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ABSTRACT
Motivation: Since the whole genome sequences of many species
have been determined, computational prediction of RNA secondary
structures and computational identification of those non-coding RNA
regions by comparative genomics become important. Therefore, more
advanced alignment methods are required. Recently, an approach
of structural alignment for RNA sequences has been introduced to
solve these problems. Pair hidden Markov models on tree structures
(PHMMTSs) proposed by Sakakibara are efficient automata-theoretic
models for structural alignment of RNA secondary structures, although
PHMMTSs are incapable of handling pseudoknots. On the other hand,
tree adjoining grammars (TAGs), a subclass of context-sensitive gram-
mars, are suitable for modeling pseudoknots. Our goal is to extend
PHMMTSs by incorporating TAGs to be able to handle pseudoknots.
Results: We propose pair stochastic TAGs (PSTAGs) for aligning
and predicting RNA secondary structures including a simple type of
pseudoknot which can represent most known pseudoknot structures.
First, we extend PHMMTSs defined on alignment of ‘trees’ to PSTAGs
defined on alignment of ‘TAG trees’ which represent derivation pro-
cesses of TAGs and are functionally equivalent to derived trees of
TAGs. Then, we develop an efficient dynamic programming algorithm
of PSTAGs for obtaining an optimal structural alignment including
pseudoknots. We implement the PSTAG algorithm and demonstrate
the properties of the algorithm by using it to align and predict sev-
eral small pseudoknot structures. We believe that our implemented
program based on PSTAGs is the first grammar-based and practic-
ally executable software for comparative analyses of RNA pseudoknot
structures, and, further, non-coding RNAs.
Availability: The source code of PSTAG and its web application are
available at http://phmmts.dna.bio.keio.ac.jp/pstag/
Contact: yasu@bio.keio.ac.jp

1 INTRODUCTION
Secondary structures including pseudoknots of non-coding RNA
molecules play important roles for their own functions such as cata-
lytic functions (Damet al., 1992). Thus, the computational prediction
of pseudoknot RNA structures from primary RNA sequences has
become an active research area in bioinformatics, and further there
are several theoretical or heuristic works to predict pseudoknot RNA
structures such as by maximizing stacking base pairs or free energy
minimizations (Abrahamset al., 1990; Cary and Stormo, 1995;

∗To whom correspondence should be addressed.

Gultyaevet al., 1995; van Batenburget al., 1995; Rivas and Eddy,
1999; Lyngsø and Pedersen, 2000; Ieonget al., 2003; Ruanet al.,
2004). On the other hand, since the whole genome sequences of many
species have been determined, computational identification of non-
coding RNA regions by comparative genomics become important.
Therefore, more advanced methods such as precise algorithms for
database search are required for detecting non-coding RNA regions.

Recently, Sakakibara (2003) proposed pair hidden Markov models
on tree structures (PHMMTSs) which is an extension of pair HMMs.
The PHMMTSs are defined on alignment of trees based on stochastic
context-free grammars (SCFGs), and applied to the problem of
structural alignment of RNA secondary structures. The approach
of structural alignment is to calculate a pairwise alignment to align
an unfolded RNA sequence into a folded RNA sequence of known
secondary structure (as illustrated in Fig. 1). Thus, an unfolded RNA
sequence will be folded by the structural alignment into a single fol-
ded RNA sequence, and hence the structural alignment is clearly
different from the usual pairwise alignment only based on sequence
homology. Two important features of structural alignment are (1) to
predict secondary structures for primary RNA sequences and (2) to
detect non-coding RNA regions with more sensitivity than sequence
homology. The second feature is obviously an advantage compared
with conventional methods which can only predict RNA secondary
structures.

However, PHMMTSs are incapable of handling pseudoknots
because modeling pseudoknot RNA structures is beyond the gen-
erative power of context-free grammars, thus inevitably involves in
the hard complexity of context sensitivity.

In this paper, we propose a novel method for structural alignment to
align and predict RNA secondary structures including pseudoknots.
For modeling pseudoknot RNA structures, we first employ special
subclasses of tree adjoining grammars (TAGs), which are more gen-
erative than context-free grammars but less than context-sensitive
grammars. Second, we extend PHMMTSs defined on the alignment
of trees to pair stochastic TAGs (PSTAGs) defined on the alignment
of ‘TAG trees’ which can represent the derivation process of TAGs
for pseudoknot RNA structures. Thus, by combining it with a pars-
ing algorithm for TAGs, we can solve the alignment problem of TAG
trees by an efficient dynamic programming algorithm of PSTAGs for
obtaining an optimal structural alignment including pseudoknots.

