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Hubbard ladders are an important stepping stone to the physics of the two-dimensional Hub-
bard model. While many of their properties are accessible to numerical and analytical techniques,
the question of whether weakly hole-doped Hubbard ladders are dominated by superconducting or
charge-density-wave correlations has so far eluded a definitive answer. In particular, previous numer-
ical simulations of Hubbard ladders have seen a much faster decay of superconducting correlations
than expected based on analytical arguments. We revisit this question using a state-of-the-art imple-
mentation of the density matrix renormalization group algorithm that allows us to simulate larger
system sizes with higher accuracy than before. Performing careful extrapolations of the results,
we obtain improved estimates for the Luttinger liquid parameter and the correlation functions at
long distances. Our results confirm that, as suggested by analytical considerations, superconducting
correlations become dominant in the limit of very small doping.

PACS numbers: 71.27.+a, 74.20.Rp, 74.72.Gh, 02.70.-c

I. INTRODUCTION

The question of whether electrons in two dimensions
can exhibit superconductivity mediated by repulsive in-
teractions, which is motivated by the discovery of high-
temperature superconductors, has become one of the cen-
tral questions of condensed matter theory. However, the
numerical study of even the simplest models, such as the
Hubbard or t-J model, are made difficult by a multitude
of competing low-energy phases that these models ex-
hibit. This is particularly the case in the regime of weak
doping away from half filling, which is most relevant for
the phase diagram of cuprate superconductors. Numer-
ical efforts reviewed in Ref. 1 as well as more recent re-
sults in Refs. 2 and 3 have shown a close competition of
striped antiferromagnetic phases, d-wave superconduct-
ing phases, and other more exotic phases such as a pseu-
dogap phase where hole quasi-particles play the role of
the mobile carriers.

Faced with these challenges, quasi-one-dimensional
systems such as ladders have appeared as an easier start-
ing point to investigate the properties of these models, as
they are amenable to a broader range of numerical and
analytical methods. These approaches view the system
as essentially one-dimensional with additional degrees of
freedom that allow the two-dimensional characteristics
to emerge. Crucially, this has allowed treatment using
the density matrix renormalization group (DMRG),4,5

which allows accurate simulations of extended quasi-
one-dimensional systems and has successfully illuminated
many properties of ladder systems.6

Numerical work on t-J and Hubbard ladders7–9 as well
as analytical work on the weak-interaction limit by Ba-
lents and Fisher10 has shown that in a wide parameter
regime, weakly doped ladders fall into the Luther-Emery
universality class,11,12 which has a gapped spin mode and
a single gapless charge mode. This phase is a possible pre-

cursor phase to two different ordered phases in the two-
dimensional limit, a superconducting phase (SC) and a
charge-density wave (CDW) phase. To distinguish these
phases, it is crucial to compute whether the ladder system
is dominated by density-density or superconducting cor-
relations. Within the Luther-Emery universality class,
these both decay with a power-law whose exponents are
determined by a single dimensionless parameter Kρ.

Previous DMRG calculations of the correlation
functions13,14 have observed power-law decay of the cor-
relation functions, but have found a surprisingly fast de-
cay of the superconducting correlations inconsistent with
dominant superconducting correlations. This decay was
found to be inconsistent with calculations in the weak-
doping limit,15,16 and also violates certain identities of
the Luther-Emery universality class. Here, we revisit the
calculation of these exponents with a focus on extracting
the correct behavior of the pair correlation function. We
exploit the advances in DMRG methods, in particular on
the correct extrapolation of physical quantities, and in-
creases in computational power since the work of Refs. 13
and 14. Using a high-performance DMRG code,17 we are
able to target longer systems with much improved ac-
curacy to obtain reliable correlation exponents for the
two-leg Hubbard ladder, which settle the disagreement
between the numerical calculations and the theoretical
expectations. To achieve this, we carefully analyze the
effects of the finite system size and the DMRG truncation
on correlation functions.

The paper is organized as follows. In Section II we
present the Hubbard model. In Sections III we briefly
introduce the DMRG method and how correlation ob-
servables are extrapolated to the thermodynamic limit.
Sections IV and V are devoted to the discussion of our
results: first the finite size analysis of density oscilla-
tions, then the comparison of the Luttinger liquid expo-
nent with the pair and density correlation functions. In
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Figure 1. (color online) Spatial decay of the pair correlation
function (blue markers) for a 2 × 32 Hubbard model with
U/t = 8 and average filling n = 0.875 similar to the results
obtained in Ref. 14. The solid, dotted and dashed lines are
reference power-law decays with exponents µ = −1/2,−1,−2,
respectively. In this paper we estimate an exponent µ ≈ −1
(see exponents in Table I).

