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Abstract

We examine the similarities and differences between two widely used knowledge-based potentials, which are expressed
as contact matrices~consisting of 210 elements! that gives a scale for interaction energies between the naturally
occurring amino acid residues. These are the Miyazawa–Jernigan contact interaction matrixM and the potential matrix
S derived by Skolnick J et al., 1997,Protein Sci 6:676–688. Although the correlation between the two matrices is good,
there is a relatively large dispersion between the elements. We show that when Thr is chosen as a reference solvent
within the Miyazawa and Jernigan scheme, the dispersion between theM and S matrices is reduced. The resulting
interaction matrixB gives hydrophobicities that are in very good agreement with experiment. The small dispersion
between theS andB matrices, which arises due to differing reference states, is shown to have dramatic effect on the
predicted native states of lattice models of proteins. These findings and other arguments are used to suggest that for
reliable predictions of protein structures, pairwise additive potentials are not sufficient. We also establish that optimized
protein sequences can tolerate relatively large random errors in the pair potentials. We conjecture that three body
interaction may be needed to predict the folds of proteins in a reliable manner.

Keywords: inter-residue pair potentials; native state sensitivity to perturbations; protein folding; protein stability;
quasi-chemical approximation

The prediction of the three-dimensional structure of proteins start-
ing from the primary sequence requires fairly accurate estimates of
energy functions, which describe the interactions between the amino
acid residues. The effective interactions between the amino acids
are assumed to be the same as the potential of mean force between
the moieties, so that the effects due to the solvent degrees of
freedom are only implicitly included. It is clear that even the
computation of the potential of mean force starting from atomic
detailed description is difficult. The inherent complexity in com-
puting the residue–residue interactions has prompted a search for
a simple, but realistic, representations of the free energy potentials
that implicitly include solvent effects~Levitt, 1976; Miyazawa &
Jernigan, 1985, 1996; Godzik et al., 1995, 1996; Skolnick et al.,
1997!.

A key assumption in most of the schemes used in the literature
is that the “exact” free energy potential for any protein may be
written as a sum of pairwise interactions involving all the residues.
It is not a priori clear that such an approximation can adequately
describe cooperative effects, which are known to be important in

the folding of proteins. Even if this approximation is valid, the
calculation of the pair potentials requires additional simplifica-
tions. The strategy for computing pair potentials occurs in two
steps. First, a protein is represented using a coarse grained descrip-
tion, which usually consists ofa-carbons representation with the
side chains being confined to their centers of mass. This provides
low resolution folds of proteins. With this simpler representation of
proteins, the calculation of pairwise interaction potentials between
the residues boils down to deciphering the interactions that are
consistent with a given set of folds.

The above stated inverse problem is approximately solved using
as much knowledge about a given database of folds as possible.
The resulting interactions potentials are referred to as statistical
potentials. In most of the statistical potentials, the interactions
between residues are presumed to exist only if the distance be-
tween the centers of mass of the side chains are less than a certain
cut-off distance. This method of obtaining contact potentials from
a database of proteins was pioneered by Tanaka and Scheraga
~1976!, and later refined by Miyazawa and Jernigan~1985, 1996!.
There are several variations on these basic principles that have lead
to many different interaction schemes. The statistical potentials
have now been used in many different contexts~Sun, 1993; Sippl,
1995; Jernigan & Bahar, 1996; Mirny & Shakhnovich, 1996; Moult,
1997!.
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The basic assumption of the statistical potentials is that an em-
pirical knowledge-based potential that estimates the effective
residue–residue interaction may be made from the contact frequen-
cies of the residues in the database of folds. Arguably, the best
known and widely used statistical potentials are due to Miyazawa
and Jernigan~1985, 1996!, Godzik et al.~1995, 1996!, and Skolnick
et al. ~1997!. To extract the contact potentials, Miyazawa and
Jernigan~MJ! employed the quasi-chemical approximation, i.e.,
the residues are assumed to be in equilibrium with the solvent. The
interaction between residue typei and j can be thought of as
occurring in two steps. The first step involves the desolvation that
gives the reversible work required to expel a solvent molecule in
contact with a given residue. In the second step, mixing between
residuei and j takes place. This procedure, which uses different
reference states in the two steps, takes into account the effects of
excluded volume due to solvent molecules. The main approxima-
tion in this method is that it ignores chain connectivity. The jus-
tification for this is that if we consider a large ensemble of proteins
in the database then the bias introduced by chain connectivity is
averaged out. Schematically, one can represent the procedure lead-
ing to the MJ potentials as a set of chemical equilibria, namely
~Miyazawa & Jernigan, 1985; Thomas & Dill, 1996!,

2~i !~s! &&
^̂ ~i !~i ! 1 ~s!~s! ~1A!

2~ j !~s! &&
^̂ ~ j !~ j ! 1 ~s!~s! ~1B!

~i !~i ! 1 ~ j !~ j ! &&
^̂ 2~i !~ j ! ~1C!

where i and j refer to residue types,s refers to the solvent and
~a!~b! means that speciesa andb are in contact, i.e., the distance
between their respective center of mass is less than a cut-off value.
From the charging procedure given in Equation 1, the excess en-
ergy due to contact~the reversible work required to bringi and j
into contact! is given by

Mij 5 Eij 1 E00 2 Ei 0 2 Ej 0, ~2!

whereEab is the contact energy between the moieties labeleda
and b and the subscript 0 refers to the solvent. The various ele-
ments of the matrixM are calculated using the Bethe approxima-
tion in which the reference system is one in which there is
equilibrium between the solvent and the residues, i.e., the random
mixing approximation is used.

