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Abstract

We present a rigorous derivation of the Dirac-Bloch formula for the quantum me-
chanical exchange energy of the free electron gas. More precisely we establish that
for arbitrary determinantal ground states of the underlying finite system of N free
electrons in a box, subject to periodic or zero boundary conditions, the error of the
Dirac-Bloch formula is of order N~1/3,

Mathematics Subject Classification (1991): 81V70, 35P20, 42B, 11L07, 11P21

1. Introduction

The goal of this article is to present a rigorous derivation of the Dirac-Bloch formula [Di30,
BI129]! for the exchange energy (quantum minus classical Coulomb repulsion energy) of the
free electron gas, and to estimate the accuracy of the formula for the underlying system of
N free electrons in a finite box which the gas is meant to be approximating. The formula,
which expresses the exchange energy in terms of the single-particle density of the system,
plays an important role in numerical ‘ab initio’ electronic structure calculations based on
density functional theory.?

The derivations of the formula customary in the density functional theory and quantum
chemistry literature (such as the insightful account in [PY89]) concern periodic boundary
conditions and pure plane-wave states® and are not mathematically rigorous: they rest on
approximating a lattice sum in momentum space by an integral even though the integrand
exhibits oscillations on the length scale of the lattice. As explained below, basic error
estimates on this continuum approximation? are insufficient, for instance, to decide on the
correct order of magnitude of the exchange energy in terms of the volume of the system.

Hitherto disconnected from the enormous body of DFT literature, a few rigorous results
on exchange phenomena can be found in the mathematical physics literature: for periodic
plane-wave determinants the Dirac-Bloch formula for the free electron gas is justified
to leading order in [Th80, Ch. 4.3], while Graf & Solovej [GS94] have shown it to be
asymptotically correct for the interacting electron gas in the high density limit (i.e., in
the double limit N — oo, p — oo where p denotes the number of particles per unit

' A large part of the literature attributes the formula to Dirac but as emphasized recently in [Se95] it was
suggested independently and at about the same time by Bloch. In fact, unlike Bloch, Dirac never stated
the formula explicitly, but derived a corresponding exchange potential as a correction to the Thomas-Fermi
equation.

*Textbook accounts of DFT as initiated in [HK64, KS65] are [PY89, DGO, KL90); for a rigorous
discussion of various aspects see [Li83, Fr96).

SBelow arbitrary determinantal ground states of the free electron energy functional, as well as Dirich-
let or periodic boundary conditions are admitted; for interesting boundary layer effects observed in the
Dirichlet case see Theorems 1.2 and 5.1

“like those [LS77 Thm. III.13, RS78 Ch. XIIL.15] sufficient to establish the similar-looking but mathe-
matically much simpler Thomas-Fermi kinetic energy formula [Th27, Fe27]



volume). Finally we mention the monumental and by now almost completed series of
papers [[FS92+] (partially simplified in the beautiful papers [Ba93, GS94]) devoted to
establishing an asymptotic expansion, accurate enough to account for exchange, of the
ground state energy of heavy atoms as the nuclear charge tends to infinity.’

In [Th80] (and [Ba93, GS94] for more intricate systems) control of discreteness effects
is achieved on the spatially averaged level of the exchange energy, by exploiting the reg-
ularizing effect of its integral kernel 1/|r—r'|. To extend the result in [Th80] to general
ground states and establish error bounds (Theorem 1.1) we do not follow this approach
but show instead (Theorem 1.2) that discreteness effects are in fact already small on the
pointwise level of the pair correlation function, where one faces oscillations genuinely on
the length scale of the discretization. In particular our decay estimate on pair correlations
(Theorem 1.2) allows a simple and conceptually appealing explanation of the separation of
scales between mean field and exchange part of the interelectron repulsion energy (which
grow like N 5/3 and N respectively). Mathematically, these decay properties in the finite
systems are caused by cancellation effects in certain exponential sums. To quantify these
effects we rely on the help of the stationary phase method [S093, St93], in a variant in-
vented originally [Lalb, Co23, Hal5] to understand some questions in analytic number
theory.

In order to recall the precise definition of exchange energy, we try to follow the notation
in standard quantum chemistry texts such as Szabo & Ostlund [SO82], Parr & Young
[PY89].6 The quantum-mechanical state of an N-electron-system confined to a region
A C IR? is described by an N-electron wave function, that is, a square-integrable function
‘of space and spin’ 9 : (A x {£1/2})" — € which is normalized,

(Wl), =1 (1.1)

where

<¢|’(/)>A = Z /AN ¢(T1,31,..-,T'N,SN)’(p(T'l,Sl,...,TN,SN)*d’I”l-.-dT'N,

S1SN
and obeys the antisymmetry principle (or Pauli exclusion principle, or Fermi statistics)
WY(eey Ty Siy e Ty Sgy ove) = =W(eiy Tj, 85y ooy Tiy Siyon) (1 F J)- (1.2)
Important examples of N-electron wave functions are determinantal wave functions (or
Slater determinants, or single configurations)
1 ; Pi(ry,81) ... Pi(rn,sSN)
T1,..,SN) = —= det : :
P(T1, . SN) Vil nris)

YN (TN, sN)

where {11,...,%n} is an orthonormal set ({t;|1;) = d;;) of one-electron wave functions.
Now the inconspicuous antisymmetric structure induces the following inequality between
the quantum mechanical interelectron energy F,. and the ‘classical’ electrostatic self-
repulsion energy J of the electronic charge cloud

L1 1 oplr)plr’) , o
Bee(y) = 5 (¥l {Jzzl md))/\ < 2/ IT—T’\dT dr' = J(p), (1.3)
1#]

5T thank J. Fréhlich for bringing references [Th80, Ba93, GS94] to my attention.
81n particular, atomic units & = m. = |e| = 1 are employed throughout.




valid for any determinantal N-electron wave function with associated one-body density
(total electronic charge density)

= (d)l( 1{!157‘;—7‘)¢>A =N Z AN—[ |¢(T,51,T2,32,---,TN,SN)IZdTQ...dT'N. (14)
SN

This fascinating many-body effect is measured by the energy difference

Er(¢) = Bee(y) — J(p) (1.5)
(ezchange energy).”

There is associated with these energy functionals a simple intuition in terms of pair
correlations which is crucial for an understanding of the mathematical arguments that
follow. Introducing the two-body spin density®

N(N —
pgpm(ns,r',s’) s Z / [(r,s,7', 8" 73,83, .., T, SN )2 drs...dr (1.6)
S5 SN AN-2
and the two-body density
Zps‘m" (r,s,7',5) (L.7)
s,s'
we may rewrite
T
Be(w) = [ 207 grar
Az |r—r'|

J(p) is then the approximation to E.. obtained by assuming the electrons to be indepen-
dent,

pa(ryr!) = Spr)olr), (1.9

while E, (1) reflects by how much the independent electron assumption fails: it is a
weighted average of the pair correlation function C(r,r') = pa(r,r') — Sp(r)p(r"),°

Ea() = [ otnr)

wlr=rl

dr dr, (1.9)

with the contributions of nearby points r =~ r’ being dominant. Note that for nearby
points the independent electron assumption (1.8) has no hope of being valid for any state
1, since the antisymmetry principle (or Pauli exclusion principle, or Fermi statistics)
enforces p3'" (7, s,7,8) = 0.

"The Coulomb integral J(p), unlike E..(¢), contains a positive and unphysical self-interaction contri-
bution, Jseif () = o, J(p) where pt(r) = Z,[ti(r, s)|? is the charge contributed by the it" electron
(note p(r) = o, p9(r) for determinantal wave functions). But (1.3) remains valid with J(p) replaced by
the self-interaction-corrected Coulomb integral Jeic(¥) = J{p) — Jseif (%), with the only caveat that one
has equality if all the one-electron orbitals 1; have disjoint support. (To see this, use (1.9), (2.4), (2.5)
together with the fact that 1/|r — r'| is a positive kernel.)

8The normalization factor, whose denominator will reappear in (1.8), is determined by the convention
that ps integrate to the number of pairs in the system.

9The normalization, here, is not standard, but the above C{r,r’) will be more convenient notationally
than the standard pair correlation function h(r,r') = C(r,r")/(5p(r)p(r")) or the so-called exchange-
correlation hole pz.(r,r") = C(r.7")/(3p(r)).



