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Abstract

We examine the similarities and differences between two widely used knowledge-based potentials, which are expressed
as contact matricegconsisting of 210 elementghat gives a scale for interaction energies between the naturally
occurring amino acid residues. These are the Miyazawa—Jernigan contact interactiorivimatidxhe potential matrix
Sderived by Skolnick J et al., 199Pyotein Sci 6676—688. Although the correlation between the two matrices is good,
there is a relatively large dispersion between the elements. We show that when Thr is chosen as a reference solvent
within the Miyazawa and Jernigan scheme, the dispersion betweeM taed S matrices is reduced. The resulting
interaction matrixB gives hydrophobicities that are in very good agreement with experiment. The small dispersion
between theS andB matrices, which arises due to differing reference states, is shown to have dramatic effect on the
predicted native states of lattice models of proteins. These findings and other arguments are used to suggest that for
reliable predictions of protein structures, pairwise additive potentials are not sufficient. We also establish that optimized
protein sequences can tolerate relatively large random errors in the pair potentials. We conjecture that three body
interaction may be needed to predict the folds of proteins in a reliable manner.

Keywords: inter-residue pair potentials; native state sensitivity to perturbations; protein folding; protein stability;
guasi-chemical approximation

The prediction of the three-dimensional structure of proteins startthe folding of proteins. Even if this approximation is valid, the
ing from the primary sequence requires fairly accurate estimates afalculation of the pair potentials requires additional simplifica-
energy functions, which describe the interactions between the amintions. The strategy for computing pair potentials occurs in two
acid residues. The effective interactions between the amino acidsteps. First, a protein is represented using a coarse grained descrip-
are assumed to be the same as the potential of mean force betwegn, which usually consists af-carbons representation with the
the moieties, so that the effects due to the solvent degrees afide chains being confined to their centers of mass. This provides
freedom are only implicitly included. It is clear that even the low resolution folds of proteins. With this simpler representation of
computation of the potential of mean force starting from atomicproteins, the calculation of pairwise interaction potentials between
detailed description is difficult. The inherent complexity in com- the residues boils down to deciphering the interactions that are
puting the residue—residue interactions has prompted a search foonsistent with a given set of folds.
a simple, but realistic, representations of the free energy potentials The above stated inverse problem is approximately solved using
that implicitly include solvent effectf_evitt, 1976; Miyazawa & as much knowledge about a given database of folds as possible.
Jernigan, 1985, 1996; Godzik et al., 1995, 1996; Skolnick et al.;The resulting interactions potentials are referred to as statistical
1997). potentials. In most of the statistical potentials, the interactions
A key assumption in most of the schemes used in the literaturdetween residues are presumed to exist only if the distance be-
is that the “exact” free energy potential for any protein may between the centers of mass of the side chains are less than a certain
written as a sum of pairwise interactions involving all the residuescut-off distance. This method of obtaining contact potentials from
It is not a priori clear that such an approximation can adequatelya database of proteins was pioneered by Tanaka and Scheraga
describe cooperative effects, which are known to be important if1976), and later refined by Miyazawa and Jernigd985, 1996.
There are several variations on these basic principles that have lead
to many different interaction schemes. The statistical potentials
Reprint requests to: D. Thirumalai, Institute for Physical Science andhave now peen used in many dlfferent Contdﬁnq, 1993; Sippl,
Technology, University of Maryland, College Park, Maryland 20742; e-mail: 1995; Jernigan & Bahar, 1996; Mirny & Shakhnovich, 1996; Moult,
thirum@glue.umd.edu. 1997).
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The basic assumption of the statistical potentials is that an emand signs of several terms. Recall that in both instances the value
pirical knowledge-based potential that estimates the effectiveof the interaction potential is in terms &T units whereR is the
residue—residue interaction may be made from the contact frequeigas constant and is the absolute temperature. The valued/gf
cies of the residues in the database of folds. Arguably, the besire mostly negative even for interactions between like-charged
known and widely used statistical potentials are due to Miyazawaesidues. Such a discrepancy cannot be resolved by merely adding
and Jernigai1985, 1996, Godzik et al(1995, 1996, and Skolnick  a scalar quantity because it would be inconsistent with the under-
et al. (1997). To extract the contact potentials, Miyazawa and lying approximations described by the equilibrium relations given
Jernigan(MJ) employed the quasi-chemical approximation, i.e., by Equation 1. The values of the elements of Swatrix, on the
the residues are assumed to be in equilibrium with the solvent. Thether hand, seem to have more physically reasonable values.
interaction between residue typeandj can be thought of as These observations lead to two questidis:Can one choose a
occurring in two steps. The first step involves the desolvation thateference system within the MJ scheme so that the dispersion
gives the reversible work required to expel a solvent molecule irbetween the resulting potential and the SJIKG potential is consid-
contact with a given residue. In the second step, mixing betweeerably reduced?2) How sensitive are the predicted native struc-
residuei andj takes place. This procedure, which uses differenttures to variations in the interaction potentials? In this paper we
reference states in the two steps, takes into account the effects afldress these two questions. The answer to the first question is
excluded volume due to solvent molecules. The main approximaaffirmative. To address the second question, we use lattice models
tion in this method is that it ignores chain connectivity. The jus-to establish that variations in the interaction schemes can lead
tification for this is that if we consider a large ensemble of proteinsto substantial changes in the energies and topology of the native
in the database then the bias introduced by chain connectivity istates.
averaged out. Schematically, one can represent the procedure lead-
ing to the MJ potentials as a set of chemical equilibria, namely

