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The accurate and efficient description of strongly correlated systems remains an important challenge
for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons
are paired and no correlations which break these pairs are permitted, can in many cases provide an
accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there
has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant
of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides
energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the
cost of the two-electron integral transformation). Here, we introduce the more complete pair extended
coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces
DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function
with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interac-
tions where pCCD breaks down. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921986]

I. INTRODUCTION

While the description of the ground state of weakly corre-
lated systems is by now fairly routine, the same cannot be
said for strongly correlated problems. Because coupled cluster
theory1–3 offers exceptional accuracy for the description of
weak dynamic correlations, we would like to use some variant
of coupled cluster theory as well for the strong static correla-
tions; in this way, one could seamlessly merge the two ideas to
provide a more powerful technique which should be accurate
for both regimes. Unfortunately, the construction of coupled
cluster techniques for strongly correlated systems is a work in
progress.

A particularly interesting recent development is the notion
of pair coupled cluster doubles (pCCD),4–9 which takes the
simple coupled cluster wave function and makes the dramatic
simplification that the only allowed excitations are of a paired
form in which two electrons are removed from the same
spatial orbital and placed in some other spatial orbital. In
other words, pCCD is coupled cluster doubles restricted to
include only seniority zero determinants, where the seniority
of a determinant is the number of singly occupied spatial
orbitals. This restriction greatly decreases the cost of the
coupled cluster calculation to mean field or O(M3) if one
ignores the two-electron integral transformation, but rather
paradoxically, despite this simplification, the pCCD wave
function yields results very close to the doubly occupied
configuration interaction (DOCI),10–16 which includes such
pair excitations to all excitation levels. This DOCI method
is not new and includes many powerful geminal wave func-
tions, including the antisymmetrized geminal power (AGP),
the antisymmetric product of strongly orthogonal geminals
(APSG), and many others. For many problems of interest,
DOCI is able to describe the basics of the strong correlations
and to the extent that pCCD reproduces DOCI, so too does
pCCD.

We note, however, that the coincidence between pCCD
and DOCI is not entirely universal. For the attractive pairing
Hamiltonian

H =


p

ϵ p



σ

a†pσ apσ − G


pq

a†p↑ a†p↓ aq↓
aq↑

, (1)

where σ indexes spins and G > 0, we observe that as the
pairing strength G becomes larger and the mean-field solution
develops an instability toward a number symmetry broken
Hartree-Fock-Bogoliubov state, pCCD breaks down dramati-
cally, overcorrelating wildly before eventually returning com-
plex energies.17 This suggests that pCCD may not be able
to describe the kinds of strong correlations needed to model
phonon-mediated superconductivity, for example.

Moreover, even when the pCCD energy accurately repro-
duces DOCI, the wave functions may not. In coupled cluster
theory, the Hamiltonian is similarity transformed, yielding a
non-Hermitian effective Hamiltonian H̄ = exp(−T) H exp(T).
Because H̄ is non-Hermitian, it has different left- and right-
hand eigenvectors,

H̄ |0⟩ = E |0⟩, (2a)

⟨0|(1 + Z) H̄ = E⟨0|(1 + Z), (2b)

where Z creates excitations to the left and |0⟩ is the mean-field
reference. This structure in turn translates to different left- and
right-hand wave functions for the original Hamiltonian, which
in pCCD are taken to be

⟨LpCCD| = ⟨0|(1 + Z) e−T , (3a)

|RpCCD⟩ = eT |0⟩, (3b)

where T and Z , respectively, create pair excitations and pair
de-excitations when acting to the right. In Ref. 9, we and others
showed that the overlap

S = ⟨LpCCD|DOCI⟩ ⟨DOCI|RpCCD⟩ (4)
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is close to unity, but this does not separately test the pCCD
left-hand and right-hand wave functions and, as we will see
below, while the pCCD right-hand wave function is close to the
DOCI state, the same is not necessarily true of the pCCD left-
hand wave function. This can cause the pCCD density matrices
to be less accurate approximations of the actual DOCI density
matrices than we would like.

This manuscript introduces the pair extended coupled
cluster method (pECCD) which seeks to remedy these defi-
ciencies. Where pCCD is the seniority zero version of coupled
cluster doubles, pECCD is the seniority zero version of the
extended coupled cluster doubles method of Arponen and
Bishop.18–24 While extended coupled cluster has not seen a
great deal of use due to its large computational cost (O(M10) for
extended coupled cluster doubles22,25), pECCD has the same
mild mean-field O(M3) scaling with system size displayed by
pCCD, though with a rather larger prefactor. We will sketch the
pCCD method in Sec. II and provide a few results in Sec. III to
show the basic performance of the method before providing our
conclusions and prospects for further development in Sec. IV.
We should note that the equations needed for efficient compu-
tation of the pECCD energy and wave function amplitudes are
exceedingly lengthy despite their low computational cost; here,
we provide a simpler but computationally more demanding
expression for the energy (from which the amplitude equations
follow) and have not included the amplitude equations at
all. The Appendix contains the more efficient O(M3) energy
expression, and code to solve the amplitude equations has been
made available in the supplementary material.26

We should emphasize that DOCI treats only a portion of
the Hilbert space of the problem, and all correlations outside
of the seniority zero sector must be included in some manner
if one expects to reach quantitative accuracy. That is, DOCI is
valuable conceptually because it includes many strong corre-
lation effects, but it should not be understood as a stand-
alone solution to the Schrödinger equation. Accordingly, while
DOCI (and therefore also pCCD and pECCD) is a useful piece
of the correlation puzzle, other pieces are missing and must be
in some way incorporated. Figure 1 shows total energies from
restricted Hartree-Fock (RHF), DOCI, and full configuration
interaction (FCI) in the 6-site Hubbard Hamiltonian and in an
active space of N2. Indeed, both DOCI and its non-variational

pCCD approximation describe strong correlations quite accu-
rately, though clearly residual correlations beyond seniority
zero are needed for quantitative agreement with exact results.