The simplest, and classical, setting for studying these pair correlations and exchange
phenomena induced by the Pauli exclusion principle is that of the free electron gas. This
limiting system is obtained from a large number N of electrons moving freely in a cubical
box of volume V' by letting N — oo, V' — oo with the density p = N/V remaining finite.
Studying the asymptotics of N-body ground states for such a system reduces, of course,
to studying the asymptotics of eigenfunctions of the one-body Laplacian. For convenience
of the reader we recall this basic algebraic fact as

Lemma 1.1 Let A be a boz [0, L]® or in fact any bounded domain in IR, and let A\; = A <
Az = A < ... be an ordered listing of eigenvalues, accounting for multiplicity, of —%Ar
operating on one-body functions y¥(r,s) (r€ A, s € {i%} W € C') subject to zero boundary
conditions. For a determinantal N -electron wave function v the following are equivalent:
(i) 4 is a ground state of the free electron gas energy Ey (1) = SE8_ (V3| Viah)a sub-
ject to zero boundary conditions'®, (ii) 1 is a determinant of N orthonormal eigenfunctions
1; of the above one-body problem, corresponding to the lowest N eigenvalues.

It is instructive to look, for a moment, at the special case of an even number of electrons
and doubly occupied spinless one-body orbitals 1o 1(r,s) = ¢i(r)d_12(5), tai(r,s) =
¢i(r)d1/2(s). By well-known identities from Hartree-Fock theory!'!, ground state density
and pair correlation function are

N/2
pua(r) = 23 |i(r)I%, (1.10)
=1
N/2 2
Cualr,r') = =D dilr)di(r') (1.11)
i

As inferred earlier from more general considerations, one sees again that correlations are
large for r = 1/, Cy s(r,r) = —1p(r)p(r). Now one expects for generic sequences ¢;,
and in more general situations [Sh74, CV85, HMR87, GL93] than cubical boxes, that the
faster and faster oscillations of eigenfunctions lead to ergodic behaviour |¢;|> — 1/vol(A)
as i — oo (where the halfarrow denotes weak convergence for example in L'(A)) whence
the ergodic sum py »(r) = N/vol(A) = p (r € A). So if there were no decorrelating effects
for r # ¢', or mathematically: cancellation effects in the oscillatory sum X3¢ (r);(r')*
not present for r = r’, one would infer in the thermodynamic limit

1 4
Ey(n.a) ~ ———drdr’ ~ (vol(A))*? (= L® for the box.)
AxA |r =]

The true scaling is rather different, illustrating the presence and strength of cancellation
effects.

Theorem 1.1 For N € IN and L > 0 let Q(L) = [0,L]® and let vy, be any deter-
minantal N-electron wave function which minimizes the free electron gas energy Ey o,
(as defined in Lemma 1.1), subject to either zero or periodic boundary conditions. Let

10

i.e. mathematically: a minimizer of Ey,a not just among determinantal wave functions, but on the
full set of antisymmetric wave functions {1y : (A x {£1/2D)N = @, ¥(-,51,..,,5n) € Hy(AV, @) for all
($1,...,s5) € {£1/2}", (1.1) and (1.2) hold} where HZ denotes the usual Sobolev space of square-integrable
fu.llni:tions with square- integrable gradient

which may be verified by means of straightforward calculations from the definitions



LDA

E. " (p)= —cIpr(r)“/g’d'r denote the Dirac-Bloch-Slater functional, where c; = %(%)1/3.
In the thermodynamic limit N = oo, L — oo, N/L? = p € (0, 0)

Ey(Yni) = —cop'PL? + O(L?), (1.12)
EP(pwi) = —cpPL® + O(L?) (1.13)

LDA

where py,, 15 the one-body density of Yy . In particular, the quotient E4(¢Yy )/ E,
converges to 1.

We emphasize that the celebrated approximation Fe.(vy) =~ J{p) + E;DA(p) is justified
here in situations not covered by the classical calculation (going back to [Di30], [B129]
and justified in [Th80]) for plane wave orbitals and a homogeneous one-body density
Pni = p: Theorem 1.1 shows that both open-shell effects and the long-range density
oscillations induced by imposing zero boundary conditions, reminiscent of the Friedel
oscillations in realistic systems, contribute only a lower order term to E,, at most of the
order of magnitude of the surface area of the box. — The astonishing accuracy of numerical
calculations employing this approximation (or small modifications meant to account for
correlation effects) in situations where density homogeneity is violated much more strongly
than above!? remains one of the unsolved mysteries of DFT.

The powers of L in the error estimates can of course be converted, via the thermody-
namic relation N = 5L*, into powers of the particle number N, yielding errors of order
N2/3,

Formula (1.12) admits an interesting mathematical variant which we state, for sim-
plicity, in the case of an even number of electrons and doubly occupied one-body orbitals.
Fix N € IN and pick two indices 7, j € {1, ..., N} at random. Consider the product of the
it" and j** eigenfunctions (extended by zero to all of IR3) of the Laplacian in the 3D unit

cube. How large, then, is the expected value of the negative Sobolev norm ||¢; ¢} || gr-1(m3)
squared?!?

Theorem 1.1’ Let Q denote the three-dimensional unit cube, let {¢;}ien be any ortho-
normal basis of L2(Q,0) of eigenfunctions of the Laplacian subject to zero (or periodic)
boundary conditions, and assume the ¢; are ordered according to the size of their eigen-
values. Then as N — oo

IB( (165131 sy 15 <N)

4
(3N

— 1

where IE(ai; : (3,7) € SCIN?) = |S|7'S;, ;) e saij denotes the average of a collection of
real numbers.

(Let us see how this follows from Theorem 1.1. Note first that the 2/N-electron Slater
determinant with spin orbitals ¢;(r)ds=_1/2, ¢i(r)ds=1/2 (¢ =1, ..., N) is a ground state of
Euq- Call this determinant 9., and rewrite formulae (1.9), (1.11) as
N * 1\ % ! N

i\T)Pj i) @iir *
Ez('l/)szl) - _ Z ¢ (7)d)](r) d) ( ) d)]( )d,rd,r’ — _471' Z H(l)ld)]“%l_l(mg) (114)

ij=17Q? Ir =7l i=1

2Fgr instance, cohesive energies, lattice parameters, and elastic constants for solid metals are typically
predicted to within a few percent of experimental values. Current developments in the computational
literature may be traced through the recent conference proceedings volumes [E195, GD95, SP95).

3Here ||f||§,_1(R3) = fRS((—Am)_lf)*f, where (—Ags)™! is the inverse Laplacian with zero bound-
ary conditions at infinity: ((—Ags) ™ f)(r) = (47)"! fpa Ir—7'| 71 f(r')dr" or alternatively (—Ags)™! =
F~1¢|72F where F is the Fourier transform (see Sect. 4).



Now use the scaling E; () = L™ E; (1) and apply (1.12).)

Theorem 1.1’ may be regarded as an ergodic theorem, indicating a delocalization and
decorrelation of eigenfunctions with growing ¢ and describing the rate of this process. We
elaborate on this point in Section 8.

Before proceeding to the proof of Theorem 1.1 let us comment on the exponents 4/3
and 3 appearing in (1.12).

The exponent of 5 can be derived rigorously from a simple scaling argument if the
product structure of the leading order term and the exponent of L are known. Namely,
suppose that instead of (1.12) one only knew

—Ey(n.) = f(P)L® + o(L?) (1.15)

for some unknown, finite, nonzero function f(p). For any ground state ¢ of the (N, L, p)
system, the scaled state ¥x(r1,s1,...,7n,sn) = AN 2p(Ary, 815, ATN,s8) (A > 0) is
a ground state of the (IV,L/A, pA3) system. Using the scaling of the exchange energy,
E.(¥\) = AEz(v), dividing by L® and letting L — oo gives f(pA3)A™2 = Af(p), so
f(p) = f(1)p*? = const - 5*/®. Nonrigorous variants of this argument are well known
but we emphasize that their validity rests on the physically and mathematically nontrivial
assumption (formalized here as (1.15)) that the exchange energy scales at fixed particle
density like the volume of the system. (For instance, the total interelectronic energy scales
like volume to the 5/3.)

To justify assumption (1.15) and to derive the correct exponent of L is more subtle.
That the ‘<’ part of (1.15) must be true is physically expected from the deeper fact that
the total binding energy of the finite systems approximating the interacting electron gas,
and in fact of any collection of nuclei and electrons, cannot exceed a constant times the
number of particles in the system ([LN75]; Dyson-Lenard theorem). At least for plane-wave
determinants this part of (1.15) follows rigorously from formula (1.10) and a nontrivial
inequality of E. Lieb [Li79] related to the proof in [LT75] of the Dyson-Lenard theorem:
for arbitrary N-electron wave functions, Ey (1)) > ~C [ps p(r)*/3dr for some constant C.1*

For general ground states this argument does not work, due to possible concentration
effects in p. The desired upper bound on —F;, is contained, via (1.9), in the following much
finer result on pair correlations. In case of zero boundary data, a certain role is played
by the group G = {oc € M3*3 : ¢ = diag(01,02,03) for some o; € {£1}} = (Z2)? of
reflections at the planes parallel to the faces of the cube.