(Miyazawa & Jernigan, 1985; Thomas & Dill, 1996 Results
2(i)(s) 2 (i)(i) + (s)(s) (1A)  Rescaled Miyazawa—Jernigan potential
2()(s) 2 ()(j) + (8)(9) (1B) The overall correlation between the mathik (MJ potential and
< the matrix S (SJKG potential is very good(see Fig. 1 The
i + (D) 2 20)()) (1C) optimal linear relation between the two is

wherei and]j refer to residue typess refers to the solvent and
(a)(B) means that speciesandp are in contact, i.e., the distance
between their respective center of mass is less than a cut-off value.
From the charging procedure given in Equation 1, the excess erfhe quality of the fit can be assessed by computing the dispersion
ergy due to contadthe reversible work required to bririgand] between the fit and the matr& and the correlation coefficient,

into contact is given by We find the dispersion to be 0.39 ane- 0.82. In explicitly using
these contact matrix elements in the prediction of structures, the
M;; = Ej + Eoo — Eio — Ejo, (2 fluctuations between the two matrices are relevant. An assessment

of such fluctuations requires comparing the two matrices. A direct

whereE,; is the contact energy between the moieties labeled
and B and the subscript O refers to the solvent. The various ele-
ments of the matridM are calculated using the Bethe approxima-
tion in which the reference system is one in which there is
equilibrium between the solvent and the residues, i.e., the random v ox
mixing approximation is used.

One of the obvious limitations of the MJ procedure, which was * b
already noted in the original papévliyazawa & Jernigan, 1985
is that it ignores entropy losses due to chain connectivity. More
recently, Skolnick, Jaroszewski, Kolinski, and Godz&JKG
(Skolnick et al., 199Yintroduced forms of knowledge-based pair- &
potentials for amino acids that explicitly includes effects due to
chain connectivity, compactness of the native state and the effects
of secondary structures. Surprisingly, they concluded that the quasi-
chemical approximation, which ignores all these effects, is in general
sufficient for extracting pair-potentials. This is further corrobo-
rated by comparing the MJ and the SJKG potentials.

Let the matrixS represent the potentials due to SIKG. The - -
elements ofS correspond to Table 3A of SIKG. We find that the Mj;, Bjj
matricesM (upper half of Taple 3, Miyazawg & Jerni.g.an, 1996 Fig. 1. Correlation between thel andS and theS andB matrix elements.
and S are well correlated, with the correlation coefﬁ(:lent being For theM matrix, the correlation coefficient is = 0.82 and the relative
0.82. However, when the elements of the two matrices are comyispersions (see Equation ¥between the two models &= 3.40. ForB,
pared in detail, we find remarkable differences in the magnitude = 0.82 and the dispersiohis only 0.45.
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measure of the relative difference betwegandM may be ob-  Table 1. Correlation coefficients with experimental side-chain

tained by computing hydrophobicities for different effective potential models
1 a b c d
S = — - — M. )? 4

210%(SJ ») @ 0.86 0.92 0.88 0.90
Asn 0.76 0.85 0.84 0.82
which is found to have a relatively large value of 3.4. The IargeSer g'gg 8'85 8'8;' 8'8;
dispersion arises because contact interactions between certain r 0 0'47 0'6732 0.;2 0';3
idues are substantially different in the two schemes. As has beeﬂiz 0'41 0'49 0'53 0'49
noted already by Godzik et a{1996), t_he principal diff_ergnce_ s 0.73 0.80 0.65 0.73
between the numerous parameter sets is due to the variations in tie 0.79 0.91 0.84 0.85

reference states in computing the interaction schemes. As de-

scribed in Equation 1, MJ use the. r‘.”‘”dO”.‘ mixing approxw_nqtmn to aThe first column gives the reference residue used in the calculation of

calculate the eIemenMij. A key difficulty in computlngMij IS in the rescaled MJ matrigEquation 3. The last two rows are the correlation

estimatingEq andE;o, which require the average number of solvent- coefficients for theS and M matrices. Column a is for amino acids hy-

solvent contacts and residue-solvent contacts, respectively. In codfophobicities some of which were measured by Nozaki and Taqisre)

trast, SJKG obtained their parameter set using native referencdd others by Levitt1976. Column b is for N-acetil amino acid amide
hydrophobicities measured by Fauchere and Pl{g&83. Column c cor-

states, which consists of a library of real structures whose Comr'espond to hydrophobicities calculated from individual groups that make

pactness is comparable to the overall native fold. Following theyp each side chain, obtained by Rosen(#888. Column d is obtained
spirit of Skolnick et al(1997), we chose a different reference state from the averages of the hydrophobicities(@, (b), and(c). The highest
within the MJ procedure, which in effect brings the two parametercorrelations are obtained for the rescaled MJ parameters using Thr as the
sets into closer agreement with respect to each other in the sen&gerence residudefined as matriB).
of reducingé (see Equation ¥