One of the obvious limitations of the MJ procedure, which was
already noted in the original paper~Miyazawa & Jernigan, 1985!,
is that it ignores entropy losses due to chain connectivity. More
recently, Skolnick, Jaroszewski, Kolinski, and Godzik~SJKG!
~Skolnick et al., 1997! introduced forms of knowledge-based pair-
potentials for amino acids that explicitly includes effects due to
chain connectivity, compactness of the native state and the effects
of secondary structures. Surprisingly, they concluded that the quasi-
chemical approximation, which ignores all these effects, is in general
sufficient for extracting pair-potentials. This is further corrobo-
rated by comparing the MJ and the SJKG potentials.

Let the matrix S represent the potentials due to SJKG. The
elements ofS correspond to Table 3A of SJKG. We find that the
matricesM ~upper half of Table 3, Miyazawa & Jernigan, 1996!
and S are well correlated, with the correlation coefficient being
0.82. However, when the elements of the two matrices are com-
pared in detail, we find remarkable differences in the magnitude

and signs of several terms. Recall that in both instances the value
of the interaction potential is in terms ofRT units whereR is the
gas constant andT is the absolute temperature. The values ofMij

are mostly negative even for interactions between like-charged
residues. Such a discrepancy cannot be resolved by merely adding
a scalar quantity because it would be inconsistent with the under-
lying approximations described by the equilibrium relations given
by Equation 1. The values of the elements of theS matrix, on the
other hand, seem to have more physically reasonable values.

These observations lead to two questions:~1! Can one choose a
reference system within the MJ scheme so that the dispersion
between the resulting potential and the SJKG potential is consid-
erably reduced?~2! How sensitive are the predicted native struc-
tures to variations in the interaction potentials? In this paper we
address these two questions. The answer to the first question is
affirmative. To address the second question, we use lattice models
to establish that variations in the interaction schemes can lead
to substantial changes in the energies and topology of the native
states.

Results

Rescaled Miyazawa–Jernigan potential

The overall correlation between the matrixM ~MJ potential! and
the matrix S ~SJKG potential! is very good ~see Fig. 1!. The
optimal linear relation between the two is

Sij . 1.261 0.37Mij . ~3!

The quality of the fit can be assessed by computing the dispersion
between the fit and the matrixS and the correlation coefficient,r.
We find the dispersion to be 0.39 andr 5 0.82. In explicitly using
these contact matrix elements in the prediction of structures, the
fluctuations between the two matrices are relevant. An assessment
of such fluctuations requires comparing the two matrices. A direct

Fig. 1. Correlation between theM andS and theS andB matrix elements.
For theM matrix, the correlation coefficient isr 5 0.82 and the relative
dispersiond ~see Equation 4! between the two models isd 5 3.40. ForB,
r 5 0.82 and the dispersiond is only 0.45.
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measure of the relative difference betweenS andM may be ob-
tained by computing

d 5 ! 1

210 (
ij

~Sij 2 Mij !
2 ~4!

which is found to have a relatively large value of 3.4. The large
dispersion arises because contact interactions between certain res-
idues are substantially different in the two schemes. As has been
noted already by Godzik et al.~1996!, the principal difference
between the numerous parameter sets is due to the variations in the
reference states in computing the interaction schemes. As de-
scribed in Equation 1, MJ use the random mixing approximation to
calculate the elementsMij . A key difficulty in computingMij is in
estimatingE00andEi0, which require the average number of solvent-
solvent contacts and residue-solvent contacts, respectively. In con-
trast, SJKG obtained their parameter set using native reference
states, which consists of a library of real structures whose com-
pactness is comparable to the overall native fold. Following the
spirit of Skolnick et al.~1997!, we chose a different reference state
within the MJ procedure, which in effect brings the two parameter
sets into closer agreement with respect to each other in the sense
of reducingd ~see Equation 4!.

We chose the reference state in which the solvent molecule~see
Equation 1! is replaced by one of the nonpolar amino acid residues.
The reference residue type that replaces the solvent molecule is
chosen so that the nature of interaction between this residue and
others is “similar” to the interaction between the solvent and the
other residues. The reference residue is obtained by requiring that
the hydrophobicities of the residues, predicted by the resulting
potential, correlate as closely as possible with the experimental
values. Lett be such a reference residue. Then, we can define a
matrix B whose elements are

Bij 5 Mij 1 Mtt 2 Mti 2 Mtj , ~5!

for i, j 5 1, 2, 3, . . . , 20. If 0represents the solvent, then it follows
from Equation 5 thatMi0 5 0.0 for i 5 0, 1, 2, . . . , 20.Sincet is
the reference state with respect to which all interactions are mea-
sured, we setBi0 5 B0i 5 0 for i 5 0, 1, 2, . . . , 20.However, we
get from Equation 5 thatBi0 5 Mtt 2 Mti . It is hoped that a
reference residue typet may be found so that our assumption that
Bi0 5 0 is followed as well as possible, and that also leads to good
correlations with experimental hydrophobicities. The advantage of
the parameter setBij is that it eliminates the need for evaluatingE00

andEi0 while utilizing the desirable features of the successful MJ
potential.

We first show that a residue typet is chosen so that the hydro-
phobicity associated with residuei

hi 5 Bii 02 ~6!

correlates well with the experimental estimates. The experimental
hydrophobicities for the various residues are typically inferred
from transfer experiments. We comparehi , obtained using differ-
ent reference residues, to three different hydrophobicity scales
and their averages. The correlation coefficients are presented in
Table 1. For comparison we also give the results for theS andM
matrices. The correlation coefficients were calculated by excluding
Cys. It is clear from Table 1 that the highest correlation is obtained

when t 5 Thr for all the hydrophobicity scales. The maximum
correlation results betweenhi and the hydrophobicities reported by
Fauchere and Pliska~1983!.

