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1. I n t r o d u c t i o n  

The analytic capacity of a compact set ECC is defined as 

7(E) = sup 

where the supremum is taken over all analytic functions f :  C \ E -~  C with Ill ~ 1 on C \ E, 

and f ' (oo)=l imz~ z ( f ( z ) - f (~ ) ) .  For a general set FcC,  we set v(F)=sup{~(E): 

E C  F, E compact}. 

The notion of analytic capacity was first introduced by Ahlfors [Ah] in the 1940's in 

order to study the removability of singularities of bounded analytic functions. A compact 

set E c C  is said to be removable (for bounded analytic functions) if for any open set 

containing E, every bounded function analytic on ~ \ E  has an analytic extension to 12. 

In [Ah] Ahlfors showed that E is removable if and only if ~ (E)=0 .  However, this result 

doesn't characterize removable singularities for bounded analytic functions in a geometric 

way, since the definition of ~/is purely analytic. 

Analytic capacity was rediscovered by Vitushkin in the 1950's in connection with 

problems of uniform approximation of analytic functions by rational functions (see [Vii, 

for example). He showed that  analytic capacity plays a central role in this type of prob- 

lems. This fact motivated a renewed interest in analytic capacity. The main drawback 

of Vitushkin's techniques arises from the fact that  there is not a complete description of 

analytic capacity in metric or geometric terms. 

On the other hand, the analytic capacity ~/+ (or capacity 3'+) of a compact set E is 

=sup (E), 
,it 

Supported by a Marie Curie Fellowship of the European Community program Human Potential 

under contract HPMFCT-2000-00519. Also partially supported by grants D G I C Y T  BFM2000-0361 

(Spain) and 2001-SGR-00431 (Generalitat de Catalunya). 



106 x. TOLSA 

where the supremum is taken over all positive Radon measures p supported on E such 

that  the Cauchy transform f=(1/z)*p is an L~(C) - func t ion  with I I f l l ~ < l .  Since 

((i/z)*p)'(:xD) = p ( E ) ,  we have 

% ( E )  ~< 7(E) .  (1.1) 

To the best of our knowledge, the capacity 0/+ was introduced by Murai [Mu, pp. 71-72]. 

He showed tha t  some estimates on 7+ are related to the L2-boundedness of the Cauchy 

transform. 

In this paper  we prove the converse of inequality (1.1) (modulo a multiplicative 

constant): 

THEOREM 1.1. There exists an absolute constant A such that 

? ( E )  ~< AT+(E) 

for any compact set E. 

Therefore, we deduce 7 ( E ) ~ V +  (E) (where a.~b means tha t  there exists an absolute 

positive constant C such that  C-lb~a~Cb), which was a quite old question concerning 

analytic capacity (see for example [DeO] or [Vel, p. 435]). 

To describe the consequences of Theorem 1.1 for Painlev@'s problem (that  is, the 

problem of characterizing removable singularities for bounded analytic functions in a 

geometric way) and for the semiadditivity of analytic capacity, we need to introduce 

some additional notation and terminology. 

Given a complex Radon measure v on C, the Cauchy transform of v is 

Cv(z) = / ~ l~z dV(~). 

This definition does not make sense, in general, for z E supp(~,), although one can easily see 

that  the integral above is convergent at a.e. z E C  (with respect to Lebesgue measure). 

This is the reason why one considers the truncated Cauchy transform of v, which is 

defined as 

= -zl>  

for any ~>0 and z E e .  Given a #-measurable function f on C (where # is some fixed 

positive Radon measure on C),  we write Cf=-C(fd#) and C~f=Cs(f d#) for any : > 0 .  

It is said that  the Cauchy transform is bounded on L2(#) if the operators Ce are bounded 

o n / f l ( # )  uniformly on : > 0 .  

A positive Radon measure # is said to have linear growth if there exists some constant 

C such that  #(B(x,r))<~Cr for all xGC,  r > 0 .  
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Given three pairwise different points x, y, zEC,  their Menger curvature is 

1 
c(x, y, z) - R(x, y, z) '  

where R(x,y ,z)  is the radius of the circumference passing through x, y, z (with 

R(x, y, z)=c~, c(x, y, z)=O if x, y, z lie on a same line). If two among these points coin- 

cide, we let c(x,y, z)=0.  For a positive Radon measure p, we set 

f f  

c (x) = ] ]  c(x, y, z) 2 d#(y) d,(z), 

and we define the curvature of # as 

c 2 ( # ) = / c ~ ( x ) d p ( x ) = / / / c ( x , y , z ) 2 d # ( x ) d # ( y ) d # ( z ) .  (1.2) 

The notion of curvature of measures was introduced by Melnikov [Me2] when he was 

studying a discrete version of analytic capacity, and it is one of the ideas which is re- 

sponsible for the big recent advances in connection with analytic capacity. On the one 

hand, the notion of curvature is connected to the Cauchy transform. This relationship 

comes from the following identity found by Melnikov and Verdera [MeV] (assuming that  

# has linear growth): 
2 IIC~#IIL2(,) = l c ~ ( # ) +  O(p(C)) ,  (1.3) 

where c~(#) is an ~-truncated version of c : (#)  (defined as on the right-hand side of (1.2), 

but with the integrals over {x, y, z E C : l x - y l ,  ]y-zl, Ix-zl  >s}).  On the other hand, the 

curvature of a measure encodes metric and geometric information from the support  of 

the measure and is related to rectifiability (see [L~]). In fact, there is a close relationship 

between c2(p) and the coefficients/~ which appear in Jones' traveling salesman result [Jo]. 

Using the identity (1.3), it has been shown in [T2] that  the capacity ~+ has a 

rather precise description in terms of curvature of measures (see (2.2) and (2.4)). As 

a consequence, from Theorem 1.1 we get a characterization of analytic capacity with a 

definite metric-geometric flavour. In particular, in connection with Painlev~'s problem 

we obtain the following result, previously conjectured by gelnikov (see [Dd3] or [Ma3]). 

THEOREM 1.2. A compact set E C C  is non-removable for bounded analytic func- 

tions if and only if it supports a positive Radon measure with linear growth and finite 

curvature. 

It is easy to check that this result follows from the comparability between 7 and ~/+. 

In fact, it can be considered as a qualitative version of Theorem 1.1. 

From Theorem 1.1 and IT4, Corollary 4] we also deduce the following result, which 

in a sense can be considered as the dual of Theorem 1.2. 
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THEOREM 1.3. A compact set E c C  is removable for bounded analytic functions if  

and only if there exists a finite positive Radon measure # on C such that for all x E E  

either ( ~ ( x ) = o c  or c~ (x)=-c~. 

In this theorem, O~(x) stands for the upper linear density of # at x, i.e. O~(x)=  

lim supr_~0 #( B(x ,  r) ) r -1. 

Theorem 1.1 has another important corollary. Up to now, it was not known if 

analytic capacity is semiadditive, that is, if there exists an absolute constant C such that 

7 ( E U F )  <. C(~ / (E)+7(F) ) .  (1.4) 

This question was raised by Vitushkin in the early 1960's (see [Vii and [VIM]) and 

was known to be true only in some particular cases (see [Me1] and [Su] for example, 

and [De] and [DeO] for some related results). On the other hand, a positive answer to 

the semiadditivity problem would have interesting applications to rational approximation 

(see [Vel] and [Vii). Theorem 1.1 implies that, indeed, analytic capacity is semiadditive 

because ~+ is semiadditive [T2]. In fact, the following stronger result holds. 

THEOREM 1.4. Let E C C  be compact. Let Ei, i~1 ,  be Borel sets such that E =  

Ui~=l E~. Then, 
O 0  

.< C 

i=1 
where C is an absolute constant. 

Several results dealing with analytic capacity have been obtained recently. Cur- 

vature of measures plays an essential role in most of them. G. David proved in [Dd2] 

(using [DdM] and [L~]) that a compact set E with finite length, i.e. with 7-/~(E)<c~ 

(where 7i "~ stands for the s-dimensional Hausdorff measure), has vanishing analytic ca- 

pacity if and only if it is purely unrectifiable, that is, if 7- / I (ENF)=0 for all rectifiable 

curves F. This result had been known as Vitushkin's conjecture for a long time. Let 

us also mention that in [MaMV] the same result had been proved previously under an 

additional regularity assumption on the set E. 

David's theorem is a very remarkable result. However, it only applies to sets with 

finite length. Indeed, Mattila [Mal] showed that the natural generalization of Vitushkin's 

conjecture to sets with non-a-finite length does not hold (see also [JoM]). 

After David's solution of Vitushkin's conjecture, Nazarov, Treil and Volberg [NTV1] 

proved a T(b)-theorem useful for dealing with analytic capacity. Their theorem also solves 

(the last step of) Vitushkin's conjecture. Moreover, they obtained some quantitative 

results which imply the estimate 

diam(E) ~2 { 7_LI(E ) 7 8 7 1 / 2  (1.5) 
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Notice that  if 7-/ l(E)=oc,  then the right-hand side equals 0, and so this inequality is not 

useful in this case. 

For a compact connected set E,  P. Jones proved around 1999 that  "7(E)~'7+(E). 

This proof can be found in [Pal. The arguments used by P. Jones (of geometric type) 

are very different from the ones in the present paper. 

Other problems related to the capacity "y+ have been studied recently. Some density 

estimates for 7+ (among other results) have been obtained in [MAP2], while in [T4] it has 

been shown that ~/+ verifies some properties which usually hold for other capacities gen- 

erated by positive potentials and energies, such as Riesz capacities. Now all these results 

apply automatically to analytic capacity, by Theorem 1.1. See also [MaP1] and [VeMP] 

for other questions related to 7+. 

Let us mention some additional consequences of Theorem 1.1. Up to now it was not 

even known if the class of sets with vanishing analytic capacity was invariant under affine 

maps such as x+iy~--~x+i2y, x, yER  (this question was raised by O'Farrell, as far as we 

know). However, this is true for 7+ (and so for 7), because its characterization in terms 

of curvature of measures. Indeed, it is quite easy to check that  the class of sets with 

vanishing capacity "y+ is invariant under Cl+~-diffeomorphisms (see [T1], for example). 

The analogous fact for C 1 or bi-Lipschitz diffeomorphisms is an open problem. 

Also, our results imply that  David's theorem can be extended to sets with a-finite 

length. That  is, if E has a-finite length, then 7 ( E ) = 0  if and only if E is purely unrecti- 

fiable. This fact, which also remained unsolved, follows directly either from Theorem 1.1 

or Theorem 1.4. 

The proof of Theorem 1.1 in this paper is inspired by the recent arguments of [MTV], 

where it is shown that "y is comparable to "~+ for a big class of Cantor-type sets. One 

essential new idea from [MTV] is the "induction on scales" technique, which can be also 

adapted to general sets, as we shall see. Let us also remark that  another important 

ingredient of the proof of Theorem 1.1 is the T(b)-theorem of [NTV1]. 

Theorems 1.2 and 1.3 follow easily from Theorem 1.1 and known results about "7+. 

Also, to prove Theorem 1.4, one only has to use Theorem 1.1 and the fact that  "~+ is 

countably semiadditive. This has been shown in [T2] under the additional assumption 

that the sets Ei in Theorem 1.4 are compact. With some minor modifications, the proof 

in IT2] is also valid if the sets Ei are Borel. For the sake of completeness, the detailed 

arguments are shown in Remark 2.1. 