We chose the reference state in which the solvent moldseke
Equation 1} is replaced by one of the nonpolar amino acid residues;,

. hent = Thr for all the hydrophobicit les. Th i
The reference residue type that replaces the solvent molecule Yg en r for af the hycropnobicily scales € maximum

chosen so that the nature of interaction between this residue ar]%% rljilha;lrfénarﬁjullt“ssi;t\év:;m and the hydrophobicities reported by
others is “similar” to the interaction between the solvent and the : ) . -

. ; . . - In Figure 2 we plot the experimental hydrophobicitiesrre-
other residues. The reference residue is obtained by requiring that gure e plot the experimental hydrophobicitiesrre

o . . . Sponding to column b antl= Thr in Table 2 vs. h;. With the
the hy.drophoblcmes of the residues, predlct.ed by the re.sumnq?xception of Cys, the correlation between the computed values and
potential, correlate as closely as possible with the experimental

values. Lett be such a reference residue. Then. we can define experiments is very good when Thr is chosen as the reference state.
o ' ' From the effective hydrophobicities it is clear that the amino acids
matrix B whose elements are

divide themselves into three classes. They ékestrongly hydro-
B - M 4+ M. — M. — M 5 phobic(Cys, Phe, Leu, Trp, Val, lle, Mgt(2) mildly hydrophobic
i i tt ti LK (His, Tyr, Ala, Gly, Pro; (3) hydrophilic (Asn, Thr, Ser, Arg, GIn,
o ) Asp, Lys, GIY. It is, perhaps, useful to further classify cld®
fori,j=1,2,3, ..., 20. If represents the solvent, then it follows residues as weakly hydropholiigyr, Ala, Pro or weakly hydro-
from Equation 5 thaMjo = 0.0 fori = 0, 1, 2, ..., 20Sincetis  ppjjic (His, Gly).
the reference state with respect to which all interactions are mea-
sured, we seB,o = By = 0 fori =0, 1, 2, ..., 20However, we
get from Equation 5 thaBj, = My — My. It is hoped that a
reference residue tygemay be found so that our assumption that
Bio = O is followed as well as possible, and that also leads to good
correlations with experimental hydrophobicities. The advantage of
the parameter s@; is that it eliminates the need for evaluatiBg

andE;q while utilizing the desirable features of the successful MJ E
potential. 2 0r
We first show that a residue tyfeés chosen so that the hydro- §
phobicity associated with residue 58 a4k
2
h = B;/2 (6) * -2 o

correlates well with the experimental estimates. The experimental

hydrophobicities for the various residues are typically inferred " ) , .
from transfer experiments. We compdre obtained using differ- 06 0.4 02 0 0.2
ent reference residues, to three different hydrophobicity scales Bi/2 (RT)

and their averages. The correlation coefficients are presented in

. . Fig. 2. Correlation of hydrophobicies between the calculated values using
Table 1. For comparison we also give the results for3tendM the B matrix and the experimental values given by Fauchere and Pliska

matrices. The correlation coefficients were calculated by excluding1983. The solid line is obtained from a linear regressiercluding Cy$
Cys. Itis clear from Table 1 that the highest correlation is obtainedwith slope= 7.75, intercept= 0.51, and correlation coefficient 0.92.
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The parameters for the potential introduced hé&see Equa- four groups, at least according to tBematrix elements, and are
tion 5) is given in Table 2. In addition to the contact enerdgigs left out for simplicity. The average effective interactions and de-
Table 2 shows the demixing terms in the lower triangular portion,mixing energies for these groups are shown in Table 3. There is a
and the average values of the interactions and their standard detrong attraction between hydrophobic residues HH, a weak repul-
viations. The demixing terrfreferred to as excess pair interaction sion between hydrophobic and hydrophilic residues HP, and an
term by Skolnick et aJ.is almost zero interaction between hydrophilic residues PP. This re-
sult is in agreement with other hydrophobic models in which hy-
drophobic residues are effectively attractive and hydrophilic residues
are neutral as the solvent. This classification naturally shows that
the HP model, advocated by Chan and Dil990, is a reasonable
The demixing term; measure the tendency of a pair of residuesstarting point for understanding general aspects of protein folding.
to disassociate when positive, or to associate when negative. By et al. (1997 have also arrived at a similar conclusion based on
inspectingB, the expected qualitative features of the interactionstheijr analysis of the MJ potential. Inspection of the matrix ele-
are evident. With the exceptions of minor fluctuations for few mentsB; shows that there are large fluctuations between hydro-
matrix elements, in particular those of Trp with hydrophilic resi- phobic and hydrophilic residugespecially those with intermediate
dues, the signs of the hydrophobic interactions are physically reahydrophobicity. In the folding structures, the residues with inter-
sonable. So are the signs of charge group interactions, i.e., repulsivgediate hydrophobicity could be at the interface between the hy-
between charges of equal sign and attractive between betwegfiophobic core and the hydrophilic residues that are in contact
charges of opposite sign. Thus, the elements ofgtheatrix in-  \ith water. The Coulomb interactions between residues with op-
trOduced here pI‘OVide estimates fOI’ contact interactions that a.rS()site Charges are Considerab|y Stronger than the repu|si0n be-
consistent with known classification of the nature of the aminotyeen like charges. The demixing enerdiesver triangular partition
acids. of Table 3 are also physically meaningful. Residues of sim-
ilar hydrophobicity are mixing on an averag¥y ~ Xpp ~ 0),
while residues of different hydrophobicity types tend to segregate
(Xup > 0). For charged groups, like charged residues are slightly
To get additional insights into the nature of the residue-residuelemixing(X, ; =~ X__ = 0) while mixing is strongly favored by
interactions, we have divided most of the residues into four groupsopposite charged groups. These classification of residue—residue
hydrophobic(H) [Phe, Leu, Trp, Val, lle, Met, Tyr, Alg hydro- interactions shows that while the simple HP model is indeed a
philic (P) [Asn, Thr, Ser, Gliy negatively chargeé-) [Asp, Glu], good starting point for certain purposes, the inclusion of diverse
and positively charged+) [Arg, Lys]. The rest of the residues interactions that occur in natural amino acids is necessary for a
[Cys, His, Gly, Pr¢ cannot be easily classified into the previous semi-quantitative description of protein folding.