Section VI we present our conclusions.

II. THE HUBBARD LADDER

We consider the Hubbard model on a two-leg ladder
described by the Hamiltonian

Ĥ =− t
∑
i,λ,σ

[
ĉ†(i,λ),σ ĉ(i+1,λ),σ + H.c.

]
− t⊥

∑
i,σ

[
ĉ†(i,1),σ ĉ(i,2),σ + H.c.

]
(1)

+ U
∑
i,λ

n̂(i,λ),↑n̂(i,λ),↓,

where the index i runs along two coupled chains of length
L and λ = 1, 2 identifies the two chains respectively. The

operator ĉ†(i,λ),σ creates a fermion at site i on chain λ

with spin σ ∈ {↑, ↓} and n̂(i,λ),σ = ĉ†(i,λ),σ ĉ(i,λ),σ.

The phases of this model can conveniently be labeled
by the number of gapless spin and charge modes, with
up to two gapless modes possible in each sector. Much
attention has been focused on the phase with one gap-
less charge mode, but a gap in the spin sector (labeled
C1S0 in Ref. 10) for its relevance for both superconduct-
ing (SC) and charge-density wave (CDW) phases in the
two-dimensional limit. This phase is found in a wide pa-
rameter range of repulsive U , t⊥ < 2t, and hole-doping
with filling n < 1 (in units where one fermion per site
corresponds to n = 1). In this paper we will focus on the
isotropic hopping case t⊥ = t with interaction U/t = 8,

for which the spin gap has previously been reported13 to
show a maximum. We investigate different values of the
average filling n while keeping the total magnetization
fixed at zero.

We define the local rung density operator as n̂i =∑
λ,σ n̂(i,λ),σ and its expectation value as

ni =
∑
λ,σ

〈n̂(i,λ),σ〉. (2)

Its density correlation function is

N(i, j) = 〈n̂i n̂j〉 − 〈n̂i〉〈n̂j〉, (3)

and the d-wave pair correlation function takes the form

D(i, j) = 〈∆̂†i ∆̂j〉, (4)

where ∆̂†i = ĉ†(i,1),↑ ĉ
†
(i,2),↓− ĉ

†
(i,1),↓ ĉ

†
(i,2),↑ creates a singlet

on rung i.
In the Luther-Emery phase, the spatial decay of the

density-density correlation function N(r) and the pair
correlation function D(r) at large distance r are domi-
nated by a power-law parametrized by the non-universal
parameter Kρ:

N(r) ∝ r−ν with ν = Kρ, (5)

D(r) ∝ r−µ with µ = 1/Kρ. (6)

Because of the relation ν ·µ = 1, one has that for Kρ > 1
the system is dominated by the d-wave pair correlations,
whereas for Kρ < 1 one observes dominant charge den-
sity wave correlations. The Luttinger liquid parameter
Kρ must in general be determined numerically. In the
limit n → 1 and in the strong-coupling limit of the t-J
model, one can construct an effective bosonic model for
hole pairs in the Hubbard model,15,16 which yields a uni-
versal power-law decay of the pair correlation function
D(r) ∝ 1/

√
r, and thus Kρ = 2. Previous DMRG cal-

culations, whose results we reproduce in Fig. 1, found
the decay of the pair-correlation function to be much
faster than D(r) ∝ 1/

√
r for weak doping, and a compar-

ison of the decay of pair- and density-density correlations
showed a violation of the identity ν · µ = 1.

III. SIMULATION METHOD

A. The density matrix renormalization group
algorithm

We tackle the model using an implementation of
the density matrix renormalization group (DMRG)
method4,5 in a formalism of matrix-product states
(MPS)18,19 available as part of the ALPS project.17,20

For recent reviews of these methods, see Refs. 6 and 21.
The DMRG method can be understood as a variational

optimization over Matrix Product State (MPS) wave-
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Figure 2. (color online) Spatial decay of the pair correlation
function D(r) on ladders with L = 128 and n = 0.875 as a
function of distance r = |i− j| for several choices of i: fixing
i = 18 (orange line) and i = 20 (green line), and averaging
11 pairs (i, j) at distance r around the middle according to
Eq. (7) (blue line).

functions, which are a class of one-dimensional ansatz
states that can be systematically refined by increasing
the so-called bond dimensionM . In a standard approach,
the variational optimization proceeds by iteratively im-
proving the wavefunction on pairs of sites. In each op-
timization step, a truncation occurs, and the sum of the
discarded components of the wave function, called trun-
cated weight ε, is stored for later evaluations (see Sec-
tion III C).