Theorem 1.2 Let 1)y, be a determinantal ground state of the free electron gas energy, let
Chn,. be its pair correlation function (as defined above (1.9)), and let N/L3® = const = p.
Then for all v, ' € [0, L]3, in case of periodic boundary conditions

=2

7] 2
C’N,L('rv 'r/) = _Z( (h'(pFIT - TI|T(L))) + AN,L)) (116)
[Cwa(r,)] < ep? (N7 4 (1 + pelr — " lrey) ) (1.17)

and in case of Dirichlet boundary conditions

-2

Cnu(rr') = =22 (( 3 (et o) h(prlr—ov'|rar)) + Bus), (1.18)
oceG
Crulr )| < (N7 + (14 pelr =) ) (1.19)

"“The best constant C is not known, but it must be bigger than c,.



where h(s) = 3(sins — scoss)/s®, pr = (3p72)1/3, and the error terms satisfy
|An.| < c(N—1 + NY2(1 4 po|r — r'|m))—2), (1.20)
[Brzl < (N1 4+ N7V2(1 4 pelr — ') 7). (1.21)

Here c denotes a universal constant independent of r, ', N, L, and p, and |r — |y s
the natural distance function on the torus IR3/LZ? inherited from the euclidean norm on
IR®, |r — v'|py = min{|r — (r'+k)| : k € LZ3}.

Estimates (1.17), (1.19)! show that despite the nonlocality of the Pauli exclusion principle,
statistical independence (1.8) is a valid long range law. The fundamental separation
of scales between electrostatic mean field energy (J = O(N®3)) and exchange energy
(Ez = O(N)) emerges as an immediate consequence, by multiplying the right hand side
of (1.17), (1.19) by 1/|r—r'| and integrating over r, ' € [0, L]3.

The decay exponent —4 in (1.17), (1.19) is optimal, in the sense that (1 + pg|r—r'|)~*
cannot be replaced by any function g(r — r’) with g(s)/(1 +|s])™* = 0 (|s| = o0). See
Corollary 4.1.

The finer results of Theorem 1.1 on the exchange energy (explicit identification of the
leading order term and error estimates) require the finer results (1.16), (1.18), (1.20),
(1.21) of Theorem 1.2 (see Section 6).

The leading order term in (1.16) is well known in the physics literature and appeared
first in a paper by Wigner & Seitz [WS33]. We recall its beautiful physical interpretation
[e.g. WS33, S151, PY89]: Since h(0) = 1, limy 1 _, o Cno(r,7) equals —1/2 times the two-
body density p?/2 of a statistically independent sample. So since the one-body density
pn(r) = p(1+O(N~1/2)) (see Theorem 5.1), the two-body density limy ;. (p2) w2 (75 7)
approaches p?/2 as |r—r'| — co but only p%/4 as |r—r'| = 0.} The length scale of this
‘exchange hole’ is given by the Fermi wavelength 1/py; note pr is the Fermi momentum
of a free electron gas at density p, i.e. the limiting momentum as N — oo of the highest
occupied eigenstate in the finite system.

In case of zero boundary data, the 7 additional terms o # id in the sum in (1.18)!7
represent a boundary layer effect, and may be visualized as correlations between an electron
at r and ‘virtual electrons’ at the positions obtained from r’ by reflection at the faces of
the box. See Figure 1.

Figure 1.1 a. Figure 1.1 b. it
Pair correlations, periodic boundary conditions Pair correlations, zero boundary conditions

r

.\.r, — ] .

N

or'

r

15which will be proved without appeal to the explicit formulae for Cn,z given abovg
161 a fermion system with ¢ spin states the prefactor for Cn,1 would become —i(%ﬁ ) while (p2) N, (7, T)

would approach 9%3(%;32)} as any given particle is not exchange-correlated to particles of different spin,

; -1
whose fraction equals 9-;1—.
7which we have not previously seen in the literature



Notice that if dist(r, 8]0, L)3), dist(r',8[0,L]3) > L' then |r —o7'|pp., > 2L for all o # id,
S0

Cralrr') = =37 (((pelr = ') + O(N=12) + O((pr 1)),

In particular, away from a boundary layer of thickness ~ L' = L%/ (<< L for large L)
the classical pair correlation function is correct to order L™3/2 ~ N—1/2,

Starting point for our proof of Theorem 1.2 is the fact that for closed-shell ground states,
the pair correlation function is unique and may be expressed as an exponential sum, but
as a first novelty, changing to zero boundary data makes the reflection group G appear:

Lemma 1.2 Let N satisfy the closed-shell condition Ay, > Ay, where the \; are as in
Lemma 1.1. Then for every determinantal ground state of En o1y subject to zero boundary
conditions and all v, ' € Q(L)

Cno(r,r") —| 73 Zdeta S et (1.22)
8 keGLN

where Ly is the set of the N/2 positive integer lattice points k € IN?® with smallest euclidean
distance to the origin, and G is the reflection group defined above Theorem 1.2. In case
of periodic boundary conditions, if N satisfies the above closed-shell condition with the A;
denoting the analogous periodic one-body eigenvalues, every determinantal ground state

satisfies instead

2
(1.23)

2wk |
— T T
Cr(r,7") _‘L3 E e L

kely

where Ly is the set of the N/2 integer lattice points k € Z3 with smallest euclidean
distance to the origin.

(For convenience of the reader the elementary calculations are detailed in Section 2 below.)

At this point, the customary derivations of the Dirac-Bloch formula proceed by assum-
ing that the sum over k£ € Ly is well-approximated by the corresponding integral.

But is it? Notice that the function-to-be-summed oscillates in k& with amplitude one
and with period of order (r — or')/L, i.e. for typical r, r' € [0, L]*: with period of order
one. Thus the function-to-be-summed oscillates on the length scale of the lattice and the
obvious error estimate on the continuum approximation only yields the trivial estimate
C(r,r'") = O(1). Since the summation over one of the components of £ may be carried out
explicitly, simple error estimates on the remaining double sum would allow to calculate
C(r,7') up to an error of order L~! ~ N~1/3 still insufficient to even predict the order of
magnitude in L of the exchange energy correctly.

Sufficient — in fact remarkable — error estimates can be obtained through methods of
Harmonic Analysis (‘method of stationary phase’).

Lemma 1.3 In any space dimension n there ezists a constant co(n) such that for all

R>0
Z eik‘-z _ / zk zdk' < 00(1 + Rn 1- n+1) (124)
k€Z"NB(R) R"”B(R)
for all |z|mez < w18
"®*Here and below |z|mas = max{|z1],...,|z.|}, and B(R) denotes the closed euclidean ball of radius R

centered at the origin.



The lemma establishes a uniform bound in one periodic cell of the discrete sum. For
a proof see Section 4 below. Estimates of this kind are well known in analytic number
theory, but appear not to have been previously considered in the context of exchange and
correlation phenomena in many-electron systems. By setting z = 0 the lemma reduces
to the following classical result on the distribution of lattice points, due to W. Sierpiniski
[Si06] in dimension n = 2 and due to E. Landau [Lal5] in higher dimensions:

Corollary 1.1 [Si06, Lal5] Let A, (R) be the number of integer points in the ball B(R) C
IR", and let T, be the volume of the unit ball in IR"™. Then as R — oo, Ap(R) = 7, R™ +
O(R"1-531) 19

From Lemma 1.3 together with the fact that the decay at infinity of the continuous term,
the Fourier transform of the characteristic function of a ball, is known (Lemma 4.2), it
is then not difficult to deduce Theorem 1.2 and our error bounds on the Dirac-Bloch
approximation.

The various technical details that remain to be supplied are discussed in Sections 2-
6. These are: the elementary calculations leading to the closed-shell result of Lemma
1.2; control of open-shell effects via Corollary 1.1; the demonstration of Lemma 1.3 and
Theorem 1.2; control of heterogeneities in the one-body density (Theorem 5.1); and the
passage to the limit in the Dirac-Bloch- and the exchange energy functional.

Section 7 is devoted to an issue not discussed in this Introduction: the spurious self-
interaction contribution contained in the mean field electrostatic energy J(p) (proven to
be of lower order than the exchange energy in Theorem 7.1), while Section 8 elaborates
on the connection of our work with ergodic theorems for partial differential operators.

