Theorem 1.1 of [1]). As M, N →∞ such that M/N = γ2 lies in a compact subset of [1,∞),

the following holds.

(a) When

`1 = · · · = `k = 1 + γ−1 (2.4)

for some 0 ≤ k ≤ r, and `k+1, . . . , `r are in a compact subset of (0, 1 + γ−1),

P
((

λmax − (1 + γ−1)2)
) · γ

(1 + γ)4/3
M2/3 ≤ x

)
→ Fk(x) (2.5)

where Fk(x) is defined in (1.13).

(b) When

`1 = · · · = `k are in a compact subset of (1 + γ−1,∞) (2.6)

for some 1 ≤ k ≤ r, and `k+1, . . . , `r are in a compact subset of (0, `1),

P
((

λmax − (`1 +
`1γ

−2

`1 − 1
)
) ·
√

M

√
`21 −

`21γ
−2

(`1 − 1)2
≤ x

)
→ Gk(x) (2.7)

where Gk(x) is the distribution of the largest eigenvalue of k × k Gaussian unitary ensemble.

More detailed nature of the phase transition around the critical value 1 + γ−1 was also studied in the

same paper.

Theorem 2.2 (Theorem 1.2 of [1]). For some 1 ≤ k ≤ r, set

`j = 1 + γ−1 − (1 + γ)3/2wj

γM1/3
, j = 1, 2, . . . , k. (2.8)

When w1, . . . , wk are in a compact subset of R and `k+1, . . . , `r are in a compact subset of (0, 1 + γ−1), as

M, N →∞ while M/N = γ2 is in a compact subset of [1,∞),

P
((

λmax − (1 + γ−1)2)
) · γ

(1 + γ)4/3
M2/3 ≤ x

)
→ Fk(x; w1, . . . , wk) (2.9)

where Fk(x;w1, . . . , wk) is defined in (1.11).

It is transparent from this theorem that Fk(x;w1, . . . , wk) should be symmetric in w1, . . . , wk since re-

labelling the eigenvalues does not change the limit law. Further work on the eigenvalues of the spiked model

can be found in [24, 5].
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2.2 Last passage percolation and queues in tandem

Suppose that to each lattice points (i, j) ∈ Z2, an independent random variable X(i, j) is associated. Let

(1, 1) ↗ (N, M) denote the set of ‘up/right paths’ π = {(ik, jk)}N+M−1
k=1 where (ik+1, jk+1) − (ik, jk) is

either (1, 0) or (0, 1), and (i1, j1) = (1, 1) and (iN+M−1, jN+M−1) = (N, M). Note that the cardinality of

(1, 1) ↗ (N, M) is
(
N+M−2

N−1

)
. Set

L(N, M) := max
π∈(1,1)↗(N,M)

∑

(i,j)∈π

X(i, j). (2.10)

By interpreting X(i, j) as the (random) time spent to pass the site (i, j), L(N, M) is the last passage time

to travel from (1, 1) to (N,M) along an admissible up/right path.

Recall that the exponential random variable of mean m has the density function 1
me−x/m, x ≥ 0. It is

known that (see e.g. Proposition 6.1 of [1]; we here scale X(i, j) of [1] by M) when X(i, j) is an exponential

random variable of mean `i (independent of j), L(N,M)
M has the same distribution as the largest sample

eigenvalue λmax of complex Gaussian samples when the eigenvalues of the population covariance matrix

Σ are `1, . . . , `N . Therefore for the last passage percolation model which have the identically distributed

passage time for all but finitely many columns, Theorems 2.1 and Theorem 2.2 also hold with λmax replaced

by L(N,M)
M . In particular, Theorem 2.1 shows that as long as the site passage time on the distinguished

columns have mean less than 1 + γ−1, the last passage time has the same limit behavior as the case when

all the sites are identically distributed.

2.3 Queues in tandem

Suppose that there are N servers and M customers. Initially all the customers are at the first server in a

queue. Once a customer is served at a server, then (s)he moves to the queue of the next server and waits

for his/her turn. The service time for the jth customer at the ith server is assumed to be a random variable

X(i, j) and let D(N, M) be the departure time of all the customers from all the queues. It is well-known

that D(N,M) has the same distribution as L(N,M) of the last passage percolation model (see e.g. [15]).