II. THEORY

The basics of the pair extended coupled cluster method are
simple. We define a pair excitation operator,

T =


ai

tia P†a Pi, (5)

and a pair de-excitation operator,

Z =


ai

zai P
†

i
Pa, (6)

where the pair creation operator P
†
p is given by

P†p = a†p↑ a†p↓ (7)

and the pair annihilation operator Pp is its adjoint. Note that
these operators are nilpotent (P2

p = 0) and that more general
pairing schemes than this simple singlet pairing within the
same spatial orbital are possible.27

Regardless, having defined an excitation operator T and a
de-excitation operator Z , the pECCD energy is given by

EpECCD = ⟨0|eZ e−T H eT e−Z |0⟩ (8a)

= ⟨0|(1 + Z +
1
2

Z2 +
1
6

Z3) e−T H eT |0⟩, (8b)

where in the second line, we have used the facts that the de-
excitation operator Z annihilates the vacuum to the right and
that the similarity transformed Hamiltonian H̄ = e−T H eT is a
six-body operator that creates up to hextuple excitations to the
right, so that no more than hextuple de-excitations (created by
Z3) are needed for the case under consideration. The ampli-
tudes tia and zai are obtained by solving

0 =
∂EpECCD

∂tia
=

∂EpECCD

∂zai
. (9)

We will take the physical Hamiltonian to be

FIG. 1. Total energies from RHF and DOCI compared to the exact (FCI) results. Left panel: N2 in the cc-pVDZ basis set in a 10/8 active space (data from
Ref. 16). Right panel: 6-site periodic Hubbard Hamiltonian at half-filling.
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H =


pq



σ

⟨p|h|q⟩ a†pσ aqσ

+
1
2



pqr s



ση

⟨pq|v |rs⟩ a†pσ a†qη asη arσ, (10)

where ⟨p|h|q⟩ and ⟨pq|v |rs⟩ are one- and two-electron inte-
grals; note that the two-electron integrals here are not anti-
symmetrized. Greek letters index spin while Latin letters in-
dex spatial orbitals, with i, j, k, . . . denoting occupied orbitals,
a,b,c, . . . denoting virtual orbitals, and p, q, r, . . . denoting
arbitrary orbitals.

We can greatly simplify the derivation of the pECCD
energy (and therefore amplitude equations) by replacing the
physical Hamiltonian H with the portion HδΩ=0 which pre-
serves seniority. For a two-body Hamiltonian, we would have

H = HδΩ=0 + HδΩ=2 + HδΩ=4, (11)

where HδΩ=2 and HδΩ=4 couple determinants whose seniorities
differ by two and by four, respectively. Determinants differing
by an odd seniority have different electron numbers, while
determinants differing by an even seniority greater than four
differ by a triple excitation or higher (and thus cannot be
coupled by a two-body operator). Because every spatial orbital
in pCCD or pECCD has seniority zero (i.e., all orbitals are
either doubly occupied or empty, as singly occupied orbitals
have seniority one), it will suffice for our purposes to determine
what we will call HδΩ=0

0 , which is the part of HδΩ=0 that
preserves the seniority of each orbital. We caution, however,
that HδΩ=0

0 omits terms which change the seniority of indi-
vidual orbitals while preserving the total seniority; these terms
do not contribute to closed-shell pCCD or pECCD but could
contribute to a kind of ROHF-based generalization of pCCD
or pECCD.

We derive our expression for HδΩ=0
0 in the Appendix and

merely quote it here,

HδΩ=0
0 =



p

hp Np +
1
4



p,q

wpq Np Nq

+


pq

vpq P†p Pq +


p,q

Kpq S⃗p · S⃗q, (12)

where the necessary integrals are

hp = ⟨p|h|p⟩, (13a)

vpq = ⟨pp|v |qq⟩, (13b)

wpq = 2 ⟨pq|v |pq⟩ − ⟨pq|v |qp⟩, (13c)

Kpq = −⟨pq|v |qp⟩, (13d)

and where the number and spin operators are given by

Np =


σ

a†pσ apσ, (14a)

S⃗p =
1
2



ξη

a†pξ (σ⃗)ξη apη, (14b)

where σ⃗ is the vector of Pauli matrices. The Heisenberg-like
term



p,q Kpq S⃗p · S⃗q will not contribute in our closed-shell
case because closed-shell orbitals have spin zero. The number
operator and pair creation and annihilation operators satisfy
SU(2) commutation relationships

[Pp,P
†
q] = δpq

�
1 − Np

�
, (15a)

[Np,Pq] = −2 δpq Pq. (15b)

One can verify that

⟨0|HδΩ=0
0 |0⟩ = ⟨0|H |0⟩, (16)

where |0⟩ is a closed shell or restricted open-shell determinant
(i.e., a determinant which uses the same spatial orbitals for
different spins).