2. Pair correlations: closed-shell ground states

Proof of Lemma 1.1. This follows from the fact that the one-body eigenfunctions span
the one-body Hilbert space L?(A x {:i:%},d?), while their Slater determinants span the N-
electron Hilbert space {y € L2((Ax{£3})", €) : (1.2) holds}.

Proof of Lemma 1.2. The finite-dimensional vector space spanned by the eigenfunctions
of —%A with eigenvalues < Ay has a canonical basis

{1/)11 "'71/}]\7} = U {¢n(7')5s:_%7 ¢n(7‘)5s:%} (21)
nEEN
where in the periodic case
bulr) = L2, Ay = (TPl (2:2)

and Ly = LY is the set of the N/2 integer lattice points n € Z® closest to the origin,
and in the Dirichlet case

nlr) ()3/2Hsm i)~ 5Bdn = 5(7) Il (2.9

1914 is almost trivial (and was known to Gauss [Ga63]) that the error is at most of order R*~*. However
the precise nature of the error term especially in dimensions 2 and 3 is a fascinating and largely unsolved
problem. Note that A.(R)R™2 gives the average number of representations of integers < R? as a sum of
n squares. For n = 3 Corollary 1.1 seems to entail all that is known about the magnitude of the error.
For n = 2 the above exponent 2/3 was improved by many workers beginning with van der Corput [Co23]
(to 2/3 — ¢ for some ¢ > 0); the most recent results are are 7/11 [IM88] and 46/73 -+ ¢ for arbitrarily small
€ > 0 [Hu91}, while it is an old result of Hardy that the optimal exponent cannot be lower than 1/2 [Hal5].



and Ly = LY is the set of the N/2 positive integer lattice points n € IN3 closest to the
origin.

By the closed shell condition Ay ., > Ay, the ground state is unique up to multiplication
by a phase factor @ € {z € € : |z| = 1} = S! = U(1), as is well-known, and easy to
see arguing as in the proof of Lemma 1.1. In particular all k-body densities, density
matrices, and correlation functions are unique. By Lemma 1.1 the Slater determinant of
the canonical basis given by (2.1) and (2.2) resp. (2.3) is a minimizer and thus it suffices
to compute its pair correlation function.

To do so we use the following basic formulae from Hartree-Fock theory. For any Slater
determinant of one-body orbitals v, ..., ¥n

1 .
C(r,r") = ~5 Z 1 |fySpm(7",s,r',s')|2 (2.4)
S,S'::l:§
) N
731)1”(7"377‘,73,) = Z"rbi(rvs)wi(rlasl)* (25)

i=1

where ¥*P*" is the one-body spin density matrix, while in case (2.1) of doubly occupied
spinless one-body orbitals

Clrr) = —5hinr)P (2.6
N

1) = 23 GG 2.7
i=1

where y(r,7') = Z,_41/2 P (r s, 7! ) is the spinless one-body density matrix. The
statement in the periodic case follows immediately by substituting (2.2). In the Dirichlet
case, substituting (2.3) and using the trigonometric formula 2sin asin 3 = cos(a — ) —
cos(a + ) gives

% T, T s Z H(cos—n] r])—cos%nj(rijr})). (2.8)

nely j=1

The right hand side can be simplified by invoking the group G twice, through the elemen-
tary identity

3
s 7r
H(cos an(rj—r;-)—cos AL (rj +73) ) Zdetchos —nj(r —or');
j=1 0€EG
and the trigonometric formula
3 1 _
cosajf; = = Y b,
1:[ J/BJ 8 Z
j=1 TEG

This establishes (1.22).

We conclude this section by noting, for further reference, the following property of the
eigenbases introduced above:

Lemma 2.1 There exists a universal constant c such that for every member ; of the
periodic basis (2.1), (2.2) or the Dirichlet basis (2.1), (2.3), sup, ; |9i(r, s)|* < cL3.

10



3. Pair correlations: open-shell effects

For open-shell determinants, ground state and pair correlation function are no longer
unique. The regular structure in the exponential sums (1.22), (1.23) (in which no direction
within the integer lattice in k-space is preferred) can become contaminated, and it does
not seem obvious that these contaminations are negligible when computing the exchange
energy.

To quantify these effects we combine the lattice point estimate from Corollary 1.1
with an observation that the orthonormality of spin orbitals, although only a restriction
on averages (L? inner products), yields some pointwise smallness of the deviation of the
one-body spin density matrix from its closed-shell behaviour.

For either choice of boundary condition (Dirichlet or periodic), let 0 < Ay = Ay < A3 =
A4 < ... be the corresponding one-body eigenvalues of —%A in [0, L]3, and let {¢1,%0,...}

be the canonical basis defined in (2.1), (2.3) or (2.1), (2.2). For N € IN define the number
of closed-shell electrons,

N_=max{n <N : Ay < Apn},
the number of electrons in the next closed shell state,
Ny =min{n >N : Ay < Apu},
and the degeneracy of the open shell,
d(N)=N;y - N_.

These three quantities, while independent of L, of course depend on the boundary condi-
tions, and when necessary this will by indicated by superscripts ( )P or ( )Pe".

Lemma 3.1 Let N € IN, L > 0, N/L> = p. Then for some universal constant ¢ and
every one-body spin density matriz vy, of a determinantal ground state ¥y, of Enow,)

spin ot spin ol —ar—1/2
SUPy s 1 o | YN.L (r, 8,7 ,3)—7N_,L(r,s,r,s)l < ¢pN / ,

where 7}?,{{2 is the spin density matriz of the ground state of En_ 1.
The following lemma will be used in the proof of Lemma 3.1.

Lemma 3.2 There ezists a universal constant ¢ such that dP"(N) < c¢N/2, dPer(N)
< ¢NY/2 for gll N € IN.

Proof. By Corollary 1.1 on lattice points in IR3,

‘S(R) mZ?" = inf A3(R') - sup A3(R') < c(1 + R¥/?)

R'>R R'<R
for all R > 0 and some universal constant ¢. Here S(R) denotes the sphere of radius
R in IR3 centered at the origin. The assertion now follows from the formulae d”"(N) =
2|S(RRMYNIN3|, dPe(N) = 2|S(RN")NZ3|, with the respective Fermi radii of the discrete
systems given by

RII\)," = max{|n| : n€ E,?,iénﬂ}, (3.1)
er
RY" = max{|n| : n€ [:TI)VK”'/Q}’ (3.2)

11



and the elementary estimates RY™ < cN1/3, RE™ < eN'/3.

Proof of Lemma 3.1. By Lemma 1.1 and (2.5), if 1y is any determinantal ground
state, its one-body spin density matrix is

N_ N
PP (e Z% @) =Y i@ () + Y di@)d ()
=1

1=N_+1

for some collection of orthonormal eigenfunctions satisfying —%Az/;g = A\i¢. Consider first
the first sum on the right hand side. Since N_ corresponds to a closed shell, the vector
space over (' spanned by the ¥} (z € {1, ..., N_}) coincides with the space spanned by the
canonical eigenfunctions ¢; (i € {1,...,N_}), so ¥} = Z;vz‘l Us;j4; for some U;; € €. By
the L2-orthonormality of the 1/), and the ¢}, U = (U;;) must be unitary,?’ i.e. U(U*)T =
(U*)TU = id. Consequently S54{(a)gf («') = Biyvh(a)ui () = i (. 2).

Consider now the second sum on the rlght hand side. The space spanned by the ¢} (i €
{N_+1,.. N} ) is a subspace of the eigenspace with eigenvalue Ay_y = ... = Ay = An,.
Thus ¢} = ] “n_1Uijip; for some Uy; € € (i € {N_+1,..,N}, j€ {N_+1,..,N.}). U
can, of course, never be unitary for an open shell (N > N), but the L2-orthonormality
yields U(U*)T = 1d(N_N_)x(N-N_), and consequently (UTU is a projection operator;
in particular [(U*)TU v| < |v| for all v € €N+~N-. This observation leads to a pointwise
estimate:

N Ny
S @) = | S (T @)
i=N_+41 jk=N_+41
Ny LNy
< (X |w,-(w)|2) ( S (e |2) < d(N) sup [9;(z)[*.
j=N_# k=N_+1 7%

One concludes by applying Lemmas 3.2 and 2.1.