2 TAGs FOR PSEUDOKNOT STRUCTURES
For modeling pseudoknot RNA structures, we employ special sub-
classes of TAGs, which were introduced to study pseudoknot
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Fig. 1. A structural alignment of an unfolded RNA sequence and a folded RNA.
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Fig. 2. An adjoining operation in TAGs.

structures by Uemuraet al. (1999). In this section, we briefly describe
TAGs and the two subclasses, simple linear TAGs (SL-TAGs) and
extended simple linear TAGs (ESL-TAGs). For more details, refer to
Uemuraet al. (1999).

Let t be a tree which is a rooted indirected acyclic graph, each node
of which is labeled withX ∈ VN ∪ VT ∪ {ε}, whereVN is a finite
set of non-terminal symbols,VT is a finite set of terminal symbols
and ε is the empty sequence. Nodes in a treet of the sizem are
numbered from 1 tom according to the preorder where the root node
of t is numbered 1. Byt(p) = A, we denote that the nodep of t is
labeled withA ∈ VN ∪ VT. A yield of a treet , which is denoted as
Y(t), is defined as a concatenating sequence of labels at leaf nodes of
t traced from left to right.

A TAG, introduced by Joshiet al. (1975), is specified by a 5-tuple
G = (VN,VT,S,I,A), whereS ∈ VN is an initial symbol,I is a
finite set of initial trees andA is a finite set of adjunct trees.I and
A must satisfy the following conditions:

1. if α ∈ I, thenα(1) = S andY(α) ∈ VT
∗;

2. if β ∈ A, thenβ(1) = X ∈ VN andY(β) ∈ VT
∗XVT

∗,

whereVT
∗ denotes a set of all finite sequences overVT. A foot node

of an adjunct treeα is the node which has a label ofX ∈ VN in Y(α).
Each path of an adjunct tree from the root node to a foot node is called
a backbone. All of the initial trees and adjunct trees are referred to
as elementary trees. Then, adjoining operations over trees in TAGs
are defined as follows. Letγ be a tree such thatγ (p) = X ∈ VN and
β be an adjunct tree such thatβ(1) = X, and one of the foot nodes
is also labeledX. An adjoining operation is to deriveγ ′ from γ and
β such thatβ is adjoiningγ at the nodep as shown in Figure 2. We
call γ ′ a derived tree fromγ . A nodep of γ with a labelX ∈ VN is
active if and only if there existsβ ∈ A which can adjoinγ atp such
as the node indicated by∗ in Figure 2.

Uemuraet al. (1999) introduced two subclasses of TAGs, SL-
TAGs and ESL-TAGs, and parsing algorithms of them which run in

Fig. 3. Decomposition ofY(β).

time O(n4) andO(n5), respectively, for an input sequence of the
lengthn.

An initial tree tinitial is simple linear iftinitial has one active node
exactly. Similarly, an adjunct treetadjunct is simple linear iftadjunct

has one active node on its backbone exactly. Then, a TAGG is a
simple linear TAG if all of the elementary trees inG are simple
linear. An adjunct treetadjunct is semi-simple linear iftadjuncthas two
active nodes exactly, where one is on its backbone and the other is
elsewhere. Then, a TAGG is an extended simple linear TAG if initial
trees inG are simple linear and all of the adjunct trees inG are either
simple linear or semi-simple linear.

Let β be a simple linear adjunct tree such thatβ(1) = X,
Y(β) = a1 · · · aiXai+1 · · · aj andq is the active node ofβ labeled
with Y ∗, and the yield of a subtree ofβ rooted at the nodeq be
ai′ · · · aiXai+1 · · · aj ′ for i ′, j ′ (1 ≤ i ′ ≤ i, i + 1 ≤ j ′ ≤ j). We
decomposeY(β) into four subsequences asLU(β) = a1 · · · ai′−1,
LD(β) = ai′ · · · ai , RD(β) = ai+1 · · · aj ′ andRU(β) = aj ′+1 · · · aj ,
as shown in Figure 3. For any sequencew ∈ VT

∗, we denote the
length ofw as|w|. Note that for empty sequenceε, |ε| = 0.