In the queueing theory context, Theorem 2.1 determines the effect of a few slow servers to the total

departure time. Suppose that X(i, j) is an exponential random variable of mean 1 for i = r + 1, . . . , N

(independent of i) and of mean `i for i = 1, . . . , r. In other words, the service times at the first r servers are

distributed differently from those at the rest of the servers. When all of `i are not so large, the departure time

has the same limiting law as when all the service times are identically distributed, but the whole process

slows down when some of the servers are sufficiently slow. Theorem 2.1 shows that the critical value is

`i = 1 + γ−1. Note that due to a symmetry between servers and customers, the theorem also applies to slow

customers.

2.4 Totally asymmetric simple exclusion process

The last passage percolation can also be interpreted as an interacting particle systems (see e.g. [25, 19]). We

will consider the totally asymmetric simple exclusion process. Let xj(t) ∈ Z, xj(t), j = 1, 2, . . . , t ∈ [0,∞),

denote the location of the jth particle at time t. A particle can jump only to its right neighboring site after
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random time if the site is not occupied. Let X(i, j) be independent random variables which represent the

ith jumping time of the jth particle. We take the initial condition as xj(0) = 1 − j, j = 1, 2, . . . . Then

X(i, j) is the time it takes for the jth particle xj to jump from the site i− j to i− j + 1.

Let T (i, j) be the time it takes for the jth particle to arrive at the location i− j +1. Equivalently, T (i, j)

is the time it takes for the jth particle to perform the first i jumps. Note that in order for the jth particle

to jump from the site i − j to i − j + 1, the (j − 1)th particle should be to the right of the site i − j + 1.

Hence we find that

T (i, j) = max{T (i− 1, j), T (i, j − 1)}+ X(i, j), i, j ≥ 1, (2.11)

where T (0, j) = T (i, 0) = 0, i, j ≥ 1, by definition. A simple geometric consideration shows that last passage

time L(i, j) satisfies exactly the same recurrence relation. Therefore T (i, j) is same as the last passage time

in the sense of distribution.

Let #(m, t) denote the number of particles to the right of the site m at time t. The flux F (m, t), the

number of particles that have jumped cross the interval (m, m + 1) up to time t, is then F (m, t) = #(m, t)

for m > 0, and F (m, t) = #(m, t)+m for m ≤ 0. The event that #(m, t) ≥ M is same as the event that the

Mth particle is to the right of the site m at time t. This is again equal to the event that T (m + M, M) ≤ t,

and hence we find that P(#(m, t) ≥ M) = P(T (m + M, M) ≤ t) = P(L(m + M, M) ≤ t). Therefore,

Theorem 2.1 and Theorem 2.2 again apply to #([ut], t), and hence to F ([ut], t). We state the results for

#([ut], t) here.

Traffic of slow start from stop

Suppose that X(i, j) is an independent exponential random variable of mean `i for i = 1, . . . , r and of mean

1 for i > r (independent of j). In other words, each particle jumps at rate 1
`i

for its first r jumps and then

jumps at rate 1 afterwards. When `1 ≥ · · · ≥ `r, one can view it as a toy model for the following traffic

situation: (infinite) cars in one lane, which were fully stopped at the red signal, speed up at the green signal

until they finally reach the steady speed (after r ‘jumps’). Set ` = max{`1, . . . , `r} and let k ≥ 1 be the

number of `i’s equal to `. By re-interpreting Theorem 2.1, a tedious but straightforward calculation shows

the following results for −1 < u ≤ 0 :

lim
t→∞

P
(

#([ut], t) ≥ 1
4
(1− u)2t + x

(
1− u2

4

)2/3

t1/3

)
=





F0(−x), u ∈ (
1− 2

` , 0] ∩ (−1, 0]

Fk(−x), u = 1− 2
` ∈ (−1, 0],

(2.12)

and for u ∈ (
1
−` , 1− 2

`

) ∩ (−1, 0],

lim
t→∞

P
(

#([ut], t) ≥ `− 1− `u

`2
t + x

(`− 1)3/2(`− 1− `u)
`9/2(`− 2− `u)1/2

t1/2

)
= Gk(−x). (2.13)

This shows that fast jumps do not affect the flux but slow jumps may change the flux. When r = 0 (all cars

jumping at the same rate), (2.12) was first obtained in [19] for 0 ≤ u < 1.

