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Abstract
We discuss the tension between the possible existence of Painlevé–Gullstrand coordi-
nate systems versus the explicit geometrical features of the Kerr spacetime; a subject
of interest to Professor Thanu Padmanabhan in the weeks immediately preceding his
unexpected death.We shall carefully distinguish strong andweak Painlevé–Gullstrand
coordinate systems, and conformal variants thereof, cataloguing what we know can
and cannot be done—sometimes we can make explicit global statements, sometimes
we must resort to implicit local statements. For the Kerr spacetime the best that seems
to be achievable is to set the lapse function to unity and represent the spatial slices with
a 3-metric in factorized unimodular form; this arises from considering the Doran ver-
sion of Kerr spacetime in Cartesian coordinates. We finish by exploring the (limited)
extent to which this construction might possibly lead to implementing an “analogue
spacetime” model suitable for laboratory simulations of the Kerr spacetime.
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1 Introduction

In late August 2021, just a few weeks before his unexpected passing, Professor Thanu
Padmanabhan expressed an interest in the interplay between Painlevé–Gullstrand
coordinates [1–3], or more generally spatially-flat coordinate systems, and the Kerr
spacetime geometry [4–10]. Extracted (with very minor edits) from an e-mail from
TP to MV dated 25 August 2021:

Many spacetimes admit a 1+3 foliation such that the spatial sections are flat. (This
is, of course what happens in PG coordinates). Given the metric in an arbitrary
coordinate system is there a geometrical condition (necessary/sufficient) for such
a foliation to exist?
Since we still have shift and lapse there are 4 dof; and arbitrary metric has 6 dof.
So we have “only” lost 2 dof.... So I would expect wide class of spacetimes to
allow this.
Once you are in such a foliation all the curvature scalars of 3 space vanishes.
Writing them in terms of 4-d curvature plus Kab etc one can write down some
necessary conditions but which seem difficult to reduce to simple geometrical
features.
Any literature reference will also be useful.

MV responded on 27 August 2021, and that response, (now greatly expanded and
elaborated), is the ultimate basis for the extensive discussion below. The fundamen-
tal reason these considerations are so interesting is the tension between the relative
tractability of those spacetime metrics that can be expressed in Painlevé–Gullstrand
coordinates [11, 12], and the overwhelming pedagogical [13–22], theoretical [23–25],
and astrophysical [26–31] importance of the Kerr spacetime.

123



Painlevé–Gullstrand coordinates... Page 3 of 18 145

2 Preliminaries

We shall start by distinguishing strong and weak forms of the Painlevé–Gullstrand
coordinate systems [1–3], and then—by extension—conformal versions of the
(strong/weak) Painlevé–Gullstrand coordinate systems.

2.1 Strong Painlevé–Gullstrand coordinates

We shall say that a coordinate system is of strong Painlevé–Gullstrand form if the
spacetime line element can be written as

ds2 = −dt2 +
∣
∣
∣dx − v(t, x) dt

∣
∣
∣

2
. (2.1)

That is, the metric can be cast in the form

gab =
[−1 + {δi jvi (t, x)v j (t, x)} −v j (t, x)

−vi (t, x) δi j

]

. (2.2)

Equivalently, for the inverse metric

gab =
[ −1 −v j (t, x)

−vi (t, x) δi j − vi (t, x) v j (t, x)

]

. (2.3)

Here vi (t, x) = δi j v j (t, x). In the language of the ADM formalism [32, 33] the
lapse function, typically denoted N (t, x), is unity and the spatial 3-slices are flat.
For this class of metrics all nontrivial aspects of the spacetime geometry have been
shoe-horned into the shift vector Ni (t, x) = gti (t, x) = −vi (t, x). The relative minus
sign appearing herein, Ni = −vi , is merely formal—a historical accident ultimately
due to differing conventions between the ADM and analogue spacetime communities.
Note however, that there is an additional choice of sign implicit in the choice between
“ingoing” and “outgoing” Painlevé–Gullstrand coordinates; a distinction equivalent
to reversing the sign of the time coordinate.1