4. Pair correlations: discreteness effects

This section touches on the heart of pair correlations and the Dirac-Bloch formula. It
shows how the lack of strong a-priori bounds on the oscillating field el™/L)X7=m")k can be
overcome, by using the special exponential structure, to justify the continuum approxima-
tion
Z ei(ﬂ/L)k~(r—r’) ~ ei(w/L)k'(T_T,)dk.
k€ZmNB(R) R*nB(R)

Proof of Lemma 1.3. Up to uniformity in z, the result is due to E. Landau [Lal5]. Our
proof is an adaptation of the analysis in [S093, Thm 1.2.3] where the lemma is proved for
z=0.

We use the Fourier transform F : L?(IR%€) — L?(IR™;€) normalized so that for
functions v € L (IR™; @) N L?(IR™;C)

a(k) = (Fu)(k) = / ez da.

*°Beware that in our notation ( )* denotes complex conjugation, so the adjoint of U is (U*)T, not U”.
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Its inverse F~! : L2(IR%€) — L?(IR™;C) is then (F~'v)(z) = (27) ™(~z), and con-
volutions (u * v)(2z) = [g» u(z — y)v(y) dy behave as

. —

(uxv)(k) = a(k)o(k), (wv)(k) = (2m)7"(d * D) (k). (4.1)

If u is smooth and decays sufficiently fast to zero at infinity, its Fourier transform is linked
to the discrete Fourier series of a certain natural 2a-periodic function associated to u:

Lemma 4.1 (Poisson summation formula) [e.g. S093, Thm 0.1.16]
If, for instance, u or 4 € C§°(IR™;C') then

2m)™™ > a(kye*? = ) u(z + 2nk).

keZn keZn

Poisson’s formula cannot be applied directly to the discontinuous function 4(k) = xp(r)(k)
(in fact the sum on the right hand side would diverge, providing a nice example that the
formula fails if @ is not smooth enough). Instead one first smoothens xpy by local
averaging over a small length scale ¢, later to be adjusted carefully as a suitable negative
power of R depending on dimension.

Take n € C§°(IR™; IR), n(z) = n(—=2), [g=n =1, 7> 0, n = 0 outside B(R’) for some
R' <1, and let n. = e "n(e"!). Apply Poisson’s formula to (27) ™4 = xpr) * 7, nOting
u = Xpr)(—)M(=) = Xamne by (4.1):

Z (XB(r) * Tle)(k)eik'z = Z (Xarye) (2 + 27k).
kezZn keZn

By the scaling of the Fourier transform under dilatation of the domain,
Flu(X)) = X (Fu)(Ah), (4.2)

one has 7. = 7(e-). Splitting off the £ = 0 term on the right hand side (note 7(0) = 1),

Z (XB(r) * ne)(k)eik’z — Xn(m(2) (4.3)
keZn

= Z Xom(z + 2nk) f(ez + e(27k)) (4.4)
ke Zzn\{0}

+  Xew(2) (i(e) —7(0)). (4.5)

Lemma 4.2 [e.g. St93 VIII 1.4.1; So93 Cor. 1.2.2]
In any space dimension n the Fourier transform of the characteristic function of the unit
ball has the following decay behaviour: |Xaay (k)| < c(n)(1 + |k|)~(*H)/2 21

(For n = 3, from the explicit formula (6.4) below it is not hard to see that ¢ = 327 will
do.) The term (4.5) is thus in absolute value bounded above by

Can(l + ‘RZI)_(H+1)/2€lzisuplvﬁ| S CQGRn—llRZK]. + |Rz|)f(n+1)/2,
Rn

21 This statement on the volume measure x g(1)dL™ is closely related to the decay of the Fourier transform
of surface-carried measures like g = xs1)dH" ™", |2(k)| < c(n)(1 + [k[)~(»=1)/2 [S493 VIIL3, S093 Thm
1.2.1], for the truth of which radial symmetry could be replaced by appropriate curvature properties, and

which underlies the remarkable restriction properties for Fourier transforms of L? functions onto surfaces
[e.g. St93 Thm VIIL3].
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where here and below c¢;, ¢c2 etc. denote constants independent of R and z.
Since n € C§°(IR™; IR), for any m € IN

()] < em) (1+121)

The term (4.4) is thus in absolute value bounded abvove by

s Y. R(1+27R|IE +k|) (/2 (1+2melZ +K)

keZm\ {0}
—(n+1)/2 —-m
< e Y R(1+|Rklmar ) (1+ leklmaz)  Vl|elmes <7 (46)
keZm™\ {0}
where |z|me; = max{|z1],...,|2n|} and we have used that z is restricted to one periodic

cell, |2/(27)|maz < 1/2, whence
|5 + Kl > |55 + klmas 2 [Elmaz — 5 2 3lklmas > 57kl

Now introduce Ay = {k' € IR : k; — 1 < ki < k;Vk; >0, k; <k} < k; +1Vk; <0}, the
unit cube with edges parallel to the coordinate axes with k being the farthest corner from

the origin. Since every k' € IR™ is contained in at most 2" such cubes, (4.6) is bounded
by

41 _
9 / B (14 [RRlmas) (14 |k'lmas ) dk’
keZ™\{0}
_ntl —
32"&1/ R (14 Bk ez ) (1+ ek mac) mdk':2"C4</ +/ )
B wicey Jgwisen
1/e ntl (Rﬁ—l)n
< 9n n n—1 — = "N-mdE' ). (4.
<2 (mB [ Ry R [y ). @40

Choosing m > n, the second integral on the right hand side converges. Assuming without
loss of generality n > 2, the first integral in the last expression is bounded by

el
/ R4 D/2, 0324, _ 2 p-(n41)/2~(n1)/2
1 7

n—

hence (4.7) does not exceed cs(Re~1)®~1)/2, Summarizing the bounds on (4.4), (4.5),

Z (XB(a) * ne) (k) s — X5(r) (%)

kezn
< ¢ ((Re)""D/2 4 eR™1|Rz| (14| Re) ~(*+) ) ¥z < . (4.8)

Next we turn to the error made by smoothing xpr. Recall the notation A,(R) =
Yreznxpr) (k). Since ne = 0 outside B(e) and 0 < 7 * X < 1,

Z (X5 * ne)( ethz — Z Xsr) (K etz

keZn kezn
< 3 (Xar * 1) (k) — Xamy (k)] < An(R+e€) — An(R—e€) (4.9)
kezZn
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and

> (oo * 1) (k) < An(R) < )7 (Xsrao * 1) (k) (4.10)
kezn kezZn

By (4.8) with 2 =0

> (o) * ne) (k) = Xa@)(0)| < cg(R'e~t)n=1/2
keZn

and hence

> (s *ne) (k) = T (R)™ + O((R'e1)(n=1/2y,
kezn

But now, assuming without loss of generality € < 1,

Z (XBer+o * M) (k) — Z (XB(r-0) * Ne)(K)

keZnr keZn
= Ta((R+€)" = (R—€)") + O((Re )" D2) = O(eR™ ! + (Re™H)(n"D/2)

whence by (4.10)
An(R) = 7,R™ + O(eR™ ! + ((Re~1)(»1)/2y | (4.11)

Finally, applying this to R+e¢ and R—e¢ and substituting into (4.9) yields

> (oo * 1) ()€ = 3 xom(k) €

kezm keZn

< cr(eRM I ((ReH1/2y 0 (4.12)

Combining (4.8), (4.12) and the fact that eR"! + ((Re~1)(*~1/2 is minimized when
e = ((n—1)/2)% (1) R=(1)/("H) " the assertion of Lemma 1.3 follows.

We proceed next to convert our knowledge gathered in Lemma 1.3 about exponential sums
into information about one-body density matrices y(r,r’) and pair correlation functions
C(r,r"). We begin with the case of zero boundary conditions and the closed-shell case
N = N_. To understand why away from a boundary layer these quantities closely resemble
their periodic counterparts, introduce the set of projections onto the median planes parallel
to the faces of the cube [0, L]?, P = {m, ma, m3} where m; = Xjc(123)\ (i} €;®¢€;. We may
rewrite formula (2.8) as

1
§7NYL(T, r') = Z (det o) ayy(r—or') forallr, +' €[0,L)? (4.13)
geG
where
anL(y) — (2L)—3 Z ei(w/L)k-y _ (2L)—3 Z ei(7r/L)Ic~y

keGLL ke(Z\{0})3nB(RY")

- (2[,)—3( T ek T i/ DR (0)
keZ3nB(RY™) k' €Z2NB(RY"), m;€P

+ > e /LKy 1). (4.14)

k"€ ZNB(RY"),j€{1,2,3}

Now the last three terms on the right hand side of (4.14), when evaluated on y =1 — o7’
and summed over o, vanish: indeed Zyeg(det o) f(m;(r — or')), Lgea(det o)g((r — or');),
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Yseg det o are zero for any functions f, g, since each term appears twice, with opposite
sign. So ay; may and shall be redifined as

ane(y) = (20)7° Z etk (n/ LYy (4.15)
k€Z3NB(RY'")

without affecting the validity of (4.13).