For representing RNA secondary structures including pseudo-
knots, we define a special case of ESL-TAGs, denoted byGRNA =
(VN,VT,S,I,A), in which VT = {A,C,G,U} for representing four
kinds of nucleotides andVN = {S}, that is,S is the only non-terminal
symbol.GRNA uses the following forms of elementary trees: a form
for initial trees of TYPE-1 and forms for adjunct trees of TYPE-2, 3,
4 and 5 as shown in Figure 4. The forms of TYPE-2 and TYPE-
3 are used for generating base pairs, the form of TYPE-4 is used
for generating unpaired bases and the form of TYPE-5 is used for
representing branching structures. For instance, Figure 5 illustrates a
derivation process to produce a pseudoknot RNA secondary structure
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Fig. 4. Forms of initial trees and adjunct trees in ESL-TAGs for representing pseudoknot RNA structures.x ∈ VT represents a complementary base ofx ∈ VT

such as(A,U), (C,G) in the Watson–Crick base pairing and(G,U) in the wobble base pairing.

Fig. 5. A derivation process to produce a typical pseudoknot structure for ‘(A(G[AC)U)U]’, which cannot be modeled by any context-free grammars because
of a crossing dependency.

for ‘(A(G[AC)U)U]’ by GRNA, where two kinds of parentheses,
‘( )’ and ‘[ ]’, indicate base pairs.

Let us consider a secondary structureT of an RNA sequence
w = a1a2 · · · an ∈ VT

∗, which is a set of base pairs(ai ,aj ) such that
1≤ i < j ≤ n. Then, we say that(ai ,aj ) and(ak ,al) in T is crossing
if and only if eitheri < k < j < l or k < i < l < j . A secondary struc-
tureT hasm-crossing property if and only if there exists a subsetT ′
of T with

∣∣T ′∣∣ = m ≥ 2 such that any pair of(ai ,aj ) and(ak ,al) in
T ′ is crossing, where|T | is the number of base pairs included inT .
ESL-TAGs have the ability to generate a simple type of pseudoknot
RNA structures with exactly 2-crossing property, which can rep-
resent most known pseudoknot structures but cannot represent all
of them.

3 PSTAGs
In this section, we propose PSTAGs for aligning and predicting RNA
structures including pseudoknots.

3.1 TAG trees
We introduce a TAG tree which represents the derivation process
of TAGs, that is, what order of adjoining trees could be adjoining
to induce a derived tree whose yield is an input sequence. Each
node of TAG trees is labeled with an adjunct tree, and each edge
means an adjoining operation on an active node at its parent. The
root node of a TAG tree is labeled with an adjunct tree which adjoins

an initial tree. Figure 6(a) and (b) illustrate some examples of TAG
trees for parsing two structured sequences, ‘(a(bB)A)(d[eD)E]’
and ‘(bB)d(fF)’.

TAG trees have two important properties: (1) every TAG tree has
a one-to-one correspondence to the derived tree, and (2) the set of
TAG trees of an ESL-TAG can be recognized by a tree automaton,
and therefore, we can extend tree automata to TAG tree automata
defined on TAG trees.

An alignment for a pair of trees is obtained by inserting some
null nodes labeled withλ into each other such that two resulting
trees have the same topology. Since each node of TAG trees rep-
resents an adjunct tree, an alignment of two TAG trees requires
matches between adjunct trees. In the case of TYPE-4 and TYPE-5,
two adjunct trees of exactly the same form can be matched. On the
other hand, adjunct trees of TYPE-2 and TYPE-3 are allowed to be
matched as shown in Table 1.