Given the seniority-preserving Hamiltonian, the pECCD
energy can be obtained simply by computing the pECCD
density matrices. As discussed in Ref. 9, the density matrices
of seniority zero methods are sparse, and in fact the only
non-zero elements are precisely those we need to evaluate
the expectation value of HδΩ=0

0 . We may of course also use
density matrices to take other expectation values; in particular,
they can be used in orbital optimization.9 In this work, we
will use orbitals optimized for pCCD, because in our experi-
ence, the pCCD- and pECCD-optimized orbitals are virtually
identical and the pCCD orbital optimization is somewhat less
expensive because the pCCD density matrices are simpler to
compute.

To compute density matrix elements, we define a pECCD expectation value via

⟨O⟩ = ⟨0|eZ e−T O eT |0⟩. (17)

Given this expectation value, we find that the density matrices are given by

⟨Ni⟩ = 2 *
,1 −



a

tia zai+- , (18a)

⟨Na⟩ = 2


i

tia zai, (18b)

⟨Ni Nj⟩ = 4 *,1 −


a

�
tia zai + t ja za j

�
+ δi j



a

tia zai + δ̄i j



a,b

tia t jb
�
zai zb j + zbi za j

�+
- , (18c)

⟨Na Nb⟩ = 4 *.
,δab



i

zai tia + δ̄ab



i, j

tia t jb
�
zai zb j + zbi za j

�+/
- , (18d)
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⟨Nj Na⟩ = 4 *.
,


i, j

tia zai −


i, j



b,a

tia t jb
�
zai zb j + zbi za j

�+/
- , (18e)

⟨P†a Pi⟩ = zai, (18f)

⟨P†a Pb⟩ =


i

zai tib − 2 δ̄ab



i, j

zai zb j tib t jb, (18g)

⟨P†
i

Pj⟩ =


a

tia za j + δi j *,1 − 2


a

tia zai+- − 2 δ̄i j



a,b

tia tib zai zb j, (18h)

⟨P†
i

Pa⟩ = tia − 2


j,i

tia t ja za j − 2


b

tib tia zbi +


b j

tib t ja zb j − 2


b,a



j,k

tib t ja tka za j zbk

+ 4


b,a



j,i

tia tib t ja
�
zai zb j + zbi za j

�
− 2


b,c



j,i

tib tic t ja zbi zc j

+ 2


b,c,a



j,k,i

tib tic t ja tka
�
zai zb j zck + 2 za j zbk zci

�
, (18i)

where δ̄pq = 1 − δpq. Then, the energy is just given by

EpECCD =


p

hp ⟨Np⟩ +


pq

vpq ⟨P
†
p Pq⟩ +

1
4



p,q

wpq ⟨Np Nq⟩,

(19)

where indices p and q label arbitrary orbitals and where
we have disregarded the Heisenberg Hamiltonian term as its
expectation value vanishes. One can verify that the pCCD
energy is properly reproduced by taking the pECCD energy
and omitting terms of O(Z2) or O(Z3).

While constructing the density matrices given in Eq. (18)
would appear to require O(M6) computational time, the sum-
mation restrictions can be lifted by adding and removing terms
which, with sufficient exertion, allows one to evaluate the
density matrices and thus the energy in O(M3) time after
introducing intermediates. For example, we may write



a,b

tia tib zai zb j =


ab

tia tib zai zb j

−


a

tia tia zai za j (20a)

= xii xi j − yi j (20b)

in terms of intermediates,

xi j =


a

tia za j, (21a)

yi j =


a

tia tia zai za j . (21b)

Similarly, the amplitude equations can be solved in O(M3)

operations with the appropriate definition of intermediates. We
have checked the correctness of our O(M3) implementation by
comparison to the explicit O(M6) result for random input T

and Z amplitudes and integrals h, v , and w and have verified
our O(M3) amplitude equations by comparing analytic and
numerical derivatives of EpECCD for random inputs.

We should emphasize that while the pCCD and pECCD
density matrices both adopt a quasi-diagonal form, the pECCD
two-particle density matrices are much more complicated. This
is simply because the pECCD left-hand wave function (see

below) is more sophisticated; it contains excitations to all even
orders and thereby has more flexibility in fitting DOCI than
does pCCD, even though pCCD and pECCD have the same
number of parameters to optimize. Note that the z amplitudes
of pCCD do not affect the energy directly, whereas those of
pECCD do.

III. RESULTS

Following Ref. 9, we will compare the pCCD, pECCD,
and DOCI energies for a variety of systems, defining, for
example,

∆EpECCD = EpECCD − EDOCI, (22)

and will also assess the quality of the pCCD and pECCD wave
functions by evaluating

S = ⟨L |DOCI⟩ ⟨DOCI|R⟩, (23)

where for both pCCD and pECCD, the right-hand wave func-
tion is

|R⟩ = eT |0⟩, (24)

while the left-hand wave functions are

⟨LpECCD| = ⟨0|eZ e−T , (25a)

⟨LpCCD| = ⟨0|(1 + Z) e−T (25b)

for pECCD and pCCD, respectively. Recall that

1 = ⟨L |R⟩

= ⟨L |DOCI⟩ ⟨DOCI|R⟩ +


k

⟨L |DOCIk⟩ ⟨DOCIk |R⟩,

(26)

where |DOCIk⟩ is the kth excited DOCI state; thus, we will
have S ≈ 1 provided that the DOCI excited states have minimal
overlap with either the left-hand or right-hand state of pECCD
or pCCD. It will also prove fruitful to look in more detail;
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however, at the individual left- and right-hand overlaps,

SL = NL ⟨L |DOCI⟩, (27a)

SR = NR ⟨DOCI|R⟩, (27b)

where the normalization constantsNL andNR are such that the
left- and right-hand states are individually normalized to unity
so that, for example,

N 2
R ⟨R |R⟩ = N

2
R ⟨0|e

T † eT |0⟩ = 1. (28)

These allow us to assess separately the quality of the left- and
right-hand wave functions.