The plan of the paper is the following. In w we introduce some notation and recall 

some preliminary results. In w for the reader's convenience, we sketch the ideas involved 

in the proof of Theorem 1.1. In w we prove a preliminary lemma which will be necessary 

for Theorem 1.1. The rest of the paper is devoted to the proof of this theorem, which we 
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have split into three parts. The first one corresponds to First Main Lemma 5.1, which 

is stated in w and proved in w167 The second one is Second Main Lemma 9.1, stated 

in w and proved in w167 The last part of the proof of Theorem 1.1 is in w and 

consists of the induction argument on scales. 

2. N o t a t i o n  a n d  b a c k g r o u n d  

We denote by E(E)  the set of all positive Radon measures # supported on E c C  such 

that  #(B(x,r))<~r for all xEE, r>0 .  

As mentioned in the Introduction, curvature of measures was introduced by Melnikov 

in [Me2]. In this paper he proved the inequality 

~/(E) ~> C sup #(E)2  
,EZ(E) ~ (E)+cZ(#)  ' (2.1) 

where C > 0  is some absolute constant. In [T2] it was shown that  inequality (2.1) also 

holds if one replaces ~/(E) by % ( E )  on the left-hand side, and then one obtains 

,(E) 
"y+(E) ~ sup (2.2) 

g e E ( E )  F t ( E )  + c 2 ( t t )  " 

Let M be the maximal radial Hardy-Lit t lewood operator, 

M~(x) = sup 
r > 0  r 

(if # were a complex measure, we would replace #(B(x,r)) by I#l(B(x,r))), and let 

c,(x)=(c~(x)) 1/2. The following potential was introduced by Verdera in [Ve2]: 

uAz) := M (x)+cAx). (2.3) 

It turns out that  "I,+ can also be characterized in terms of this potential (see [T4], and 

also [Ve2] for a related result): 

3'+(E) ~ sup{i t (E):  supp(#) C E, U,(x) ~< 1 for all xeE} .  (2.4) 

Let us also mention that  the potential U~ will be very important  for the proof of Theo- 

rem 1.1. 

Remark 2.1. Let us see that  Theorem 1.4 follows easily from Theorem 1.1 and the 

characterization (2.4) of % .  Indeed, if ECC is compact and E =  (-J~l E~, where El, i~> 1, 

are Borel sets, then we take a Radon measure # such that  y+(E).~#(E) and U~(x)~<l 
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for all xEE. For each i~>1, let FicE~ be compact  and such that  p(Fi)~�89 Since 

Ut, pF~(X)<<.l for all xCFi, we deduce 7+(F~)>~C-i#(Fi). Then, from Theorem 1.1 we get 

i i i i 

Let us recall the definition of the maximal Cauchy transform of a complex measure u: 

C.u(x) = sup 16u(x)l .  
~ > 0  

Let r be a C ~ radial function supported on B(0, 1), with 0 < r  I IV~]]~<100 and 

f ~ ds 1 (where s stands for the Lebesgue measure). We denote r 162  r 

The regularized operators C~ are defined as 

1 
= 

Z 

Let r~=r It  is easily seen that  r~(z)=l/z if Izl>e,  Ilrcll~<~C/e and IVre(z)l~< 

Clz1-2. Further, since re is a uniformly continuous kernel, C~v is a continuous func- 

tion on C. Notice also tha t  if ICul~B a.e. with respect to Lebesgue measure, then 

]C~(v)(z)I<<.B for all z e C .  

Moreover, we have 

= r (y-x) d,(y) < CM (x). (2.5) 

By a square Q we mean a closed square with sides parallel to the axes. 

The constant A in Theorem 1.1 will be fixed at the end of the proof. Throughout  all 

the paper, the letter C will s tand for an absolute constant that  may change at different 

occurrences. Constants with subscripts, such as C1, will retain its value, in general. On 

the other hand, the constants C, C1,... do not depend on A. 

3. Outline of  the arguments for the proof  of  Theorem 1.1 

In this section we will sketch the arguments involved in the proof of Theorem 1.1. 

In the rest of the paper,  unless stated otherwise, we will assume that E is a finite 

union of compact disjoint segments. We will prove Theorem 1.1 for this type of sets. The 

general case follows from this particular instance by a discretization argument,  such as 

in [Me2, Lemma 1]. Moreover, we will assume tha t  the segments make an angle of 1 

say, with the x-axis. In this way, the intersection of E with any line parallel to one of 
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the coordinate axes will always have length zero. This fact will avoid some technical 

problems. 

To prove Theorem 1.1 we want to apply some kind of T(b)-theorem, as David in [Dd2] 

for the proof of Vitushkin's conjecture. Because of the definition of analytic capacity, 

there exists a complex Radon measure ~o supported on E such that  

IIC~011~ ~< 1, (3.1) 

I.o(E)l =~(E), (3.2) 

dr, o=bodT-lllE, with IIb0N~ ~< 1. (3.3) 

We would like to show that  there exists some Radon measure # supported on E with 

# E E ( E ) ,  #(E)~v(E), and such that  the Cauchy transform is bounded on L2(#) with 

absolute constants. Then, using (2.2) for example, we would get 

"y+(E)/> C-I#(E) i> C-I~ / (E) ,  

and we would be done. 

However, by a more or less direct application of a T(b)- theorem we cannot expect 

to prove that  the Cauchy transform is bounded with respect to such a measure # with 

absolute constants. Let us explain the reasons in some detail. Suppose for example that  

there exists some function b such that  dvo=bd# and we use the information about  vo 

given by (3.1), (3.2) and (3.3). From (3.1) and (3.2) we derive 

llC(6d,)tl  < 1 (3.4) 

and 

f bdp .~(E). (3.5) 

The estimate (3.4) is very good for our purposes. In fact, most classical T(b)-type theo- 

rems require only the BMO(#) -norm of b to be bounded, which is a weaker assumption. 

On the other hand, (3.5) is a global paraaccretivity condition, and with some technical 

difficulties (which may involve some kind of stopping time argument,  like in [Ch], [Dd2] 

or [NTV1]), one can hope to be able to prove that  the local paraaccret ivi ty condition 

Qbd# ~#(QnE) 

holds for many squares Q. 

Our problems arise from (3.3). Notice that  (3.3) implies that  I~ol(E)47-I 1 (E),  where 

Iv01 stands for the variation of v0. This is a very bad est imate since we don ' t  have any 
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control on H I ( E )  (we only know that  7- /a(E)<oc because of our assumptions on E) .  

However, as far as we know, all T(b)- type theorems require the estimate 

lu0l(E) < Cp(E) (3.6) 

(and often stronger assumptions involving the L ~ - n o r m  of b). So by a direct application 

of a T(b)- type theorem we will obtain bad results when 7(E)<<7-/I(E),  and at most we 

will get estimates which involve the ratio "HI(E)/'y(E), such as (1.5). 

To prove Theorem 1.1, we need to work with a measure "better" than u0, which 

we call u. This new measure will be a suitable modification of u0 with the required 

estimate for its variation. To construct u, we operate as in [MTV]. We consider a set 

F containing E made up of a finite disjoint union of squares: F =  [-JieI Qi" One should 

think that  the squares Q~ approximate  E at some "intermediate scale". For example, in 

1 planar Cantor set of generation n studied in [MTV], the squares the case of the usual 

Qi are the squares of generation in .  For each square Qi, we take a complex measure 

ui supported on Qi such that  ui(Q~)=uo(Qi) and lui[(Qi)=lui(Qi)l ( that  is, ui will be a 

constant multiple of a positive measure). Then we set u=y'] i ui. So, if the squares Qi are 

big enough, the variation lul will be sufficiently small. On the other hand, the squares 

Qi cannot be too big, because we will need 

"/+(F) <~ C~/+(E). (3.7) 

In this way, we will have constructed a complex measure u supported on F satisfying 

lul(F) ~ I~(F)I =-y(E). (3.8) 

Taking a suitable measure # such that  supp(#)Dsupp(u)  and p(F)~"/(E), we will be 

ready for the application of a T(b)-theorem. Indeed, notice that  (3.8) implies that  u 

satisfies a global paraaccretivity condition and that  also the variation lul is controlled. On 

the other hand, if we have been careful enough, we will have also some useful est imates on 

[Cu h since u is an approximation of Vo (in fact, when defining u in the paragraph above, 

the measures ~i have to be constructed in a smoother  way). Using the T(b)- theorem 

of [NTV1], we will deduce 

"/+(F) >~ C-'#(E),  

and so, ~/+(E)>~C-I~/(E), by (3.7), and we will be done. 

Several difficulties arise in the implementation of the arguments above. In order 

to obtain the right estimates on the measures u and # we will need to assume tha t  

"7(ENQi).~"/+(ENQi) for each square Qi. For this reason, we will use an induction 
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argument involving the sizes of the squares Qi, as in [MTV]. Further,  the choice of the 

right squares Qi which approximate  E at an intermediate scale is more complicated than 

in [MTV]. A careful examination of the arguments  in [MTV] shows the following. Let a 

be an extremal  measure for the right-hand side of (2.2), and so for % in a sense (now 

E is some precise planar Cantor set). It  is not difficult to check that  U ~ ( x ) ~ l  for all 

x E E (remember (2.3)). Moreover, one can also check that  the corresponding squares Qi 

satisfy 

U~I2Q~ (x) .~ U~,IC\2Q~ (x) ~ 1 for all x E Qi. (3.9) 

In the general situation of E given a finite union of disjoint compact  segments, the 

choice of the squares Qi will be also determined by the potential  Uo, where now a is 

the corresponding maximal  measure for the right-hand side of (2.2). We will not ask the 

squares Qi to satisfy (3.9). Instead we will use a variant of this idea. 

Let us mention that  First Main Lemma 5.1 below deals with the construction of the 

measures v and p, and with the est imates involved in this construction. Second Main 

Lemma 9.1 is devoted to the application of a suitable T(b)-theorem. 

4. A preliminary lemma 

In the next lemma we show a property of the capacity "y+ and its associated potential 

which will play an important  role in the choice of the squares Qi mentioned in the 

preceding section. 

LEMMA 4.1. There exists a measure a E E ( E )  such that a ( E ) ~ / + ( E )  and U~,(x)~(~ 

for all x E E ,  where c~>0 is an absolute constant. 

Let us remark that  a similar result has been proved in IT4, Theorem 3.3], but without 

the assumption a E E ( E ) .  

Proof. We will see first that  there exists a Radon measure a E E ( E )  such that  the 

supremum on the right-hand side of (2.2) is at tained by a. Tha t  is, 

#(E)  2 a(E)  2 
g(~E) := sup 

This measure will fulfill the required properties. 

It is easily seen that  any measure # E Z ( E )  can be writ ten as d#=fdT-llI  E, with 

IIf]]i~c(nllE ) 41,  by the Radon-Nikodym theorem. Take a sequence of functions {fn}n, 

with ]lfnillo,(n~lE)~ 1, converging weakly in L ~ ( # )  to some function fELCC(#) and such 

that  
#n(E)2 =g(E) ,  

lim 
n - - ~  #n(E)-~-c2(~tn)  
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with d#~=fnd~ll E, p n E E ( E ) .  Consider the measure da=fdT-lllE. Because of the 

weak convergence, #n(E)-+a(E) as n -+ec ,  and moreover n E E ( E ) .  On the other hand, 

it is an easy exercise to cheek that  c 2 (~r)~< lim i n f ~ _ ~  c 2 (#~). So we get 

cr(E) 2 

g ( E ) -  o(E)+c2(o) �9 

Let us see that  a(E)~7+(E). Since a is maximal and ~ r  is also in E (E) ,  we have 

~(E) ~ �88 ~ 

a(E)+c2(a) >1 �89 

Therefore, 

I~(E)+ ~d(~)~> �88188 

Tha t  is, c2(a)<~2a(E). Thus, 

~+(E) ~g(E)  ~ ~(E). 