Traffic with a few slow cars

The exclusion process of the particles yields a dual process of the holes. As the particles jump to the right,

the holes, the unoccupied sites, jump to the left. The leftmost hole jumps at rate 1
`1

since each particle jump
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at that rate at its first jump. Likewise, the second leftmost hole jumps at rate 1
`2

and so on. Hence this

model can be thought of traffic model where there are a few cars of distinguished jump rates. Initially the

holes are at the sites {1, 2, 3, . . . }. As the number of holes H(m, t) on the left of the site m + 1 at time t

satisfies H(m, t) = #(m, t) + m, (2.12) and (2.13) imply the following results for −1 < u ≤ 0 :

lim
t→∞

P
(
H([ut], t) ≥ 1

4
(1 + u)2t + x

(
1− u2

4

)2/3

t1/3

)
=





F0(−x), u ∈ (
1− 2

` , 0] ∩ (−1, 0]

Fk(−x), u = 1− 2
` ∈ (−1, 0],

(2.14)

and for u ∈ (
1
−` , 1− 2

`

) ∩ (−1, 0],

lim
t→∞

P
(
H([ut], t) ≥ `− 1− `u + `2u

`2
t + x

(`− 1)3/2(`− 1− `u)
`9/2(`− 2− `u)1/2

t1/2

)
= Gk(−x). (2.15)

The full case of −1 < u < 1 and also correlation functions of various locations for both of the above

traffic models will be discussed in a forthcoming paper.

3 Proof of Theorem 1.1

We prove Theorem 1.1 in this section.

Since both sides of (1.16) are analytic in each wj , the case when some of wj ’s coincide follows from

analytic continuation of the case when all wj ’s are distinct. Hence we assume in this section that all wj ’s

are distinct. We need to prove that

det
(

δmn− <
1

1−Ax
s(m)(w1, . . . , wm), t(n)(w1, . . . , wn−1) >(x,∞)

)

1≤m,n≤k

=
1∏

1≤m<n≤k

(wn − wm)
det

(
(wm + Dx)n−1f(x,wm)

)
1≤m,n≤k

.
(3.1)

Notational Remark. In the below, we sometimes have a product of empty indices. For instance when

n = 1, the product
n−1∏
a=1

(wa − wi) in (3.11) has no indices. In such cases, we interpret the product as 1.

Let Ax : L2((0,∞)) → L2((0,∞)) be the operator with kernel

Ax(u, v) = A(u + x, v + x). (3.2)

Set

Sm(u) = s(m)(u + x) = s(m)(u + x;w1, . . . , wm) (3.3)

and set

Tm(v) = t(m)(v + x) = t(m)(v + x;w1, . . . , wm−1). (3.4)

Then (
1

1−Ax
s(m)

)
(u + x) =

(
1

1− Ax
Sm

)
(u) (3.5)
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and the matrix on the left-hand-side of (3.1) is

(
δij− <

1
1− Ax

Si, Tj >
)
1≤i,j≤k

(3.6)

where <,>=<,>(0,∞) is the real inner product in L2((0,∞)).

Since
m∏

j=1

1
wj + ia

=
m∑

j=1

1
wj + ia

m∏

`=1
` 6=j

1
w` − wj

, (3.7)

we find (
1

1− Ax
Sm

)
(u) =

m∑

j=1

[ m∏

`=1
` 6=j

1
w` − wj

]
Ewj (u). (3.8)

where

Ew(u) = Ew(u; x) :=
(

1
1− Ax

C̃w

)
(u), C̃w(u) := Cw(u + x) (3.9)

(recall (1.14) for the definition of Cw). For later use, we note that f(x,w) defined in (1.15) satisfies that

f(x,w) = 1− < Ew, T1 > . (3.10)

Now we invert the relation (3.8). For 1 ≤ m ≤ k, (3.8) is a system of k linear equations for Ewj , 1 ≤ j ≤ k.

Lemma 3.1. The equation (3.8) for Ewj has the solution given by

Ewj (u) =
j∑

n=1

[n−1∏
a=1

(wa − wj)
](

1
1− Ax

Sn

)
(u). (3.11)

Proof. Consider the function

F (z) := −
m∏

`=n

1
w` − z

. (3.12)

Integrating over a circle of radius R, and then taking R →∞, we find that the sum of residues of F is equal

to 0 when m−n ≥ 1 and is equal to 1 when m = n. On the other hand, by directly computation, the residue

of F at z = wj is
m∏

`=n
` 6=j

1
w` − wj

. (3.13)

Hence we obtain the identity
m∑

j=n

m∏

`=n6̀=j

1
w` − wj

= δmn, m ≥ n. (3.14)

Now as all wi’s are distinct, the determinant of the matrix for the linear equation (3.8) is
∏

1≤`<m≤k(w`−
wm)−1, which is non-zero. Hence there is a unique solution Ewj for (3.8). We should check that (3.11) solves