As Ref. 9 makes clear, with orbital optimization, pCCD is
exact for two-electron singlets. The same is of course true for
pECCD. Thus, both are exact for H2 and nearly exact for LiH,
with little to distinguish the two approaches in the latter case.
It will therefore be more fruitful to focus on systems with more
strongly correlated electrons.

We begin, then, with chains of equally spaced hydrogen
atoms. The strong correlations in these systems seem to be
described reasonably well by DOCI. Figure 2 shows that while
pCCD reproduces DOCI quite well energetically, pECCD does
so even better. More relevantly, while both pCCD and pECCD
accurately describe the right-hand wave function (i.e., we
see that |DOCI⟩ ≈ exp(T)|0⟩), the left-hand wave function of
pCCD is a fairly poor approximation to the DOCI state, while
the left-hand wave function of pECCD is again very accurate.

This should not be too surprising, as the pCCD left-hand
wave function ⟨0|(1 + Z) exp(−T) consists only of the refer-
ence and doubly excited determinants, while the pECCD left-
hand wave function includes all the same higher excitations
that DOCI adds. Indeed, that pECCD accurately reproduces
the left-hand wave function of DOCI while pCCD sometimes
does not seems to be a fairly general feature. Note that while
an accurate left-hand wave function is not needed for accurate
energies, errors in the left-hand wave function may translate
into errors for properties other than the energy. In other words,
while both pCCD and pECCD match the DOCI energy, we
would expect only pECCD to match DOCI for arbitrary prop-
erties. We should also perhaps emphasize the smallness of the
various discrepancies; the pECCD energy differs from DOCI
by less than 0.001 kcal/mol per electron, and the left- and right-
hand states have overlaps with DOCI differing from 1 by about
10−8, implying that the coefficients of DOCI excited states in
the pECCD ground state are less than 10−4. For all practical
purposes, pECCD reproduces DOCI exactly.

Similar results are seen in the symmetric double dissocia-
tion of H2O (Fig. 3) and in the dissociation of N2 (Fig. 4). While
the pCCD energy and right-hand wave function are close to
those of DOCI, pECCD is closer yet; meanwhile, the pECCD
left-hand wave function may be a much better approximation to
DOCI than the pCCD left-hand wave function. This is true not
just in the basis of energetically optimized orbitals, but is also
true with canonical Hartree-Fock orbitals (see, e.g., Fig. 5).

FIG. 2. Differences between pCCD, pECCD, and DOCI in equally spaced hydrogen chains. Top left: Base 10 logarithm of the absolute value of ∆E , measured
in Hartrees and defined in Eq. (22). Top right: Base 10 logarithm of the absolute value of 1−S as defined in Eq. (23). Bottom left: Base 10 logarithm of the
absolute value of 1−SL as defined in Eq. (27a). Bottom right: Base 10 logarithm of the absolute value of 1−SR as defined in Eq. (27b). Kinks in the pCCD
results for ∆E and 1−S are due to changes in sign.
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FIG. 3. Differences between pCCD, pECCD, and DOCI in the dissociation of H2O. Left panel: Base 10 logarithms of the absolute value of ∆E (measured
in Hartrees and defined in Eq. (22)) and of 1−S (defined in Eq. (23)). Right panel: Base 10 logarithms of the absolute value of 1−SL and 1−SR, defined in
Eq. (27). Kinks in the pCCD results in the left panel are due to changes in sign.

FIG. 4. Differences between pCCD, pECCD, and DOCI in the dissociation of N2. Left panel: Base 10 logarithms of the absolute value of ∆E (measured in
Hartrees and defined in Eq. (22)) and of 1−S (defined in Eq. (23)). Right panel: Base 10 logarithms of the absolute value of 1−SL and 1−SR, defined in
Eq. (27). Kinks in the pCCD results in the left panel are due to changes in sign.

FIG. 5. Differences between pCCD, pECCD, and DOCI in the dissociation of H2O, pairing canonical Hartree-Fock orbitals (i.e., pairing orbitals which
diagonalize the Fock operator). Left panel: Base 10 logarithms of the absolute value of ∆E (measured in Hartrees and defined in Eq. (22)) and of 1−S
(defined in Eq. (23)). Right panel: Base 10 logarithms of the absolute value of 1−SL and 1−SR, defined in Eq. (27). Kinks in the pCCD results in the left panel
are due to changes in sign.