Algebraically this strong Painlevé–Gullstrand form can be achieved if and only if
there exist two distinct 4-orthogonal 4-vectors—a covariant vector Ta = (−1; 0, 0, 0)
and a contravariant vector Fa = (0; vi ), satisfying TaFa = 0, such that the metric

1 For the sake of concreteness, let us connect this discussion with the specific case of Schwarzschild
spacetime. In this case it is easy to recognize that the metric element in the usual Schwarzschild coordinates
(ts, rs) can be recast in the strong Painlevé–Gullstrand form by either sign in the coordinate transformation

dt = dts ± |v|
(

1 − v2
) dr; dr = drs. (2.4)

Here |v| = √
2M/r , and the + sign corresponds to a black hole spacetime and the − sign to its time

reversal, i.e. a white hole.

123



145 Page 4 of 18 M. Visser , S. Liberati

factorizes in the specific form:

gab = ηcd
(

δa
c − TaF

c)
(

δb
d − TbF

d
)

. (2.5)

Here as usual ηab = diag(−1, 1, 1, 1). Expanding, one has

gab = ηab + (ηcd F
cFd)TaTb − Ta(ηbcF

c) − (ηacF
c)Tb. (2.6)

Thence, since (δa
c − TaFc)(δc

b + TcFb) = δab, for the inverse metric we have:

gab = ηcd
(

δc
a + TcF

a)
(

δd
b + Td F

b
)

. (2.7)

Expanding

gab = ηab + (ηcdTcTd)F
aFb + (ηacTc)F

b + Fa(ηbcTc). (2.8)

Note that we must then have gabTb = (1; vi ), whereas gabFb = ({δ jkv jvk}; vi ).
Thence gabTaTb = −1 = ηabTaTb, while gabFaFb = {δ jkv jvk} = ηabFaFb. Thus
Ta is a timelike unit co-vector with respect to both gab and ηab, while Fa is a spacelike
vector with respect to both gab and ηab.

Note the extremely strong constraint on the co-vector Ta . One has Ta =
(−1, 0, 0, 0) which implies T[a,b] = 0; so in the language of differential forms one
has T = −dt and dT = 0. It is this dT = 0 constraint that will ultimately prove
problematic for Kerr spacetime.

Known examples of such strong Painlevé–Gullstrand behaviour are:

• All of Schwarzschild spacetime; r > 0. (See for example [11, 12] and [34]. For
Schwarzschild spacetime one has v = ∓√

2m/r r̂ for black holes/white holes
respectively.

• Most of Reissner–Nordström spacetime; the region r ≥ Q2/(2m). For Reissner–
Nordström spacetime one has v = ∓√2m/r − Q2/r2 r̂ for black holes/white
holes respectively. This becomes imaginary for r < Q2/(2m). Since (for the
usual black hole situation m > |Q|) the region r ≤ Q2/(2m) lies below the inner
(Cauchy) horizon, this deep-core breakdown of the strong Painlevé–Gullstrand
coordinates is not particularly worrisome. (See for example [12].) Even for an
extremalReissner–Nordströmblack hole,m = |Q|, the horizon is at rH = mwhile
the breakdown of Painlevé–Gullstrand coordinates occurs at m/2, well below the
(extremal) horizon. Finally for the case of naked singularities, (whenm < |Q|), the
breakdown of Painlevé–Gullstrand coordinates at r ≤ Q2/(2m) is itself “naked”
and in principle visible from asymptotic infinity.

• Spatially flat k = 0 FLRW cosmologies, and Kottler (Schwarzschild-de Sitter)
spacetimes [35, 36].

• The Lense–Thirring (slow-rotation Kerr) spacetime [37, 38] also has a strong
Painlevé–Gullstrand implementation [39–42].
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• This also works (essentially by definition) for the generic Natario class of warp-
drive spacetimes (including the Alcubierre, zero-expansion, and zero-vorticity
warp drives) [43, 44].

• This also works (essentially by definition) for the tractor/pressor/stressor beam
spacetimes [45, 46].