(3.8). But this follows by inserting (3.11) into the right-hand-side of (3.8), changing the order of summations,

and then using (3.14).
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From (3.11), we obtain for each 1 ≤ i, j ≤ k,

i∑
n=1

n−1∏
a=1

(wa − wi) ·
(
δnj− <

1
1− Ax

Sn, Tj >
)

= Fij− < Ewi , Tj > (3.15)

where

Fij :=
j−1∏
a=1

(wa − wi). (3.16)

Note that Fij = 0 when i < j. Now we perform row operations of the matrix
(
δij− < 1

1−Ax
Si, Tj >

)
1≤i,j≤k

using (3.15) that replaces the ith row by a linear combination of the first i rows to find that

det
(
δij− <

1
1− Ax

Si, Tj >
)
k×k

=
k∏

i=1

i−1∏
a=1

1
wa − wi

· det
(
Fij− < Ewi , Tj >

)
k×k

=
1∏

1≤i<j≤k

(wi − wj)
· det

(
Fij− < Ewi

, Tj >
)
k×k

.
(3.17)

Note that the when j = 1, Fij = 1, (see the Notational Remark above) and hence the first column of the

matrix
(
Fij− < Ewi

, Tj >
)
k×k

consists of the functions (see (3.10))

1− < Ewi , T1 >= f(x,wi). (3.18)

For example, when k = 3, the determinant on the right-hand-side of (3.17) is

det




f(x, w1) − < Ew1 , T2 > − < Ew1 , T3 >

f(x, w2) (w1 − w2)− < Ew2 , T2 > − < Ew2 , T3 >

f(x, w3) (w1 − w3)− < Ew3 , T2 > (w1 − w3)(w2 − w3)− < Ew3 , T3 >


 . (3.19)

From the definition (3.4) of Tj and the definition (1.10) of tj , we have

Tj = wj−1Tj−1 −DxTj−1, j ≥ 2. (3.20)

Set M (0) be the matrix

M (0) :=
(
Fij− < Ewi , Tj >

)
1≤i,j≤k

. (3.21)

Let M (1) be the matrix defined by

M (1) := M (0)




1 −w1 0

0 1 −w2 0

0 1 −w3 0
. . . . . .

. . . . . .

0 1 −wk−1

0 1




, (3.22)
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whose determinant is same as the determinant of M (0). Using the relation (3.20), the entries of M (1) =(
M

(1)
ij

)
1≤i,j≤k

are given by

M
(1)
ij =





f(x,wi), j = 1

−(
F

(1)
ij − < Ewi

, DxTj−1 >), 2 ≤ j ≤ k,
(3.23)

where

F
(1)
ij := wj−1Fi,j−1 − Fij . (3.24)

Now define a new matrix M (2) =
(
M

(2)
ij

)
1≤i,j≤k

by

M (2) := M (1)




1 0 0

0 1 −w1 0

0 1 −w2 0
. . . . . .

. . . . . .

0 1 −wk−2

0 1




. (3.25)

Using the relation

DxTj−1 = wj−2DxTj−2 −D2
xTj−2 (3.26)

that follows from (3.20) for 3 ≤ j ≤ k, we find that

M
(2)
ij =





f(x,wi), j = 1

−(
F

(1)
i2 − < Ewi , DxT1 >), j = 2

F
(2)
ij − < Ewi , D

2
xTj−2 >, 3 ≤ j ≤ k,

(3.27)

where

F
(2)
ij := wj−2F

(1)
i,j−1 − F

(1)
ij . (3.28)
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Continuing in a similar way, we eventually define

M (k−1) := M (0)




1 −w1 0

0 1 −w2 0

0 1 −w3 0
. . . . . .

. . . . . .

0 1 −wk−1

0 1




×




1 0 0

0 1 −w1 0

0 1 −w2 0
. . . . . .

. . . . . .

0 1 −wk−2

0 1




× · · · ×




1 0 0

0 1 0 0

0 1 0 0
. . . . . .

. . . . . .

0 1 −w1

0 1




.