In Figure 2 we plot the experimental hydrophobicities~corre-
sponding to column b andt 5 Thr in Table 1! vs. hi . With the
exception of Cys, the correlation between the computed values and
experiments is very good when Thr is chosen as the reference state.
From the effective hydrophobicities it is clear that the amino acids
divide themselves into three classes. They are:~1! strongly hydro-
phobic~Cys, Phe, Leu, Trp, Val, Ile, Met!; ~2! mildly hydrophobic
~His, Tyr, Ala, Gly, Pro!; ~3! hydrophilic ~Asn, Thr, Ser, Arg, Gln,
Asp, Lys, Glu!. It is, perhaps, useful to further classify class~2!
residues as weakly hydrophobic~Tyr, Ala, Pro! or weakly hydro-
philic ~His, Gly!.

Table 1. Correlation coefficients with experimental side-chain
hydrophobicities for different effective potential modelsa

a b c d

Thr 0.86 0.92 0.88 0.90
Asn 0.76 0.85 0.84 0.82
Ser 0.79 0.86 0.84 0.84
Gln 0.69 0.73 0.73 0.73
Gly 0.47 0.62 0.52 0.53
His 0.41 0.49 0.53 0.49
S 0.73 0.80 0.65 0.73
M 0.79 0.91 0.84 0.85

aThe first column gives the reference residue used in the calculation of
the rescaled MJ matrix~Equation 5!. The last two rows are the correlation
coefficients for theS and M matrices. Column a is for amino acids hy-
drophobicities some of which were measured by Nozaki and Tanford~1971!
and others by Levitt~1976!. Column b is for N-acetil amino acid amide
hydrophobicities measured by Fauchere and Pliska~1983!. Column c cor-
respond to hydrophobicities calculated from individual groups that make
up each side chain, obtained by Roseman~1988!. Column d is obtained
from the averages of the hydrophobicities in~a!, ~b!, and~c!. The highest
correlations are obtained for the rescaled MJ parameters using Thr as the
reference residue~defined as matrixB!.

Fig. 2. Correlation of hydrophobicies between the calculated values using
the B matrix and the experimental values given by Fauchere and Pliska
~1983!. The solid line is obtained from a linear regression~excluding Cys!
with slope5 7.75, intercept5 0.51, and correlation coefficient5 0.92.
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The parameters for the potential introduced here~see Equa-
tion 5! is given in Table 2. In addition to the contact energiesBij ,
Table 2 shows the demixing terms in the lower triangular portion,
and the average values of the interactions and their standard de-
viations. The demixing term~referred to as excess pair interaction
term by Skolnick et al.! is

Xij 5 Bij 2 2
12~Bii 1 Bjj ! 5 Mij 2 2

12~Mii 1 Mjj !. ~7!

The demixing termsXij measure the tendency of a pair of residues
to disassociate when positive, or to associate when negative. By
inspectingB, the expected qualitative features of the interactions
are evident. With the exceptions of minor fluctuations for few
matrix elements, in particular those of Trp with hydrophilic resi-
dues, the signs of the hydrophobic interactions are physically rea-
sonable. So are the signs of charge group interactions, i.e., repulsive
between charges of equal sign and attractive between between
charges of opposite sign. Thus, the elements of theB matrix in-
troduced here provide estimates for contact interactions that are
consistent with known classification of the nature of the amino
acids.

Nature of contact interactions: Justification of the HP model

To get additional insights into the nature of the residue–residue
interactions, we have divided most of the residues into four groups:
hydrophobic~H! @Phe, Leu, Trp, Val, Ile, Met, Tyr, Ala#; hydro-
philic ~P! @Asn, Thr, Ser, Gln#; negatively charged~2! @Asp, Glu#,
and positively charged~1! @Arg, Lys#. The rest of the residues
@Cys, His, Gly, Pro# cannot be easily classified into the previous

four groups, at least according to theB matrix elements, and are
left out for simplicity. The average effective interactions and de-
mixing energies for these groups are shown in Table 3. There is a
strong attraction between hydrophobic residues HH, a weak repul-
sion between hydrophobic and hydrophilic residues HP, and an
almost zero interaction between hydrophilic residues PP. This re-
sult is in agreement with other hydrophobic models in which hy-
drophobic residues are effectively attractive and hydrophilic residues
are neutral as the solvent. This classification naturally shows that
the HP model, advocated by Chan and Dill~1990!, is a reasonable
starting point for understanding general aspects of protein folding.
Li et al. ~1997! have also arrived at a similar conclusion based on
their analysis of the MJ potential. Inspection of the matrix ele-
mentsBij shows that there are large fluctuations between hydro-
phobic and hydrophilic residues~especially those with intermediate
hydrophobicity!. In the folding structures, the residues with inter-
mediate hydrophobicity could be at the interface between the hy-
drophobic core and the hydrophilic residues that are in contact
with water. The Coulomb interactions between residues with op-
posite charges are considerably stronger than the repulsion be-
tween like charges. The demixing energies~lower triangular partition
of Table 3! are also physically meaningful. Residues of sim-
ilar hydrophobicity are mixing on an average~XHH ' XPP ' 0!,
while residues of different hydrophobicity types tend to segregate
~XHP . 0!. For charged groups, like charged residues are slightly
demixing~X11 ' X22 * 0! while mixing is strongly favored by
opposite charged groups. These classification of residue–residue
interactions shows that while the simple HP model is indeed a
good starting point for certain purposes, the inclusion of diverse
interactions that occur in natural amino acids is necessary for a
semi-quantitative description of protein folding.