Known examples of spacetimes that are incompatible with such strong Painlevé–
Gullstrand behaviour are:

• Kerr (and the Kerr–Newman) spacetimes. The non-existence proof is quite tricky
and indirect, using asymptotic peeling properties of the 3-dimensional Cotton–
York tensor [47, 48]. The spatial 3-slices cannot even be made conformally flat,
let alone Riemann flat. There is also evidence that the 3-metric characterizing the
spatial slices cannot even be diagonalized without adverse effects on other aspects
of the Kerr geometry [49].

• The van den Broeck warp drive [50, 51], a warp drive variant wherein the spatial
3-slices are allowed to be conformally flat instead of being Riemann flat.

2.2 Weak Painlevé–Gullstrand coordinates

We shall say that a coordinate system is of weak Painlevé–Gullstrand form if the
spacetime line element can be written as

ds2 = −N (t, x)2 dt2 +
∣
∣
∣dx − v(t, x) dt

∣
∣
∣

2
. (2.9)

That is, the metric can be cast in the form

gab =
[−N (t, x)2 + {δi jvi (t, x)v j (t, x)} −v j (t, x)

−vi (t, x) δi j

]

. (2.10)

Equivalently, for the inverse metric

gab =
[ −1/N 2 −v j (t, x)/N 2

−vi (t, x)/N 2 δi j − vi (t, x) v j (t, x)/N 2

]

. (2.11)

In the language of the ADM formalism [32, 33] the lapse function N (t, x) is now
allowed to be non-trivial, while the spatial 3-slices are still flat.

Finding a factorized form of the metric is now a little trickier — by considering the
sub-case vi (x) → 0 it becomes clear that it is useful to consider the matrix (ηN )ab =
diag{−N 2; 1, 1, 1}. Then algebraically weak Painlevé–Gullstrand behaviour can be
achieved if and only if there exist two 4-vectors Ta = (−N ; 0, 0, 0) and Fa =
(0; vi/N ) such that FaTa = 0 and the metric factorizes in the following manner:

gab = (ηN )cd
(

δa
c − TaF

c)
(

δb
d − TbF

d
)

. (2.12)
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Expanding

gab = (ηN )ab + {(ηN )cd F
cFd}TaTb + {(ηN )acF

c}Tb + Ta{(ηN )bcF
c}. (2.13)

For the inverse metric we now have

gab = (ηN )cd
(

δc
a + TcF

a)
(

δd
b + Td F

b
)

. (2.14)

Expanding

gab = (ηN )ab + {(ηN )cdTcTd}FaFb + {(ηN )acTc}Fb + Fa{(ηN )bcTc}. (2.15)

Here we define (ηN )cd = diag{−N−2; 1, 1, 1}.
Thence gabTb = (1, vi )/N , and similarly gabFb = ({δ jkv jvk}; vi )/N . This

implies gabTaTb = −1 = (ηN )abTaTb, while gabFaFb = {δ jkv jvk}/N 2 =
(ηN )abFaFb, and FaTa = 0. Thus Ta is a timelike unit vector with respect to both
gab and (ηN )ab, while Fa is a spacelike vector with respect to both gab and (ηN )ab,
and these two 4-vectors are 4-orthogonal.

Note the extremely strong constraint on the co-vector Ta : We have Ta =
(−N , 0, 0, 0) which implies T[a,b] = N[,aTb]/N whence T[a,bTc] = 0; in the lan-
guage of differential forms T = −Ndt and T ∧ dT = 0. It is this T ∧ dT = 0
constraint that will ultimately prove problematic for Kerr spacetime.

Known examples of such weak Painlevé–Gullstrand behaviour include:

• All strong Painlevé–Gullstrand metrics are special cases of the weak form.
• Analogue spacetimes in the eikonal (ray optics, ray acoustics) limit [52–60];
where the lapse function is to be interpreted as the signal propagation speed,
N (t, x) → cs(t, x), and the shift vector is to be interpreted as minus the
3-velocity of the medium, Ni (t, x) = gti (t, x) = −vi (t, x).