(3.29)

Using the fact that for all ` ≥ 1, j ≥ 2,

D`
xTj = wj−1D

`
xTj−1 −D`+1

x Tj−1, (3.30)

we find that

M
(k−1)
ij = (−1)j−1

(
F

(j−1)
ij − < Ewi , D

j−1
x T1 >

)
, 1 ≤ i, j ≤ k, (3.31)

where for each 1 ≤ i ≤ k, F
(`)
ij is inductively defined by the relation

F
(`)
ij := wj−`F

(`−1)
i,j−1 − F

(`−1)
ij , 1 ≤ ` < j ≤ k (3.32)

and (see (3.16))

F
(0)
ij := Fij =

j−1∏
a=1

(wa − wi), 1 ≤ j ≤ k. (3.33)

Recall that Fi1 = 1, and hence M
(k−1)
i1 = 1− < Ewi , T1 >= f(x,wi).

Lemma 3.2. The solution F
(`)
ij to the recurrence relation (3.32) and (3.33) is

F
(`)
ij = w`

i

j−`−1∏
a=1

(wa − wi), 1 ≤ ` < j ≤ k. (3.34)

Proof. This follows easily from an induction in `. Here, as mentioned in the Notational Remark above, when

j = ` + 1, we understand that the product
∏0

a=1(wa − wi) = 1.

17



Therefore F
(j−1)
ij = wj−1

i , and as det(M (0)) = det(M (k−1)), we find from (3.17), (3.21) and (3.31) that

det
(
δij− <

1
1− Ax

Si, Tj >
)
1≤i,j≤k

=
(−1)[k/2]

∏

1≤i<j≤k

(wi − wj)
det

(
M

)
,

(3.35)

where [k/2] denotes the largest integer smaller than or equal to k/2, and the k×k matrix M =
(
Mij

)
1≤i,j≤k

is given by

Mij = wj−1
i − < Ewi , D

j−1
x T1 > . (3.36)

As
∏

1≤m<n≤k(−1) = (−1)[k/2], this is equal to

det
(
δij− <

1
1− Ax

Si, Tj >
)
1≤i,j≤k

=
1∏

1≤i<j≤k

(wj − wi)
det

(
M

)
,

(3.37)

Now we will show that det(M) is equal to the determinant on the right-hand-side of (3.1). For this

purpose, we use the following result.

Lemma 3.3. For ` ≥ 0, there are smooth functions F`,a(x), a = 0, 1, . . . , `− 1, such that

(w + Dx)`f(x,w) = w`− < Ew, D`
xT1 > −

`−1∑
a=0

F`,a(x)(w + Dx)af(x,w). (3.38)

Proof. From the definition of Ew,

DxEw = Dx

(
1

1− Ax
C̃w

)
=

1
1− Ax

(DxAx)
1

1− Ax
C̃w +

1
1− Ax

DxC̃w. (3.39)

It is direct to check that (DxAx)(u, v) = −Ai(x + u)Ai(x + v). Hence DxAx = −T1 ⊗ T1. On the other

hand, from the definition (1.14) of Cw, DxC̃w = T1 − wC̃w. Hence we find

DxEw = − 1
1− Ax

T1 ⊗ T1
1

1− Ax
C̃w +

1
1− Ax

(T1 − wC̃w)

= − < T1,
1

1− Ax
C̃w >

1
1− Ax

T1 +
1

1− Ax
T1 − w

1
1− Ax

C̃w,

(3.40)

which implies that

(w + Dw)Ew = f(x,w)
1

1− Ax
T1 (3.41)

Now we use an induction in ` to prove (3.38). When ` = 0, by definition (1.15) of f , (3.38) holds. Now

suppose that (3.38) holds true for some ` ≥ 0. Then using the general identities (w + Dx) < h, g >=<
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(w + Dx)h, g > + < h,Dxg > and (w + Dx)
(
hg) = (Dxh)g + h

(
(w + Dx)g

)
,

(w + Dx)`+1f(x,w)

= (w + Dx)
[
(w + Dx)`f(x,w)

]

= (w + Dx)
[
w`− < Ew, D`

xT1 > −
`−1∑
a=0

F`,a(x)(w + Dx)af(x,w)
]

= w`+1− < (w + Dx)Ew, D`
xT1 > − < Ew, D`+1

x T1 >

−
`−1∑
a=0

{(
DxF`,a(x)

)
(w + Dx)af(x,w) + F`,a(x)(w + Dx)a+1f(x, w)

}

= w`+1 − f(x,w) <
1

1− Ax
T1, D

`
xT1 > − < Ew, D`+1

x T1 >

−
`−1∑
a=0

{(
DxF`,a(x)

)
(w + Dx)af(x,w) + F`,a(x)(w + Dx)a+1f(x, w)

}
,

(3.42)

where (3.41) is applied in the last step. Therefore we find that (3.38) holds true for ` + 1 with the functions

F`+1,a =





DxF`,0(x)+ < 1
1−Ax

T1, D
`
xT1 >, a = 0,

DxF`,a(x) + F`,a−1, 1 ≤ a ≤ `− 1,

F`,`−1, a = `,

(3.43)

where F0,0 := 0.