For instance, Figure 6 illustrates that two TAG trees (a) and (b) are
aligned into an alignment of TAG trees (c) which corresponds to a
derived tree (d). First, since both nodesp1 andq1 in the TAG tree (a)
and (b) are of the same formT5Ld, they are matched into the node
(p1,q1) in the aligned TAG tree (c). Similarly, either nodep2 or node
p3 will be matched withq2, and a null node is inserted to make both
TAG trees of the same topology. The nodesp4 of the formT3L and
q3 of the formT4Ld are aligned into the node(p4,q3) of the form
T3L. Then, the nodesp5 of the formT2u andq4 of the formT3L
cannot be matched, and thus null nodes are inserted. Consequently,
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(a)

(b)

(c)

(d)

Fig. 6. (a) A TAG tree for ‘(a(bB)A)(d[eD)E]’. (b) A TAG tree for
‘(bB)d(fF)’. (c) An alignment of the two TAG trees. (d) An alignment of
two derived trees implied by (c).

the resulting structural alignment is obtained as below:

sequence of (a) :abBAd-e-DE

sequence of (b) :-bB-df-F--

consensus structures :.().......

Table 1. Any pair of adjunct trees shown in the table can be matched in
aligning two TAG trees

(T2u,T2u) (T2d,T2d) (T3L,T3L) (T3R,T3R)

(T2u,T4Lu) (T2d,T4Ld) (T3L,T4Ld) (T3R,T4Ru)

(T2u,T4Ru) (T2d,T4Rd) (T3L,T4Lu) (T3R,T4Rd)

(T4Ld,T4Ld) (T4Lu,T4Lu) (T4Rd,T4Rd) (T4Ru,T4Ru)

(T5Ld,T5Ld) (T5Lu,T5Lu) (T5Rd,T5Rd) (T5Ru,T5Ru)

3.2 Algorithm of PSTAGs
Given an RNA sequence with annotations of secondary structures
including pseudoknots, where the annotations are usually given by
parentheses, a TAG tree is obtained by parsing the annotated RNA
sequence with the ESL-TAGGRNA. We call it a skeletal tree.

Let w = a1a2 · · · an ∈ VT
∗ be an unfolded RNA sequence of the

lengthn, T be a skeletal tree of the sizem representing a folded
RNA sequence of known pseudoknot structure,T [q] (1 ≤ q ≤ m)
be the subtree ofT rooted at the nodeq andw[i, j ,k, l] (0 ≤ i ≤
j ≤ k ≤ l ≤ n) be two subsequencesai+1 · · · aj andak+1 · · · al of
w. We denote the children ofq asq1 andq2.

Then, in order to calculate an optimal structural alignment between
an unfolded RNA sequencew and a skeletal treeT for a folded RNA
sequence, we present recurrence equations based on the affine gap
model with three states: match states (M), insertion states (I ) and
deletion states (D).

P M(w[i, j ,k, l],T [q])

= max
X,Y∈{M,I ,D}




max
i<r≤j
i≤s≤r

P M
O (T5Ld,v(q))

·δMX · P X(w[r, j ,k, l],T [q1])
·δMY · P Y (w[i, s, s, r],T [q2]),

max
i≤r<j
r≤s≤j

P M
O (T5Lu,v(q))

·δMX · P X(w[i, r,k, l],T [q1])
·δMY · P Y (w[r, s, s, j ],T [q2]),

max
k≤r<l
r≤s≤l

P M
O (T5Rd,v(q))

·δMX · P X(w[i, j ,k, r],T [q1])
·δMY · P Y (w[r, s, s, l],T [q2]),

max
k<r≤l
k≤s≤r

P M
O (T5Ru,v(q))

·δMX · P X(w[i, j , r, l],T [q1])
·δMY · P Y (w[k, s, s, r],T [q2]),

max
β∈T

P M
O (β,v(q)) · δMX·
P X(w[i − |LU(β)| , j + |LD(β)| ,

k − |RD(β)| , l + |RU(β)|], T [q1]),
whereT is a set of simple-linear adjunct trees of TYPE-2, TYPE-3
and TYPE-4 defined in Figure 4,

P I (w[i, j ,k, l],T [q])

=



max
X∈{I ,M}

β∈T

P I
O(β,λ) · δIX · P X(w[i − |LU(β)| ,

j + |LD(β)| ,k − |RD(β)| , l + |RU(β)|],T [q]),

2614

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/21/11/2611/294713 by guest on 21 August 2022



Pseudoknot RNA structures

Table 2. The result of predicting base pairs including pseudoknots by PSTAG for three RNA families in Rfama

Length of sequences Number of sequences Specificity (%) Sensitivity (%) Time (s) Memory (MB)

Corona_pk3 62.9 14 95.5± 5.0 94.6± 5.0 25.8± 1.2 (4.33± 0.17) × 102

HDV_ribozyme 89.1 15 95.6± 5.1 94.1± 5.6 177± 10 (2.23± 0.12) × 103

Tombus_3_IV 91.2 18 97.4± 6.0 97.4± 6.0 214± 17 (2.70± 0.10) × 103

aEach value in columns of specificity, sensitivity, time and memory represents average and standard deviation of them with respect to the number of sequences. CPU time and memory
usage are on a machine with Intel Pentium 4 2.80 GHz processor and 4 GB RAM.