Table 2. The elements of theB matrix, which were obtained by rescaling the MJ potentiala

Cys Phe Leu Trp Val Ile Met His Tyr Ala Gly Pro Asn Thr Ser Arg Gln Asp Lys Glu

Cys 21.34 20.53 20.50 20.74 20.51 20.48 20.49 20.19 20.16 20.26 20.09 20.18 0.28 0.00 0.09 0.32 0.04 0.38 0.35 0.46
Phe 0.55 20.82 20.78 20.78 20.67 20.65 20.89 20.19 20.49 20.33 0.11 20.19 0.29 0.00 0.10 0.0820.04 0.48 0.11 0.34
Leu 0.57 0.04 20.81 20.70 20.80 20.79 20.68 0.10 20.44 20.37 0.14 20.08 0.36 0.00 0.26 0.09 0.08 0.62 0.16 0.37
Trp 0.30 20.00 0.08 20.74 20.62 20.65 20.94 20.46 20.55 20.40 20.24 20.73 20.09 0.00 0.07 20.41 20.11 0.06 20.28 20.15
Val 0.52 0.10 20.04 0.11 20.72 20.68 20.47 0.18 20.27 20.38 0.04 20.08 0.39 0.00 0.25 0.17 0.17 0.66 0.16 0.41
Ile 0.49 0.06 20.08 0.02 20.02 20.60 20.60 0.19 20.33 20.35 0.21 0.05 0.55 0.00 0.35 0.18 0.14 0.54 0.21 0.38
Met 0.46 20.20 0.00 20.29 0.17 20.02 20.56 20.17 20.51 20.23 0.08 20.16 0.32 0.00 0.32 0.1720.01 0.62 0.22 0.24
His 0.64 0.38 0.67 0.08 0.70 0.66 0.2820.33 20.21 0.21 0.23 20.05 0.10 0.00 0.15 0.04 0.2220.22 0.26 20.11
Tyr 0.64 0.05 0.10 20.04 0.22 0.10 20.10 0.09 20.27 20.15 20.04 20.40 0.01 0.00 0.0720.37 20.18 20.07 20.40 20.16
Ala 0.51 0.18 0.14 0.07 0.08 0.05 0.15 0.48 0.0820.20 20.03 0.07 0.24 0.00 0.15 0.27 0.21 0.30 0.20 0.43
Gly 0.68 0.62 0.65 0.23 0.50 0.61 0.46 0.50 0.20 0.1720.20 20.01 0.10 0.00 0.10 0.14 0.20 0.17 0.12 0.48
Pro 0.53 0.25 0.3620.32 0.31 0.38 0.16 0.1520.23 0.20 0.12 20.07 0.13 0.00 0.17 20.02 20.05 0.25 0.12 0.26
Asn 0.97 0.72 0.78 0.30 0.77 0.87 0.62 0.28 0.17 0.36 0.22 0.1820.04 0.00 0.14 0.02 20.05 20.12 20.14 20.01
Thr 0.67 0.41 0.41 0.37 0.36 0.30 0.28 0.17 0.14 0.10 0.10 0.04 0.02 0.000.00 0.00 0.00 0.00 0.00 0.00
Ser 0.70 0.44 0.60 0.37 0.54 0.58 0.53 0.25 0.14 0.18 0.13 0.14 0.0920.06 0.13 0.12 0.25 0.01 0.10 0.10
Arg 0.93 0.42 0.43 20.11 0.46 0.41 0.39 0.1420.30 0.30 0.18 20.05 20.02 20.06 20.01 0.13 20.12 20.71 0.50 20.75
Gln 0.64 0.30 0.42 0.19 0.46 0.37 0.20 0.3220.11 0.24 0.23 20.08 20.10 20.07 0.11 20.25 0.14 0.12 20.20 0.10
Asp 0.92 0.75 0.89 0.30 0.89 0.70 0.7720.19 20.07 0.26 0.14 0.1520.24 20.14 20.19 20.91 20.08 0.27 20.69 0.40
Lys 0.83 0.33 0.38 20.10 0.33 0.32 0.31 0.2320.46 0.11 0.03 20.03 20.31 20.19 20.15 0.25 20.46 21.01 0.38 20.87
Glu 0.90 0.53 0.55 20.01 0.55 0.45 0.3020.17 20.25 0.30 0.36 0.0720.21 20.22 20.19 21.04 20.20 0.04 21.28 0.45

ave 20.18 20.24 20.19 20.42 20.14 20.12 20.19 20.01 20.25 20.03 0.08 20.05 0.12 0.00 0.1520.01 0.05 0.15 0.02 0.12
dev 0.44 0.42 0.46 0.31 0.43 0.44 0.43 0.21 0.18 0.26 0.16 0.22 0.19 0.00 0.09 0.31 0.13 0.38 0.34 0.37