While the MPS ansatz is exact for M → ∞, a finite
value of M restricts the amount of entanglement that can
be captured by the wave function. It has been shown22–24

that this is an efficient representation of the ground states
of one-dimensional, gapped, local Hamiltonians. For gap-
less systems with a dynamical critical exponent of z = 1,
one finds that only a polynomially growing bond dimen-
sion25,26 is generally required to accurately describe local
properties. When coupling chains to ladders, M has to
increase exponentially with the width of the ladders, as
the entanglement entropy grows linearly with the width.

DMRG is most efficiently performed with open bound-
ary conditions, which causes complications since this
breaks translational invariance. Local quantities (for ex-
ample density or magnetization) will differ from site to
site and correlation functions depend not only on the dis-
tance r = |i − j| between two sites but on both sites i
and j. The latter effect can be observed in Fig. 2, where
we plot D(r) at various distances between one fixed site
i and an other site j = i+ r. To reduce boundary effects
for a correlation function C(r), we evaluate the value at
distance r by averaging over 11 pairs r = |i − j| around
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Figure 3. (color online) Local density profile for ladders with
L = 128 and n = 0.875. for several bond dimensions M ,
the inset showing details in the center of the system. The
uncertainty due to systematic errors in the extrapolated curve
M =∞ is shown as a shaded region around the estimate; its
size is often smaller than the symbols.

the middle of the system

C(r) =
1

11

5∑
s=−5

C

(⌊
L− r

2

⌋
+ s,

⌊
L+ r

2

⌋
+ s

)
. (7)

The solid dark line in Fig. 2 shows the impact of averag-
ing for reducing the oscillations induced by the bound-
aries.

In the simulations shown here, we use a two-site up-
date algorithm and generally perform between 20 and 30
sweeps until energy and local observables converge for
a given bond dimension M . For all model parameters,
we perform independent simulations with several bond
dimensions up to a maximum of M = 4800.

B. Finite size and finite entanglement scaling

To obtain reliable long-range correlation functions,
DMRG results need to be extrapolated both in system
size L and bond dimension M . In Figs. 3 and 4 we show
the local density and the pair correlation functions for
various values of M and L. It is apparent in Fig. 4 that
calculations with insufficient system size or bond dimen-
sion may lead to underestimating the strength of the cor-
relations.

To understand the interplay of bond dimension and
system size, it is crucial to note that a matrix-product
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Figure 4. (color online) Spatial decay of the pair correlation
function D(r) for ladders with n = 0.875 and several bond
dimensions M and system sizes L. Top panel: Results for
L = 128. Bottom panel: Results are extrapolated to M =
∞. The shaded region around the curve show the confidence
range of the systematic error.

state always exhibits exponentially decaying correlations
at large enough distances,18 but may reproduce power-
law decay at short distances. The scale on which the
correlations cross over from power-law to exponential be-
havior, ξM , is dictated by the bond dimension M . At
the same time, the finite size of the system will introduce
some length scale ξL on which boundary and finite-size
effects become significant, and correlations are no longer
representative of the thermodynamic limit. In interpret-
ing results obtained with DMRG for finite M and L, it
is important to distinguish different regimes depending
on whether deviations from the asymptotic behavior are
dominated by ξM or by ξL. Following Ref. 27, the regime
of small bond dimension M , where ξM � ξL, is referred
to as finite entanglement scaling (FES) regime, in which
the system does not feel the presence of the boundaries
because the correlation length induced by the finite bond
dimension is short ranged compared to the system size.
In the other limit, where ξM exhausts ξL and correla-
tions can in principle span the whole system, the finite
size scaling (FSS) regime is reached. In an intermedi-
ate regime, where ξM and ξL are comparable, a two-
parameter scaling may be necessary.

To illustrate these regimes, the top panel of Fig. 4
shows D(r) for several bond dimensions M at L = 128.