Xij = Bj — 3(Bi + By) = My — 2(M;i + My). (7)

Nature of contact interactions: Justification of the HP model

Table 2. The elements of thB matrix, which were obtained by rescaling the MJ poteritial

Cys Phe Leu Trp Val lle Met His Tyr Ala Gly Pro Asn Thr Ser Arg GIn Asp Lys Glu

Cys —-1.34 -053 -050 -0.74 —0.51 -0.48 -0.49 -0.19 -0.16 —0.26 —0.09 -0.18 028 000 0.09 032 004 038 035 046
Phe 055 -0.82 -0.78 —-0.78 —-0.67 —-0.65 —0.89 —0.19 —-0.49 -0.33 011 -0.19 029 0.00 0.10 0.08-0.04 048 011 0.34
Leu 057 0.04-0.81 -0.70 —0.80 —-0.79 —-0.68 0.10 -0.44 -0.37 0.14 —-0.08 036 000 026 009 008 062 016 0.37
Trp 0.30 -0.00 0.08 —0.74 —-0.62 —0.65 —-0.94 —-0.46 —-055 —-0.40 —-0.24 -0.73 —-0.09 0.00 0.07-041 -0.11 0.06 —0.28 —0.15
Val 0.52 0.10 -0.04 0.11 -0.72 -0.68 —0.47 0.18 -0.27 -0.38 0.04 —0.08 039 0.00 025 017 017 066 016 041
lle 049 0.06 -0.08 0.02 -0.02 -0.60 —0.60 0.19 -0.33 -0.35 021 005 055 000 035 018 014 054 021 0.38
Met 0.46 —-0.20 0.00 -0.29 0.17 —-0.02 —-0.56 —-0.17 —-0.51 -0.23 0.08 —-0.16 032 0.00 032 0.17-0.01 062 022 0.24
His 064 038 067 008 070 066 028033 -021 021 023-005 010 0.00 0.15 0.04 0.22-0.22 0.26 —-0.11
Tyr 0.64 005 0.10-0.04 022 010-0.10 0.09 —0.27 -0.15 —-0.04 —-0.40 0.01 0.00 0.07-0.37 —-0.18 —0.07 —0.40 —0.16
Ala 051 018 014 007 008 005 015 048 0.080.20 —0.03 0.07 024 000 015 027 021 030 020 043
Gly 068 062 065 023 050 061 046 050 020 0.%0.20 -0.01 010 0.00 010 014 020 017 012 048
Pro 053 025 036-032 031 038 016 0.15-0.23 020 0.12-0.07 013 0.00 0.17-002 —-0.05 025 012 0.26
Asn 097 072 078 030 077 087 062 028 017 036 022 04804 0.00 0.14 0.02-0.05 -0.12 —-0.14 -0.01
Thr 0.67 041 041 037 036 030 028 017 014 010 010 0.04 0.02 00®O 000 0.00 0.00 0.00 0.00
Ser 070 044 060 037 054 058 053 025 014 018 013 014 ©©0®V6 013 012 025 0.01 010 0.10
Arg 093 042 043-011 046 041 039 014-030 030 0.18-0.05 —0.02 —-0.06 —0.01 0.13 -0.12 -0.71 0.50 —0.75
Gin 064 030 042 019 046 037 020 032011 024 0.23-0.08 -0.10 -0.07 0.11 —-0.25 0.4 0.12 -0.20 0.10
Asp 092 075 089 030 089 070 0.770.19 -0.07 026 0.14 0.15-0.24 -0.14 -0.19 -0.91 —-0.08 0.27 -0.69 0.40
Lys 083 033 038-0.10 033 032 031 023046 011 0.03-0.03 -0.31 -0.19 —-0.15 0.25 -0.46 —-1.01 0.38 —0.87
Glu 090 053 055-001 055 045 0.30-0.17 -025 030 036 0.07-0.21 —-0.22 —0.19 —1.04 —-0.20 0.04 —1.28 0.45

ave —-0.18 —-0.24 -0.19 -042 -0.14 -0.12 -0.19 -0.01 -0.25 —0.03 0.08 -0.05 0.12 0.00 0.15-0.01 0.05 0.15 0.02 0.12
dev 044 042 046 031 043 044 043 021 018 026 016 022 019 000 009 031 013 038 034 037