It  remains to show that  there exists some a > 0  such that  U~(x)>~a for all xEE. 

Suppose that  Ma(x)<~l-~o o for some xEE, and let B:=B(x, R) be some fixed ball. We 

will prove the following: 

CLAIM. If R>O is small enough, then there exists some set AcB(x,  R)NE, with 

7"/l(A)>0, such that the measure a;~:=a+ANllA belongs to E(E)  for 0~<A~ 1 ]56" 

Proof of the claim. Since E is made up of a finite number of disjoint compact  seg- 

ments, we may assume that  R > 0  is so small that  7-ll(B(y,r)ME)<~2r for all yEB, 

0 < r ~ 4 R ,  and also that  7-ll(B(x,R)NE)~R. These assumptions imply that  for any 

subset A C B we have 

7-ll(AMB(y,r)) <.7-ll(EnB(y,r)MB)<~2r for all yEB, r > 0 .  

Thus, 7-ll(AMB(y,r))<.4r for all y E C ,  and so 

M(7-ll[A)(y) ~<4 for all y E C .  (4.1) 

We define A as 

A= {yEB : Ma(y) <~ �88 

Let us check that  7-/l(A)>0. Notice that  

2R 1 1 
a (2B)  ~< 2RMa(x) <. 1 -~  • -~7-l (BME).  (4.2) 
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Let D--B\A.  If yeD, then Ma(y)> �88 If r>0  is such that a(B(y, r))/r> �88 then r<  ~ R .  

Otherwise, B(y, r) C B(x, 12r) and so 

l_L2 
a(B(y,r)) ~ a(B(x, 12r)) ~ 12Ma(x) ~ 1000" 

r r 

Therefore, 

D c { y e B  : M(ai2B)(y ) > �88 

For each yCD, take ry with O<ry~oR such that 

a(B(y, ry)) 1 

r y  4 

By Vitali's 5r-Covering Theorem there are some disjoint balls B(yi, rye) such that DC 

Ui B(yi,hry,). Since we must have ry, <.IR,  we get ~lX(B(yi,hrui)AE)<~lhr~,. Then, 

by (4.2) we deduce 

7"/I(DNE) < Z 7-ll(B(Yi' 5ryi)NE) < ~ 15ryi 
i i 

~< 60 ~ a(B(yi, ry,)) ~< 60a(2B) < ~ 7-ll(BNE). 
DUU 

i 

Thus, 7-/1 (A) >0. 

Now we have to show that Ma~(y)<.l for all yEE. If yEA, then Ma(y)<.�88 and 

then by (4.1) we have 

1 4 
Max(y) <~ +AM(7-ll[A)(y) <~ - ~ + ~  < 1. 

If yEA and B(y,r)MA=O, then we obviously have 

ax(B(y, r)) _ a(B(y, r)) 

r r 
~<1. 

Suppose that yEA and B(y,r)MA~O. Let zEB(y,r)NA. Then, 

2r)) 1 
<~ <. 2Ma(z) <. -~. 

r r 

Thus, 

r 

So we always have Max(y)<. 1. 

1 4 
<~ +AM(7-lliA)(y) <. ~+~-~ < 1. 

[] 
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Let us continue the proof of Lemma 4.1 and let us see that U~(x)>~a. Consider the 

function 

~(A) = a:~(E) +c2(a~) ' 

Since a is a maximal measure for g(E) and a~eE(E) for some A>0, we must have 

~'(0) 40.  Observe that 

~(A) = [ a (E)+  AT/a (A)] 2 [a(E)+AT-/1 (A)+c  2 ( a )+  3Ac 2 (7-/1 [A, a, a) 

+ 3A2C2 (o., ,]./11A, ~1 [A)+ A3c2 (']--/1 [A)]-1. 

So, 
~'(0) - 2a(E)7"ll(A)(a(E)+c2(a))-a(E)2(7-la(A)+3c2(7-ll[A' ~' a)) 

Therefore, ~'(0)~<0 if and only if 

(~(E)+d(~))2 

27-ll(A)(a(E)+c2(a)) <~ a(E)(7-ll(A)+3c2(7@[A, a, a)). 

That is, 
a(E)+2c2(a) 3c2(7ll[A,a,a) 

<~ 
a(E) hi(A) 

1 So there exists some x0EA such that Therefore, c2 (7-/1 [A, a, a)/7-l 1 (A) >1 5" 

c2(xo,a,o .) >~ 1. (4.3) 

We write 

c2(xo, a, a) = c2(xo, al2B,  a]2B)+c2(xo, a[2B, ~ l c  \ 2B)  

+c2(xo, a [C  \2B ,  a[C \2B) .  
(4.4) 

If R is chosen small enough, then B n E  coincides with a segment, and so we have 

c2(x0, al2B, al2B)=O. On the other hand, 

c2(xo,a}2B, a[C\2B)<~C fy / 1 da(y)da(z)<~C2Ma(x)2" 
e2B eCX2B IX-- Zl 2 

Thus, if Ma(x)2<~l/6C2, then by (4.3) and (4.4) we obtain 

C~IC\2B(XO )=c2(xo,a[C\2B,a[c\2B) >1 1 1 _ 1 5 - g - g .  

Also, it is easily checked that 

]C~,IC\2B(X)--C,~IC\2B(Xo)] <. C3Ma(x). (4.5) 



118 x. TOLSA 

This follows easily from the inequality 

le(x, y, z ) -c (xo ,  y, z)l <<. C 
R 

I x - u l l x - z l '  

for X, xo , y , z  such that  IX-Xol<~R and Ix -y l ,  Ix-zl>~2R (see Lemma 2.4 of IT2], for 

example) and some standard estimates. Therefore, if we suppose M a ( x )  <. 1/100C3, then 

we obtain 

c lc\2B(x0)-1+0 

So we have proved that  if Ma(x)<.min(1/ lO00,  1/(6C2) 1/2, 1/100C3), then c ~ ( x ) > ~ .  

This implies that  in any case we have U~,(x)>~a, for some a>O. [] 

5. T h e  First  M a i n  L e m m a  

The proof of Theorem 1.1 uses an induction argument on scales, analogous to the one 

in [MTV]. Indeed, if Q is a sufficiently small square, then E A Q  either coincides with a 

segment or it is void, and so 

7+(EAQ)  ~- 7(EC~Q). (5.1) 

Roughly speaking, the idea consists of proving (5.1) for squares(1) Q of any size, by 

induction. To prove that  (5.1) holds for some fixed square Q0, we will take into account 

that  (5.1) holds for squares with sidelength ~< ~l(Q0). 

Our next objective consists of proving the following result. 

LEMMA 5.1 (First Main Lemma). Suppose that %(E)<~C4diam(E) ,  with C4>0 

small enough. Then there exists a compact set F = U i E I  Qi, with ~ i ~ I  Xn)Q, <~C, such 

that 

(a) E c F  and "y+(F)<.C'~+(E), 

(b) EiEI "~+(EA2Qi)<. C % ( E ) ,  

(c) diam(Qi)<~ l d i a m ( E )  for every ie  I. 

Let A ~ 1 be some fixed constant and 7? any fixed dyadic lattice. Suppose that ~/( E A 2Qi)~< 

A'~ + ( E A 2Q.i ) for all i E I. I f  ~/( E ) >>. A~/ + ( E ) , then there exist a positive Radon measure # 

and a complex Radon measure u, both supported on F, and a subset Hz )c  F, such that: 

(d) Cal"~(E)<~p(F)<~Ca'y(E). 

(e) dp=bd#,  with ]]b]]L~(,~) <<. Cb. 

(f) [u(F) I=v(E) .  

(g) fF \HvC.udp<~Cr �9 

(1) Actually, in the induction argument we will use rectangles instead of squares. 
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(h) If #(B(x, r)) >Cor (for some big constant Co), then B(x, r) c Hz). In particular, 

#(B(x,r))<. Cor for all xEF\Hz),  r > 0 .  

(i) HZ)=UkCIH Rk, where Rk, kEIH, are disjoint dyadic squares from the lattice 73, 

with ~-~k~1, l(Rk)<~#(F), for 0 < ~ <  ~0 arbitrarily small (choosing Co big enough). 

(j) 

(k) #(Hv)<.5#(F), with 5=5(~)<1.  

The constants C4, C, Ca, Cb, Co, Co, e and ~ do not depend on A. They are 

absolute constants. 

Let us remark that  the construction of the set H v  depends on the chosen dyadic 

lattice 7). On the other hand, the construction of F, it, ~ and b is independent of 79. 

We also insist on the fact that  all the constants different from A which appear in 

the lemma do not depend on A. This fact will be essential for the proof of Theorem 1.1 

in w We have preferred to use the notation Ca, Cb, Cc instead of C5, C6, 6'7, say, 

because these constants will play an important  role in the proof of Theorem 1.1. Of 

course, the constant Cb does not depend on b (it is an absolute constant). 

Remember that we said that we assumed the squares to be closed. This is not the 

case for the squares of the dyadic squares of the lattice 7). We suppose that these squares 

are half open-half  closed (i.e. of the type (a, b] x (c, d]). 

For the reader's convenience, before going on we will make some comments on the 

lemma. As we said in w the set F has to be understood as an approximation of E at 

an intermediate scale. The first part of the lemma, which deals with the construction of 

F and the properties (a)-(c), is proved in w The choice of tile squares Qi which satisfy 

(a) and (b) is one of the keys of the proof of Theorem 1.1. Notice that  (a) implies that 

the squares Qi are not too big, and (b) that  they are not too small. Tha t  is, they belong 

to some intermediate scale. The property (b) will be essential for the proof of (d). Oil 

the other hand, the assertion (c) will only be used in the induction argument, in w 

The properties (d), (e), (f) and (g) are proved in w These are the basic properties 

which must satisfy # and ~ in order to apply a T(b)-theorem with absolute constants, 

as explained in w To prove (d) we will need the assumptions in the paragraph after 

(c) in the lemma. In (g) notice that  instead of the L~176 - or BMO(it)-norm of Cv, we 

estimate the L 1 (it)-norm of C,~ out of the set H r .  

Roughly speaking, the exceptional set Hv contains the part  of it without linear 

growth. The properties (h), (i), (j) and (k) describe H v  and are proved in w Observe 

that  (i), (j) and (k) mean that H v  is a rather small set. 
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6. Proof  of  (a)- (c)  in the First Main Lemma 

6.1. The construction of F and the proof of (a). Let a E E ( E )  be a measure satisfying 

a(E)~%(E) and U~(x)~c~>0 for all xCE (recall Lemma 4.1). Let A be some constant 

with 0<A~<10-sc~ which will be fixed below. Let ~ c C  be the open set 

~ : =  {x e c :  U~(x) > ~}. 