We can clearly distinguish how correlations are cut off at
a certain length scale ξM depending on the bond dimen-
sion; as the bond dimension M is increased, we can con-
sider the correlations converged for the given system size
over an increasing range of distances. The bottom panel
shows results that have been extrapolated in M for dif-
ferent system sizes L, and thus suffer only from finite-size
corrections. By comparing the two panels, we see that for
the range of system sizes considered here, ξL ≈ 50 and
thus the results in the upper panel suffer primarily from
finite-entanglement corrections for r < 50. For the bond
dimensions we can attain in practice, corrections due to
ξM set in at shorter distances, as seen in the upper panel.

In light of these considerations, we avoid having to
perform a two-parameter scaling and focus mostly on the
more relevant corrections due to finite entanglement. We
thus perform careful extrapolations in the bond dimen-
sion M for a fixed, given system size, achieving the finite-
size scaling limit ξM � ξL, and then compare results ob-
tained for different system sizes to assess the reliability.
Most of the results in the remainder of this paper are
obtained for L = 128.

C. Extrapolation to infinite bond dimension

When extrapolating observables to infinite bond di-
mension M = ∞ one choice is to extrapolate in 1/M .
However, a more controlled extrapolation may be possi-
ble by extrapolating in the variance of the energy

Var[Ĥ] = 〈Ĥ2〉 − 〈Ĥ〉2, (8)

which vanishes for an eigenstate of Ĥ. Similarly, the
truncated weight ε will vanish when the bond dimen-
sion M is large enough to faithfully represent the wave
function. For a more reliable data analysis we com-
pare extrapolations in both 1/M , truncated weight ε and

Var[Ĥ]. Unless noted otherwise, we will plot the average
of the three extrapolations together with a confidence in-
terval given by the minimum and maximum extrapolated
values as an estimate of the systematic error. When fur-
ther analysis is performed, e.g. for the determination of
Kρ, the analysis is performed for both extrapolations to
obtain error estimates on the results.

1. Extrapolating the ground state energy

For the ground state energy, the deviation of 〈Ĥ〉 from
the ground state energy E0 is known28 to depend linearly
on Var[Ĥ], which provides for very accurate extrapola-
tions. To demonstrate this dependence we write the state
|ψ〉 = |ψ0〉 + |δ〉 obtained by DMRG as the sum of the
true ground state |ψ0〉 with energy E0 and an error term
|δ〉 with 〈δ|δ〉 = δ2. Both |ψ〉 and |ψ0〉 are supposed to
be normalized. The energy of this state then is (with
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Figure 5. (color online) Extrapolation of the ground state
energy density as a function of the inverse bond dimension
1/M (left panel), the truncated weight ε (right panel, full

circles) and as a function of the energy variance Var[Ĥ] (right
panel, empty circles). Results are for L = 128 and n = 0.875.

δ̃ = 〈ψ0|δ〉+ 〈δ|ψ0〉)

〈Ĥ〉 = 〈ψ|Ĥ|ψ〉 = E0(1 + δ̃) +O(δ2). (9)

Similarly, the expectation value of Ĥ2 is

〈Ĥ2〉 = E2
0(1 + δ̃) +O(δ2). (10)

Combining these results we obtain for the energy vari-
ance (8):

〈Ĥ2〉 − 〈Ĥ〉2 = E2
0 δ̃ +O(δ2), (11)

which can be used to derive a linear dependence of the
expectation value of the ground state energy on the vari-
ance:

〈Ĥ〉 = E0 + aVar[Ĥ] +O(δ2), (12)

where a is a non-universal pre-factor independent of the
DMRG error δ. This linear dependence can be seen in
Fig. 5, and provides a more reliable extrapolation than
by extrapolating näıvely in 1/M .

2. Extrapolating other observables

This strategy cannot be generalized to generic observ-
ables that do not commute with the Hamiltonian. We
thus perform linear regressions with quadratic polyno-
mials in both the energy variance, the truncated weight
and 1/M , using results for the six largest values of M .
Spatially dependent quantities, such as the local density
and the correlation functions, are independently extrap-
olated at each point. As a consistency test sum rules are
checked, e.g. the sum of all local densities should give
the total particle number.