#The diagonal and upper elements are the transformed term ;i.e.M; + My — My — My. The reference residue is= Thr. Below the diagonal are
the demixing terms, i.eX; = By — (B; + Bjj)/2, which are identical to the ones obtained from khematrix. The interactions with the solvent, i.8;p,
are zero foi = 0,1,...,20where 0 represents the solvent. The last two lines are the averages and the standard deviati@slefrtasts for each residue
with respect to all others.
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Table 3. Average values dB obtained by dividing the amino precise test of this assumption using a database of 346 PDB struc-
acids into hydrophobic H, hydrophilic P, negatively tures(Thomas & Dill, 1996 shows that the Boltzmann distribution
charged— and positively charged- groups® is not obeyed. In fact, the extracted temperatures can vary consid-
erably(Thomas & Dill, 1996. Therefore, it is not surprising that
H P - + the slope of the correlation betweénand the experimental hy-
—056 0.12 0.32 0.03 H drophobicities can deviate from unity.
H 0.03 0.06 0.02 —0.03 P
P 0.39 —-0.00 0.38 -0.76 - Approximations of the interaction matrices
- 0.43 -0.18 0.02 0.38 + o , , , _
+ 0.20 ~0.18 ~1.06 0.12 The natural classification of the amino acid residues into a
few subclasses based on the interaction schemes suggest that the
H P - + 20 X 20 matrix consisting of 210 elements may be adequately

described by a smaller number of parameters. Based on eigenvalue
aThe hydrophobic residues are composed Rfie, Leu, Trp, Val, lle, decomposition of the MJ matrix, Li et &l1997) proposed that the
Met, Tyr, Ala); the hydrophilic offAsn, Thr, Ser, Gliy the negative charged  matrix M can be defined from the hydrophobicity alone. They
grgups of(Asp, Gly and thle positive chargefd Er‘?“ps (@trg, ILVS)' The  found thatM has two dominant eigenvalues, and the correspond-
other rg5|dues are not included because of their marginal or amblguoul?]g eigenvectors were strongly correlated. Thus, one can express
properties. . . .
one of the eigenvectors in terms of the other. These observations
suggest that a suitable HP model suffices to describe the main

features of residue—residue interactions. Based on this, Li et al.
In summary, it is clear that a viable contact interaction parametef1997 showed that thé/ matrix can be approximated by

set, without explicitly referring to the solvent state, can be con-
structed within the MJ scheme. The resulting interaction potential Mj = hi+h — C; (Ui — uj)%2 (8A)
has a high degree of correlation with the experimental hydropho-
bicities. There is an obvious discrepancy betweeand the ex-
perimental values, namely, the computedare nearly a factor
eight smaller. There are three related reasons for this discrepancy:
(2) In principle, hydrophobicity refers to the reversible work re-
quired to transfer a residuein a solvent made up of the residue
itself or an inert solvent to water. The virtue of the MJ interaction

hi’ = C0/2 + Clui + (C2/2) ui21 (BB)

where theu;'s are the components of the eigenvector correspond-
ing to one of the dominant eigenvalues aBgl C;, andC, are
constants which are obtained from the dominant eigenvalues and

spheme is thalvl; /2 describes the result of thls_proceésee Equa-_ the linear relation between the corresponding eigenvectors. In Equa-
tion 1). Here we have compardg to data obtained from experi- tion 8, h' are the approximate effective hydrophobicitigs=
ments that involve transfer of residues from a reference solvent IR/I-’-/Z The last term in Equation 8A is a model for the demixing

1] .

water. Our calculated values of hydrophobicities refers to a Sit“aferm ie. X!

ion in which residues initially | libri ith | q Xi = —(C2/2)(u; — uy)% When compared to the mixing
tion in which residues initially in equilibrium with a solvent made energy obtained from Hildebrand’s solubility theory, theean be

up of Thr are transferred to water. In the transfer experiment the, | 1a4 to the vaporization energigs et al., 1997. The question

reference state corresponds to a solvent different from water. Sﬂlat arises is whether the same conclusions can be drawn from the

we do not expect absolute correspondence with experimer_ltal me%igenvalue decomposition of tiBeandS matrices. We find that for
surements(2) The database of folded structures, from which thethe theB and S matrices, the spectrum of eigenvalues does not

frequencies of pairing of various residues are computed, Correéignificantly separate as M. Furthermore, the eigenvectors of the

spond to cor_npac_t structures._ !n such struct_ures certa_in_ residugg,, largest eigenvalues are not correlated. This implies that a
may occur with higher probability due to chain connectivity than simple reduction of the 20< 20 matrix into a generalized HP

would normally be the case. Therefore, choosing random polymeg, e is not always possible. This conclusion is in accord with the
reference state could decrease the interaction energy of hydrophllﬁécem calculations of Du et al1998 and R.L. Jernigaripers
residues and increase that of the hydrophobic ones. BotB, #inel comm) o ’
the S matrix calculation scheme reduce the probability of such It follows from Equations 5 and 8 that a corresponding matrix