We would like to apply Lemma 1.3 but a little care is needed regarding the range of
y=r—or' forr,r €[0,L]3 If 0 = id then y € [~L,L)3, or equivalently z = (n/L)y
satisfies |z|mqaz < 7, i.e. lies in the domain where the continuum approximation of the
exponential sum is valid. But if o;; = —1 then y; ranges instead over [0,2L] so we need to
introduce the periodically extended continuum approximation

Dir D'i!‘ﬂ, . e -
0 (y) = ()Xo (B (ymod 2L) ) = (2L) *x i) (Fymod 2L)),  (4.16)

where B"(1) stands for the unit ball in IR", and for any y € IR? we denote by y mod 2L
the unique element y' € [—L, L)3 such that y € ' +2LZ3. (With the norm introduced in
Theorem 1.2, |y|rery = [¥']-)

Now lift the restriction to closed-shell ground states and define for arbitrary N:

agys, (y) = af’ L (y). (4.17)

Applying Lemma 1.3 to the right hand side of (4.15), denoting 5 = N/L® and using
R}]_\?ir < CNI/B,

IaN_,L(r—ar ) — afvtsL(r or')

< cpN~1/? (4.18)

for all 7, 7' € [0, L)® and some universal constant c.

Since the long range behaviour of the Fourier transform xzs(;, is known (Lemma 4.2)
and open-shell effects can be controlled (Lemma 3.1) one infers the following version of
Theorem 1.2.

Theorem 4.1 (Continuum approximation, zero boundary conditions)

Let N € IN, L >0, N/L* = p, a5 as in (4.16), (4.17). Let ¢y, be any determinantal
ground state of the free electron gas energy (subject to zero boundary conditions). Then
its one-body density matriz and pair correlation function satisfy

1

s (') = 3 (deto) afs (r— < ¢pN773, (4.19)
gEG
7NL(T,TI)‘ < cﬁ(N—%-i- 1+ﬁ%|r—r'|)_2), (4.20)

Crp(r,7") ’Z det o) a%s (r—or' l ' < cﬁQ(N_l+N*%(1+ﬁ%|r—r'|)~2),(4.21)
oeG

Chy(r, r')\ < cp? (N*l +(1+ ﬁélr—r'|)_4) (4.22)
for allr, r' € [0, L)® and some universal constant c.

Proof. The first two inequalities follow immediately from (4.13), (4.15), (4.18), Lemma
3.1, Lemma 4.2, the elementary inequality ¢;p'/3 < Ry_/L < ¢9p'/3, and the fact that [r—
or'mod 2L| > |r—r'| for all 0 €G, r, 7' €[0, L]*. The fourth inequality follows by squaring
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(4.20). Finally, to prove the third inequality, introduce ¥***(r,r') = 25,¢¢ (det o)ats (r—
or'), rewrite the pair correlation function as

1 2

57

cts

C= —|%’Yi2 = _%Re<(’)’+70t5)(’7—7“5)*> -|

and note that the absolute value of the first term on the right hand side cannot exceed a
constant times the product of the right hand sides of (4.19) and (4.20).

In case of periodic boundary conditions the group G collapses to the identity, but the
subtleties regarding the domain of validity of the continuum approximation are slightly
different. Begin, again, with the closed shell situation N = N_. The ground state density
matrix is then

%WN’L(T’ My =L Y /D) _ -3 ) (26w L)k-(r—r")

kelhy” keZ3nB(RY")

As r, r' vary over one periodic cell [0, L]?, the exponent z = (27/L)(r — ') now ranges
over [—2m,2n]%; that is: over two periods (in each coordinate) of the exponential sum
we wish to approximate. So this time the appropriate periodically extended continuum
approximation reads

REET 2mREST

bes (y) = ()Xo (—=(ymod L). (4.23)

Note 2/ = (2rr/L)((r — ') mod L) € [~ L, L)3. Lemmas 1.3, 3.1 and 4.2 then yield

Theorem 4.2 (Continuum approximation, periodic boundary conditions)

Let N € IN, L >0, N/L? = p, and bS5, as defined in (4.23). Letpy,;, be any determinantal
ground state of the free electron gas energy (subject to periodic boundary conditions). Then
its one-body density matriz and pair correlation function satisfy

3w (') = b5, (r—r')| < PN, (4.24)
o (r )| S ep(N72 + (L4 3 fr—rl,) %), (4.25)
Cra (1) + 0505, (r =) < e (NT" 4+ N73 1+ i lr—r],,)) ), (4.26)
Ch(r, TI)‘ <ep? (N_l +(1+ ﬁ%|T_T/|T(L))_4) (4.27)

for all v, r' € [0, L]® and some universal constant c.

The long-range decay results (1.17), (1.19) in Theorem 1.2 are thus proved without appeal
to the explicit formulae (1.16), (1.18) for the continuum limits. To justify these explicit
expressions and complete the proof of Theorem 1.2, it suffices to establish the following

Lemma 4.3 If N/L3 = p and h, pr are as in Theorem 1.2 then

1 = _ —

afvtsl,(y) - iph(pplle(zL))‘ < c¢pN 1/2,
1. o

0563, () = 5 Ph(Pelyl g, )| < PN

for some universal constant c.
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Proof. By Lemmas 1.3, 3.2 on lattice points in IR>

N N_ 4
5 =5 TOWN?) =|Z° N B(RE)|HO(N?) = gn(R5)° +O((RE 1)) +O(N?)
and thus
3 13 RE'\3 13 _ B
(By')* = g SN+ O(NYY), ()" = g op(l+ ON /). (4.28)
Similarly ‘
pin3 _ 3 1/2 Ry'\s 3 ~1/2
(RR")® = =N+ O, (=5=)" = Sp(l+ O ). (4.29)
By applying the elementary inequality |a — b| < |a® — 3|/ max{a?, b%} (a, b > 0)
Ry 35\ 1/3 L Ry 1,3p\1/3
— (2P —l/2yy M- 2 (2F —1/2y). 4.30
= =(F) Tarow Ty, === () e+ o) (4-30)

The Fourier transform entering the definitions of afvti and bfvtsL is calculated explicitly in
Lemma 6.1 below:
T Rﬁ’_’ 3 RDi’ﬁr T 2R117\,Lr 3 2R7\F_"7r
ai W) = 5 (57) AT W), ¥iaw) = 5 (F7=) M k)
In the above expressions discreteness effects are still present, through the discrete Fermi
radii Ry, RY’. By (4.28), replacing the cubic factors in front of A by their limit 5/2
1/2

produces an error not exceeding ¢gN~'/“. Finally, a moment’s thought shows that if h is
any differentiable function on [0, c0) with |h/(s)| < C(1+s)72, as is the case here, one has
sup,sg |h(as) — h(Bs)| < Cmax{|a—B|, |t — 71|}, for any @, 8 > 0. This observation,
together with (4.30) and the choices & = R2"nL~p;l, B =1, s = pr|y|reL) respectively
a = 2RY nL7pY, B =1, s = prlylrw, (to ensure jp-independence of «, 3), establishes
the lemma.

Finally we remark that the decay exponent —4 in Theorem 1.2 is optimal.

Corollary 4.1 Let N/L3 = const = p. Let 1y, be any determinantal ground state of
the free electron gas energy (subject to zero or periodic boundary conditions), with pair
correlation function Cy . Let f : IN = IR be a positive function such that

fy)
= om=z — 0 (lyll = o), (4.31)
a0
where || || = |- | in case of zero boundary data and || - || = | - |z, in the periodic case.
Then c .
sup sup [Cle (r,77)| = oo. (4.32)

NeN rreporp NP+ flr—r')

Proof. For instance, in case of zero boundary conditions, pick « € (0,3/4) and let ry, =
(L/2,L/2,(L+L*)/2), &, =(L/2,L/2,(L—L%)/2). Then since Ty —ory | > L for all
o € G\{id} and |h(s)| < ¢(1+s)7?, (1.18) implies Cy 1 (rn, Ty, ) = —(p2/2)(h(prL%))? +
o(L™4®) as L — oo, while by hypothesis N~! + flry—ry,) = p 'L73 + f((0,0,L%)) =
o(L™**} (L = co). One concludes since by inspection lim SUp,_, oo (h(s))%s™4 > 0.
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5. One-body density and Dirac-Bloch-Slater functional

The analysis of the previous section allows one to establish, with little effort, the asymp-
totic behaviour of the Dirac-Bloch-Slater functional on ground state densities. Recall that
in the periodic case these finite-system densities may be heterogeneous (due to open-shell
effects), while in the case of zero boundary conditions they must be heterogeneous (since
the wave-functions must decay continuously to zero toward the boundary of the box).