Fig. 7. A state transition diagram of PSTAG for affine gap alignments.

whereT is a set of simple-linear adjunct trees of TYPE-4 defined in
Figure 4,

P D(w[i, j ,k, l],T [q]) = max
X∈{D,M}

P D
O (ε,v(q)) · δDX

× P X(w[i, j ,k, l],T [q1]),

P X(ε, θ) = 1, for X ∈ {M, I ,D},
whereδXY for X,Y ∈ {M, I ,D} denotes the probability of state
transition from the stateX to the stateY , P X

O (α,β) denotes the
probability of emission for a pair of adjunct treesα andβ at the state
X, v(q) denotes an adjunct tree labeled at a nodeq in the treeT ,
andθ denotes the empty tree. A state transition diagram among three
statesM, I andD for affine gap alignment is given in Figure 7. An
optimal structural alignment between a sequencew and a skeletal
treeT is obtained by calculating

max
0≤i≤n




τM · P M(w[0,i, i,n],T [1]),
τI · P I (w[0,i, i,n],T [1]),
τD · P D(w[0,i, i,n],T [1])

for some predefined initial probabilitiesτM , τI , τD .
Our implementation of PSTAG employs a non-stochastic score

matrix proposed by Gorodkinet al. (1997) instead of the full
stochastic model described above, because each score in Gorodkin’s
matrix is essentially identical to the probabilistic log-odds score
approximated by their round number.

An efficient algorithm for calculating the above recurrence equa-
tions can be implemented by using dynamic programming tech-
niques. The computational complexity of executing PSTAGs for
structural alignment is the same order as that of parsing an input
sequence with ESL-TAGs theoretically. More precisely, time com-
plexity to run a PSTAG for an input pair of an unfolded sequence of
the lengthN and a skeletal tree of the sizeM with m branch nodes
andn other nodes (M = m + n) is O(KnN4 + KmN5), whereK is
the number of states in the PSTAG (K = 3 for the affine gap model),
and space complexity isO(KMN4).

4 EXPERIMENTAL RESULTS
To confirm our method, we performed some experiments using a
certain RNA family in the database. We first randomly chose an
RNA sequence annotated with a known pseudoknot structure and
parsed it into a skeletal tree, then aligned all the other ‘unfolded’
RNA sequences in the family into the selected ‘folded’ skeletal tree
without using annotations of them. We evaluated the results of our
experiments by specificity and sensitivity, that is, the rate of correctly
predicted base pairs by the method to all predicted base pairs, and
the rate of correctly predicted base pairs to all of the trusted base
pairs in the database, respectively. Further, in order to remove the
dependency of the prediction results on the selected folded RNA
sequence, we performed cross-validation and calculated the average
for all cases.

The datasets used in our experiments were taken from RNA famil-
ies database ‘Rfam’ at Sanger Institute (Griffiths-Joneset al., 2003;
http://www.sanger.ac.uk/Software/Rfam/) and a collection of RNA
pseudoknots ‘PseudoBase’ at Leiden University (van Batenburg
et al., 2000; http://wwwbio.leidenuniv.nl/∼Batenburg/PKB.html).
RNA sequences in Rfam are aligned and annotated with second-
ary structures by using the covariance model (CM) method (Eddy
and Durbin, 1994). Among 176 RNA families in Rfam (version 5.0),
7 RNA families have pseudoknot annotations which are unreliable
because CM is based on profile SCFGs for modeling RNA sequences
which cannot deal with pseudoknots. On the other hand, the annota-
tions of pseudoknot RNA structures in PseudoBase are biologically
reliable.