Figure 6 shows the extrapolations for ni, N(r) and
D(r) at various positions using both extrapolation

ni(ε)
ni(Var)

1.7640

1.7680

1.7720

1.7760

1.7800

n
i
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−0.00090

−0.00075

−0.00060

−0.00045

−0.00030

−0.00015

0.00000

N r = 66
r = 34
r = 21

N(1/M)

0.0 0.1 0.2
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D(ε)
D(Var)

0.51.0
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0.0000
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D

r = 25
r = 30
r = 40

D(1/M)

(a)

(b)

(c)

Figure 6. (color online) Extrapolation of observables as a
function of the inverse bond dimension 1/M (left panels), the
truncated weight ε (right panels, full symbols) and as a func-

tion of the energy variance Var[Ĥ] (right panels, empty sym-
bols). Shown are representative examples of (a) the local rung
density ni, (b) the density correlation function N(r), and (c)
the pair correlation function D(r). Results are for L = 128
and n = 0.875.

schemes. One notices at first that the two approaches
agree reasonably with the disagreement limited to a few
percent. For local observables, such as the local density
in panel (a), the difference can be very small, and de-
viations are generally found to be smaller towards the
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edge of the system. Correlation functions like N(r) and
D(r) are harder to extrapolate as r increases and the
relative differences in extrapolated values grow. Accu-
rately describing the behavior of correlation functions at
longer distances requires an increasing bond dimension
M . Higher order terms in the extrapolation thus become
more important at constant M and extrapolations are
harder.

IV. DETERMINING Kρ FROM DENSITY
OSCILLATIONS

The most reliable estimation of the correlation expo-
nent Kρ in DMRG calculations is based on density os-
cillations (Friedel oscillations) induced by the boundaries
of the open systems commonly studied in DMRG.29 This
method has been successfully applied to t-J ladders,29

quantum wires30 and supersymmetric fermions.31

Friedel oscillations observed in the local density profile
take the form

n(x) ≡ 〈n̂(x)〉 ≈ A cos(2πNhx/Leff + φ1)

[Leff sin(πx/Leff + φ2)]
Kρ/2

+ n0

(13)
where A is a non-universal amplitude, φ1 and φ2 phase
shifts, n0 the background density, Nh is the number of
holes in the system and Leff ∼ L is an effective length.
To derive this expression, Ref. 29 considered the slow-
est decaying component of the density-density correlation
function in the Luther-Emery model, finite size effects
are then introduced via a standard conformal transfor-
mation.

The need for an effective length can be understood
as an effect of the finite extent of the hole pairs in the
ladder. We find that an effective length Leff = L−2 best
describes our results. For our choice of doping the ladders
with multiples of four holes, there is a density maximum
in the center of the ladder and we thus need to fix the
phase shifts to φ1 = −πNhL/Leff and φ2 = π

2 (1−L/Leff).
The exponent Kρ can be obtained from finite size scal-

ing at constant density ρ. In particular, the density os-
cillation in the center of the system follow

δn(L) = n(L/2)− n0 ∼ L
−Kρ/2
eff . (14)

Unfortunately, extracting the oscillation amplitude is
not as straight-forward. The first problem is that the
background density n0 is not simply the mean density
n, but instead depends on L. This can be seen by in-
tegrating Eq. (13) and equating it to the total particle
number. Numerically, this deviation can be observed in
the top panel of Fig. 7. Secondly, for an even number of
rungs, the finite lattice spacing limits the spatial resolu-
tion, hence often it is not possible to obtain the density
exactly at x = L/2, where the oscillating factors are triv-
ial. This is not the case for an odd number of rungs as
one can see in Fig. 7b. From the lower panel of Fig. 7

30 40 50 60 70 80 90 100

rung i
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1.74
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1.77

1.78

n
i

(a)

30 40 50 60 70 80 90 100
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1.74

1.75

1.76

1.77
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n
i

(b)

32 64 128 256

L

0.010

0.004

0.006
0.008

0.020

0.040

0.060
0.080

δn

(c)

n = 0.875

n = 0.9375

n ≈ 0.875 (odd lengths)

Figure 7. (color online) (a) Fit of the density profile (solid
line) for a system of length L = 128 with filling n = 0.875
compared to the raw density (markers). The red dotted line
is the density offset n0 obtained from the least-square fit, as
a reference, the dashed green line shows the average filling n.
The fit is restricted to the shaded region to avoid the divergent
boundaries. (b) Same as (a) for a system with an additional
rung but the same number of holes, i.e. with N↑ = N↓ = 113
(two more particles and the same number of holes). (c) Finite
size scaling of the oscillation amplitude δn(L) as a function of
the system size L in double logarithmic plot for several filling
parameters.
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Table I. Kρ as extracted from the fit in Fig. 7.