contacts by eliminating the use of the random polymer referenc%,, which should be a reasonable approximatioB s B = M; +
state. However, the magnitudes of the interactions could be undef,, _ M — M{. We have eliminated the cysteine :';md c]harged
1 ] -

estimated, which affects the scale of the interactions but not theiértéup residues from the analysis because they are not well repre-
charactefsign) with relation to the solvent3) In our scheme, the sented by the demixing term in Equation 8. The elemeng cdn
transformation in Equation 1 effectively eliminates explicit refer- be written as
ence to solvent. The matrB is computed using only the frequen-

cies of contact between the residues in the folded native state B,
whose average structure does not fluctuate much below the folding

transition temperature. The fundamental assumption of the statiggng

tical potential is that the frequencies of occurrence of various pairs

h,’ + hj’ - K2 (ui - uj)2/2 (gA)

of residues obeys Boltzmann statistics at a constant temperature. A . Ko Ko

plausible rationale for this has been proposed by Finkelstein et al. hi= P + Kol + o ui

(1995 using the random energy model. More recently, Zhang and

Skolnick (1998 have also given conditions when “true” potentials _ K (U — uy)2 (9B)
may be derived from a database of structures. However, a more 2 o
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whereh'’ is redefined a$/ = B;/2 andKy = —0.193,K; = 1.48
andK, = —11.13. The correlation between the element8 @nd 05
B’ (r = 0.85 is significantly lower than found betwedh andM’.
In addition, the distributions of points is somewhat asymmetric
with respect to thd8’ = B line indicating that Equation 9 is not 0
fully adequate to represent the interaction matrix. This is also
apparent from Equation 9B, which always gives a zero or negativeg
hydrophobicity becaus&, = C, < 0. Therefore, residues with 0.5
positive hydrophobicity cannot be faithfully represented by this
equation. A better fit may be obtained by expressing the equation
for B’ as a higher order expansion in A+
To understand the decrease in correlation betwesnd B’
compared toM and M’, we decompose th& matrix into the
hydrophobic componentd; = (B; + Bjj)/2 and a demixing con-
tribution X; = B; — Hj. Both theH and X matrices can be ap-
proximated agdj = h/ + h and X = —(K»/2)(u; — u))?. Such a , _ _ ,
decomposition can also be done for Mematrix. The correlation ~ Fig- 3. Correlation between th’ (see Equation J0and theB matrix
betweenH- andH! is found to be somewhat worse than the cor- elements. The corrglatl(in coeff|C|entn$_0.87_O and the dlsperS|_on be-
ij T s A tween theB andB’ is 6 = 0.184. The white circles are for the diagonal
responding relationship between the hydrophobic components eXiements and the black ones for all others. All 20 amino acid interactions
tracted from theM matrix. Furthermore, the correlation between are included. This figure shows that a reduced representatiBmudy be
X; andX; is even smaller than betweéty andH; . While theX computed by systematic expansion using the eigenvectdss of
matrix remains the same for bohandM, the average magnitude
of theH matrix elements obtained for tlBematrix is much smaller
than the one obtained for thd matrix. Therefore, because the
demixing terms in th& matrix p|ay a more important role than in tion of the potential although the parameters obtained from the
the M matrix, the correlation betweeB andB’ is decreased. The steepest descent are perhaps not optimal. The values for the pa-
high correlation seen betwet and M’, which allows the de- rameters aré = —2.661,R; = —0.961,R, = —2.023,R; = 5.594,
scription of the 20x 20 matrix into 23 parameters, is due to the Q@ = —0.195, andD = —0.535. If we setA = R; (in analogy to
reference state used by Miyazawa and Jernid@85, 1996. Equations 8 and )9the result remain practically the same. The
vectorv is v(Cys, Phe, Leu, Trp, Val, lle, Met, His, Tyr, Ala, Gly,
Pro, Asn, Thr, Ser, Arg, Gin, Asp, Lys, Glu= (0.37, 0.45, 0.46,
Reduced representation of tBematrix 0.28, 0.31, 0.40, 0.32, 0.06, 0.20, 0.080.02, —0.00, —0.08,

It appears that the approximation to tiematrix found by Lietal. ~ 0-00,—0.06,—0.10,-0.04,-0.24,-0.12, —0.17). The correla-

(1997 is due to the fact that in the MJ scheme the hydrophobiction coefficient isr = 0.870 and without considering charged res-

interactions are overemphasized. In the other schemes, such as #{&/€S Or cysteine it is = 0.888, which is higher than the one

S matrix and theB matrix introduced here, there is no separation Ptained by Equation & = 0.854. Itis possible that even better

in the eigenvalues. Nevertheless, it is possible to obtain a reprécorrelation betweei’” andB can be obtained by optimizing the

sentation for the contact matrix that also takes into account chargeg'@r9eti- Thus, it is clear that the reduced representation of the

residues and Cys. The charged residues can be included using tR&i" Potential cannot always be accomplished using Equation 9,

Coulomb potential proportional tqq;, whereg; = {0, +1} is the which considers only the dominant eigenvalues.