First, we evaluated the accuracy of predicting base pairs by
the PSTAG algorithm for three RNA families,Corona_pk3,
HDV_ribozyme and Tombus_3_IV, which have pseudoknot
annotations in Rfam.Corona_pk3 andHDV_ribozyme constitute
simple pseudoknot structures which can be analyzed by an SL-
TAG, whereasTombus_3_IV has one branching secondary structure
involving a pseudoknot which requires an ESL-TAG. The results in
Table 2 show that PSTAG can predict accurate structural alignments
for all three RNA families.
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>The trusted pseudoknot structure annotated in PseudoBase
(((((((........[[[[(((.......))))))))))...(((((((....((((....))))..)))))))......]]]].....
GGGUCGGCAUGGCAUCUCCACCUCCUCGCGGUCCGACCUGGGCAUCCGAAGGAGGACGCACGUCCACUCGGAUGGCUAAGGGAGAGCCA
>Prediction by PSTAG
.((((((....[[..[[[[(((.......)))))))))....(((((((....(((((..)))))..)))))))......]]]].]]..
GGGUCGGCAUGGCAUCUCCACCUCCUCGCGGUCCGACCUGGGCAUCCGAAGGAGGACGCACGUCCACUCGGAUGGCUAAGGGAGAGCCA
>Prediction by PHMMTS
.((((((....[[[.[.[[(((.......))))))))).......(((((((((((((..))))))).)).))))....]]].]]]...
GGGUCGGCAUGGCAUCUCCACCUCCUCGCGGUCCGACCUGGGCAUCCGAAGGAGGACGCACGUCCACUCGGAUGGCUAAGGGAGAGCCA
>Prediction by Clustal-W
..((((((...[[..[[[[(((.......))))))))).......(((.((((((((.(...))))))))))).).....]]]]]]...
GGGUCGGCAUGGCAUCUCCACCUCCUCGCGGUCCGACCUGGGCAUCCGAAGGAGGACGCACGUCCACUCGGAUGGCUAAGGGAGAGCCA

Fig. 8. The detailed comparison forHDV_ribozyme (PKB76) in PseudoBase by secondary structure prediction among three methods: PSTAG, PHMMTS
and Clustal-W. Correctly predicted structures by each method are indicated with the mark ‘’.

>The secondary structure annotated in Rfam
...((((((...[[[[[[(((........))))))))).......(((((((((((((...).)))))).)).)))).....]]]]]]...
GUGGCCGGCAUGGCCCCAGCCUCCUCGCUGGCGCCGGCUGGGCAACGAUCCGAGGGAGCUACUCCUCUCGAGAAUCGGCAAAUGGGGCCCC

^ ^ ^ ^>Prediction by PSTAG
.(((((((.....[[[[.(((........))).))))))).....((((.(((((((.....)))).)))...))))......]]]]....
GUGGCCGGCAUGGCCCCAGCCUCCUCGCUGGCGCCGGCUGGGCAACGAUCCGAGGGAGCUACUCCUCUCGAGAAUCGGCAAAUGGGGCCCC

Fig. 9. PSTAG improved about 25% base pairs in the annotations ofHDV_ribozyme (RF00094 for the above example) in Rfam by using the annotation
of HDV_ribozyme (PKB76) in PseudoBase. Undesirable base pairs annotated in Rfam are indicated with the mark ‘^’, whereas an additional internal loop
suggested by PSTAG is indicated with the mark ‘’.

Table 3. The accuracy of predicting base pairs forHDV_ribozyme (PKB76)
in PseudoBase by PSTAG, PHMMTS and Clustal-W

Specificity (%) Sensitivity (%)

PSTAG 88.9 96.0
PHMMTS 46.4 52.0
Clustal-W 25.9 28.0

Second, we compared the prediction accuracy of the PSTAG
algorithm with that of PHMMTS and of the standard alignment
software ‘Clustal-W’ (Thompsonet al., 1994; http://www.ebi.ac.uk/
clustalw/) by an RNA ofHDV_ribozyme in PseudoBase with reli-
able annotations about pseudoknot structures. In this experiment,
PHMMTS ignores annotations of some stacked base pairs with cross-
ing dependency due to the lack of generative power for pseudoknots.
Similarly, Clustal-W ignores any structural annotations due to lack
of generative power for secondary structures. Each row of Table 3
shows the accuracy of predicting base pairs by PSTAG, PHMMTS
and Clustal-W, respectively. Figure 8 shows the detailed comparison
among the three methods, in which correctly predicted structures by
each method are indicated by the mark ‘’. Obviously, PSTAG suc-
ceeded in predicting both ‘( )’ and ‘[ ]’ base pairs, PHMMTS
can predict only “( )” base pairs and Clustal-W can predict a few
structural annotations. These results indicate that more grammatic-
ally powerful the method used, the more accurate the predictions
obtained. However, a more grammatically powerful method would
consume lager CPU time and memory space generally.