Theorem 5.1 Let N/L® = const = p, and let 1y, be any determinantal ground state
of the free electron gas energy, with one-body density py . In case of periodic boundary
conditions

lonn(r) —p| < ¢pN— 2 foralre [0, L]?, (5.1)
L(r)

7o

and in case of zero boundary conditions

oA

— p3L3| < cpINT = cpsL3 (5.2)

G pz (det 0)h(pp|(id — 0)7|rer)| < cBN"Y2 for all v € [0,L)%, (5.3)
oeG

| | L]SpN,L(m%dr e

k]

< ¢p3NiT = cpL?, (5.4)

for some universal constant ¢, with G, h, pr and | - |r@r) as in Theorem 1.2.

Proof. Recall that p(r) = y(r,r). Deal first with the periodic case. By Theorem 4.2
‘pN,L(T) - 2b?vti(0)| < CﬁN_l/za |PNL )N < ep. (5.5)

Substituting definitions,

222 0) = 2( 5= sy 0 = S (B

The estimate (5.1) now follows from (4.28). To prove (5.2), apply the elementary inequality
l[a? — bP| < pla — bl max{aP, B!} (@ >0,b>0,p > 1) to a = py.(r), b = p, p = 4/3,
estimate the right hand side through (5.1) and the second inequality in (5.5), and integrate
over .

For zero boundary conditions, Theorem 4.1 and Lemma 4.3 yield (5.3). Without
needing Lemma 4.3, by Theorem 4.1 and the decay estimate presented as Lemma, 4.2

s (r) =2 Y (det o) agfs (id—o0)r)| < cpN T/, Jpwu(r)] < cp,
ceG

1 , = 55 1(i -
a$t5,(0) = 5A(L+ O(N™'7)), |asts ((id=0)r)| < ep(L + p3|(id—0)rlrey,)

This yields

Lo, —
o ()3 =7 < p PN 3 (1455 |(id =07, )
oeG\{id}

For each o € G\{id} there exists 7 € {1,2,3} such that o;; =—1. Consequently

—

L _L . —2 % _1 —9 L [ —9
/(1+p3|((td—0)7")ilnm) dri=2/0 (1+p3[2r])""dr; <p73 [ (1+]s])""ds
0
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and the last assertion (5.4) follows.

6. The exchange energy functional

Throughout this section p > 0 is fixed, and the thermodynamic relation N/L3 = const = p
is assumed. We write Q(L) = [0, L]> and denote by ¢ any constant which may depend on
p but not on N or L. The value of ¢ may change from line to line.

Proof of Theorem 1.1 (1.12), periodic boundary conditions. By Theorem 4.2 and
abbreviating [ ( )drdr' = [()

Crp(r, ') |th8( T'I)|2
‘/ Qup |r—r| +/Q(L) r— 7|
(i e s [ 1+1r—r'—d|>-2>
ey |r =7 {d€LZ3 d|maz <L} fr =]
< (L% + L*?1og(2+L)). (6.1)

IA

To deal with bS8 by, we need to decode the information hidden in the torus co-ordinate

ymod L. Let thS denote the nonperiodic function obtained from the right hand side of
(4.23) by replacmg ymod L with y. Then

‘/ b5 (r=r")1* / |bsEs, (r—1')|2
IT—TI Qy: |r—r'|

-1 o, (r =) ? — Jogfs (r =)
 Vowpn{irrme> £} |

2

g% > / (L+|r—r"—d))™* < eL? (6.2)

{deLZ?:|d|<L)

We can now isolate the leading contribution to the exchange energy. Changing variables
y=r—ry =7 51117,

‘/ [bggs (r=r")? _L3/ Ibfvﬁi(y)IQdy’
QL)? IT—T’I r |yl

bcts 2\—2
:/ . / |—|d dy' < c/ / Q_—tﬂl_)_dydy/
vel-L L2 Jiytylmaa>L Yl yel-L L Jyy)> Ly |yl

[> 51y Imax

1
= 21rc/ ~dy’ (with the same constant c)
vel-5.£P 1+ (519 Imas)

< cL?. (6.3)

To find the exchange constant c; it remains to make explicit the factor of L3 in the first
line of (6.3). This amounts to evaluating the integral

-3, Ty 2
)= [ 0w,
R ||
which encodes all relevant information about the decay and the quantum oscillations of

the pair correlation function C(r, ') ~ |X5, (22 (r—r'))|2. For the sake of completeness
we sketch a derivation of the (elementary) result.
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Lemma 6.1 In three dimensions the Fourier transform of the characteristic function of

the unit ball s

sin |k| — |k| cos |k|
|[? ’

Xp(y(k) = 4m (6.4)

and
I(R,L) = 167r(%)4. (6.5)

Proof. Introducing polar coordinates with the z3-axis pointing in the direction of k,
(21, 29,23) = (rcos ¢sinB, rsin psinb, r cos #), one has

_ 1
Xs) (k) :/ ek zdy = / / / r 31n()e"|k|cosed9d¢dr
B(1) r=0 0=0

and one easily obtains (6.4). Substitution into the definition of I(R, L) and the changes
of variables y' = &y s = |y/| yield

I(R,L) = (4m)?(£)’ /R 1 (sint—tcost)”

% (sins—scos s)?
T - 5—8C08 ) ds

4 [ (
— R
t:"_fil_y_ldy_647r(l‘) /0 3

An elegant evaluation of this last integral can be found in [PY, Sec.6.1]: set ¢t = (sins)/s,
then dt/ds = —(sins—scoss)/s?, d*t/ds?* = —t — (2/s)dt/ds, and so

® (sins—scos §)? dt (1dt ©dt, t 1d% 1
[ TG = [y s A= g

This proves the lemma.

By (6.5), (4.28) and the elementary inequality |a* — b*| < (4/3)|a® — b®| max{a, b}

bEWE I S(BONG 3 3\E 4 s
L} /Rs—lrdy—zI(RN_,L)—éle( ) _Z(%> p3L3+O(L2).  (6.6)

Assertion (1.12) in Theorem 1.1 now follows by combining (6.1), (6.2), (6.3) and (6.6).

Proof of Theorem 1.1 (1.12), zero boundary conditions. Altering the boundary
conditions produces the same leading order exchange energy, but for somewhat subtle
reasons.

By multiplying (4.21) by 1/|r —r'| and integrating over Q(L)?

cts

’/ CNLM Y de m)/ ayys (r—or')aly (r—7r')*

Q(L)? 'T - T o,7eCG Q(L)? |’f‘ - TJI

< o(L? + L¥?1og(2+L)). (6.7)

The terms in the sum on the left hand side of (6.7) are at most of the order of magnitude
of the surface area of the box, unless (o, 7) = (id, id):

cts cts

3 det(ar)/ agy(r—or)agy (r—rr'’)* /(L)ZM

0,7€G Q(L)? |T - Tll |T - ’r/|
<c Y, Jor(L (6.8)
g, TEG
(U,T)#(id,id)
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where

top (D)= [ =07 2y o), 1 e ooy
7 Q(LY? Ir —r/| ~ ¢ Joy |r — 7]

and we have
Lemma 6.2 If (o,7) # (id,id) then J, (L) < cL?.
(By contrast J;q ;g4 is of order L3.)

Proof. What is surprising at first sight is that for tro = 1 the term J; ;g is of lower
order than the geometric mean of the orders of J, ; and Ji4 4. So we begin with this case.
There is exactly one i € {1,2,3} with o;; = —1. We pick p € (1,2) and j € {1,2,3}\{3}
and estimate as follows:

(1+|7Tz'(7°—7")|)p—2(1+|(7’+7J)i|T(2L))_p L2
SO OO o e e 7w oy e i

Next, consider the case tro < —1, 7 = id. Then pick 4 such that o;; = —1 for all j # ¢,
and calculate

(1+|mi(r+1") | rery) 2

< < cLlog(2+L)%.
R e e

Next, assume there exist 4, j, ¢ # j, such that oy; = —1, 75; = —1. Choosing p, ¢ € (1, %)
and letting {k} = {1,2,3}\{¢, s}, the integrand of J, (L) is bounded by

c (L +r)ilren) PA+r+7) @) "1 1+1(r—or)klren)P 2+ ](r =77kl rewy)
[(r—r")[ /2| (r —r");{ 112 ’

hence J; - (L)(L) < cL?, with the integrals over (r—71');, (r—r");, (r+7')i, (r+7');, and
((r+7")g, (r—7")&) contributing, respectively, a multiple of L}/2, LY/2 1, 1, and L.