By applying (3.38) repeatedly to (w+Dx)af(x; w) inside the summation on the right-hand-side of (3.38),

for ` ≥ 0, there are smooth functions G`,a, a = 0, 1, . . . , `− 1 such that

w`− < Ew, D`
xT1 >= (w + Dx)`f(x; w) +

`−1∑
a=0

G`,a(x)
(
wa− < Ew, Da

xT1 >
)
. (3.44)

Therefore for any 1 ≤ i ≤ k,

Mij = wj−1
i − < Ewi , D

j−1
x T1 >= (wi + Dx)j−1f(x,wi) +

j−1∑
a=1

Gj−1,a−1(x)Mia. (3.45)

In other words, the jth column vector in the matrix M is equal to a linear combination of the first, second,

..., j − 1th column vectors plus the vector
(
(w1 + Dx)j−1f(x,w1), · · · , (wk + Dx)j−1f(x,wk)

)T . Hence by

applying proper column operations, we find

det(M) = det
(
(wi + Dx)j−1f(x,wi)

)
1≤i,j≤k

. (3.46)

This, together with (3.37), implies that the left-hand-side of (3.1) is equal to

1∏

1≤m<n≤k

(wn − wm)
det

(
(wm + Dx)n−1f(x,wm)

)
1≤m,n≤k

.
(3.47)

This is the right-hand-side of (3.1) and Theorem 1.1 is proved.
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4 Proof Proposition 1.7

Let Tn(ϕ) = (ϕi−j)0≤i,j≤n−1 be the Toeplitz matrix of the symbol ϕ where ϕk denotes the Fourier coefficients

of ϕ. Let Dn(ϕ) = det Tn(ϕ) be the Toeplitz determinant. We will use the following identity [14, 7] between

a Toeplitz determinant and the Fredholm determinant of an operator on a discrete set: for all n ≥ 1,

Dn(ϕ)
G(ϕ)nE(ϕ)

= det(1− PnABPn) (4.1)

with

G(ϕ) = e(log ϕ)0 , E(ϕ) = exp
{ ∞∑

k=1

k(log ϕ)k(log ϕ)−k

}
(4.2)

where the operators A,B are defined by the kernels (1.44). This identity holds, for example, for complex-

valued analytic functions ϕ with zero winding number which has a Weiner-Hopf factorization. See [9] for

the minimal condition on ϕ for which the identity holds.

It is well-known that π∗n has the multi-integral expression (see e.g. [26])

π∗n(z) =
1

Dn(φ)

∫

|z1|=1

. . .

∫

|zn|=1

∏

1≤j<k≤n

(1− zkz−1
j )

n∏

j=1

(1− zz−1
j )

n∏

j=1

φ(zj)
dzj

2πizj
. (4.3)

By using the multi-integral formula of a Toeplitz determinant, (4.3) can be written as

π∗n(z) =
Dn(φz)
Dn(φ)

(4.4)

where the new symbol φz is

φz(w) :=
(

1− z

w

)
φ(w). (4.5)

See [2] for a use of the identity (4.4) in random matrix theory. Using (4.1) for Dn(φz) and Dn(φ), we find

that

π∗n(z) =
G(φz)nE(φz)
G(φ)nE(φ)

· det(1− PnAzBzPn)
det(1− PnABPn)

=
G(φz)nE(φz)
G(φ)nE(φ)

· det
(

1− 1
1− PnABPn

Pn(AzBz −AB)Pn

) (4.6)

where the operators Az, Bz : `2(N0) → `2(N0) are defined by the kernels

Az(j, m) = (ψ−1
z )j+m+1, Bz(m, k) = (ψz)−m−k−1. (4.7)

where ψz = (φz)+/(φz)−.

When |z| < 1, from (4.2), it is easy to check that

G(φz)nE(φz)
G(φ)nE(φ)

= e−
P∞

k=1(log φ)kzk

. (4.8)

Now we consider AzBz −AB. As φz has the Wiener-Hopf factorization φz = (φz)+(φz)− where (φz)+(w) =

φ+(w) and (φz)−(w) =
(
1− z

w

)
φ−(w), we find ψz(w) = 1

(1− z
w )ψ(w). Therefore,

(AzBz)(j, k)− (AB)(j, k) =
∞∑

m=0

(ψ−1
z )j+m+1(ψz)−m−k−1 − (ψ−1)j+m+1ψ−m−k−1

=
∞∑

m=0

∫

|a|=1

∫

|b|=1

a−j−m−1bm+k+1

(
1− z

a

1− z
b

− 1
)

ψ(b)
ψ(a)

da

2πia

db

2πib
.