aThe diagonal and upper elements are the transformed terms, i.e.,Bij 5 Mij 1 Mtt 2 Mti 2 Mtj . The reference residue ist 5 Thr. Below the diagonal are
the demixing terms, i.e.,Xij 5 Bij 2 ~Bii 1 Bjj !02, which are identical to the ones obtained from theM matrix. The interactions with the solvent, i.e.,Bi0,
are zero fori 5 0,1, . . . ,20where 0 represents the solvent. The last two lines are the averages and the standard deviations of theB elements for each residue
with respect to all others.
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In summary, it is clear that a viable contact interaction parameter
set, without explicitly referring to the solvent state, can be con-
structed within the MJ scheme. The resulting interaction potential
has a high degree of correlation with the experimental hydropho-
bicities. There is an obvious discrepancy betweenhi and the ex-
perimental values, namely, the computedhi are nearly a factor
eight smaller. There are three related reasons for this discrepancy:
~1! In principle, hydrophobicity refers to the reversible work re-
quired to transfer a residuei in a solvent made up of the residue
itself or an inert solvent to water. The virtue of the MJ interaction
scheme is thatMii 02 describes the result of this process~see Equa-
tion 1!. Here we have comparedhi to data obtained from experi-
ments that involve transfer of residues from a reference solvent to
water. Our calculated values of hydrophobicities refers to a situa-
tion in which residues initially in equilibrium with a solvent made
up of Thr are transferred to water. In the transfer experiment the
reference state corresponds to a solvent different from water. So
we do not expect absolute correspondence with experimental mea-
surements.~2! The database of folded structures, from which the
frequencies of pairing of various residues are computed, corre-
spond to compact structures. In such structures certain residues
may occur with higher probability due to chain connectivity than
would normally be the case. Therefore, choosing random polymer
reference state could decrease the interaction energy of hydrophilic
residues and increase that of the hydrophobic ones. Both, theB and
the S matrix calculation scheme reduce the probability of such
contacts by eliminating the use of the random polymer reference
state. However, the magnitudes of the interactions could be under-
estimated, which affects the scale of the interactions but not their
character~sign! with relation to the solvent.~3! In our scheme, the
transformation in Equation 1 effectively eliminates explicit refer-
ence to solvent. The matrixB is computed using only the frequen-
cies of contact between the residues in the folded native state
whose average structure does not fluctuate much below the folding
transition temperature. The fundamental assumption of the statis-
tical potential is that the frequencies of occurrence of various pairs
of residues obeys Boltzmann statistics at a constant temperature. A
plausible rationale for this has been proposed by Finkelstein et al.
~1995! using the random energy model. More recently, Zhang and
Skolnick~1998! have also given conditions when “true” potentials
may be derived from a database of structures. However, a more

precise test of this assumption using a database of 346 PDB struc-
tures~Thomas & Dill, 1996! shows that the Boltzmann distribution
is not obeyed. In fact, the extracted temperatures can vary consid-
erably~Thomas & Dill, 1996!. Therefore, it is not surprising that
the slope of the correlation betweenhi and the experimental hy-
drophobicities can deviate from unity.

Approximations of the interaction matrices

The natural classification of the amino acid residues into a
few subclasses based on the interaction schemes suggest that the
20 3 20 matrix consisting of 210 elements may be adequately
described by a smaller number of parameters. Based on eigenvalue
decomposition of the MJ matrix, Li et al.~1997! proposed that the
matrix M can be defined from the hydrophobicity alone. They
found thatM has two dominant eigenvalues, and the correspond-
ing eigenvectors were strongly correlated. Thus, one can express
one of the eigenvectors in terms of the other. These observations
suggest that a suitable HP model suffices to describe the main
features of residue–residue interactions. Based on this, Li et al.
~1997! showed that theM matrix can be approximated by

M8ij 5 h8i 1 h8j 2 C2 ~ui 2 uj !
202 ~8A!

and

h8i 5 C002 1 C1ui 1 ~C202!ui
2, ~8B!

where theui’s are the components of the eigenvector correspond-
ing to one of the dominant eigenvalues andC0, C1, and C2 are
constants which are obtained from the dominant eigenvalues and
the linear relation between the corresponding eigenvectors. In Equa-
tion 8, h9 are the approximate effective hydrophobicitiesh9i 5
M9ii 02. The last term in Equation 8A is a model for the demixing
term, i.e.,X9ij 5 2~C202!~ui 2 uj!

2. When compared to the mixing
energy obtained from Hildebrand’s solubility theory, theui can be
related to the vaporization energies~Li et al., 1997!. The question
that arises is whether the same conclusions can be drawn from the
eigenvalue decomposition of theB andSmatrices. We find that for
the theB and S matrices, the spectrum of eigenvalues does not
significantly separate as inM . Furthermore, the eigenvectors of the
two largest eigenvalues are not correlated. This implies that a
simple reduction of the 203 20 matrix into a generalized HP
model is not always possible. This conclusion is in accord with the
recent calculations of Du et al.~1998! and R.L. Jernigan~pers.
comm.!.

It follows from Equations 5 and 8 that a corresponding matrix
B9, which should be a reasonable approximation toB, is B9ij 5 M9ij 1
M9tt 2 M9ti 2 M9tj . We have eliminated the cysteine and charged
group residues from the analysis because they are not well repre-
sented by the demixing term in Equation 8. The elements ofB can
be written as

B8ij 5 h8i 1 h8j 2 K2 ~ui 2 uj !
202 ~9A!

and

h8i 5
K0

2
1 K1ui 1

K2

2
ui

2

5
K2

2
~ui 2 ut !

2, ~9B!

Table 3. Average values ofB obtained by dividing the amino
acids into hydrophobic H, hydrophilic P, negatively
charged2 and positively charged1 groupsa

H P 2 1

20.56 0.12 0.32 0.03 H
H 0.03 0.06 0.02 20.03 P
P 0.39 20.00 0.38 20.76 2
2 0.43 20.18 0.02 0.38 1
1 0.20 20.18 21.06 0.12

H P 2 1

aThe hydrophobic residues are composed of~Phe, Leu, Trp, Val, Ile,
Met, Tyr, Ala!; the hydrophilic of~Asn, Thr, Ser, Gln!; the negative charged
groups of~Asp, Glu! and the positive charged groups of~Arg, Lys!. The
other residues are not included because of their marginal or ambiguous
properties.
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whereh9 is redefined ash9i 5 B9ii 02 andK0 5 20.193,K1 5 1.48
andK2 5 211.13. The correlation between the elements ofB and
B9 ~r 5 0.85! is significantly lower than found betweenM andM 9.
In addition, the distributions of points is somewhat asymmetric
with respect to theB9 5 B line indicating that Equation 9 is not
fully adequate to represent the interaction matrix. This is also
apparent from Equation 9B, which always gives a zero or negative
hydrophobicity becauseK2 5 C2 , 0. Therefore, residues with
positive hydrophobicity cannot be faithfully represented by this
equation. A better fit may be obtained by expressing the equation
for B9 as a higher order expansion inui .

