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ABSTRACT 

Paired comparison measurements of t he  spectrum of  e l e c t r o s t a t i c  

po ten t i a l  f luc tuat ions i n  a steady-state, turbulent plasma confined i n  

a magnetic mirror geometry have been made with capaci t ive and f loa t ing  

Langmuir probes over the  frequency range from 0.2 t o  10.0 MHz. 

experimental conditions invest igated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5x10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI < ne - < 5x10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/cm , 
8 .- < Te zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 38 eV, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA350 - < Ti 5 930 eV, Bmax = l.OT), no s ign i f i can t  differ- 

ence i n  the  r e l a t i v e  f'requency response was observed below 4.0 MHz. A t  

about t h i s  frequency, however, t he  s ignal  detected by the f loa t ing  

Langmuir probe dropped o f f  r e l a t i v e  to that of the  capaci t ive probe. 

For the 

7 8 3  

The source res is tance of t he  turbulent fLuctuations sensed by t h e  

Langmuir probe was about 400 ohms. 

t o  10.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMHz, a s igna l  was detected by the f loa t ing  Langmuir probe that 

was not detected by the  capaci t ive probe. 

be confused with the  turbulent f luc tuat ions of the  plasma i n  t he  

absence of pa i red comparison tests. 

A t  higher frequencies, from 7.0 

This "spurious" s ignal  may 

INTRODUCTION 

I n  the  last decade, t h e  Langmuir probe has been increasingly used 

by invest igators  of plasma turbulence t o  measure f luctuat ions of such 
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plasma-related parameters as ion saturat ion 

potent ia l .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5-8 Most turbulence theor ies are expressed i n  terms of 

e l e c t r i c  f ield strength,  e l e c t r o s t a t i c  potent ia l ,  or charged particle 

number densi ty  f luctuat ion spectra. 

and f loa t ing  

The use of Langmuir probes t o  obtain 

data f o r  comparison with these theor ies requi res several assumptions. 

The f irst assumption, required when using biased Langmuir probes, 

i s  that  the satura t ion  current f luc tuat ions are l i nea r l y  related t o  the 

f luc tua t ions  of either the charge density, the e l e c t r i c  f ield, or  t he  

e l e c t r o s t a t i c  po ten t ia l .  The most common assumption is  that the ion 

sa tura t ion  current f luc tuat ions are proport ional  t o  the f luc tuat ions i n  

charge density. Such a re la t i on  implies, among other th ings,  that  the 

elect ron k i n e t i c  temperature is  constant i n  time. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA second assumption 

is  t ha t  the ef fec t i ve  source res is tance of  the f luc tuat ions i s  low, 

such that  the probe-plasma sheath does not at tenuate,  as a funct ion of 

frequency, the f luetuat ions that  would exist i n  the absence of the probe, 

A th i rd  assumption i s  that  the probe introduces no spurious noise due to  

processes i n  the sheath or on the probe surface. One may circumvent 

the first assumption by studying only the po ten t ia l  f luc tuat ions with a 

f loa t ing  Langmuir probe. The last two assumptions, however, st i l l  re- 

main. 

9-13 The v a l i d i t y  of  the first assumption has been invest igated 

and it has been found that one cannot, i n  general,  assume a l i nea r  

propor t ional i ty  between the amplitude of  ion  saturat ion current  f luc-  

tua t ions  and either densi ty o r  po ten t i a l  f luc tuat ions,  without taking 

i n t o  account f luc tua t ions  i n  other plasma propert ies.  With respect  t o  
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t h e  second and t h i r d  assumptions, Serafini49’ has shown that the back- 

ground turbulence spect ra obtained with f l oa t i ng  and pos i t i ve ly  biased 

Langmuir probes have the same proport ional  dependence on f’requency 

above a f e w  hundred zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkHz. 8 I n  later work, however, Seraf in i  showed t h a t  

t he  frequency spectrum o f  a Langmuir probe operating at ion saturat ion 

differed subs tan t ia l l y  from t h a t  observed with a capaci t ive probe, at 

frequencies above 1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW z *  

recent l i t e r a t u r e  t h a t  the t h i r d  assumption discussed above may not be 

va l id .  Malmberg et have observed spurious s ignals  over a $re- 

quency range of 50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt o  150 MHz t h a t  apparently arise i n  the  Langmuir 

probe sheath. Schmidt15 and Lencioni et  al .  repor t  Langmuir probe 

generated osc i l l a t i ons  i n  a to ro ida l  octupole at frequencies of about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH Z .  