The remaining case is ¢ = 7, tro = 1. We may assume o = 7 = diag(—1,1,1). A
moment’s thought shows that the seemingly equivalent expression obtained by switching
signs in the differences r—or’, r—r/,

/ (L4 |((r =), (r41")a, (r+7)8) )~
QL2 7]

is of order L*log L. But the domain of integration is asymmetric with respect to this
switching operation. In fact, changing variables y =7 — 7/, ¥} = r; + 7}, vh = ro, ¥4 = 73,
we have |y1| < min{y},2L—y}} and thus (abbreviating A(L) = [0,2L] x [-L, L]?)

(14+minge o2 (v —d, y2, y3)|) ,
Jor(L) /(yz ys) /yl v2, ya)/ ly1l< N 1| + [m19] dy1d(my) dy
€0,L)2 7 eA(L) min{y}, 2Ly} } n 1Y

_ 20L2/ log(min{yy, 2L -y } + |my|) — log|my| ,
Wy wws)enr) (1 +mingeqoory [(¥1—d, y2,¥3)])?

(Y1, Y2, Y3)

log(z1 + |m 2]) — log |7 2|

= 4cL2/ dz.
[OrL]X[_LvL]z (1 + |Z|)4 ‘

Since the integrand lies in L!(IR®), the lemma follows.
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It remains to look at the leading order term o = 7 = id in (6.8). Writing afg,\t‘;L for the
function obtained from aCtS by replacing y mod 2L in (4.16) by y, one has

cts “cts 2 cts 2
l/ |a / )| —L?’/ aN,L(y)l dy‘ _ / / |ag! (y)‘ dy dy'
2 IT =T | R3 |y| y'E[—%%ls |y+yllmaz>7 |y|

1 2\—2
< c/ / ﬂ—)—dy dr' < cL? (6.9)
vel-L,LP Jly> Ly |mas 1Yl

where the last inequality follows from (6.3).

The second integral on the left hand side of (6.9) can be evaluated with the help of
Lemma 6.1 and (4.29):

cts )|2 L3 L3 RPI" 4 3 ,3\1/3
L3/ ’a'—y_i_l Dir L N_ _92(9 74/3 3 3/2 ‘ '
R |yl s [(BR.D) = Tn (=) =5 (5) TR+ o). (6.10)

By combining (6.7), (6.8), Lemma 6.2, (6.9), and (6.10) one obtains Theorem 1.1 (1.12).

7. Self-interaction

In the density functional theory literature, the success of the Dirac-Bloch-Slater approxi-
mation E.(vy) =~ EXP4(p) + J(p) applied to atomic or molecular systems is sometimes at-
tributed to an anticipated ability of EL”* to cancel the bulk of the spurious self-interaction
energy contained in J(p).

It is then interesting to note that such virtues of the local density approximation
— if true — must be accidental: I prove below that the self-interaction contribution to
E; (see Footnote 7 in the Introduction) is a lower-order effect which disappears in the
thermodynamic limit and contributes nothing to the exchange constant c,.

Mathematically, my proof relies on Lemma 3.2 (which was a consequence of the lattice
point estimate in Corollary 1.1} and the Hardy-Littlewood-Sobolev inequality from the
theory of fractional integration.

Theorem 7.1 Under the assumptions of Theorem 1.1, both for zero and periodic boundary
conditions, there exists a universal constant ¢ such that

Jself(wN,L) < Cﬁ7/6L5/2 = Cﬁl/?’Ns/G. (71)

In particular, the limit theorem that E;(vYy )/ EEPA (pn ) tends to 1 remains true with Ey
replaced by proper exchange E“c = E; — Jseip, with the same exchange constant c,.

Proof. For a ground state with one-body spin orbitals ¥, ..., ¥y, recall its self-interaction
energy, Jserf(¥w.) = I, J(p)) where p()(r) = Sg|i(r, s)|. The 4 must be eigenfunc-
tions of the one-body Lapla(:lan (see Lemma 1.1) and are as usual assumed to be ordered
by size of eigenvalue. Hence for any : € {1,..., N} we may write ¢} = Z;Jr:i_ﬂaijq/)j for
some «;; € O, E;*Zi_+1\aij|2 = 1, where the ¢; are the canonical eigenfunctions from
Section 2. Thus by Lemmas 2.1, 3.2

i iy
it )2 < (S Jayl) (D Walno)l?) < N7 (7.2)
j=i_+1 j=i_+1
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This L*-estimate alone does not suffice to infer (7.1). I use Holder’s inequality and the
Hardy-Littlewood-Sobolev inequality [e.g. S093 0.2.3, St93 VIII 4.2]

| e+ £ < e, W f ey (MEN, @>1, 1 =1- (L - 1) 1<p<g<oo)

Li(R™)

with o = n = 3, p = 6/5, ¢ = 6. Extending the p{® by zero to all of IR?, for f = p®

[

I = [ 0« HEYr < Il gl Fle < ellfIBg < el lle) .

To infer (7.1), use ||p(®||,1 = 1 and the L®-bound (7.2).

8. Concluding remarks

This article by no means exhausts the study of pair correlations and exchange phenomena
even in noninteracting systems. A main shortcoming is that I do not know under which
changes of domain the pair correlation function away from the boundary, the ‘correlation
exponent’ (3 in Theorem 1.1 and —2/3 in Theorem 1.1') and the exchange constant ¢,
would survive.

Studying more general domains would seem to require a strategy of investigation which
bypasses the explicit calculations in Section 2 and could use the differential information
on the one-body orbitals {¢;} more directly. One step in this direction would be to
devise, without resorting to explicit calculation of eigenfunctions, a proof of the following
consequence of Theorem 1.1":

Corollary 8.1 Under the assumptions of Theorem 1.1, there exists a set S C IN? of
asymptotic density one (that is, N"2|SN[1,N]?| = 1 as N — 00), such that

¢id; — 0 in H'(IR®) ((i,5) € S, |(5,4)] = ).

Inspection of the diagonal terms i = j shows that the restriction to a subset of asymp-
totic density one is essential: ((-Ags)~Y|¢il% [fi]?)o > (4m)~1371/2(1, |¢ |2 ® il oxe =
(4m)~1371/2 (If {4;} is the standard basis (2.3), ( A]R3 )N ?, |42 = (C1, |04 @
Iqbzl Yoxe — (Cl oxqe with C as below, since [¢;]? ® |¢;12 = 1 in L°°(Q><Q) and
Cle LY@xQ). But note that if the diagonal terms were the only terms not to converge
to zero, the expected value in Theorem 1.1’ should behave as IE ~ N~! not IE ~ N‘2/3.)

While recent advances in weak convergence methods for partial differential equations
[Ta90, Ge91] as well as classical ergodic theorems for eigenfunctions of the Laplacian [Sh74,
CV85, HMR87, GL93| concern the asymptotic behaviour of quadratic forms (L'¢;, ¢;)a
associated with pseudodifferential operators L' of degree zero, the situation here appears
to be slightly different. When working in one-body configuration space,

16s511r-1 (o) = (—Ams) " ($i85), 4id5)

so we are dealing with a pseudodifferential operator of degree —2 and a sequence not
known to converge weakly to zero in L2(Q). Alternatively, when working in two-body
configuration space, we may write

165 112r-1 ey = (O ® $5), b1 ® i)
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where C is a nonlocal operator which switches arguments and multiplies by a weight factor
making contributions of nearby points dominant,
N p 1
(C)(r,r')

- dr|r—r'|

but at least the argument of the quadratic form, ¢; ® ¢;, then converges weakly in L?(Qx
Q, €) to zero as |(i,7)| — oo.

Keeping [Sh74, CV85, HMR87, GL93] in mind, what may play a role in Corollary 8.1
is that the underlying classical Hamiltonian system, the geodesic flow in @ (augmented,
in case of zero boundary conditions, by reflection at the boundary according to the law
of geometrical optics), (p(*), ¢®) : IR®x[0,L]® — IR®x [0,L]?, is ergodic at least in
the position variable: for almost every (po,qo) € IR®x[0,L]® and every f € C([0,L]®),
limy , o [ £(4(po, q0)) dt = [, 5 f dg.
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