Notice that ECRU, and by [T4, Theorem 3.1] we have 

"7+(~) ~< CA-16(E) < CA-LT+(E). (6.1) 

Let Ft= Uie J Qi be a Whitney decomposition of ~, where {Qi }iEJ is the usual family 

of Whitney squares with disjoint interiors satisfying 20Qi c ~, RQi M (C\f t )  5 z  (where 

R is some fixed absolute constant), and ~ i e g  XlOQ~ <~C. 

Let {Qi}ieI, I cJ ,  be the subfamily of squares such that  2QiME~O. We set 

F : =  UQi. 
iE I  

Observe that  the property (a) of the First Main Lemma is a consequence of (6.1) and 

the geometry of the Whitney decomposition. 

To see that F is compact it suffices to check that  the family {Q~}iel is finite. Notice 

that  EC  U~e.1 (1.1Q~). Since E is compact, there exists a finite covering 

o 

g c  U (1.1Qik). 
l ~ k ~ n  

Each square 2Qi, i E I, intersects some square 1.1Qik, k = 1, ..., n. Because of the geometric 

properties of the Whitney decomposition, the number of squares 2Qi which intersect some 

fixed square 1.1Qi k is bounded above by some constant C.~. Thus, the family {Qi}i~i 

has at most Csn squares. 

6.2. Proof of (b). Let us see now that  (b) holds if A has been chosen small enough. 

We will show below that  if xEEM2Qi for some i6I, then 

assuming that  A is small enough. 

[T4, Theorem 3.1], we have 

Vai4Q , (x) > lol, (6.2) 

This implies E N 2Qi c { Va[ 4Q, > 10r and t hen, by 

7+(EN2Q~) ~< Cc~-la(4Q~). 
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Using the finite overlap of the squares 4Qi, we deduce 

Z ~+(En2Q~) < c~ -1 ~ ~(4Q~) < C~-I~(E) <~ C~+ (E) 
iEI iEI 

Notice that  in the last inequality, the constant (~-1 has been absorbed by the constant C. 

Now we have to show that  (6.2) holds for xEEA2Qi. Let zERQi\f~, so that  

dist(z, Qi)~dist(Oft, Qi)~l(Qi) (where l(Qi) stands for the sidelength of Qi). Since 

Me(z) <~ U~(z)<~, we deduce that  for any square P with l(P)>~ �88 and PN2Qi #o, 

we have 

a(P) <~ C6~ <. 10-6a,  (6.3) 
l(P) 

where the constant C6 depends on the Whitney decomposition (in particular, on the 

constant R), and we assume that  A has been chosen so small that  the last inequality 

holds. 

Remember that  U~(x)>c~. If Me(x)> 1 ~a, then 

~(Q) 

l(Q) 2 

for some "small" square Q contained in 4Qi, because the "big" squares P satisfy (6.3). 

So, v~,,Q, (x) > �89 
Assume now that Ma(x)<.la. In this case, c~(x)>lc~. We decompose c2(x)=: 

c2(x, a, a) as follows: 

c2(x, a, a) = c2(x, al4Qi, al4Qi)+ 2c2(x, al4Qi, a l C  \4Qi)  

+c2 (x, aICk4Qi, alCk4Qi). 

We want to see that  

1 (6.4)  cal4Qi(X ) > ~a. 

So it is enough to show that  the last two terms in the equation above are sufficiently 

small. First we deal with c2(x, al4Qi, alCk4Qi): 

e2(x'a'4Q"a'c\4o')<~ c f ~e 1 Jye4Q~ C\4Q~ It-x] 2 de(y) de(t) 

= Ca(4Qi) f~e 1 de(t) (6.5) 
c\4Q~ It-x12 

Mo(z) 
~< C~(4Q~) ~ ~< CM~(z) ~ < C~ 2 



122 x. TOLSA 

For the term c2(x, alC\4Qi, a l C \ 4 Q i )  we write 

c2(x, a lC  \4Q~, a [C \4Q~) = c2(x, a[C \2RQ~, a[C \2RQ~) 

+ 2c2 (x, a[C\2RQi, a[2RQi\4Qi) 

+c2 (x, a]2RQi\ 4Q~, a[2RQi\ 4Qi). 

Arguing as in (6.5), it easily follows that the last two terms are bounded above by 

CMa(z)2<...CA 2 again. So we get 

C 2 [ 4 Q i ( Z ) ~ C 2 ( X )  2 2 -- Cc~[C\2RQ, (X) -- C A  . (6.6) 

We are left with the term c~]c\2RQ~(X ). Since x, zERQi, it is not difficult to check that 

[Ccr[C\2RQi(X) - -Calc \2RQ,(Z) I  < CMa(z) < C6A 

(this is proved like (4.5)). Taking into account that co(z)~A, we get 

c~lc\URQ~(X ) ~ (I+C6)A. 

Thus, by (6.6), we obtain 

1 _ 2 f ~ 2  

if A is small enough. That is, we have proved (6.4), and so in this case (6.2) holds too. 

6.3. Proof of (c). Now we have to show that 

diam(Qi) ~< ~ diam(E).  (6.7) 

This will allow the application of our induction argument. 

It is immediate to check that 

U~(x) <. 100a(E) 
dist(x, E)  

for all xq~E (of course, 100 is not the best constant here). Thus, for xED\E we have 

X00a(E) 
A < U~(x) <<. 

dist(x, E ) '  

Therefore, 

1 diam(E),  dist(x, E) ~ 100A-la(E)  ~ CA-I~+(E)  ~ 1-ff5 

taking the constant C4 in the First Main Lemma small enough. 

diam(12) ~< ~ diam(E).  Since 20Qi cl ' t  for each iEI, we have 

20diam(Q~) ~< diam(~) ~< 11 diam(E),  Y6 

which implies (6.7). 

A s  a consequence, 
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7. P r o o f  o f  (d) - (g)  in the First Main Lemma 

7.1. The construction of # and u and the proof of (d)-(f) .  I t  is easily seen tha t  there 

exists a family of C a- funct ions  {gi }icg such that ,  for each i E J ,  supp (g~) C 2Q~, 0 ~< g~ ~ 1, 

and ]lVgill~C/l(Qi), so that  ~ie jg i= l  on ft. Notice tha t  by the definition of I 

in w we also have ~-~ieigi=l on E.  

Let f(z) be the Ahlfors function of E,  and consider the complex measure v0 such that  

f(z)=Cpo(z) for z~E, with ]uo(B(z,r))I<~r for all z E C ,  r > 0  (see [Ma2, Theorem 19.9], 

for example). So we have 

ICu0(z)[ ~< 1 for all z~tE, 

and 

vo(E) =~/(E). 

The measure u will be a suitable modification of vo. As we explained in w the main 

drawback of v0 is that  the only information that  we have about  its variation Ivol is that  

]uo]=bodT-I 1, with ][b0[[~<~l. This is a very bad est imate if we try to apply some kind 

of T(b)- theorem in order to show that  the Cauchy transform is bounded (with absolute 

constants).  The main advantage of u over Uo is that  we will have a much bet ter  est imate 

for the variation lul. 

First we define the measure #. For each iEI, let Fi be a circumference concentric 

with Qi and radius ~"f(EN2Qi). Observe that  Fi C 1Qi for each i. We set 

Wlr,. 
iE I  

Let us define u now: 

1 f 
i E l  /1~ 1 (l~i) gidu~ 

Notice that  s u p p ( u ) C s u p p ( # ) c F .  Moreover, we have u(Qi)=fgidvo, and since 

~-~i~l g , = l  on E,  we also have u ( F ) = ~ i ~ 1  u(Qi)=vo(E)='~(E) (which yields (f)). 

We have du=bd#, with 

f gi duo 
b--  7_/I(Fi) 

on Fi. To est imate ]]bi]L~(~), notice tha t  

[C(9iUo)(Z)] <~ C for all z~EA2Qi. (7.1) 

This follows easily from the formula 

= f C o(z) (7.2) 
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where s stands for the planar Lebesgue measure on C. Let us remark that  this identity 

is used often to split singularities in Vitushkin's way. Inequality (7.1) implies that  

gi duo = (C(giuo))'(cc) <. CT(EN2Qi) = C7-/1(Fi). (7.3) 

As a consequence, IlbllL~(t,) <<. C, and (e) is  proved. 

It remains to check that  (d) also holds. Using (7.3), the assumption ~/(EN2Qi)~< 

A"/+(EM2Q~), (b) and the hypothesis A%(E)~<7(E), we obtain the inequalities 

"~I(E):II]o(E)': ~igi''o ~EiE, SgidllO ~ ~EiEI ~/(E02~7) 
= C#(F) <<. CA E %(EN2Qi) <~ CA~/+(E) <. CT(E) ,  

i E I  

which gives (d) (with constants independent of A). 

Notice, by the way, that the preceding inequalities show that  7(E)~< CA',/+ (E). This 

is not very useful for us, because if we try to apply induction, at each step of the induction 

the constant A will be multiplied by the constant C. 

On the other hand, since for each square Qi we have #(FAQi)<.CA~/+(EM2Qi)<~ 

CAa(2Qi), with a E E ( E ) ,  it follows easily that  

#(B(x,r))<~CAr for a l l x E F ,  r > 0 .  (7.4) 

Unfortunately, for our purposes this is not enough. We would like to obtain the same 

estimate without the constant A on the right-hand side, but we will not be able to. 

Instead, we will get it for all xEF out of a rather small exceptional set H. 

7.2. The exceptional set H. Before constructing the dyadic exceptional set Hz), we 

will consider a non-dyadic version, which we will denote by H. 

Let C0~>100Ca be some fixed constant. Following [NTV1], given xEF, r>0 ,  we say 

that  B(x,r) is a non-Ahlfors disk if #(B(x,r))>Cor. For a fixed xEF, if there exists 

some r > 0  such that  B (x , r )  is a non-Ahlfors disk, then we say that  x is a non-Ahlfors 

point. For any xEF, we denote 

~ ( x )  = sup{r > 0 : B(x, r) is a non-Ahlfors disk}. 

I f x E F  is an Ahlfors point, we set 7~(x)=0. We say that  T~(x) is the Ahlfors radius of x. 

Observe that  (d) implies # ( F )  ~< Ca'~(E) <. Ca~/(F) <. Ca diam(F) .  Therefore, 

#(B(x, r)) <. p(F) <. Ca diam(F)  ~< lOOCar 
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for r~> 1~o diam(F ). Thus n(x)<~l-~diam(F ) for all xEF. 

We denote 

Ho= U B(x,7~(x)). 
x E F  

T~(x)>0 

By Vitali's 5r-Covering Theorem there is a disjoint family {B(Xh,T~(Xh))}h such that 

HoC Uh B(Xh, 5T~(Xh)). We denote 

H = U B(xh, 57~(Xh)). (7.5) 
h 

Since H0 C H, all non-Ahlfors disks are contained in H, and then, 

dist(x, F \ H )  >>. T~(x) (7.6) 

for all x e F.  

Since ~(B(xh,7~(xh)))>~Con(Xh) for every h, we get 

1 F 1 y~p(B(Xh,7~(xh)))<<. -~o#() ,  (77) 
h h 

with 1~Co arbitrarily small (choosing Co big enough). 

7.3. Proof of (g). The dyadic exceptional set Hz~ will be constructed in w We will 

have H~  D H for any choice of 7). In this subsection we will show that 

C, ud# <~ C,.#(F), (7.8) 
\ g  

which implies (g), provided H~ D H. 