(4.9)
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Note that φ+(z) = φ(z)/φ−(z) is analytic in a region outside the unit circle as φ(z) is assumed to be analytic

in a neighborhood of the unit circle and φ−(z) is analytic outside the unit circle. Hence φ+(z) is analytic in

a neighborhood of the unit circle. Similarly, φ−(z) is analytic in a neighborhood of the unit circle and so is

ψ(z). Therefore the contours |a| = 1 and |b| = 1 can be deformed so that |a| > |b|. Hence,

(AzBz)(j, k)− (AB)(j, k) =
∫ ∫

|a|>|b|
a−j−1bk+1

[ ∞∑
m=0

(
b

a

)m]
z(a− b)
a(b− z)

ψ(b)
ψ(a)

dadb

(2πi)2ab

=
∫ ∫

|a|>|b|
a−j−1bk+1 z

b− z

ψ(b)
ψ(a)

dadb

(2πi)2ab
= Q(j)R(k)

(4.10)

where Q and R are defined by (1.45). This implies that AzBz is a rank 1 perturbation of AB and we find

π∗n(z) = e−
P∞

k=1(log φ)kzk · det
(

1− 1
1− PnABPn

PnQ⊗RPn

)

= e−
P∞

k=1(log φ)kzk

{
1− <

1
1− PnABPn

PnQ,PnR >

} (4.11)

which completes the proof of (1.43).

Proof for (1.46) is similar by noting that

πn(z) =
Dn(φz)
Dn(φ)

, φz(w) := (z − w)φ(w). (4.12)

5 Proof of Theorem 1.2

We apply Proposition 1.7 to the function

φ(z) := et(z+z−1) (5.1)

for positive number t. Then (1.43) becomes

etzπ∗n(z) = 1− <
1

1− PnABPn
PnQ, PnR >`2(N0) (5.2)

with

ψ(z) = et(z− 1
z ). (5.3)

It is easy to check that the inner product on the right-hand-side is unchanged when the functions A(j, m),

B(m, k), Q(j) and R(k) are replaced by

(−1)j+mA(j,m), (−1)m+kB(m, k), (−1)jQ(j), (−1)kR(k), (5.4)

respectively. We will denote these new functions by the same notations A,B, Q, R.

We will take the limit t →∞ in both sides of the identity (5.2) with the scaling

n = [2t + xt1/3], z = −1 +
w

t1/3
(5.5)

for a fixed real number x and a complex number w, where [a] denotes the largest integer smaller than or equal

to a. We will see that under this scaling limit, the right-hand-side of the identity (5.2) becomes f(x,w) given

in (1.15) and the left-hand-side becomes (1.20), thereby yielding the desired Painlevé formula of f(x,w).
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Indeed, the limit of etzπ∗n(z) is obtained in [4] and also [3]. The paper [4] studied the asymptotic behavior

of the longest increasing subsequences of certain symmetrized versions of permutations and the asymptotic

analysis of etzπ∗n(z) was a technical part of the paper. The paper [3] on the other hand studied a last

passage percolation model, which is different from the one discussed in Section 2. From (5.22) and (5.26) of

Proposition 5.4 and Corollary 5.5 of [4], we find that

etzπ∗n(z) →




M22(− 1
2 iw;x), w > 0

−M21(− 1
2 iw; x)e

1
3 w3−xw, w < 0.

(5.6)

This result actually motivated us to use the function (5.1).

On the other hand, it is known that [8, 20] (see also [29])

PnABPn → Ax (5.7)

in trace norm for any fixed real number x where Ax is the Airy operator defined in (1.2). This limit was

studied in the papers [8, 20, 29] in the context of the longest increasing subsequences and the Plancherel

measure on partitions. Therefore, the only remaining part is the asymptotic analysis of Q and R. These

can be done by a standard steepest-descent analysis. Similar analysis appeared in several places (see e.g.

[8, 16, 1]) and we only sketch basic ideas.