We have mentioned that the close coincidence between
pCCD and DOCI breaks down for the attractive pairing Hamil-
tonian of Eq. (1) which in the language of the SU(2) generators
discussed earlier is just

H =


ϵ p Np − G


pq

P†p Pq. (29)

Note that for G > 0, pairs attract one another. This is in contrast
to the electronic Hamiltonian of Eq. (12), where the pairing
interaction specified by the integrals vpq > 0 is purely repul-
sive. Because the pairing Hamiltonian contains only the SU(2)
pairing (or pseudospin) generators, it is solved exactly by
DOCI. Conveniently, however, a more compact, exact solution
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FIG. 6. Energies in the 40-site pairing Hamiltonian at half-filling. Left panel: Total energies. Right panel: Fraction of the DOCI correlation energy recovered
by pCCD, pECCD, and by pCCD based on a number-broken BCS reference. Near the value marked Gc, number symmetry is spontaneously broken at the
mean-field level, as can be seen from the BCS-based pCCD results.

was found by Richardson,28–30 which permits the generation
of exact energies for systems far too large to be practicably
solved by DOCI. In Fig. 6, we consider a 40-site pairing
Hamiltonian with equally spaced levels (ϵ p = p) at half-filling.
One can see that near G ≈ 0.2, pCCD begins to deviate signif-
icantly from DOCI, and for G & 0.3, we can find no real
solution to the pCCD equations (solutions with complex T

amplitudes and complex correlation energies exist, but are of
limited physical interest). While pECCD also begins to break
down somewhat, it provides a much more accurate descrip-
tion of the correlations in the pairing Hamiltonian for large
G. Note that for the half-filled forty-site Hamiltonian under
consideration, a broken number symmetry mean field appears
at Gc ≈ 0.22, not coincidentally close to the value at which
pCCD begins to break down. While pECCD is not a panacea,
it provides results much superior to pCCD for the pairing
Hamiltonian and competitive with pCCD based on the broken-
symmetry mean-field17 for G not too large. To the extent that
non-pair correlations renormalize the interactions in the phys-
ical Hamiltonian via exp(−TΩ,0) H exp(TΩ,0), where TΩ,0 is
the non-pair portion of T , the fact that pECCD much more
accurately describes attractive interactions than does pCCD
may be important in the modeling of realistic materials.

As discussed earlier, because the pECCD left-hand wave
function has much better overlap with the DOCI wave function
than does the left-hand wave function of pCCD, one would
expect pECCD to yield density matrices closer to the DOCI
density matrices than does pCCD. This is indeed the case.
Figure 7 shows fractional errors in the entries of the two-
particle density matrix contributions ⟨P†p Pq⟩ for N2 in the
recoupling regime (RN−N ≈ 2.2 Å). Explicitly, we are plotting
the fractional error 1 − Γ/ΓDOCI in the matrix elements of the
two-particle density matrix for all elements ΓDOCI larger than
10−4, since very small elements of ΓDOCI are unlikely to have
significant contributions to expectation values. We see that
typically, the pCCD values differ from those of DOCI by∼1%,
while the errors in the pECCD density matrix elements are
an order of magnitude or more smaller. Note that we have
Hermitized the pCCD and pECCD density matrices to simplify
the comparison; this has a much larger effect on pCCD than
on pECCD because the pECCD density matrix is more nearly

FIG. 7. Base 10 logarithms of the fractional differences between pCCD,
pECCD, and DOCI two-particle density matrices. Here, δΓ means the differ-
ence between entries of the pCCD or pECCD density matrix and the DOCI
density matrix. We have omitted elements of the DOCI density matrix smaller
in magnitude than 10−4.

Hermitian. For example, the Frobenius norms


Tr(Γ ΓT) of
the antisymmetric parts of two-particle density matrices dis-
cussed in Fig. 7 are 5.15 × 10−2 for pCCD and 7.68 × 10−5 for
pECCD.

IV. CONCLUSIONS

In many cases, a configuration interaction restricted to
paired excitations but not restricted by excitation level can
provide an accurate accounting for static correlation effects,
particularly once the orbitals used to define the pairing and the
reference determinant are optimized. The idea that this doubly
occupied configuration interaction could describe many forms
of static correlation is not a new one; indeed, DOCI itself was
introduced over forty years ago.10–13 But while pair-excited
configuration interaction attracted a great deal of early interest,
the method was basically abandoned due to its exponential
scaling with system size, which renders DOCI unsuitable for
practical calculations.

With pair coupled cluster doubles and pair extended
coupled cluster doubles, we now possess two models in the
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coupled cluster family which generally provide results almost
indistinguishable from those of DOCI but with mean-field
computational cost. While the pCCD energy and right-hand
wave function typically reproduce DOCI very well, the left-
hand wave function, being a linear combination of the refer-
ence and doubly excited determinants, is not always of partic-
ularly good quality. Moreover, for attractive interactions (or
at least for the attractive pairing interaction), pCCD does not
accurately reproduce DOCI once the mean-field is unstable to-
ward number symmetry breaking (though we emphasize again
that for the physical electronic Hamiltonian, the pairing-type
interaction is repulsive and can only become attractive upon
renormalization with some Hamiltonian transformation). Both
these difficulties can be ameliorated by using pair extended
coupled cluster doubles, which seems to offer much more
accurate results for attractive interactions where it is within a
few percent of DOCI for weakly broken number symmetry, as
well as a much superior left-hand wave function (and therefore
superior density matrices and expectation values). The compu-
tational scaling of pECCD is the same as pCCD, namely,
O(M3), though the pECCD energy and amplitude equations are
significantly more complicated and the method is accordingly
roughly an order of magnitude more expensive than is pCCD
itself. Nonetheless, the mean-field computational scaling per-
mits routine pECCD calculations on systems with hundreds of
basis functions, for which we can reliably anticipate getting
results of essentially DOCI quality for both the energy and
for other observables. We hope, then, that pECCD will be a
valuable tool for the description of strongly correlated systems,
particularly when pairing interactions become attractive and
number symmetry is not strongly broken, and that it will form
an excellent starting point from which to add correlations
which break pairs.