• Spherical symmetry: Most spherically symmetric spacetimes, even if time-
dependent, can at least locally be put in weak Painlevé–Gullstrand form [61].
The major obstructions to putting spherically symmetric spacetimes into weak
Painlevé–Gullstrand form are the possible existence of wormhole throats, (where
the area coordinate r would fail to be monotone), or situations where the Misner–
Sharp quasi-local mass m(r , t) is negative (where the shift vector would become
imaginary) [12]. In terms of the Misner–Sharp quasi-local mass one can write the
spherically symmetric weak-Painlevé–Gullstrand metric in the form

gab =
[−N (r , t)2{1 − 2m(r , t)/r} ∓N (r , t)

√
2m(r , t)/r r̂i

∓N (t)
√
2m(r , t)/r r̂i δi j

]

. (2.16)

The inverse (contravariant) metric is

gab =
[ −N (r , t)−2 ∓N (r , t)−1√2m(r , t)/r r̂i

∓N (t)−1√2m(r , t)/r r̂i δi j − 2m(r ,t)
r r̂ i r̂ j

]

. (2.17)

123



Painlevé–Gullstrand coordinates... Page 7 of 18 145

This explicit form of the metric makes manifest the requirement for positive
Misner–Sharp quasi-local mass.
In particular, any spherically symmetric spacetime violating the positive mass
theorem cannot be put into weak-Painlevé–Gullstrand form. Conversely if the
spacetime can be put intoweak-Painlevé–Gullstrand form in the asymptotic region,
then the spacetime must have positive ADM mass.
Finally note that even when one can prove the local existence of these weak-
Painlevé–Gullstrand coordinates, actually finding the relevant coordinate transfor-
mation might in practice be prohibitively difficult [35, 61].

Known examples that are incompatible with such weak Painlevé–Gullstrand
behaviour are:

• Kerr (andKerr–Newman) spacetimes. (As for the strongPainlevé–Gullstrand form,
the behaviour for the weak Painlevé–Gullstrand form is no better.)

• The van den Broeck warp drive [50, 51]. (As for the strong Painlevé–Gullstrand
form, the behaviour for the weak Painlevé–Gullstrand form is no better.)

2.3 Conformal (strong/weak) Painlevé–Gullstrand coordinates

We shall say that a coordinate system is of conformal Painlevé–Gullstrand form if
the spacetime line element is conformal to (either strong or weak versions of) the
Painlevé–Gullstrand line element. Either

ds2 = �2(t, x)
{

−dt2 +
∣
∣
∣dx − v(t, x) dt

∣
∣
∣

2
}

, (2.18)

or

ds2 = �2(t, x)
{

−N (t, x)2 dt2 +
∣
∣
∣dx − v(t, x) dt

∣
∣
∣

2
}

. (2.19)

The existence of these conformal Painlevé–Gullstrand line elements is a relatively
weak constraint, though still enough to preclude theKerr orKerr–Newman spacetimes.
The factorization properties we saw for strong or weak Painlevé–Gullstrand situations
continue to hold with only a minimal amount of conformal rescaling.

Known examples of this conformal Painlevé–Gullstrand behaviour include:

• TheMcVittie spacetime can be put into conformalweak Painlevé–Gullstrand form
[35].

• The van den Broeck warp drive [50, 51] corresponds to the special case of setting
�(t, x)N (t, x) → 1 in the conformal weak Painlevé–Gullstrand line element.
That is

ds2 = −dt2 + �2(t, x)
∣
∣
∣dx − v(t, x) dt

∣
∣
∣

2
. (2.20)

• Analogue spacetimes in the wave propagation limit, (physical optics, physical
acoustics) [52–60] are often of this form.Here the lapse function is to be interpreted

123



145 Page 8 of 18 M. Visser , S. Liberati

as the wave propagation speed, N (t, x) → cs(t, x), while the shift vector is to be
interpreted as being proportional tominus the (typically non-relativistic) 3-velocity
of the medium, Ni (t, x) = gti (t, x) = −�(t, x) vi (t, x). The presence of the
overall conformal factor �(t, x) has to do with the details of deriving the relevant
wave equation (d’Alembertian), and is typically some function of the background
density and pressure [52, 59].

Known examples that are incompatible with such behaviour are:

• Kerr (and Kerr–Newman) spacetimes. (As for the strong and weak Painlevé–
Gullstrand forms, the behaviour for the conformal Painlevé–Gullstrand form is
no better.)