We will work with the regularized operators Ce introduced at the end of w Remem- 

ber that ]CVo(Z)]<.l for all z~E. Since s the same inequality holds for L:2-a.e. 

zEC.  Thus, IC~v0(z)l~<l and C, v0(z)<~l for all zEC,  ~>0. 

To estimate C,u, we will deal with the term C,(~-Vo).  This will be the main point 

for the proof of (7.8). 

We denote vi := v I Qi. 

LEMMA 7.1. For every zEC\4Qi, we have 

Cl(Qi)#(Qi) (7.9) 
C,(vi-givo)(Z) <<. dist(z, 2Qi) 2" 

Notice that  f(dvi-gidvo)=O. Then, using the smoothness of the kernels of the 

operators C~, ~>0, by standard estimates it easily follows that 

Cl(Qd(lv](Qd+luol(2Qi) ) 
.< 

dist(z, 2Qi) 2 
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This inequality is not useful for our purposes, because to estimate 1~0[(2Qi) we only 

can use 1~oI(2Qi)<.Til(EN2Qi). However, we don't have any control over 7{I(EN2Qi) 

(we only know that it is finite, by our assumptions on E).  The estimate (7.9) is much 

sharper. 

Proof of the lemraa. We set ~i=vi-giPo. To prove the lemma, we have to show 

that 

Cl(QJ#(QJ (7.10) 
IC~ai(z)] ~< dist(z, 2Q~) 2 

for all c > 0. 

Assume first a~<�89 2Qi). Since ]Cai(w)]<~C for all w~supp(ai) and a i (C)=0,  

we have 
Cdiam(supp(ai)) ~/(supp(ai)) 

t < dist(w, supp(oLi)) 2 

(see [Ga, pp. 12-13]). Remember that 

supp(ai) C Fi U (EA 2Qi) c 2Qi. 

Then we get 

Moreover, we have 

Cl( Qi ) ~(Fi U( E n2Qi ) ) (7.11) 
IC ,(w)l dist(w, 2Qi) 2 

~,(F~ U(En2Q~)) ~< C('~(FJ+',/(En2Q~)), 

because semiadditivity holds for the special case Fi U (EN2Qi). This fact follows easily 

from Melnikov's result about semiadditivity of analytic capacity for two compacts which 

are separated by a circumference [Mel]. Therefore, by the definition of Fi, we get 

7(F~u(En2QJ) ~< CT(EA2Qi) = C#(Qi). (7.12) 

If wEB(z,~), then dist(w, 2Qi)~dist(z, 2Qi). By (7.11) and (7.12) we obtain 

cl(oi) (Oi) Ic i(w)l .< 
dist (z, 2Qi) 2" 

Making the convolution with ~b~, (7.10) follows for ~< �89 dist(z, 2Qi). 

Suppose now that r �89 2Qi). We denote h=r Then we have 

C~o~i = ce*l*oli = C(h d~2). 
Z 

Therefore, 

[Ceai(z)[ ~< / Ih(~)l ds ~< [[hlloo[C2(supp(h))] 1/2. (7.13) 
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We have to estimate Ilhll~ and s Observe that, if we write li=l(Qi) and we 

denote the center of Qi by zi, we have 

supp(h) C supp(r  < B(0, ~)+B(zi ,  2/i) = B(z{, r 

Thus, s ~< Cr 2, since li ~<e. 

Let us deal with ]]hii~ now. Let rli be a C~-function supported on 3Qi which is 

identically 1 on 2Q~ and such that ]]Vr;~tim <~C/l~. Taking into account that ct~(2Q~)--0, 

we have 

h ( w ) =  / %b~ ( ~ - w ) d a i ( ~ ) = / ( r  

= ~3 / C3 li /~w(~)~i(~)do~i(~). ~(~(~-~) -r ~(~) d~(~) =: -~ 

We will show below that 

iIC(~w~?i da~)l l /~(c ) ~< C. (7.14) 

Let us assume this estimate for the moment. Since C(~p~, ~i dai) is analytic in C \ supp(ai) ,  

using (7.12) we deduce 

t~ /~w(~)v~(()da~(() <<.~s(r~u(En2Q~))<. ~:~ 

Therefore, 
Cli#(Qi) 

iihli~ ~< 
C 3 

By (7.13) and the estimates on ]]hll~ and s we obtain 

Cl(Qi)#(Qi) Cl(Q~)#(Qi) 
IC~a,(z)l < 

~2 dist(z, 2Qi) 2" 

It remains to prove (7.14). Remember that Cai is a bounded function. By the 

identity (7.2), since supp(~r ; / )c3Q.~,  it is enough to show that 

]]~wr;ill~ <~ C (7.15) 

and 

For ~E3Qi, we have 

C 
IIV(~w~)i i~  -< T-. (7.16) 

t i  

E 3 

I~w(~)i = ~ Ir162 ~< ~3 Itv~ ]i~ ~< c, 
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which yields (7.15). Finally, (7.16) follows easily too: 

C 
IIv(  ,  )JJoo JJv wJJ +JJ ,,JJ  JJ  JJoo < y .  

We are done. [] 

Now we are ready to prove (7.8). We write 

fF\HC*U d# <~ fF\HC=Uo d# + fF\HC-*(u--uo) d# 
(7.17) 

<. 

To estimate the last integral we use Lemma 7.1 and recall that 116.(//i-giPO)NL~(p) •C: 

I F  /F Cl(Qi)#(Qd g, (ui-giuo) d# <~ C#(4Qi) + dist(z, 2Qi) 2 d#(z). (7.18) 
\U \(4Q~UH) 

Let N~>I be the least integer such that  (4N+IQi\4NQi)\H#O, and take some fixed 

zoE(4N+aQi\4NQi)\H. We have 

OO 

/F 1 ~ ~ ~CkENft(4k+lQi) 
\(4Q~UH) dist(z, 2Qi) ~ dp(z) = E k+~QA4kQd\ g l(4k+lQi)2 

k=N = 

#(B(zo, 2l(4k+lQi))) 
<~ C E l(4k+aQi)2 

k=N 

or G)I(4k+IQi ) 1 1 
~< C Z /(4~,+1Q~)2 ~< C C o ~  <. CCOl(Qi ) �9 

k=N 

Notice that in the second inequality we have used that  z0 E F \ H ,  and so #(B(z0, r))~< Co r 
for all r. By (7.18), we obtain 

fF\H6* (;Yi lYO) d# <~ C#(4Qi). ~ g i  

Thus, by the finite overlap of the squares 4Qi, iEI, and (7.17), we get 

/F\HC, U d# <~ C#( F\ H) +C ~ #(4Q/) 4 C#(F). (7.19) 

Now, (2.5) relates C,u with C,u: 

16,v(z)-g ,u(z) l  <. CMu(z). (7.20) 

By (e), if zEF\H, we have Mu(z)<.CM#(z)<.C. Thus (7.19) and (7.20) imply 

F\Hg, U(z) d#(z) <. Ca(F). 
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8. The  exceptional  set H ~  

8.1. The construction of Hz~ and the proof of (h)-(i). Remember that  in (7.5) we defined 

H=UhB(Xh,57~(Xh)), where {B(xh,n(x~))}h is some precise family of non-Ahlfors 

disks. Consider the family of dyadic squares T)HC:D such that  RET)H if there exists 

some ball B(Xh, 5~(Xh)) satisfying 

and 

B(xh, 5n(x . ) )n  n r o (8.1) 

10T4(Xh) < l(R) < 207~(xh). (8.2) 

Notice that  

UB(Xh,hr~(Xh)) c U R. (8.3) 
h RCT)H 

We take a subfamily of disjoint maximal squares {Rk)kelH from ~ ) g  such that  

U-R= URn, 
RCT)H kEIH 

and we define the dyadic exceptional set Hz) as 

H ~ =  U Rk. 
kEIH 

Observe that  (8.3) implies HcHz) and, since for each ball B(Xh, 5T~(xh)) there are at 

most four squares RE~)H satisfying (8.1) and (8.2), by (7.7), we obtain 

8O 
l(Rk) < 80 Z n(x,,) < K, ~(F) < ~.(F), 

kE l~l h 

assuming Co >/80~- 1. 

8.2. Proof of (j). Remember that the squares from the l a t t i ce / )  are half open-half  

closed. The other squares, such as the squares {Qi }iel which form F, are supposed to be 

closed. From the point of view of the measures # and u, there is no difference between the 

two choices, because #(OQ)= lul(OQ)=O for any square Q (remember that  # is supported 

on a finite union of circumferences). 

We have 

I.(g'v)l ~< ~ I~'(Rk)l, 
kEIH 

because the squares Rk, kEIH, are pairwise disjoint. On the other hand, from (i), we 

deduce 

Z l(Rk) <~ r < Caclu(F)I, 
kEIH 

with ~-~0 as C0--+oc. So (j) follows from the next lemma. 



130 x. TOLSA 

LEMMA 8.1. For all squares R c C ,  we have 

I (R)I el(R), 

where C is some absolute constant. 

To prove this result we will need a couple of technical lemmas. 

LEMMA 8.2. Suppose that Co is some big enough constant. Let R c C  be a square 

such that #(R)>CoI(R). If Qi is a Whitney square such that 2QiAR~O, then l(Qi)<~ 

4 

Proof. Let us see that  if l(Q~)>�88 then #(R)<.CoI(R). We may assume 

that  #(R)~IOOI(R). Notice that  Rc9Q~ and, by Whitney 's  construction, we have 

# {j : Qj N 9Qi # ~ } ~< C. Further, l(Qj) ~ l(Qi) for this type of squares. Recall also that  

the measure # on each Whitney square Qj coincides with 7-/IIFj, where Fj is a circum- 

ference contained in ! Q . ,  and so #(Qj) <~ Cl(Qj) for each j .  Therefore, 
2 # 

#(R) <~ ~ #(Qj) <<. C ~ l(Qj) <~ Cl(Qi). 
j :Q jngQi~O j :Qd~9Qi~o  

So we only have to show that  l(Qi)<~Cl(R). 

Since 2QiNRr there exists some Whitney square Qj such that  QjNR~Ag and 

Qj N 2Qi # ~. Since we are assuming #(R)/> 100I(R), we have I(R) >~eol(Qy), where E0 >0  

_ 1 would possibly work). Thus, l(Qi)~ is some absolute constant (for instance, r  

I(Qy)<~CI(R). [] 

LEMMA 8.3. Let RCC be a square such that l(Qi)<<. �88 for each Whitney square 

Q~ with 2Q~NRr Let LR={hEI:2QhAOR~O}. Then, 

l(#h) -<< Cl(n). 
hEL;~ 

Proof. Let L be one of tile sides of R. Let {Qh}hEIL be tile subfamily of Whitney 

squares such that  2QhNLr Since l(Qh)<.�88 we have 7-ll(4QhnL)~C-11(Qh). 

Then, by the bounded overlap of the squares 4Qh, we obtain 

l(Qh) <<. C E 7"/I(4QhNL) ~< CI(R). 
hell, hElL 

(8.4) 

[] 

Proof of Lemma 8.1. By Lemma 8.2, we may assume l(Q~)<.�88 if 2QiARr 

Otherwise, I~,(R)I<. Cbp(R)<<. CbCol(R). 
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From the fact that  IlCuoll~(c)~<l, we deduce luo(R)l<~Cl(R). So we only have to 

estimate the difference ]u(R)-uo(R)]. 