We only consider R since the analysis of Q is similar. Note that the integral formula (1.45), which was

originally defined for |z| < 1, can be analytically continued for all complex numbers z by deforming the

contour so that z lies inside the contour. To compute the limit of the right-hand-side of (5.2), we need the

limit of R([2t+yt1/3]) with certain uniformity for y ∈ [x,∞) to ensure the convergence of the inner product.

As one can check from the analysis, it is reasonable to think that R([2t+ yt1/3]) is close to R(2t+ yt1/3) and

we will compute the limit of the later. See [16], for example, for a discussion of this type. Now from (5.3)

and (5.5)

R(2t + yt1/3) =
1

2πi

∫ −1 + wt−1/3

b− (−1 + wt−1/3)
(−b)2t+yt1/3

et(b−b−1)da (5.8)

where the contour is modified to go from ∞+ i0 to ∞− i0 enclosing the origin and the point −1 + wt−1/3.

Here the function (−b)2t+yt1/3
denotes the principal branch. Note that the integrand is of the form

−1 + wt−1/3

b− (−1 + wt−1/3)
(−b)yt1/3

etf(b) (5.9)

where

f(b) = 2 log(−b) + b− b−1. (5.10)

The function f(b) has the double critical point at b = −1, and f(−1) = f ′(−1) = f ′′(−1) = 0 and f (3)(−1) =

2. Approximately the steepest-descent contour passing the critical point b = −1 is, in a neighborhood of

size, say ε > 0, of b = −1, the union of the line from −1 + εeπi/3 to −1 and its complex conjugate. As the

pole −1 + w1/3 lies to the right of b = −1 when w > 0, one can also check that it is possible to deform the

original contour to the steepest-descent contour when w > 0. When w < 0, we can modify the contour to

the union of {−1+xeπi/3 : 2|w|t−1/3 ≤ x ≤ ε}, {2|w|t−1/3eiθ : π/3 ≤ θ ≤ π} and their complex conjugate so

that the pole −1 + wt−1/3 still lies on the right of the contour but the contour ‘essentially’ passes the point
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b = −1. See [1] where a similar modification of the contour was used for a steepest-descent analysis. Note

that in the neighborhood of b = −1, the contour is oriented from −1 + εeπi/3 to −1 + εe−πi/3.

From the standard steepest-descent method, the integral is asymptotic to the integral over the part of

the contour in the ε neighborhood of a = −1. The approximation f(b) ' 1
3!f

(3)(−1)(b + 1)3 = − 1
3 (b + 1)3

suggests the change of variables it1/3(b + 1) = s, which implies that

R(2t + yt1/3) ' 1
2πi

∫ −1 + wt−1/3

(−1− ist−1/3 − (−1 + wt−1/3)
(1 + ist−1/3)yt1/3

ei 1
3 s3

(−it−1/3)ds

' −1
2π

∫
1

is + w
eiys+i 1

3 s3
ds

(5.11)

where the contour is from ∞e5πi/6 to ∞eπi/6 such that the pole s = iw is above the contour. Hence we find

that R(2t + yt1/3) ' −Cw(y). Similar calculation shows that Q(2t + yt1/3) ' −Ai(y). This argument can

be made rigorous with uniform error bound for y (see e.g. [1] for a similar calculation). Therefore, by noting

that 1−Ax is a self-adjoint operator, one finds that the right-hand-side of (5.2) converges to (1.15). Thus

we obtain the identity

1− <
1

1−Ax
Cw, Ai >L2((x,∞))=





M22(− 1
2 iw; x), w > 0

−M21(− 1
2 iw; x)e

1
3 w3−xw, w < 0.

(5.12)

The proof of Theorem 1.2 is complete.
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Equations, volume 1191 of Lecture Notes in Math. Springer-Verlag, 1986.

[19] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys., 209(2):437–476, 2000.

[20] K. Johansson. Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. of Math.,

153:259–296, 2001.

[21] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. Ann.

Statist, 29(2):295–327, 2001.

[22] A. Mart́ınez-Finkelshtein, K. T.-R McLaughlin and E. Saff. Szegö orthogonal polynomi-

als with respect to an analytic weight: canonical representation and strong asymptotics.

http://xxx.lanl.gov/abs/math.CA/0502300.

[23] V. B. Matveev and M. A. Salle. Darboux transformations and solitons. Springer Series in Nonlinear

Dynamics. Springer-Verlag, Berlin, 1991.

24



[24] D. Paul. Asymptotic behaviour of the largest eigenvalues of sample covariance matrix when true co-

variance is a finite perturbation of identity. preprint, 2004.
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