2.4 Summary

In view of the comments above, we shall now put some effort into seeing just how
close we can get to putting the Kerr spacetime into (strong/weak/conformal) Painlevé–
Gullstrand form. It is quite remarkable just howmany physically interesting spactimes
can be recast in (strong/weak/conformal) Painlevé–Gullstrand form, and just how
stubborn the astrophysically important Kerr spacetime is in simply refusing to be
recast in this form.

3 The river model of Kerr spacetime

To develop our discussionwe shall adapt the so-called “river model” of Kerr spacetime
[62], which is based on the Doran coordinate system [63]. See the discussion in
references [8, 9], andmore recently [64].We shall soon see that (for theKerr spacetime)
the “fluid” in the “river” is not a perfect fluid.

3.1 General framework

Appealing to the “river model” [62], we aim to establish the plausibility of generically
writing the spacetimemetric in the somewhatmessier (nonPainlevé–Gullstrand) form:

ds2 = �(x)2
{

−dt2 + |dx − v(x) {dt − u(x) · dx}|2
}

. (3.1)

Here x = (t, x) and the two 3-vectors u(x) and u(x) are perpendicular. We see that
for �(x) → 1 and u(x) → 0 this is simply a standard (strong) Painlevé–Gullstrand
metric, and (as we have seen above) this line element is sufficient to describe very
many but not all physically interesting spacetimes.

Even for �(x) �= 1 and u(x) → 0 this is still of conformal (strong) Painlevé–
Gullstrand form. But, in view of the analysis by Valiente-Kroon [47, 48], setting
u(x) → 0 is not sufficient for describing either the Kerr or Kerr–Newman spacetimes.

On the other hand once we allow u(x) �= 0 (even with �(x) ≡ 1) this is general
enough to describe the Kerr geometry. See (for example) references [62, 63]. Once we
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additionally allow �(x) �= 1 then, at least from the point of view of counting degrees
of freedom, this this is general enough to describe describe an arbitrary spacetime.

To see how the counting argument works: Note that in four dimensions the metric
gab has ten algebraically independent components. Apply four coordinate conditions
on your coordinate chart. This leaves six “physical” degrees of freedom. (Off-shell,
before imposing the Einstein equations.) The ansatz has the required six degrees of
freedom, three in the vector v(x), two more in the orthogonal vector u(x), and one
remaining degree of freedom in in the conformal factor �(x).

Let us now rewrite the assumed line element (3.1) as:

ds2 = gab dxa dxb = �2 ηab (dxa − βa[αmdx
m]) (dxb − βb[αndx

n]). (3.2)

That is

gab = �2 ηcd (δca − βcαa) (δdb − βdαb). (3.3)

Here we have introduced two 4-orthogonal 4-vectors

αm = (1;−ui ); βa = (0; vi ); αmβm = −uiv
i = 0. (3.4)

Expanding, we recover (3.1) as asserted. The utility of introducing the two 4-vectors
αm and βm is that it allows for a very simple specification of a suitable orthonormal co-
tetrad and tetrad. (That the existence of a globally defined co-tetrad, and its associated
globally defined tetrad, is physically important is discussed in reference [65].) Note
that these 4-vectors αm and βm are very close in spirit to the 4-vectors Ta and Fa

we introduced when discussing the strong and weak Painlevé–Gullstrand forms of the
metric. The key difference is that now

Ta = (−1; 0, 0, 0) −→ αm = (1;−ui ), (3.5)

with the overall sign flip just being a physically unimportant historical accident. The
non-trivial part of this new construction is the introduction of the 3-vector ui (t, x).