There are, of course, important drawbacks of pECCD as
well. The most significant is that pECCD does not include
dynamic correlation. One can attempt to fix this with the addi-

tion of a simple density functional correlation energy,31 or by
relaxing the restriction to seniority zero, whether by freez-
ing amplitudes8,9 or by including all possible singlet pairing
terms,27 or potentially by including a perturbative account for
higher seniority sectors. In other words, the restriction to the
seniority zero sector of Hilbert space allows us to accurately
reproduce DOCI, but DOCI is only a portion of the full config-
uration interaction, and the correlations from the remaining
sectors of Hilbert space must still be incorporated to yield
accurate results in general systems. Moreover, the restriction to
seniority zero is sometimes too severe even for the description
of strong correlations; some systems simply require higher
seniority sectors for the accurate treatment of static correlation
effects, as is seen, for example, in the dissociation of N2.16 We
may hope to treat these problems by lifting the restriction that
the pairing scheme pairs the two spinorbitals corresponding
to the same spatial orbital. This might even open the door to
the use of broken spin symmetry in seniority zero methods for
strongly correlated systems.
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APPENDIX A: EFFICIENT ENERGY EXPRESSION

The density matrices given in Eq. (18) are evaluated in
O(M6) computational effort due to the presence of restrictions
on summation indices. As we have noted, one can carefully
add zero to the equations in such a way as to eliminate the
summation restrictions, which then permits an efficient evalu-
ation of the density matrices (and therefore the energy). Here,
we quote our final result for the energy, which can be obtained
by a straightforward but tedious series of manipulations,

EpECCD = EHF +


ia


via tia (1 + 2 tia zai) + vai zai + 2 zai tia (ϵa − ϵ i − wai)


+


a,b

wab

(

xaa xbb + xab xba − 2 mba

)

+


i, j

wi j

(

xii x j j + xi j x j i − 2 mi j

)

− 2


ia

wai


zai xia + xii xaa − 2 tia zai (xii + xaa − tia zai)


+


a,b

vba [xba + 2 (yba − xba xaa)] +


i, j

vi j
�
xi j + 2

�
yi j − xi j xii

��
+


a

vaa xaa +


i

vii xii

+


ia

via

2 Aia (1 − 2 xii) + 2 Bia (1 − 2 xaa) + 4 yia


+


ia

via xia


1 − 2 (xii + xaa − 2 xii xaa)


+ 2


ia

via zai (uia − Cia − Dia + xia xia)

+ 2


ia

via tia

(yaa − xaa xaa) (2 xii − 1) + (yii − xii xii) (2 xaa − 1) − (xii + xaa − 2 xii xaa)


+ 4


ia

via tia zai

xia (1 − 2 xii − 2 xaa + 2 tia zai) + 2 Aia + 2 Bia


− 4


ia

via tia tia zai

2 (xii + xaa − 2 xii xaa) + 3 (yii − xii xii + yaa − xaa xaa)


+ 8


ia

via tia tia tia zai zai (1 − 3 xii − 3 xaa) + 24


ia

via tia tia tia tia zai zai zai. (A1)
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The energy, then, can be evaluated with O(M2) cost in terms
of the various intermediate quantities which appear in the
foregoing equation.

The intermediates we have defined are

xi j =


b

tib zb j, (A2a)

xba =


j

zb j t ja, (A2b)

xia =


jb

tib zb j t ja, (A2c)

mi j =


b

tib t jb zbi zb j, (A2d)

mba =


j

t jb t ja zb j zba, (A2e)

yi j =


b

tib tib zbi zb j, (A2f)

yba =


j

t ja t ja za j zb j, (A2g)

yia =


b j

tib tib zbi zb j t ja t ja za j, (A2h)

uia =


b j

tib tib zb j zb j t ja t ja, (A2i)

Aia =


b j

tib zb j t ja t ja za j, (A2j)

Bia =


b j

tib tib zbi zb j t ja, (A2k)

Cia =


bc j

tib zb j tic zc j t ja t ja, (A2l)

Dia =


b jk

tib tib zb j t ja zbk tka. (A2m)

These intermediates can be evaluated efficiently in O(M3)

time through a combination of matrix multiplication
(A · B)pq =



r Apr Brq


and element-by-element multipli-

cation
�
(A × B)pq = Apq Bpq

�
. It is of course possible to further

simplify the energy expression by defining more complicated
intermediates.

APPENDIX B: USEFUL DERIVATIONS

Here, we sketch a few derivations which the reader may
find helpful but which are not necessary for understanding the
thrust of the manuscript.

1. Derivation of HδΩ=0
0

Recall that HδΩ=0
0 is the portion of the Hamiltonian which

preserves seniorities of individual spatial orbitals. Here, we
wish to derive the expression quoted in Eq. (12).

Let us start, then, with the one-electron part of the Hamil-
tonian. In order to preserve orbital seniority, when we remove
an electron from orbital p, we must return it to orbital p. Thus,

we have


pq



σ

⟨p|h|q⟩ a†pσ aqσ →


p

⟨p|h|p⟩


σ

a†pσ apσ (B1a)

=


p

⟨p|h|p⟩


σ

npσ (B1b)

=


p

⟨p|h|p⟩ Np, (B1c)

where the spinorbital number operators are

npσ = a†pσ apσ (B2)

and their sum is the spatial orbital number operator Np given
in Eq. (14a).