Var[Ĥ] ε 1/M

n Kρ R2 Kρ R2 Kρ R2

0.875 0.99 0.9999 0.92 0.9999 1.17 0.9956

0.9375 1.54 0.9919 1.54 0.9916 1.66 0.9973

we note that the latter problem has a minor impact on
the final result, therefore we continue the analysis with
ladders of even length.

To avoid the first issue we perform a non-linear least
square fit of the local densities in the middle of our system
to Eq. (13). The parameters Leff , φ1 and φ2 are fixed as
discussed above and A, Kρ and n0 are used as fit param-
eters. The obtained fit is then used to compute δn(L),

and Kρ is extracted in another fit to δn(L) ∼ L
−Kρ/2
eff .

This approach works very well, as one can see from the
illustrative examples in Fig. 7. Here, we also show the
difference between the size-dependent background den-
sity n0 and the mean density n.

Other approaches for extracting the oscillation ampli-
tude provided no reliable results. One of the failed at-
tempts was to fix n0 from a linear interpolation of the
two closest points to the nodes in the oscillations. We
also tried obtaining n(L/2), by accounting for the sin
and cos terms in the finite size scaling, but this approach
was unstable because of numerical errors in obtaining the
wavelength of the oscillations.

Our results for the exponent Kρ obtained from the fit
in Fig. 7c) are summarized in Tab. I. We see that Kρ in-
creases with filling and it is consistent with reaching the
limit Kρ = 2 for n = 1. The goodness of the linear regres-
sion R2 is reported to be always larger than 99%, which
supports the expected decay of the oscillations. Results
for more dilute systems are discussed in Appendix A.

V. CORRELATION FUNCTIONS

Our results at low doping are consistent with the ex-
pected dominant superconducting correlations. The cor-
relation exponent obeys Kρ > 1, and therefore super-
conducting pair correlations dominate and decay slower
than 1/r. This is in contrast to Fig. 4 of Ref. 14, where
the pair correlations decay roughly as r−1.5 at n = 0.875
and n = 0.9375.

This puzzling discrepancy can be resolved by noting
that it is hard to faithfully obtain the correlation expo-
nent from the spatial decay of correlation functions. In
particular, as we argued in Sec. III, large system sizes L
and large bond dimensions M are needed to obtain reli-
able results for correlation functions. Both finite M and
finite L suppress long range correlations. While the sys-
tem sizes and bond dimensions of Ref. 14 are sufficient to
converge local quantities, they are insufficient for corre-
lation functions, and in particular the pair correlations.
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System size
32

64

80

96

128

160

192

1 10 100

r = |i− j|

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

|N
(r

)|

n = 0.9375, Kρ = 1.54

(b)

System size
32

64

96

128

160

192

Figure 8. (color online) Decay of the density-density correla-
tion function N(r) for many system system sizes. The dashed
line is a power-law decay obtained with an exponent −Kρ and

Kρ = 1.54 from the Var[Ĥ] and ε extrapolations in Table I;
the vertical offset is chosen to show the agreement with the
long-distance behavior of the correlation function. Panels a)
and b) refer to two different average fillings n = 0.875 and
n = 0.9375, respectively.

Since the determination of Kρ from local densities via
Friedel oscillations is expected to be more reliable than
from the decay of the correlation functions, we here use
the values obtained in the previous section and show that
the correlation functions – after proper extrapolation in
M and L – are consistent with these values. Figures 8
and 9 show N(r) and D(r) for various system sizes. We
notice three regimes: At short distances we find a non-
universal regime of fast-decaying correlation functions.
At the longest distances finite-size effects become relevant
and the correlation functions are strongly suppressed. In
between we find a region where the spatial decay of the
correlation functions is indeed consistent with a power
law. For L = 192 and extrapolating M → ∞ we find
good agreement in the range 10 . r . 90 with the ex-
pected behavior based on the values of Kρ obtained by
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Figure 9. (color online) Decay of the pair correlation function
D(r) for many system system sizes. The dashed line is a
power-law decay obtained with an exponent −1/Kρ and Kρ =

1.54 from the Var[Ĥ] and ε extrapolations in Table I; the
vertical offset is chosen to show the agreement with the long-
distance behavior of the correlation function. Panels a) and
b) refer to two different average fillings n = 0.875 and n =
0.9375, respectively.

the extrapolations in Var[Ĥ] and ε in Tab. I.
Note that where the pairfield correlations always re-

main positive, the density correlations oscillate across
zero. This eventually leads to the spikes when N(r) is
about to change sign in Fig. 8, where we plot its absolute
value on a double-logarithmic axis.