Using these definitions let us now write the Kerr metric as

gab = ηAB eAa eBb. (3.6)

Then co-tetrad and tetrad can be taken to be

eAa = �
{

δAa − β Aαa

}

; eA
a = �−1 {δA

a + αAβa} . (3.7)

Thence

eAa eA
b =

{

δAa − β Aαa

} {

δA
b + αAβb

}

= δa
b. (3.8)
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It is the 4-orthogonality of α and β that keeps the matrix inversion relating tetrad and
co-tetrad simple. The inverse metric is

gab = ηAB eA
a eB

b. (3.9)

To be fully explicit

gab = �2 ηAB

{

δAa − β Aαa

} {

δBb − βBαb

}

, (3.10)

and

gab = �−2 ηAB {δA
a + αAβa}

{

δB
b + αBβb

}

. (3.11)

3.2 Issues specific to Kerr spacetime

Let us now deal with some issues of specific relevance to the Kerr spacetime, which
we shall conveniently write here in its Doran form

ds2 = −dt2 +
[
ρdr

R
+ βR

ρ

(

dt − a sin2 θdφ
)]2

+ ρ2dθ2 + R2 sin2 θdφ2 .(3.12)

Here the quantities β, R, ρ, and r , are ultimately functions of the coordinates {x, y, z},
and the parameters {m, a}. Explicitly

β =
√
2mr

R
; R =

√

r2 + a2; (3.13)

and

ρ =
√

r2 + a2 cos2 θ; cos θ = z

r
; (3.14)

while

r4 − r2(x2 + y2 + z2 − a2) − a2z2 = 0. (3.15)

Finally, note that the Doran time and azimuthal angle used in the above metric are
related to those of the standard Boyer–Lindquist coordinates (tBL , φBL) via the simple
relations

t = tBL −
∫ ∞

r

βdr

1 − β2 (3.16)

φ = φBL = φ − a
∫ ∞

r

βdr

R2(1 − β2)
. (3.17)
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3.2.1 Flow and twist vectors

In their “river model of black holes” paper, (their equation (30) and thereafter), Hamil-
ton and Lisle [62] describe how to recast the above line element Eq. (3.12) into the
form

ds2 = gab dxa dxb = ηab(dx
a − βa[αm dxm]) (dxb − βb[αn dxn]), (3.18)

with

αm = (1;−ui ); βa = (0; vi ); αmβm = −uiv
i = 0. (3.19)

Thence

ds2 = gab dxa dxb = −dt2 +
∑

i

{

dxi − vi [dt − u jdx
j ]
}2

. (3.20)

That is, for the Kerr spacetime they can get away with setting � → 1. Explicitly, (in
the Cartesian form of the Doran coordinates that they adopt), they report

ui =
( ay

R2 ,− ax

R2 , 0
)

= a

R2 (−y, x, 0), (3.21)

and

vi = βR

ρ

(

− xr

Rρ
,− yr

Rρ
,− zR

rρ

)

= βr

ρ2

(

−x,−y,− zR2

r2

)

. (3.22)

Here vi is what they call the “flow” vector and ui is what they call the “twist” vector.
(The relation of this twist vector to vorticity being not entirely clear—more on this
point below.) Note vi ui = 0, in concordance with our general discussion above.

Note that the twist vector ui is independent of the mass parameterm, it just depends
on the spin parameter a. Moreover, the only place that the mass parameter m shows
up is in the quantity β, which is a pre-factor in the flow vector ui . For the 4-vectors
αm and βm , and so implicitly the “twist” and the “flow”, for the Kerr spacetime one
has

αm =
(

1,− ay

r2 + a2
,

ax

r2 + a2
, 0

)

; (3.23)

and

βm =
√

2mr

r2 + a2
r

r2 + a2 cos2 θ

(

0,−x,−y,−z
(r2 + a2)

r2

)

. (3.24)
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To be fully explicit, it is sometimes useful to observe:

r2 =
√

(x2 + y2 + z2 − a2)2 + 4a2z2 + (x2 + y2 + z2 − a2)

2
; (3.25)

1

r2
=
√

(x2 + y2 + z2 − a2)2 + 4a2z2 − (x2 + y2 + z2 − a2)

2a2z2
; (3.26)

while

R2 =
√

(x2 + y2 + z2 − a2)2 + 4a2z2 + (x2 + y2 + z2 + a2)

2
; (3.27)

1

R2 = −
√

(x2 + y2 + z2 − a2)2 + 4a2z2 − (x2 + y2 + z2 + a2)

2a2(x2 + y2)
;(3.28)

and

ρ2 = r2 + a2z2

r2
=
√

(x2 + y2 + z2 − a2)2 + 4a2z2. (3.29)