Let {Qi}ieln, IncI, be the subfamily of Whi tney squares such that  Qi MRr and 

let {Qi}icgn, JRCI, be the Whitney squares such tha t  QicR. We write 

lu(n)-uo(R)l = u(,~ (Q, nR))-.o(,~ (Q, nR)) 

.(  u u 
iCIR\JR iEIR\JR 

+ 

~l(r~nR) i nR) 
A =  ~ g  7_/1(Fi) g i d u o - ~  uo(Q~ 

iE n iEIR\JR 

z z 
iE I n \  Jn iE In \ , l n  

Since IC(g~uo)l<<.c and ICuol<<.c, we have 

Sgi duo luo(QiNR)I <~ CI(QD+Cnl(O(Q~nR)) + <~ CI(Q~). 

Thus, A<~C)-~iesR\j R l(Qi). Notice now that  if iEIR\JR, then QiARr and QigR. 
Therefore, QiNORr From Lemma 8.3 we deduce A<~CI(R). 

Let us turn our at tention to B: 

B= c~jnSgiduo- / duo 
J U i e j n Q i  I 

= BI +B2. 

We consider first BI. If  ~ieaR gi~l on Qj, we write jEMn. In this case there exists 

some hEI\JR such that  g h ~ 0  on Qj. So 2QhAQj~o, with Qh~R. Thus, 2QhNORr 
That  is, hELR. 

=A+B. 

First we deal with the term A. We have 
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For each hELR there are at most Cs squares Qj such that 2QhAQj 50. Moreover, 

for these squares Qj we have l(Qj)<~Cl(Qh). Then, by Lemma 8.3, we get 

l(Qj) <. cc8 l(Qh) <. cz(R). (8.5) 
jEMR hELR 

Now we set 

BI =jc~Mn /Qj (ieZjRgi-- l) du~ <"jeZMR( /Q~ i~]R gi dv~ +'P~ �9 

We have luo(Qy)I<~Cl(Qj) and also 

/Q~i~aRgiduo <~icZg R /;  giduo <~CI(Qj), 

because #{iEJR:supp(gi)NQj ~}<~C and IC(giuo)]<<.C for each i. Thus, by (8.5), we 

deduce 

B1 < el(R). 

Finally we have to estimate B:. We have 

B2~  Z [ gi duo = Z B2,i. 
iEJR Jc \UJeJRQJ iEJtt 

Observe that if B2,i r 0, then supp(gi) N supp(u0) N C \Uje JR QJ r g" As a consequence, 

2Q.iMQhCg for some hEI\JR. Since QicR and Qh~R, we deduce that either 

2QiAORCg or QhAORCg. So either iELn or hELn. Taking into account that  

l(Qi) ~ l(Qh), arguing as above we get 

B2 <~ C y~ l(Qi)+C ~-~ ~ l(Qi) 
iELR iE.I~r h.ELI, t:QhN2QI~ 

<. CI(R)+C ~ ~ l(Qh) <~ Cl(R). [] 
hELu iE l :Qhn2Qir  

8.3. Proof of (k). Let us see that  (k) is a direct consequence of (j). We have 

lu(F\ Hv) >1 l u ( F ) [ - l u ( g v ) l  > / (1-e) lu(F) l .  

By (d) and (f), we get 

~(F)  ~< CIu(F)] ~< 1 - ~  l u ( F \ S v ) l .  

Since IlbllL~(.)<~C, we have I-(FNHv)I <.C#(F\Hv). Thus, 

#(F) <~ 1-~e#(F\Hz) 1. 

That  is, #(Hv)<~Sp(F), with 6=1-(1-~)/C9. 
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9. The Second Main Lemma 

The second part  of the proof of Theorem 1.1 is based on the T(b)- theorem of Nazarov, 

Treil and Volberg in [NTV1]. The precise result that  we will prove is the following. We 

use the same notation as in First Main Lemma 5.1. 

LEMMA 9.1 (Second Main Lemma).  Assume that "/+(E)<~C4diam(E), "/(E)>~ 

A % ( E ) ,  and "/(Eo2Qi)<.A%(EO2Qi)  for all iEI.  Then there exists some subset 

G c F ,  with p(F)<<.Cto#(G), such that #(anB(x,r))<<.Cor for all x~a ,  r>0, and the 

Cauchy transform is bounded on L2(~IG) with IICIIL2(~la),L2(t, la ) <~Cll, where Cll is 

some absolute constant. The constants Co, C4, Clo, Cll  are absolute constants, and do 

not depend on A. 

We will prove this lemma in the next two sections. First, in w we will introduce 

two exceptional sets S and Tv  such tha t  C.v  will be uniformly bounded on F \ S  and b 

will behave as a paraaccretive function out of Tz). In the same section we will introduce 

the "suppressed" operators of Nazarov, Treil and Volberg. In w we will describe which 

modifications are required in the T(b)- theorem of [NTV1] to prove the Second Main 

Lemma. 

10. T h e  e x c e p t i o n a l  s e t s  S a n d  T ~  a n d  the suppressed operators  Co 

10.1. The exceptional set S. The arguments in this subsection will be similar to the ones 

in [T3]. 

We set 

So= { x e F  : C.u > ~}, 

where ~ is some big constant which will be chosen below. For the moment,  let us say 

that  a >> Co Cb, Co. For x E So, let 

c(x) = sup{e : ~ > 0, IG~(x)I  > ~}. 

Otherwise, we set e(x)=O. We define the exceptional set S as 

s =  U B(x,~(x)). 
xESo 

To show that  p ( S \ H ~ )  is small we will use the following result. 
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LEMMA 10.1. / f  yES\Hz), then C,~'(y)>a-8CoCb. 

Pro@ Observe that if yES\H~,  then yEB(x,s(x)) for some xESo. Let So(X) be 

such that  IC~o(~)L,(x)] > a  and yeB(x,  so(x)). We will show that  

I6o(~)~,(x)-6o(~)-(y)l <~ SCoCb, (10.1) 

and we will be done. We have 

1 6 o ( x ) . ( x ) - 6 o ( ~ ) . ( y ) l  < 16o(x)(.IB(y, 2so(X)))(x)l 

+I6o(~)(-IB(y, 2~o(x)))(y)l 

+I6o(~)(-IC\B(Y, 2So(X)))(x) 

-6o(~)(-IC\B(y, 2~o(X)))(y)l. 

(10.2) 

Notice that the first two terms on the right-hand side are bounded above by 

lul(B(y, 2So(X))) < Ca4B(y, 2So(x))) ~< 2CoCb, 
So(Z) so(x) 

since y~Hz~. The last term on the right-hand side of (10.2) is bounded above by 

c 1 1 

\B(y,2~o(x)) z--x z--y fc Ix-yl - -  d[u[(z)= ]z-xl [z-y[ d[ul(z) 
\B(y,2eo(X)) 

<<. 2Cbso(x) /c  1 
\B(~,2eo(~,)) [z--Y[ 2 d#(z), 

where we have applied that ]x-yl<~So(X ) and Iz-x[>~ �89 in tile last inequality. As 

y~t Hz~, we have tile standard estimate 

2CbCo(X) 1 dp(z) = 2Cbeo(x) E k~o(x)~<lz--Yl<ek+l~o(X) iz_yl2 dp(z) 
\B(~,2~o(~)) Iz-Y[ 2 k=l 

.(B(y, 2k+lSo(z))) 
<<. 2Cbso(x) y~ 22kSo(X) 2 

k = l  

<<. 4CoC~. 

So we get 

[C~o(x)(~,IC\B(y, 2Zo(X)))(x)-C~o(~)(u]C\B(y, 2~o(x)))(y)l ~< 4CoCb, 

and (10.1) holds. [] 
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Choosing a big enough, we will have �89 Then, from the preceding lemma, 

we deduce 

p(S\Hz))<~ 2 f C.ud#<~ ~-~#(F) ,  (10.3) 
(:~ d F \ H v  

which tends to 0 as a-+oc.  

10.2. The suppressed operators Co. Let O: C--+[0, ~ )  be a Lipschitz function with 

Lipschitz constant ~< 1. We denote 

x - y  
K e ( x ,  Y) = [ x _ y [ : + O ( x ) O ( y  ) �9 

It is not difficult to check that  K e  is a Calderdn-Zygmund kernel [NTV1]. Indeed, we 

have 
1 

I g e (  x, Y)P < --I' x -  Y - - - - -=  

and 
8 

IVxKo(x,y)l+lVgK(-)(x,y)l <. ix_yl------- ~. 

The following estimate also holds: 

1 (10'.4) 
IKo(x, Y)I < max{O(x), O(y)}" 

We set 
f 

~(x) = ! Ko(x, y) d~(y). 
Jc \B(,.e) 

The operator Co,~ is the (e-truncated) O-suppressed Cauchy transform. We also denote 

C(-~, , v( x ) = sup Ce),ev( x ). 
e > 0  

The following lemma is a variant of some estimates which appear in [NTV1]. It is 

also very similar to [T3, Lemma 2.3]. 

LEMMA 10.2. Let x e C  and ro>~O be such that #(B(x,r))<.Cor for r~ro and 

ICev(x)l<c~ for r If O(x)>7~?ro for some r/>0, then 

{c~,,~.(x){ < c ,  (10.~) 

for all r  with C n depending only on Co, Cb, a and ~. 
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Proof. If e~>~?-lO(x), then 

f l x l  x - y  x - y  Ic~-~,~(x)-C~(~)l<<. -~,>~ ix_yl~+o(~)o(y) Ix_yl~ dl~l(~) 

Ix-yl2(Ix-yl~ +O(x)O(y) ) 

fix O(x)O(y) d,(y) 
<~ C~ -yl>~ I x - y p  

J(Ix O(x)(O(x)+lx-Y[) dp(y) 
<. Cb -yl>e Ix-Yl 3 

L L 1 =CbO(X)2 -yl>s Ix--Yl 3 1  d#(y)+CbO(x) -yI>E Ix-yl 2 d#(y). 

Since #(B(x,r))<.Cor for r~>e, it is easily checked that  

-yI>E Ix-yl 3 d#(y) <~ -~ 

and 

-:,,>~ [x_yi2 dp(y) ~ --2, 

where C depends only on Co. Therefore 

CO(x) ~ CO(x) 
IC('~'~u(x)-C~u(x)l <~ e "--'7--- + e <~ 2C, 

and so (10.5) holds for r 

If e< r / - lO(x ) ,  then 

ICo,r <~ Cb f IKo(x,y)ld#(y)+ s Ke)(x,y)du(y) . (10.6) 
J B ( ~ , , , -  ~ o(~,)) \ B ( ~ , ~ ) -  1 o(~)) 

To estimate the first integral on the right-hand side we use the inequality (10.4) and the 

fact that 

~(B(x, ?~-lO(x))) ~ C()~-10(3c), 

because ~-lO(x))ro. The second integral on the right-hand side of (10.6) equals 

C~,,i-~(~(~)u(x ). This term is bounded by some constant, as shown in the preceding 

case. [] 

We denote ~o,z)(x)=dist(x,C\(HvUS)). Obviously, (I)o,z~(x)=O if x~Hz)US. 

Moreover, (I)0,z) is a Lipschitz function with Lipschitz constant 1. On the other hand, 

HvUS contains all non-Ahlfors disks and all the balls B(x, e(x)), xCF, and so 

(I)0,v(x) ~ max(n (x ) ,  c(x)). 