charge of residue The repulsion between like-charged groups can

be absor'bed in the hydrophobic potential yielding an eﬁ?CtiveSensitivity of native state to variations

Coulo_mb|c potential proportlonal tag — qj_)z. The Cys-Cys in- i, the interaction scheme

teractions are modeled by adding an additional constant parameter,

which is defined a® = Ecc — 2h, whereC stand for cysteine. The preceding sections show that, despite the differences in the

If we letv; = u, — u, (U is the value of the eigenvectorfor the interaction matrices, the hydrophobicities extracted from them show

residue Thy, the expansion oB’ andh’ to third order ing; can be ~ Very good agreement with experiments. Despite the overall simi-

written as larity betweenB and S matrices(they correlate well with each

other and the relative dispersion is smalhere are differences in

the magnitude of several matrix elements describing contact inter-

actions between the residues. These differences are systematic be-

cause there is correlation between the two matrices. The correlation

arise because in both the schemes, the database of folded proteins

is utilized to compute the interaction matrices. It is a priori difficult

to assess the effect the differences in the various matrix elements
hi = Ryv; + Rov? + Rgvd. (10B)  have on the structure and energy of the native states for a given

sequence. More generally, we can ask the following question. If
The new coefficients along with the vector componantare  the interaction parameters given by Benatrix were exact, then,

obtained by fitting the parameters to the matrix valligs The  what effect would substituting th® matrix have on the predicted

fitting is carried out by a steepest descent method. Figure 3 showsative state? This question is related to the issue of how accurate

the correlation betweeB’ andB. The model is a fair representa- should interaction potentials be so that the folded structure can be

Blll = hi’ + h]’ - A(Ui - UJ‘)Z + Q(ql - qJ)Z + DSi’Cajyc, (10A)

where the contribution of the term proportional (@ + v;)
(vi — vj)? is negligible, and



Pair potentials for protein folding 367

predicted to the desired accurad@ryngelson, 1994; Pande et al.,
1995.

The question posed above can be precisely answered using lat-
tice models of proteins. The strategy we adopt is the following: We
have generated five optimized sequences usingBtmeatrix in-
teraction parameters. Once the native states for each sequence are
determined, we switch the interaction matrix $okeeping the
sequences identical. The native states are redetermined, and a com-
parison of the various native states allows us to assess the depen-
dence of topology and energy on the interaction scheme used.

We model proteins as chainséf(= 36) successively connected
beads on the sites of a cubic lattice. The energy of a conformation
specified by the sites on the latticgi = 1, 2,...N) is

E{ri}) = 2 A;8(r; —a) (11

where the contact interactions is B; or §;, rj = |rj — rj|, ais the
lattice spacing, and(0) = 1 and O otherwise. Using; = B; we  Fig. 4. The native structure of designed sequence #1 using the rescaled MJ
generated five optimized sequences. We determined the thermpetentialB. Hydrophobic residues are drawn darker than hydrophilic res-
dynamics of these sequences using the multi-histogram technigudues. The native state is unique, and has an energiof —28.45(in
(Ferrenberg & Swendsen, 1989n particular, the collaps€T,) units of RT).

and folding transition(T;) temperatures were determined using

standard methodéCamacho & Thirumalai, 1993 For all five

sequencest = (T, — Ty)/Ty =~ 0, and hence these are expected totertiary contacts for other optimized sequences varies from 0.25 to
fold thermodynamically and kinetically in a two state man¢@a- about 0.60. It can be seen from Table 4 that the actual ground state
macho & Thirumalai, 1998 The five sequences were obtained by energies for the five sequences using Sematrix elements are

a design algorithm that efficiently leads to a smooth landscape sfpwer than that computed from the structures generated Bjjth
that the values oér are minimized(M. Betancourt & D. Thiru-  interaction scheme. This shows that, at least within pairwise inter-
malai, unpubl. resulis They were generated in the course of un- action schemes, relatively smdtionrandom differences in the
raveling thermodynamic factors that also determine the kineticcontact energies can have profound effects on the topology of the
accessibility of the native states. The sequences and associatadtive conformation. We should emphasize that this depends on
properties are displayed in Table 4. the sequence and the topology of the native state.

The native state for one of these sequences is shown in Figure 4. We should hasten to point out that the extreme sensitivity of the
This structure is maximally compact and is confined t& 3 X 4 designed native state to alterations in the interaction potentials may
sites on the cubic lattice. We now keep the identity of the sequencearise because of the underlying lattice. It possible that if one uses
and lety; = §;. The topology of the resulting native state is shown a high coordination lattice, the response of the native state upon
in Figure 5. A comparison of the two native states shows that th&witching the potentials forr8 to S may be less severe.
topology of the native state has been considerably altered. The
native conformation for th& matrix is no longer maximally com- Tolerance of optimized sequences to random perturbations
pact. Approximately 25% of the tertiary contacts have been al-
tered. Similar results are found for other sequences as can be sekiis clear that even if pair potentials are very accurate for structure
from Table 4. In particular, the differences in the fraction of native prediction they cannot be determined with very high precision.