To understand the decrease in correlation betweenB and B9
compared toM and M 9, we decompose theB matrix into the
hydrophobic componentsHij 5 ~Bii 1 Bjj !02 and a demixing con-
tribution Xij 5 Bij 2 Hij . Both theH and X matrices can be ap-
proximated asH9ij 5 h9i 1 h9j andX9ij 5 2~K202!~ui 2 uj!

2. Such a
decomposition can also be done for theM matrix. The correlation
betweenHij andH9ij is found to be somewhat worse than the cor-
responding relationship between the hydrophobic components ex-
tracted from theM matrix. Furthermore, the correlation between
Xij andX9ij is even smaller than betweenHij andH9ij . While theX
matrix remains the same for bothB andM , the average magnitude
of theH matrix elements obtained for theB matrix is much smaller
than the one obtained for theM matrix. Therefore, because the
demixing terms in theB matrix play a more important role than in
theM matrix, the correlation betweenB andB9 is decreased. The
high correlation seen betweenM and M 9, which allows the de-
scription of the 203 20 matrix into 23 parameters, is due to the
reference state used by Miyazawa and Jernigan~1985, 1996!.

Reduced representation of theB matrix

It appears that the approximation to theM matrix found by Li et al.
~1997! is due to the fact that in the MJ scheme the hydrophobic
interactions are overemphasized. In the other schemes, such as the
S matrix and theB matrix introduced here, there is no separation
in the eigenvalues. Nevertheless, it is possible to obtain a repre-
sentation for the contact matrix that also takes into account charged
residues and Cys. The charged residues can be included using the
Coulomb potential proportional toqiqj , whereqi 5 $0, 61% is the
charge of residuei. The repulsion between like-charged groups can
be absorbed in the hydrophobic potential yielding an effective
Coulombic potential proportional to~qi 2 qj!

2. The Cys-Cys in-
teractions are modeled by adding an additional constant parameter,
which is defined asD 5 ECC 2 2h9C, whereC stand for cysteine.
If we let vi 5 ui 2 ut ~ut is the value of the eigenvectoru for the
residue Thr!, the expansion ofB9 andh9 to third order inqi can be
written as

B8ij 5 h8i 1 h8j 2 A~vi 2 vj !2 1 Q~qi 2 qj !
2 1 Ddi,Cdj,C , ~10A!

where the contribution of the term proportional to~vi 1 vj !
~vi 2 vj!2 is negligible, and

h8i 5 R1vi 1 R2vi2 1 R3vi3. ~10B!

The new coefficients along with the vector componentsvi are
obtained by fitting the parameters to the matrix valuesBij . The
fitting is carried out by a steepest descent method. Figure 3 shows
the correlation betweenB9 andB. The model is a fair representa-

tion of the potential although the parameters obtained from the
steepest descent are perhaps not optimal. The values for the pa-
rameters areA5 22.661,R1 5 20.961,R2 5 22.023,R3 5 5.594,
Q 5 20.195, andD 5 20.535. If we setA 5 R2 ~in analogy to
Equations 8 and 9! the result remain practically the same. The
vectorv is v~Cys, Phe, Leu, Trp, Val, Ile, Met, His, Tyr, Ala, Gly,
Pro, Asn, Thr, Ser, Arg, Gln, Asp, Lys, Glu! 5 ~0.37, 0.45, 0.46,
0.28, 0.31, 0.40, 0.32, 0.06, 0.20, 0.08,20.02, 20.00, 20.08,
0.00,20.06,20.10,20.04,20.24,20.12,20.17!. The correla-
tion coefficient isr 5 0.870 and without considering charged res-
idues or cysteine it isr 5 0.888, which is higher than the one
obtained by Equation 9~r 5 0.854!. It is possible that even better
correlation betweenB9 andB can be obtained by optimizing the
chargesqi . Thus, it is clear that the reduced representation of the
pair potential cannot always be accomplished using Equation 9,
which considers only the dominant eigenvalues.

Sensitivity of native state to variations
in the interaction scheme

The preceding sections show that, despite the differences in the
interaction matrices, the hydrophobicities extracted from them show
very good agreement with experiments. Despite the overall simi-
larity betweenB and S matrices~they correlate well with each
other and the relative dispersion is small!, there are differences in
the magnitude of several matrix elements describing contact inter-
actions between the residues. These differences are systematic be-
cause there is correlation between the two matrices. The correlation
arise because in both the schemes, the database of folded proteins
is utilized to compute the interaction matrices. It is a priori difficult
to assess the effect the differences in the various matrix elements
have on the structure and energy of the native states for a given
sequence. More generally, we can ask the following question. If
the interaction parameters given by theB matrix were exact, then,
what effect would substituting theS matrix have on the predicted
native state? This question is related to the issue of how accurate
should interaction potentials be so that the folded structure can be

Fig. 3. Correlation between theB9 ~see Equation 10! and theB matrix
elements. The correlation coefficient isr 5 0.870 and the dispersion be-
tween theB and B9 is d 5 0.184. The white circles are for the diagonal
elements and the black ones for all others. All 20 amino acid interactions
are included. This figure shows that a reduced representation ofB may be
computed by systematic expansion using the eigenvectors ofB.
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predicted to the desired accuracy~Bryngelson, 1994; Pande et al.,
1995!.

The question posed above can be precisely answered using lat-
tice models of proteins. The strategy we adopt is the following: We
have generated five optimized sequences using theB matrix in-
teraction parameters. Once the native states for each sequence are
determined, we switch the interaction matrix toS keeping the
sequences identical. The native states are redetermined, and a com-
parison of the various native states allows us to assess the depen-
dence of topology and energy on the interaction scheme used.