From the construction of S and the preceding lemma we deduce: 
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LEMMA 10.3. Let O: C-+[0, +oe) be a Lipschitz function with Lipschitz constant 1 

such that O(x)~>r/O0,~(x) for all xEC (where 7]>0 is some fixed constant). Then, 

Ce,,v(x)<<.C, 1 for all xEF.  

10.3. The exceptional set T~. Looking at conditions (d), (e) and (f) of First Main 

Lemma 5.1 one can guess that  the function b will behave as a paraaccretive function on 

many squares from the dyadic lattice ID. We deal with this question in this subsection. 

Let us define the exceptional set T~. If a dyadic square REID satisfies 

~(R) ~> Cd I,(R)I, (10.7) 

where C d is some big constant which will be chosen below, we write REIDT. Let 

{Rk}kEITCIDT be the subfamily of disjoint maximal dyadic squares from IDT- The ex- 

ceptional set T~ is 

T~= U Rk. 
kEIT 

We are going to show that  #(F \ (H~USUTv) )  is big. That  is, that  it is comparable 

to #(F). We need to deal with the sets H v  and Tv simultaneously. Both H v  and 

Tv have been defined as a union of dyadic squares satisfying some precise conditions 

(remember the property (i) for the dyadic squares Rk, kEIH). 

Let {Rk}kelzr be the subfamily of different maximal (and thus disjoint) squares 

from 

{Rk }k~ ~,, U {Rk } k ~ ,  

so that 

HvUTv= U Rk. 
kElttT 

From Lemma 8.3, (10.7) and the property (i) in First Main Lemma 5.1, we get 

I-(H•UT•)I ~< ~ Iv(Rk)l ~< ~ I-(Rk)l+ ~ I'(Rk)l 
kE I tiT kEl.~t kE IT 

< c Z(Rk)+C;' Z ,(Rk) 
kCIH kEIT 

<~ C,2Ep(F)+Cd 'p(F  ) <~ Ca(C l2C.J , -C [  1 ) I~(F)I. 

So if we choose e small enough and Cd big enough, we obtain 

I,(gvUTv)l ~< �89 

Now we argue as in w for proving (k). We have 

I~ '(F\(HvUTv))I  >i I~(F) I -  I~(H~UTv)I 1> �89 
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Therefore, 

~(F) ~< CalY(F)l ~< 2Ca]~(F\(HvUTv))I <~ 2CaCbtt(F\(HvUT~)). 

Thus, tt( HvUT~ ) <~ 51#( F), with 51=1-1/2C,~Cb <1. 

Let us remark that  the estimates above are not valid if we argue with the non-dyadic 

exceptional set H. We would have troubles for estimating ~(HUTv) ,  because H and Tv 

are not disjoint in general. This is the main reason for considering the dyadic version 

Hz) of the exceptional set H in the First Main Lemma. 

Now we turn our attention to the set S. In (10.3) we obtained an estimate for 

p ( S \ H v )  in terms of the constant a. We set 52= �89 +1). Then we choose c~ such that  

#(Hz) UTz)) + # ( S \ H v )  <~ 52#(F). 

10.4. Summary. In next lemma we summarize what we have shown in this section. 

LEMMA 10.4. Assume that %(E)<~C4diam(E), ~/(E)>~A%(E), and ~(ENQ)<. 

A~/+(EMQ) for all squares Q with d i am (Q )<~d iam (E) .  Let 19 be any fixed dyadic 

lattice. There are subsets Hz), S, Tz )cF  (with Hv and Tz) depending on l:)) such that: 

(a) #(Hz)USUT~))<-.62#(F) for some absolute constant 52<1. 

(b) All non-Ahlfors disks (with respect to some constant Co big enough) are con- 

tained in H~. 

(c) If O : C ~ [ 0 , + r  is any Lipschitz function with Lipschitz constant 1 such 

that O ( x ) ~ ? d i s t ( x , C \ H ~ U S ) ,  for all x E C  (where 71>0 is some fixed constant), then 

Co,.~,(x)~C, I for. all xEF.  

(d) All dyadic squares RED such that R ~ T v  satisfy #(R)<CdI~(R)I. 

11. T h e  p r o o f  o f  t h e  S e c o n d  M a i n  L e m m a  

Throughout  all of this section we will assume that  all the hypotheses in Second Main 

Lemma 9.1 hold. 

11.1. Random dyadic lattices. We are going to introduce random dyadic lattices. 

We follow the construction of [NTV1]. 

Suppose that FC B(O, 2N-3), where N is a big enough integer. Consider the random 

square QO(W)=W+[--2N, 2N)2, with WE[--2N-1,2N-1)2=:~. We take Q~ as the 

starting square of the dyadic lattice T)(w). Observe that  FcQ~  for all w E~ .  Only 

the dyadic squares which are contained in Q~ will play some role in the arguments 

below. For the moment, we don't  worry about the other squares. 
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We take a uniform probability on gt. So we let the probability measure P be the 

normalized Lebesgue measure on the square ~. 

A square QET~---7:)(w) contained in QO is called terminal if QcHz)UTz). Otherwise, 

it is called transit. The set of terminal squares is denoted by T )term, and the set of transit 

squares by T )tr. It is easy to check that  QO is always transit. 

11.2. The dyadic martingale decomposition. For f E  1 L~oc(p) (we assume always f 

real, for simplicity) and any square Q with p(Q)%0, we set 

(f)Q -- p(Q) f d#. 

We define the operator -- as 

EI- -  (f)Qo b, 
Ib)Qo 

where b is the complex function that  we have constructed in Main Lemma 5.1. It follows 

easily that  E f E L 2 ( # )  if f E L 2 ( p ) ,  and ~2=E.  Moreover, the definition of E does not 

depend on the choice of the lattice D. The adjoint of -- is 

_ . f_  (fb)Qo 
(b)qo 

Let QE/ )  be some fixed dyadic square. The set of the four children of Q is denoted 

as Ch(Q). In this subsection we will also write Ch(Q)={Qj : j = l ,  2, 3, 4}. 

For any square QET) t~ and any fEL~,,(~(p), we define the function AQf  as 

0 ) in C\Q, 

~ <f>QJ <f)Q b in Qj if QjECh(Q)Ml) tr, 

<f)e b in Qj if QjECh(Q)MT) term. 

The operators AQ satisfy the following properties. 

LEMMA 11.1. For all f E L 2 ( # )  and all QET) tr, 

(a) AQIeL (p), 

(b) f Z d  d,=O, 
(c) AQ is a projection, i.e. A ~ = A Q ,  

(d) AQ-~=--AQ=0,  

(e) /f R E D  tr and RCQ,  then AQAR=O , 
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(f) the adjoint of AQ is {0 
(fb}Q~ (fb) Q 

A S f  = (bio, j (biQ 

f _  (fb)Q 
(b)Q 

in C \ Q ,  

in Qj if QjECh(Q)N79 tr, 

in Qj if Qj E Ch(Q)AT? t . . . .  . 

The properties (a)-(e) are stated in [NTV1, w and are easily checked. The 

property (f) is also immediate (although it does not appear in [NTV1]). 

Now we have: 

LEMMA 11.2. For any fEL2(p) ,  we have the decomposition 

f = E f  + E AQf,  (11.1) 
Q E D  tr 

with the sum convergent in L2(#). Moreover, there exists some absolute constant C13 

such that 
- 1  2 ~ 2 2 

C13 IlfllL2(,,) <~ ]]=fllL20,)+ E 2 HAQfHL:(/~) <~ C1311flIL2(#). (11.2) 
Q E ' ~ t r  

This lemma has been proved in [NTV1, w under the assumption that  the para- 

accretivity constant Cd (see (10.7)) is sufficiently close to I[bllL~0, ). The arguments in 

[NTV1] are still valid in our case for the L2(p)-decomposition of f in (11.1) and for the 

second inequality in (11.2). However, they don't  work for the first inequality in (11.2). 

We will show below that  this estimate follows from the second inequality by duality. 

The arguments are of the same type as the ones in [Ddl] and [NTV3] (see also [NTV2]). 

However, some additional work is necessary due to tile presence of terminal squares and 

because we cannot assume b-1 to be a bounded function in our case, since b may vanish 

in sets of positive measure. 

We will need the Dyadic Carleson Imbedding Theorem: 

THEOREM 11.3. Let 73 be some dyadic lattice and let {aQ}QET) be a family of non- 

negative numbers. Suppose that for every square RED we have 

E aQ<~C14#(n). (11.3) 
Q E ~ D : Q c R  

Then, for all f eL2(#) ,  we have 

aQl(f}Q[ 2 < 4C1411fl12L~(.). 
Q e ' D :  l t ( Q ) r  
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See [NTV1, w for example, for the proof. 

Proof of the first inequality in (11.2). By (11.1) and the fact that E and AQ are 

projections, we have 

f = E f +  E AQI = ~ f +  E A2Q f" 
Q E D  tr Q E ~  tr 

Then we deduce 

S:...:i(:-.:+ 

Z <-.41 
QE~)tr  " 

@/2/  

-< E E 
Q E D  t. Q E D  ~. 

So if we show that  

II-IIIL.(.)+ Z * lifo/ilL.(.) < Clilil~.(.), (11.5) 
QE/gtr  

we will be done. Notice, by the way, that  the second inequality in (11.2) and (11.4) imply 

2 ~ *  2 IlfllL,O,) ~< CIl= fllL.(.)+C ~ IIA~f[l~,(,.). 
QE~Z) tr 

Let us see that  (11.5) holds. It is straightforward to check that  

II::*fllL'O0 <~ CIIfllL'o,). 

So we only have to estimate ~ O e v ,  r * 2 IIAQfIIL.(.). To this end we need to introduce the 

operators DQ. They are defined as 

0 in C\Q, 
DQf = 

(f)Q,-(f)Q in Qj. 

We also define E f= (f)Qo. Then it is well known that  

llE fl[~(,) + ~ llDQfli~.(,) = HIIIL.(,). (11.6) 
QeT~ 

If QjECh(Q) is a transit square, then we have (using (f) from Lemma 11.1) 

A,QflQ j = ( f b ) Q j - ( f b ) Q  +(fb)Qj( 1 1 ) 
(b)Q (b>Q, (b)Q 

1 (fb}Qj 
-- (blQDQ(fb)iQj (DIQ ~(blQDQblQj. 
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Since I(b)ql, I(b)Qj I>>.Cd 1, we obtain 

E E IIAQflI~2(,,IQj) <" C E IlDQ(fb)ll~i2(,) 
QE~) tr QjECh(Q)CI'D tr QET) 

(11.7) 

+C E E II(fb)Q~DQbIQjlI2L:(t, IQr 
QET) Q.iECh(Q) 

From (11.6) we deduce 

IIDQ(fb)ll~:(.) <~ Ilfbll~=(.) ~< CIIfll~=(.). 
QE79 

Now observe that  the last term in (11.7) can be rewritten as 

I(fb)QI211XQD~)bll~:(t,) =: B, 

QEZ) 

where 0 stands for the father of Q. To estimate this term we will apply the Dyadic 

Carleson Imbedding Theorem. Let us check that  the numbers aQ:= II XQ D o b I I ~2 (,) satisfy 

the packing condition (11.3). Taking into account that  b is bounded and (11.6), for each 

square RESO we have 

~ ,  IIxQDoblI~(. ) = IIn~bll~(,iR) + ~_. Ilnc?bll~.~(,) 
QcR QcR 

QCR 

<<. Cp(R)+ ~ lInQ(bX,)ll~:(.) ~< Cp(R). 
Q c R  

So (11.3) holds and then 

B <. CNfblI2L2(,O <~ CIIfII2L2(#). 