Then for the Kerr solution explicit computation yields∇ ·u = 0, so the twist vector
is at least solenoidal (divergence free). Unfortunately the “vorticity”∇×u �= 0 is both
non-zero and rather messy. Similarly the helicity u · (∇ × u) �= 0 and Lamb vector
u × (∇ × u) �= 0 are both non-zero and quite messy. In view of the axial symmetry
and the solenoidal condition on the twist, there must be a vector potential for the twist
of the form

u = ∇ × (0, 0, 
(x, y, z, a)) = ∇
(x, y, z, a) × (0, 0, 1), (3.30)

with 
(x, y, z, a) a somewhat messy axisymmetric function of its variables.
Similarly one can calculate both ∇ · v �= 0 and ∇ × v �= 0 for the flow vector

v, though now both of these quantities are nonzero. Finally, the extension to Kerr–
Newman spacetime is straightforward—in themetric/line-element one simply replaces
m → m − 1

2Q
2/r in the function β, no other changes are required.

In summary, the ansatz

ds2 = −dt2 + |dx − v(x){dt − u(x) · dx}|2 . (3.31)

is sufficiently general to include the Kerr and Kerr–Newman spacetimes. The spatial
slices are however emphatically not flat, so they are not compatible with any of the
usual formulations of Painlevé–Gullstrand coordinates, a point we shall expand on
more fully below.

3.2.2 Geometry of 3-space

Let us now focus on the geometry of the spatial slices in Kerr spacetime. Temporarily
returning to our general ansatz, strip out the conformal factor (� → 1) and consider
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the simplified ansatz:

ds2 = −dt2 + |dx − v(x)[dt − u(x) · dx]|2 ; v · u = 0. (3.32)

Expand:

ds2=−dt2+|v|2[dt − u(x) · dx]2+2[dx · v(x)][dt − u(x) · dx]+|dx|2. (3.33)

Defining vi = δi jv
j , one can read off the 3-metric:

gi j = δi j + |v|2uiu j − vi u j − uiv j = δmn(δim − uivm)(δ jn − u jvn), (3.34)

Note that only when the twist vector vanishes u → 0 does one regain flat spatial
slices, while still keeping a nontrivial spacetime due to a nonzero flow.2 Note further
that, because of the 3-orthogonality of the twist vector u and flow vector v, we have
det(δi j − uiv j ) = 1; which implies det(gi j ) = 1. Therefore the 3-metric is a volume
preserving deformation of flat 3-space. So 3-space is not quite Riemann flat, but it is
(in some sense) close.

One can also read off the ADM shift vector. It is now not just determined by the
flow, we have an additional contribution from the twist:

Ni = gti = −(vi − |v|2ui ) = −gi jv
j �= −δi jv

j = −vi . (3.35)

Finally let us read off the ADM lapse function

gtt = −1 + |v|2 = −N 2 + gi jv
iv j = −N 2 + |v|2. (3.36)

Thence N (x) = 1, this metric ansatz is (as previously advertised) unit lapse [66].
Imposing unit lapse is useful — it implies gtt = −1, and then the covector field Va =
−∂at = (−1; 0, 0, 0) is geodesic. Indeed Va = gabVb is a future pointing 4-velocity
geodesic 4-velocity (unit 4-vector). There are quite a few unit-lapse representations
of Kerr [66]. It turns out that for Kerr making N → 1 is relatively easy, while trying
to enforce gi j → δi j is impossible.

Having now developed a solid grasp of the spatial and spacetime geometry, we shall
turn to the possibility of mimicking Kerr spacetime by some sort of analogue model.

4 Analoguemodels

Historically, most (but certainly not all) “analogue spacetimes” were primarily built
using (moving) perfect fluids—and the perfect fluid condition implied that the spatial
metric was isotropic, which forced the spacetime metric into (conformal) Painlevé–
Gullstrand form for non-relativistic fluids. While it is true that for relativistic perfect

2 One could also regain flat spatial slices by letting the flow vector vanishe v → 0, but that is uninteresting
as it simply reduces to flat Minkowski space.
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fluids one canhave somewhatmore generalmetrics of theGordon (disformal) form [59,
67], nonetheless theKerr geometry has also proven impossible to accommodate within
such a framework, except within specific, (sometimes rather nonphysical) limits, see
e.g. [68–70].