We model proteins as chains ofN ~5 36! successively connected
beads on the sites of a cubic lattice. The energy of a conformation
specified by the sites on the latticeri ~i 5 1, 2, . . . ,N! is

E~$ri %! 5 ( Dij d~rij 2 a! ~11!

where the contact interactionsDij is Bij or Sij , rij 5 6ri 2 rj6, a is the
lattice spacing, andd~0! 5 1 and 0 otherwise. UsingDij 5 Bij we
generated five optimized sequences. We determined the thermo-
dynamics of these sequences using the multi-histogram technique
~Ferrenberg & Swendsen, 1989!. In particular, the collapse~Tu!
and folding transition~Tf! temperatures were determined using
standard methods~Camacho & Thirumalai, 1993!. For all five
sequencessT 5 ~Tu 2 Tf!0Tu ' 0, and hence these are expected to
fold thermodynamically and kinetically in a two state manner~Ca-
macho & Thirumalai, 1993!. The five sequences were obtained by
a design algorithm that efficiently leads to a smooth landscape so
that the values ofs are minimized~M. Betancourt & D. Thiru-
malai, unpubl. results!. They were generated in the course of un-
raveling thermodynamic factors that also determine the kinetic
accessibility of the native states. The sequences and associated
properties are displayed in Table 4.

The native state for one of these sequences is shown in Figure 4.
This structure is maximally compact and is confined to 33 3 3 4
sites on the cubic lattice. We now keep the identity of the sequence,
and letDij 5 Sij . The topology of the resulting native state is shown
in Figure 5. A comparison of the two native states shows that the
topology of the native state has been considerably altered. The
native conformation for theS matrix is no longer maximally com-
pact. Approximately 25% of the tertiary contacts have been al-
tered. Similar results are found for other sequences as can be seen
from Table 4. In particular, the differences in the fraction of native

tertiary contacts for other optimized sequences varies from 0.25 to
about 0.60. It can be seen from Table 4 that the actual ground state
energies for the five sequences using theSij matrix elements are
lower than that computed from the structures generated withBij

interaction scheme. This shows that, at least within pairwise inter-
action schemes, relatively small~nonrandom! differences in the
contact energies can have profound effects on the topology of the
native conformation. We should emphasize that this depends on
the sequence and the topology of the native state.

We should hasten to point out that the extreme sensitivity of the
designed native state to alterations in the interaction potentials may
arise because of the underlying lattice. It possible that if one uses
a high coordination lattice, the response of the native state upon
switching the potentials formB to S may be less severe.

Tolerance of optimized sequences to random perturbations

It is clear that even if pair potentials are very accurate for structure
prediction they cannot be determined with very high precision.

Table 4. Designed sequences for five 36-mers using theB matrix
with some of their thermodynamic propertiesa

# Sequence Ens
B Ets

S Ens
S Q

1 KMIKDVIERACDHCMHKFVKDVMEHMIKDVCKDCAK228.45 224.3 226.1 0.25
2 KKLPMHLRKDEILKKDDVCCIRKDEICPMKKDEIWC 230.51 220.6 222.2 0.28
3 EICGHERYDKLWCEKHGCVGHEKWLKDYRREWVKQL226.03 220.8 222.7 0.22
4 CCDDDDDIFKKKRKCLEKVIAMPMDEDDDPPCIWYK229.12 217.7 219.2 0.39
5 DMVPADKIFREYKKGDIGEYIRGACPCDKCLEKIYI 225.12 219.8 222.6 0.60

aWe have used a one letter representation for amino acids.Ens
B is the native state energy of the target

~and native! structure using theB matrix. All designed sequences with theB matrix produce stable and
nondegenerate native states.Ets

S andEns
S are, respectively, the target and native energies when theSmatrix

is substituted for theB matrix, using the same sequences and target structures.Q is the fraction of native
contacts, as defined by the target structure, in the native structure obtained using theS matrix.

Fig. 4. The native structure of designed sequence #1 using the rescaled MJ
potentialB. Hydrophobic residues are drawn darker than hydrophilic res-
idues. The native state is unique, and has an energy ofEns 5 228.45~in
units of RT!.
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There are inherent errors even in the most sophisticated interaction
schemes. Some of these errors could be systematic, while others
can be random. Thus, in the course of predicting the structures of
folded states the effect of random errors on the predicted native
states have to be examined. This issue is related to question of the
accuracy needed in the interaction potentials to determine the na-
tive conformations, and to the problem of thermodynamic stability
of folded proteins to mutations~Bussemaker et al., 1997!.

We used the designed 36-mer sequences withDij 5Bij to examine
the effect of random perturbations on the native states. The random
perturbations are modeled by adding a termdEij to each contact
term Bij . The random terms are assumed to be distributed as

P~dEij ! 5
1

#2ps
expS2

dEij
2

2s2 D ~12!

wheres is the width of the distribution that gives an estimate of
the nonsystematic error in determining the interaction parameters.
For each sequence with the new interaction matrixBij 1 dEij , we
recalculated the energy of the native state as a function ofs. In
Figure 6 we plot~Ets2 Ens!0Ensas a function ofs for the sequence
shown in Figure 4. HereEns is the energy of the native state with
Dij 5 Bij 1 dEij , and Ets is the energy obtained for the target
structure in Figure 4 using the same interaction matrix. This figure
shows that this optimized sequence can tolerate significant errors
in the interaction potential while leaving the energy and structure
unaltered.