Table 4. Designed sequences for five 36-mers usingBheatrix
with some of their thermodynamic propertes

# Sequence EE ES ES Q

1 KMIKDVIERACDHCMHKFVKDVMEHMIKDVCKDCAK-28.45 —-24.3 —-26.1 0.25
2 KKLPMHLRKDEILKKDDVCCIRKDEICPMKKDEIWC —30.51 —20.6 —22.2 0.28
3 EICGHERYDKLWCEKHGCVGHEKWLKDYRREWVKER26.03 —-20.8 —22.7 0.22
4 CCDDDDDIFKKKRKCLEKVIAMPMDEDDDPPCIWYK-29.12 -17.7 —-19.2 0.39
5 DMVPADKIFREYKKGDIGEYIRGACPCDKCLEKIYIl —25.12 —-19.8 —22.6 0.60

aWe have used a one letter representation for amino afss the native state energy of the target
(and native structure using th& matrix. All designed sequences with tBematrix produce stable and
nondegenerate native statE§.andES are, respectively, the target and native energies whe@ thatrix
is substituted for th& matrix, using the same sequences and target struc@rsghe fraction of native
contacts, as defined by the target structure, in the native structure obtained us$getex.
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Fig. 6. Fractional difference between the energy of the target native struc-
ture shown in Figure 4 and the actual native state, where both energies are
obtained by adding Gaussian noise to the mariX his figure shows that
optimized sequences can tolerate considerable random errors before be-
coming unstable. For comparison, we also show the energy difference

Fig. 5. The native state for the same sequence shown in Figure 4 computegktween the target native state and the actual native state computed using
using theS matrix. The dark residues are hydrophobic while the white areine 5 matrix.

hydrophilic. This native state it least twofold degenerate. The degen-
eracy arises because trivial rearrangement of residue 36, for example, does
not alter the energy of the native stalig, = —26.10. Most of the contacts

(7 of 11) in this structure, which differ from the structure in Figure 4, are
Lys-Asp contacts. These contacts have negative energy i thatrix, as

expected for oppositely charged residues, but is slightly repulsive i the (1994. He showed that, for random heteropolymer models, the
matrix. A comparison of the structures with the one shown in Figure 4 ’ ’ '

shows that errors in matrix elements can cause substantial changes [flativé rrors in the potentials have to be less thﬂdﬂ(N =
topology. number of amino acid residuei®r reliable predictions. This gives

a very stringent requirement in determining pair potentials. It has
been suggested by Pande et(aPB95 that optimized sequences
can tolerate considerably larger error than random sequences. Fur-
There are inherent errors even in the most sophisticated interactidhermore, Bussemaker et 1997 have argued that sequences
schemes. Some of these errors could be systematic, while othetisat are optimized become unstable to perturbationsnaccura-
can be random. Thus, in the course of predicting the structures dfies in the potentiajsonly if N is relatively large. The numerical
folded states the effect of random errors on the predicted nativeesults obtained here are consistent with the earlier theoretical
states have to be examined. This issue is related to question of tstudies of Pande et &]1995 and Bussemaker et dl1997).
accuracy needed in the interaction potentials to determine the na-
tive conformations, and to the problem of thermodynamic stability
of folded proteins to mutationdBussemaker et al., 1997 Discussion
We used the designed 36-mer sequencesayith By to examine |y paper we have examined the schemes used to devise pair-
the effect of random perturbations on the native states. The random

perturbations are modeled by adding a teifiy to each contact wise contact potentlals_ for struc'ture prediction and de5|gn of pro
L teins. The popular versions of this method, namely, the Miyazawa—
term B;. The random terms are assumed to be distributed as . - . : !
Jernigan statistical potential and those devised by Skolnick and

5 coworkers emphasize different aspects of the residue-residue po-
1 ex _ﬁ (12) tentials. While the correlation between the two schemes is good, it
270 202 is clear that when the elements are compared in detail there are
differences. Since there is no mathematically unique way of com-
whereo is the width of the distribution that gives an estimate of paring the similarity of nonrandom matrices, we used the disper-
the nonsystematic error in determining the interaction parametersion between the matrix elements as a criterion for assessing the
For each sequence with the new interaction maixt 6E;, we  closeness of two matrices. The dispersion between the two matri-
recalculated the energy of the native state as a functian. dh ces(M andS)is large. We showed that a reference residue could
Figure 6 we plotE;s — Ens)/Ensas a function ofr for the sequence  be chosen so that not only does the resulting interaction parameter
shown in Figure 4. Her&,s is the energy of the native state with set, given by the matriB, yields hydrophobicities in accord with
Aj = Bj + 6E;, and Ey is the energy obtained for the target experiments but it also reduces the dispersion between the matrix
structure in Figure 4 using the same interaction matrix. This figureM andS.
shows that this optimized sequence can tolerate significant errors We also addressed the issue of how sensitive are the predicted
in the interaction potential while leaving the energy and structurgopologies of the native state to variations in the interaction schemes.
unaltered. Even though the dispersion betwegmandB is small we showed,
The sensitivity of the structures of the native states to inaccuusing lattice models as testing ground, that they can have rather
racies in the interaction matrix was first addressed by Bryngelsomramatic effect on the topology of the native states. Presumably,
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