In view of this observation, if one wishes to develop an “analogue model” for Kerr
based on some moving fluid then that moving fluid cannot be a perfect fluid. Indeed,
while the “river model” for Schwarzschild spacetime works relatively cleanly in terms
of an isotropic fluid, (albeit a somewhat unphysical one), the fluid in the rivermodel for
a Kerr geometry has to be anisotropic.We do have examples of anisotropic fluids, such
as liquid crystals, but none of the standard liquid crystals seem to quite be appropriate
for current purposes.

Let us recapitulate the key points:

• The spatial metric is

gi j = δi j + |v|2uiu j − vi u j − uiv j = δmn(δim − uivm)(δ jn − u jvn), (4.1)

where in an analogue spacetime context one would want to interpret δmn as the
(contravariant) spatial metric seen by laboratory equipment, while gi j is the spatial
metric seen by the analogue model.

• The shift vector is

Ni = −(vi − |v|2ui ). (4.2)

• The lapse function is unity, N = 1.

From the above, the 3-metric “factorizes”

g3 = (I − u ⊗ v) (I − u ⊗ v)T . (4.3)

Because of 3-orthogonality

|v|2 = δi jv
iv j = gi jv

iv j . (4.4)

Up to a 3-d rotation one can enforce

ui ∼ (0, u, 0); vi ∼ (v, 0, 0); gi j ∼
⎡

⎣

1 −uv 0
−uv 1 + u2v2 0
0 0 1

⎤

⎦ ; (4.5)

so we again see

det(gi j ) = 1. (4.6)

So the anisotropic fluid in question mimics a volume-preserving deformation of flat
Cartesian 3-space.
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The eigenvalues of the analogue metric with respect to the laboratory metric are
determined by det(gi j − λδi j ) = 0 and one finds

λ ∈
⎧

⎨

⎩
1, 1 + u2v2

2
± uv

√

1 + u2v2

4

⎫

⎬

⎭
. (4.7)

The three corresponding eigenvectors are

(0, 0, 1);
⎛

⎝
uv

2
−
√

1 + u2v2

4
,
uv

2
+
√

1 + u2v2

4
, 0

⎞

⎠ ; (1, 1, 0). (4.8)

So while the desired anisotropic fluid has relatively simple principal directions and
eigenvalues, they depend on both flow and twist in a nontrivual manner—there is no
obvious physically constructable anisotropic fluid that would sucessfully mimic this
3-geometry—it seems one is dealing more with a theoretical construction than an
experimentally realizable one.

5 Discussion

Overall we can summarize the situation as follows: The strong Panilevé–Gullstand
coordinate systems have two key features — Riemann flat spatial slices (gi j → δi j )
and unit lapse (N → 1). Historically most attempts at generalizing the Panilevé–
Gullstand coordinate systems have focussed on keeping the spatial slices extremely
simple (either flat or at worst conformally flat) while relaxing conditions in the
lapse function N (x). Unfortunately while the weak Panilevé–Gullstand and conformal
Panilevé–Gullstand coordinate systems cover a lot of territory, they are incapable of
describing the astrophysically important Kerr spacetime or the physically important
Kerr–Newman spacetime. Instead, to get to the Kerr or Kerr–Newman spacetimes one
must take a different route—keep the lapse function unity, N = 1, but allow a con-
trolled deformation of the 3-geometry. A factorized volume-preserving deformation
of 3-space, wherein g3 = (I − u ⊗ v) (I − u ⊗ v)T with u · v = 0, proves to be
sufficient for describing the Kerr or Kerr–Newman spacetimes. More generally we
have argued that any spacetime can with some effort be cast in the form

ds2 = �(x)2
{

−dt2 + |dx − v(x) {dt − u(x) · dx}|2
}

; u · v = 0. (5.1)

This is as close as we have been able to get to formulating a general and complete
answer to Professor Thanu Padmanabhan’s enquiry of 25August 2021.We shall sorely
miss his reply.
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