The sensitivity of the structures of the native states to inaccu-
racies in the interaction matrix was first addressed by Bryngelson

~1994!. He showed that, for random heteropolymer models, the
relative errors in the potentials have to be less than 10#N ~N 5
number of amino acid residues! for reliable predictions. This gives
a very stringent requirement in determining pair potentials. It has
been suggested by Pande et al.~1995! that optimized sequences
can tolerate considerably larger error than random sequences. Fur-
thermore, Bussemaker et al.~1997! have argued that sequences
that are optimized become unstable to perturbations~or inaccura-
cies in the potentials! only if N is relatively large. The numerical
results obtained here are consistent with the earlier theoretical
studies of Pande et al.~1995! and Bussemaker et al.~1997!.

Discussion

In this paper we have examined the schemes used to devise pair-
wise contact potentials for structure prediction and design of pro-
teins. The popular versions of this method, namely, the Miyazawa–
Jernigan statistical potential and those devised by Skolnick and
coworkers emphasize different aspects of the residue–residue po-
tentials. While the correlation between the two schemes is good, it
is clear that when the elements are compared in detail there are
differences. Since there is no mathematically unique way of com-
paring the similarity of nonrandom matrices, we used the disper-
sion between the matrix elements as a criterion for assessing the
closeness of two matrices. The dispersion between the two matri-
ces~M andS) is large. We showed that a reference residue could
be chosen so that not only does the resulting interaction parameter
set, given by the matrixB, yields hydrophobicities in accord with
experiments but it also reduces the dispersion between the matrix
M andS.

We also addressed the issue of how sensitive are the predicted
topologies of the native state to variations in the interaction schemes.
Even though the dispersion betweenS andB is small we showed,
using lattice models as testing ground, that they can have rather
dramatic effect on the topology of the native states. Presumably,

Fig. 5. The native state for the same sequence shown in Figure 4 computed
using theS matrix. The dark residues are hydrophobic while the white are
hydrophilic. This native state is~at least! twofold degenerate. The degen-
eracy arises because trivial rearrangement of residue 36, for example, does
not alter the energy of the native state,Ens5 226.10. Most of the contacts
~7 of 11! in this structure, which differ from the structure in Figure 4, are
Lys-Asp contacts. These contacts have negative energy in theB matrix, as
expected for oppositely charged residues, but is slightly repulsive in theS
matrix. A comparison of the structures with the one shown in Figure 4
shows that errors in matrix elements can cause substantial changes in
topology.

Fig. 6. Fractional difference between the energy of the target native struc-
ture shown in Figure 4 and the actual native state, where both energies are
obtained by adding Gaussian noise to the matrixB. This figure shows that
optimized sequences can tolerate considerable random errors before be-
coming unstable. For comparison, we also show the energy difference
between the target native state and the actual native state computed using
the S matrix.
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the inaccuracies in the interaction schemes are not totally random
because at some level all of them use the database of proteins for
counting the frequencies of occurrence of various contacts. Thus,
the systematic errors can lead to substantial differences in the
predicted native states. On the other hand, it appears that random
errors, which would arise in any interaction scheme, are to a large
extent not that important for optimized sequences. This is in accord
with general theoretical arguments.

Our results allow us to make general comments regarding pair
potentials obtained by knowledge-based schemes. In an illuminat-
ing paper, Thomas and Dill~1996! investigated the assumptions in
the schemes used to extract statistical potentials by considering a
“model PDB” consisting of structures obtained using the HP model.
They showed that the extracted energy differed from the true in-
teraction energies. In addition to the interdependence of the HH,
HP, and PP energies, the excluded volume interactions alone in-
duces long-range correlations. It is known that even though the
range of excluded volume interactions are short, the chain connec-
tivity gives an effective potential~when integrated over the con-
nected residues! that is long ranged~Edwards, 1965!. Thus, one
cannot expect the extracted energies to coincide with the true
energies. Since the energies will be renormalized due to sequence
dependence, connectivity, and excluded volume effects, it is useful
to wonder if there is an effective 23 2 matrix that has the same
structure as the original matrix. The procedure that we have used
here ~see Equation 5! suggest that there must be a “solvent-like
residue” in the HP model with respect to which the renormalized
2 3 2 interactions has the same structure as the true HP model. To
show that this is possible, we consider the case of the 18mer
studied by Thomas and Dill~1996!. The extracted energies are
eHH ' 25, eHP 5 ePH ' 21, andePP ' 0 ~Thomas & Dill, 1996!.
Following Equation 5, we considered the rescaled valueseij

R 5 eij 1
epp 2 eip 2 ejp where the reference residue isP. With this trans-
formation, we obtaineR 5 23, and all other elements are zero.
This choice of reference state, which accounts for the aforemen-
tioned renormalization of the bare potential, reproduces the orig-
inal HP model up to a multiplicative factor. We, therefore, conclude
that the knowledge-based method of computing pair potential, which
is not very accurate, may be qualitatively useful. However, the
degree of accuracy obtained using this procedure may not be suf-
ficient for structure prediction—a conclusion that is consistent
with that reached by Thomas and Dill~1996!.

The rather different results for native structures obtained by
related contact potentials suggests that it is unlikely that purely
pairwise potentials are sufficient for structure prediction. The in-
clusion of higher order correlations could be important in reducing
the sensitivity of ground state topologies to variations in the po-
tentials. It is known from polymer physics that a description of the
stable globular shape of isolated polymers require the addition of
three body terms~de Gennes, 1985!. The changes in the topology
of the lattice structures given in Figure 5 can be viewed as the
instability of the native state to alterations in~not unrelated! po-
tentials. By analogy, with the stability of globules we conjecture
that the inclusion of three body terms might minimize the sensi-
tivity of the topology of the native state to various interaction
schemes. For hydrophobic residues a generalized Axilrod–Teller
potential~Axilrod & Teller, 1943!, which is based on dipole inter-
actions, may be adequate. It is not yet clear whether one requires
accurate three body interactions for reliably predicting the folds of
proteins.
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