Now we have to deal with the terminal squares. If QE79 tr and QjE:D t~rm, then we 

have 

(b)Q (b)Q 

Since b is bounded and L(b)QI>~C~ 1, we get 

A* I Q/IQ~I <~C(Ifl+(Ifl)Q~)+Cl(fb)Q,-(fb)Ql=C(Ifl+(Ifl)Qj)+ClDo,(fb)lQjl. 

Therefore, 

E Z . 2 .[. 
Q E D  tr QjECh(Q)A'D . . . .  Q E D  tr QjECh(Q)nT) ...... - ~ j  If]2 

(11.8) 

+c E IIDq(fb)llL(.). 
QE:D 
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For the first sum on the right-hand side above, notice that  the squares Qj E ~)term whose 

father is a transit square are pairwise disjoint. For the last sum, we only have to 

use (11.6). Then we obtain 

H QfIIL2(,,Q~) <.CHI]I2L2(~) 
QE ~)tr Q j E C h ( Q ) N ~ ) t  . . . .  

Since the left-hand side of (11.7) is also bounded above by c l l f l l ~ ( , ) ,  (11.5) follows. [] 

11.3. Good and bad squares. Following [NTV1], we say that  a square Q has M-  

negligible boundary if 

# { x e  C:  dist(x, OQ) <. r} <. Mr  

for all r ~> 0. 

We now define bad squares as in [NTV1], too. Let D I = D ( w l )  and / )2= / ) (w2) ,  with 

wl,w2El2, be two dyadic lattices. We say that  a transit square QE/)~ r is bad (with 

respect to D2) if either 

(a) there exists a square RE/)2 such that  dist(Q, OR)<~ 161(Q)l/41(R) 3/4 and l(R) 

2ml(Q) (where m is some fixed positive integer), or 

(b) there exists a square RED2 such that  Rc(2m+~+I)Q, l(R)>~2-m+ll(Q), and 

OR is not M-negligible. 

Of course, if Q is not bad, then we say that  it is good. 

Let us remark that in the definition above we consider all the squares of / )5 ,  not only 

the squares contained in Q~ which was the case up to now. On the other hand, 

observe that  the definition depends on the constants m and M. So strictly speaking, bad 

squares should be called (m, M)-bad squares. 

Bad squares don't  appear very often in dyadic lattices. To be precise, we have the 

following result. 

LEMMA 11.4 ([NTV1]). Let Eb>0 be any fixed (small) number. Suppose that the 

constants m and M are big enough (depending only on r Let / )1=/ ) (wl )  be any fixed 

dyadic lattice. For each fixed QE/)I, the probability that it is bad with respect to a dyadic 

lattice/)2=/)(w2), w2E~t, is <<.~b. That is, 

P{w2 : QE/)I is bad with respect to/)(w2)} ~< eb. 

The notion of good and bad squares allows us now to introduce the definition of 

good functions. Remember that  given any fixed dyadic latt ice/)1 =/)(wl), every function 

~EL2(#)  can be written as 

= ~ +  E AQ~. 
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We say that  ~ is /)Fgood with respect to /)2 (or simply, good) if AQ ~a= 0 for all bad 

squares QE/)~ r (with respect to / )2) .  

11.4. Estimates on good functions. We define the function (I)v as 

(I)~(x) = dist(x, C\(Hz)USUT~)).  

Notice that  (I)~) is a Lipschitz function with Lipschitz constant 1 which equals 0 in 

C\(H~USUTv) .  Observe also that  (I)~>(I)0,v (this function was introduced at the 

end of w 

Now we have the following result. 

LEMMA 11.5. Let /)1=/)(wl) and / )2=/)(w2) ,  with wl,w2EFt, be two dyadic lat- 

tices. Let O: C---~[0, +oc) be a Lipschitz function with Lipschitz constant 1 such that 

infxec O ( x ) > 0  and O(x)~>~max(~zh(x),  (I)~)2(x)) for all x E C  (where ~>0 is some fixed 

constant). If  ~ is ~)l-good with respect to 7)2, and ~ is ~)2-good with respect to/)1, then 

] (Co ~, r ~< Via II~ll i=(~)II~ll L=(#), 

where C15 is some constant depending on 71. 

This lemma follows by the estimates and arguments of the corresponding result 

in [NTV11. 

11.5. The probabilistic argument. Following some ideas from [NTV1], we are going 

to show that  the estimates for good functions from Lemlna 11.5 imply that  there exists 

a set G C C \ H  with #(G)>~C-I#(F) such that  the Cauchy transform is bounded on 

L2(#IG). The probabilistic arguments of [NTV1, w don't  work in our case because 

we would need #(H~USUT~) to be very small (choosing some adequate parameters), 

but we only have been able to show that  #(H~USUT~)<~52#(F), for some fixed 52< 1. 

Nevertheless, the approach of [NTV1, w doesn't  need the preceding assumption 

and is well suited for our situation. 

Let us describe briefly the ideas from [NTV1, w that we need. We denote 

Wz)=Hz)USUT~, and we call it the total exceptional set. 

Let Wz)~, Wz)2 be the total exceptional sets corresponding to two independent dyadic 

l a t t i c e s / )1= / ) (w l ) , / )2= / ) (w2) .  We have shown that  

#(F\Wz)(w)) >1 ( 1 - 5 ~ ) # ( F ) ,  

with 0<52<1 for all wE~ .  For each x E F  we consider the probabilities 

pl(x) -- P{wE ~ : xEF\Wz)(w)} 
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and 

p(x) = P((Wl, w2) �9 a x ~ :  x E F\(WD(w,) U WD(w2))}. 

Since the sets F \Wv(w~) and F\Wv(w: ) are independent, we deduce p(x)=Pi (x) 2. Now 

we have 

IF PI (X) d#(x) : ~ / ~F\Wv(~,) (X) d#(x) : ~/.t( F \  WTp(w) ) ~ (1 I ~2 ) #( F) ,  

where g denotes the mathematical expectation. Let G-- (x E F :  Pl (x) > �89 (1 - 52)}, and 

B=F\G. We have 

,(B) < (1-pl(X)) d,(x) 

Thus, 

=1--~2 #(F)-  pi(x) d#(x) ~ l--~2#(F ). 

1- -52  ~ F  ~ 
) .  

Observe that  for every x E G we have p(x) = Pl (x)2 > �88 (1 - 52) 2 =:/3. Now we define 

O(w,,~,) (x) = dist (x, F \ (Wv(wl) U Wv(~))) .  

From the preceding calculations, we deduce 

1-52 
~ { x e F ' p ( x )  >/3} ~>p(C)/> , - = r  p(F) .  

1 t 0 2  

That is, 

Let us define 

1-52 
#{x E F:  P{ (wi, w2): (I)(w,,w~)(x) = 0} >/~}/> ~ #(F) .  

(I)(x)= inf sup ~(,,,,,w2)(x). 
B C f l x ~  (wl,w2)EB 
P(B)=,3 

Notice that  (I) is a 1-Lipschitz function such that ~ ( x ) = 0  for all xEG. Moreover, (I)(x)~> 

74(x),e(x) for all xEF, because ~(wl,w:)(x))T~(x),e(x) for all xEF,(wl,w2)En• 

since all non-Ahlfors disks are contained in 7-/D for any choice of the lattice 7), and S 

does not depend on 7). 

Finally, from Lemmas 11.4 and 11.5, and [NTV1, Main Lemma (w we deduce 

that  C~ is bounded on L2(#), and all the constants involved are absolute constants. Since 

(I)(x)=0 on C, the Cauchy transform is bounded on L2(#IG). On the other hand, the 

fact that  O(x)=O on G also implies that  T~(x)=O on G, which is equivalent to say that  

#(B(x,r))<.Cor for all r > 0  if xEG. 

Now the Second Main Lemma is proved. 
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12. T h e  p r o o f  of  T h e o r e m  1.1 

From the First Main Lemma and the Second Main Lemma we get: 

LEMMA 12.1. There exists some absolute constant B such that if A>>.l is any fixed 

constant and 

(a) 3'+ (E) ~< C4 diam(E),  

(b) 7(ENQ) <.A%(ENQ) for all squares Q with diam(Q) ~< ~ diam(E),  

(c) 3`(E)>>.A3`+(E), 

then 3`(E) , .<B%(E). 

Proof. By First Main Lemma 5.1 and Second Main Lemma 9.1, there are sets F, G 

and a measure # supported on F such that 

(1) E c F  and v + ( E ) ~ v + ( F ) ,  

(2) # (F)  ~"/(E),  

(3) G C F  and I.,(G))C~ol#(F), 

(4) #(GNB(x,r))<~Cor for all xEG, r>0 ,  and HCllL~(MG),L2(uIG)<~Cxl. 

From (4) and (3), we get 

")'+ (F) > / C - ' # ( G )  >/C-IN(F) .  

Then, by (2), the preceding inequality and (1), 

3`(E) <. C#(F) <~ C3`+(F) <. B'~+(E). [] 

As a corollary we deduce: 

LEMMA 12.2. There exists some absolute constant Ao such that if 3'(ENQ)~< 

Ao%(ENQ) for all squares Q with diam(Q)~<-~ diam(E),  then 3`(E)<.Ao3`+(E). 

Proof. We take Ao=max(1,C41, S). If "/+(E)>C4diam(E), then we get 3`+(E)> 

C43`(E), and we are done. If 3`+(E)<~C4diam(E), then we also have 3`(E)<.Ao3`+(E). 

Otherwise, we apply Lemma 12.1 and we deduce 3`(E)<.B'~+(E)<.Ao3`+(E), which is a 

contradiction. [] 

Notice, by the way, that  any constant Ao~>max(1,C~ -1, B) works in the argument 

above. So Lemma 12.2 holds for any constant Ao sufficiently big. 

Now we are ready to prove Theorem 1.1. 

Proof of Theorem 1.1. Remember that  we are assuming that  E is a finite union of 

disjoint compact segments Lj. We set 

d := 1!6o min dist(Lj, Lk). 
jCk 
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We will prove by induction on n that  if R is a closed rectangle with sides parallel to the 

axes and diameter ~< 4'~d, n~>0, then 

7 ( R N E )  ~< AoT+(RNE). (12.1) 

Notice that  if diam(R)~<d, then R can intersect at most one segment Ly. So either 

R N E = O  or R N E  coincides with a segment, and in any case, (12.1) follows (assuming 

A0 sufficiently big). 

Let us see now that if (12.1) holds for all rectangles R with diameter ~<4nd, then it 

also holds for a rectangle R0 with diameter <<.4n+ld. We only have to apply Lemma 12.2 

to the set R0 N E, which is itself a finite union of disjoint compact segments. Indeed, take 

a square Q with diameter ~< ld iam(RoME) .  By the induction hypothesis we have 

~/(QNRoNE) <. Ao%(QNRoAE),  

because QNRo is a rectangle with diameter <~4nd. Therefore, 

3'(RonE) <~ Ao%(RoNE) 

by Lemma 12.2. [] 
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