The two-electron part of the Hamiltonian is slightly more
complicated. We could remove two electrons from orbital p

and place them in orbital q, or we could remove one electron
from orbital p and another from orbital q , p, in which case,
we must place electrons back in orbitals p and q; in the latter
case, we must include the possibility of an exchange where the
first electron is removed from p but placed in q. All told, we
have

1
2



pqr s



ση

⟨pq|v |rs⟩ a†pσ a†qη asη arσ

→
1
2



pq



ση

⟨pp|v |qq⟩ a†pσ a†pη aqη aqσ

+
1
2



p,q



ση

⟨pq|v |pq⟩ a†pσ a†qη aqη apσ

+
1
2



p,q



ση

⟨pq|v |qp⟩ a†pσ a†qη apη aqσ (B3a)

=
1
2



pq

⟨pp|v |qq⟩


σ

a†pσ a†pσ̄ aqσ̄ aqσ

+
1
2



p,q

⟨pq|v |pq⟩


ση

npσ nqη

−
1
2



p,q

⟨pq|v |qp⟩


ση

a†pσ apη a†qη aqσ (B3b)

=


pq

⟨pp|v |qq⟩ P†p Pq

+
1
2



p,q

⟨pq|v |pq⟩ Np Nq

−
1
2



p,q

⟨pq|v |qp⟩

× *
,


σ

npσ nqσ + S+p S−q + S−p S+q
+
- , (B3c)

where the spin index σ̄ is the opposite of the indexσ and where
we have made use of the pair creation operator P

†
p given in

Eq. (7) and the adjoint operator Pq and have introduced the
spin raising and lowering operators

S+p = a†p↑ ap↓
, (B4a)

S−p = a†p↓ ap↑
. (B4b)
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To simplify further, we note that

np↑
=

1
2

Np + Sz
p, (B5a)

np↓
=

1
2

Np − Sz
p, (B5b)

where

Sz
p =

1
2

(

a†p↑ ap↑
− a†p↓ ap↓

)

=
1
2



µν

a†pµ
σz

µν apν (B6)

and σ
z is a Pauli matrix. This means that



σ

npσ nqσ =
1
2

Np Nq + 2 Sz
p S

q
p, (B7)

whence

1
2



pqr s



ση

⟨pq|v |rs⟩ a†pσ a†qη asη arσ →


pq

⟨pp|v |qq⟩ P†p Pq +
1
4



p,q

(2 ⟨pq|v |pq⟩ − ⟨pq|v |qp⟩) Np Nq

−
1
2



p,q

⟨pq|v |qp⟩
(

2 Sz
p S

q
p + S+p S−q + S−p S+q

)

(B8a)

=


pq

vpq P†p Pq +
1
4



p,q

wpq Np Nq +


p,q

Kpq S⃗p · S⃗q, (B8b)

in terms of the spin vector operators defined in Eq. (14b) so
that overall, we may make the replacement

H →


p

hp Np +
1
4



p,q

wpq Np Nq

+


pq

vpq P†p Pq +


p,q

Kpq S⃗p · S⃗q, (B9)

as desired.

2. Density matrices

In order to compute the pECCD energy, we need to eval-
uate density matrix elements. In other words, we need to take
the expectation value

⟨HδΩ=0
0 ⟩pECCD = ⟨0|eZ e−T HδΩ=0

0 eT |0⟩, (B10)

where we recall that |0⟩ is the single-determinant reference. As
noted in Ref. 9, the density matrices of seniority zero methods
are sparse, and in fact the only non-zero entries of the full
one- and two-particle density matrices can be constructed from
⟨Np⟩pECCD, ⟨Np Nq⟩pECCD, and ⟨P†p Pq⟩pECCD.

Computing the density matrix elements is simplified by
constructing similarity transformations of the number opera-
tors Np and the pair creation and annihilation operators P

†
p and

Pq. We find

e−T Na eT = Na + 2


i

tia P†a Pi, (B11a)

e−T Ni eT = Ni − 2


a

tia P†a Pi, (B11b)

e−T P†a eT = P†a, (B11c)

e−T P
†

i
eT = P

†

i
+


b

tib P
†

b
(Ni − 1) −



a,b

tia tib P†a P
†

b
Pi,

(B11d)
e−T Pa eT = Pa +



i

tia (1 − Na) Pi −


i, j

tia t ja P†a Pi Pj,

(B11e)
e−T Pi eT = Pi, (B11f)

where we have taken advantage of the commutator expansion

e−T O eT = O + [O,T] +
1
2
[[O,T],T] + · · · (B12)

and have used the SU(2) commutation relationships given in
Eq. (15) and transcribed here for convenience,

[Pp,P
†
q] = δpq

�
1 − Np

�
, (B13a)

[Np,Pq] = −2 δpq Pq. (B13b)

We have added a few summation index restrictions which are
unnecessary (but permitted) in view of the nilpotency of the
pair creation and annihilation operators, simply because they
may help clarify the origins of the summation restrictions and
factors such as δ̄ab and δ̄i j in the final density matrices of
Eq. (18).