In the third experiment, we structurally re-aligned all the RNA
sequences of theHDV_ribozyme family in Rfam, which are
unreliable regarding pseudoknots, into reliable pseudoknot struc-
tures ofHDV_ribozyme in PseudoBase by PSTAG. As a result,
PSTAG significantly improved about 25% base pairs in Rfam
for HDV_ribozyme, which are undesirable in comparison to

PseudoBase. For example, there are some significant differences
between the annotation in Rfam and prediction by PSTAG as shown
in Figure 9, where some undesirable base pairs, indicated with the
mark ‘̂ ’, are annotated in Rfam. Therefore, PSTAG can predict more
stable secondary structures on these undesirable base pairs than the
annotations in Rfam.

In addition, the predictions by PSTAG have some suggestion of
a new structure, which constitutes an additional internal loop in the
3′-end ofHDV_ribozyme, as indicated with the mark ‘’ in Figure 9
and also indicated with the arrow ‘↖’ in Figure 10.

5 RELATED WORK
There does not exist any other structural alignment approach to align
and predict pseudoknot RNA structures.

In non-comparative approaches, there are several theoretical or
heuristic works to predict pseudoknot RNA structures for a single
RNA sequence by maximizing stacking base pairs or free energy min-
imizations (Abrahamset al., 1990; Cary and Stormo, 1995; Gultyaev
et al., 1995; van Batenburget al., 1995; Rivas and Eddy, 1999;
Lyngsø and Pedersen, 2000; Ieonget al., 2003; Ruanet al., 2004).
Ruanet al. (2004) recently proposed a simple but effective heur-
istic method, called iterated loop matching (ILM), for predicting
pseudoknot structures, and showed high performance results com-
pared with other existing methods. Although their approach is
completely different from ours, we compared PSTAG with ILM to
confirm the effectiveness of our approach. Table 4 shows compar-
isons between ILM and PSTAG in predicting pseudoknot structures
for HDV_ribozyme and a ‘tobamovirus’TMV. In this experi-
ment, PSTAG aligned unfolded RNA sequences ofHDV_ribozyme
in Rfam into a folded RNA sequence ofHDV_ribozyme with
structural annotations in PseudoBase, and similarly, aligned unfol-
ded sequences ofTMV in Rfam into a folded RNA sequence
of ‘sunn-hemp mosaic virus’CcTMV whose structure has been
determined by van Belkumet al. (1985). Note that sequence
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Pseudoknot RNA structures

Fig. 10. A new structure suggested ofHDV_ribozyme (RF00094) by
PSTAG. An additional internal loop is indicated with the arrow ‘↖’.

Table 4. Comparisons of prediction accuracies between PSTAG and ILM

HDV_ribozyme TMV
(%) Specificity Sensitivity Specificity Sensitivity

PSTAG 88.9 96.0 92.0 92.0
ILM a 100.0 82.4 80.0 80.0

a The results of ILM are cited from Ruanet al. (2004).

homology between the sequences ofHDV_ribozyme in Rfam and
the selected sequence ofHDV_ribozyme in PseudoBase is 65.1%
on average and that betweenTMV in Rfam andCcTMV is only
26.0%. This result exhibits comparable performances with ILM
for prediction accuracy of pseudoknot structures, and further sug-
gests that structural alignment by PSTAG does not require so much
sequence homology between an unfolded sequence and a folded
sequence.

Another important feature of our approach is searching and detect-
ing non-coding RNA regions on genome. Klein and Eddy (2003) have
shown an interesting direction to search non-coding RNA regions
in a structural alignment approach based on SCFGs. They have

developed a local alignment program, called RSEARCH, to search
a database for finding structurally homologous RNA sequences, and
compared performances with a well-known BLAST program. Our
approach using PSTAG enables us to develop a more accurate data-
base search method which takes a type of pseudoknot RNA structures
into account.
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