VI. CONCLUSIONS

In this paper we settle the long-standing disagreement
between the analytically predicted behavior of the pair
correlation functions in weakly doped Hubbard ladders
and results of DMRG calculations. We illustrate the two
main causes of the discrepancy in previous results, which
had indicated that the pair correlation function decays

faster than expected. The first cause is the need for
very long system sizes, as finite sizes tend to strongly
suppress pair correlation functions when the distance be-
comes comparable to the system size. More importantly,
a careful extrapolation in the bond dimension to M →∞
is necessary and has to be performed separately for each
distance. Increasingly larger bond dimensions M are
needed to obtain converged results for longer distances
r, substantially larger than necessary to converge local
quantities.

We devote particular attention to the extrapolation
techniques. All data used for our work and fitting and
extrapolation workflows are available as Supplementary
Material32 to allow the reader to reproduce our results
and modify the details of the extrapolation and fit ap-
proaches and see how they affect the final results.

While we here use a standard finite-size DMRG ap-
proach with open boundary conditions, recently proposed
techniques such as the sine-square deformation33, grand-
canonical DMRG34 or infinite-size DMRG35 could also
be applied to this problem.

Achieving a good understanding of the two-leg lad-
der and the effects of finite entanglement scaling and
finite size scaling of DMRG observables, and obtaining
reliable results for the pair correlation function in this
simple model is an important milestone to improving
the reliability of numerical simulations for larger, two-
dimensional systems.
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Appendix A: Weak hole-doping results

For very dilute systems such as n = 0.96875 we find
that the finite size analysis described in Section IV be-
comes less reliable, as DMRG convergence and extrap-
olation become more challenging. Since we evaluate an
even number of hole pairs, only three system sizes are
available, L = 64, L = 128 and L = 192, correspond-
ing to only 2, 4 and 6 hole pairs, respectively. Longer
system sizes would be needed to perform a rigorous scal-
ing analysis. Furthermore, distributing six hole pairs in
such a long system is a very slow process and often leads
to convergence problems as has been observed for the t-J
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Table II. Kρ as extracted from the fit in Fig. 10, where only
the two largest system sizes L = 128 and L = 192 are consid-
ered.

n Var[Ĥ] ε 1/M

0.96875 1.87 1.85 2.39

model.37 To improve convergence speed one could employ
multigrid techniques.38

Here we present the results obtained at average filling
n = 0.96875. Figure 10 shows that finite size scaling anal-
ysis, whose exponents are reported in Table II. Compar-
isons for the spatial decay of correlation functions with
the exponent Kρ expected from the Friedel oscillations
are shown in Figure 11 and 12.

Note that in the scaling analisys of the Friedel os-
cillations we consider only the two largest system sizes
L = 128 and L = 192, because the first system size
L = 64 contains only two hole pairs, hence finite size ef-
fects are expected to have a dominant contribution. The
value of Kρ obtained from the fit (see Table II) is again
compatible with the expected limit for n = 1, and it is

compatible with the decay of correlation functions (see
Figure 11 and 12).
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0.060
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Figure 10. (color online) Finite size scaling of the oscillation
amptitude δn(L) as a function of the system size L in double
logarithmic plot for several an average filling n = 0.96875.
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Figure 11. (color online) Decay of the density-density correla-
tion function N(r) for many system system sizes with average
filling n = 0.96875. The dashed line is a power-law decay ob-
tained with an exponent µ = −Kρ and Kρ from the Var[Ĥ]
and ε extrapolations in Table I; the vertical offset is chosen
to show the agreement with the long-distance behavior of the
correlation function.
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Figure 12. (color online) Decay of the pair correlation func-
tion D(r) for many system system sizes with average filling
n = 0.96875. The dashed line is a power-law decay obtained
with an exponent ν = −1/Kρ and Kρ from the Var[Ĥ] and
ε extrapolations in Table I; the vertical offset is chosen to
show the agreement with the long-distance behavior of the
correlation function.
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