1J. Paldus and X. Z. Li, Adv. Chem. Phys. 110, 1 (2007).
2R. J. Bartlett and M. Musiał, Rev. Mod. Phys. 79, 291 (2007).
3I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry and Physics

(Cambridge University Press, New York, 2009).
4P. A. Limacher, P. W. Ayers, P. A. Johnson, S. de Baerdemacker, D. van Neck,
and P. Bultinck, J. Chem. Theory Comput. 9, 1394 (2013).

5P. A. Limacher, T. D. Kim, P. W. Ayers, P. A. Johnson, S. de Baerdemacker,
D. van Neck, and P. Bultinck, Mol. Phys. 112, 853 (2014).

6P. Tecmer, K. Boguslawski, P. A. Johnson, P. A. Limacher, M. Chan, T.
Verstraelen, and P. W. Ayers, J. Phys. Chem. A 118, 9058 (2014).

7K. Boguslawski, P. Tecmer, P. W. Ayers, P. Bultinck, S. de Baerdemacker,
and D. van Neck, Phys. Rev. B 89, 201106(R) (2014).

http://dx.doi.org/10.1002/9780470141694.ch1
http://dx.doi.org/10.1103/RevModPhys.79.291
http://dx.doi.org/10.1021/ct300902c
http://dx.doi.org/10.1080/00268976.2013.874600
http://dx.doi.org/10.1021/jp502127v
http://dx.doi.org/10.1103/PhysRevB.89.201106


214116-11 Henderson, Bulik, and Scuseria J. Chem. Phys. 142, 214116 (2015)

8T. Stein, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. 140, 214113
(2014).

9T. M. Henderson, I. W. Bulik, T. Stein, and G. E. Scuseria, J. Chem. Phys.
141, 224104 (2014).

10T. L. Allen and H. Shull, J. Phys. Chem. 66, 2281 (1962).
11D. W. Smith and S. J. Fogel, J. Chem. Phys. 43, S91 (1965).
12F. Weinhold and E. B. Wilson, Jr., J. Chem. Phys. 46, 2752 (1967).
13A. Veillard and E. Clementi, Theor. Chim. Acta 7, 133 (1967).
14M. Couty and M. B. Hall, J. Phys. Chem. A 101, 6936 (1997).
15C. Kollmar and B. A. Heß, J. Chem. Phys. 119, 4655 (2003).
16L. Bytautas, T. M. Henderson, C. A. Jiménez-Hoyos, J. K. Ellis, and G. E.

Scuseria, J. Chem. Phys. 135, 044119 (2011).
17T. M. Henderson, G. E. Scuseria, J. Dukelsky, A. Signoracci, and T. Duguet,

Phys. Rev. C 89, 054305 (2014).
18J. Arponen, Ann. Phys. 151, 311 (1983).
19J. S. Arponen, R. F. Bishop, and E. Pajanne, Phys. Rev. A 36, 2519 (1987).

20J. S. Arponen, R. F. Bishop, and E. Pajanne, Phys. Rev. A 36, 2539 (1987).
21P. Piecuch and R. J. Bartlett, Adv. Quantum Chem. 34, 295 (1999).
22T. Van Voorhis and M. Head-Gordon, Chem. Phys. Lett. 330, 585 (2000).
23B. Cooper and P. J. Knowles, J. Chem. Phys. 133, 234102 (2010).
24F. A. Evangelista, J. Chem. Phys. 134, 224102 (2011).
25P.-D. Fan and P. Piecuch, Adv. Quantum Chem. 51, 1 (2006).
26See supplementary material at http://dx.doi.org/10.1063/1.4921986 for the

necessary source code.
27I. W. Bulik, T. M. Henderson, and G. E. Scuseria, “Can single-reference

coupled cluster theory describe static correlation?,” J. Chem. Theory Com-
put. (submitted).

28R. W. Richardson, Phys. Lett. 3, 277 (1963).
29R. W. Richardson, Phys. Rev. 141, 949 (1966).
30J. Dukelsky and S. Pittel, Rev. Mod. Phys. 76, 643 (2004).
31A. J. Garza, I. W. Bulik, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys.

142, 44109 (2015).

http://dx.doi.org/10.1063/1.4880819
http://dx.doi.org/10.1063/1.4904384
http://dx.doi.org/10.1021/j100818a001
http://dx.doi.org/10.1063/1.1701519
http://dx.doi.org/10.1063/1.1841109
http://dx.doi.org/10.1007/BF01151915
http://dx.doi.org/10.1021/jp963953l
http://dx.doi.org/10.1063/1.1590635
http://dx.doi.org/10.1063/1.3613706
http://dx.doi.org/10.1103/PhysRevC.89.054305
http://dx.doi.org/10.1016/0003-4916(83)90284-1
http://dx.doi.org/10.1103/PhysRevA.36.2519
http://dx.doi.org/10.1103/PhysRevA.36.2539
http://dx.doi.org/10.1016/S0065-3276(08)60534-1
http://dx.doi.org/10.1016/S0009-2614(00)01137-4
http://dx.doi.org/10.1063/1.3520564
http://dx.doi.org/10.1063/1.3598471
http://dx.doi.org/10.1016/S0065-3276(06)51001-9
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1063/1.4921986
http://dx.doi.org/10.1016/0031-9163(63)90259-2
http://dx.doi.org/10.1103/PhysRev.141.949
http://dx.doi.org/10.1103/RevModPhys.76.643
http://dx.doi.org/10.1063/1.4906607