There have been i so la ted  ind icat ions i n  t h e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
16 

The object ive of t h e  present invest igat ion i s  t o  systemat ical ly 

test  the v a l i d i t y  of the second and t h i r d  assumptions discussed above 

f o r  a f l oa t i ng  Langmuir probe. 

sons i n  a plasma of  t he  Langmuir probe, over frequencies from 0.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto 

10 MHz, relative t o  t h a t  o f  t h e  capaci t ive probe described by Schmidt. 

The capaci t ive probe was taken as a standard of  comparison. 

pa i red comparison tests i n  a plasma provide information about the plasma- 

probe in te rac t ion  t h a t  cannot be obtained from conventional workbench 

This has been done by paired compari- 

15 

These 

ca l ib ra t ions .  The range of plasma charac ter is t i cs  covered by t h i s  in-  

ves t iga t ion  i s  l is ted i n  Table I. 

ing  po ten t i a l  agree fo r  t he  two probes, one may presumably use e i the r  

wi th confidence f o r  such measurements. Where they do no6 agree, t he  

Where t he  frequency spec t ra  of f l oa t -  
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second o r  t h i r d  assumption discussed above are presumably not va l id ,  

and the capaci t ive probe is  then t h e  instrument of choice f o r  t h e  

measurement of t h e  spectrum of' e l e c t r o s t a t i c  po ten t i a l  f luc tuat ions.  

EQUNALENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACIRmTS OF €?ROBES 

On Fig. l i s  shown a cross-sect ional  drawing of the two probes 

used i n  the  present invest igat ion.  

i n  Fig. l ( a )  i s  of conventional design, with 4 mm of O.025-m diameter 

tungsten wire project ing from a quartz insu la t ing  sleeve. 

The shielded Langmuir probe shown 

The probe 

wire i s  surrounded by a coaxial  grounded sh ie ld  within the body of the 

probe, s t a r t i n g  6 m from t he  probe t i p .  

comparison runs were taken with an unshielded Langmuir probe, i n  which 

t h e  probe wire was covered with a quartz s leeve t o  within 4 mm of the  

t i p ,  and the coaxial  metal sh ie ld  did not begin u n t i l  a dis tance of 

44 mm from t he  probe t i p .  

Some supplementary pa i red 

The capaci t ive probe shown on Fig. l ( b )  i s  similar t o  t h a t  des- 

cr ibed by SchmidtL5 The capaci tor  p l a t e  wi th in the  probe t i p  i s  

surrounded by a ceramic envelope, and i t s  l ead  wire is  surrounded by a 

grounded coaxial  sh ie ld  which begins 6 mm from the t i p .  Paired com- 

parison tests were a lso  conducted with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa capaci t ive probe iden t i ca l  

wi th  t h a t  shown, but  with a pyrex envelope replacing the  ceramic enve- 

lope over the  probe t i p .  

The equivalent e l e c t r i c a l  c i r c u i t  f o r  t h e  f loa t ing  Langmuir probe 

i n  a plasma i s  shown i n  Fig. 2(a) ,  The res is tance Rs includes the  

e f fec ts  of both t h e  ambient plasma and t h e  sheath, and i s  assumed real 

and independent of frequency. The capacitances C1 and C2 are, 
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respect ively,  that  of t h e  probe and of t h e  coaxial  cable which connects 

t h e  probe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto t h e  ex terna l  c i r cu i t .  The frequency response of t h i s  c i r -  

c u i t  i s  given by 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 -I- jwCRs 

f o r  t h e  s igna l  which i s  detected at  t h e  cathode follower. 

pression, Rs is t h e  e f fec t i ve  source res is tance of the plasma f luc-  

tuat ions,  and C = C1 + C2. 

I n  t h i s  ex- 

The equivalent e l e c t r i c a l  c i r c u i t  o f  the capaci t ive probe i s  shown 

i n  Fig. 2(b).  The res is tance Rs includes the e f fec ts  of t h e  plasma 

and sheath. The capacitances C1 and C2 have the  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsame signi f icance 

as  they d id  with the  Langmuir probe. The frequency response of t he  

capaci t ive probe equivalent c i r c u i t  shown i n  Fig. 2(b) i s  

f o r  the  s igna l  detected by the  external  c i r c u i t .  

The capacitances have been measured, and f o r  t he  probe design and c i r -  

Here again C = C1 I- C2. 

cu i t r y  used i n  t h i s  invest igat ion were t yp i ca l l y  found to be C = 106 pF 

and C = 0.4 pF f o r  t he  capaci t ive probe, and C = 112 pF f o r  t he  

Langmuir probe. 

3 
The l o w  frequency cut-off i s  determined by the input 

impedance o f  t he  cathode fol lowers. The at tenuat ion of  t he  capaci t ive 

probe is  given by 

A = (cl + c2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- c y c 3  

and is 266 for" t h e  capaci t ive probe j u s t  discussed. m i c a 1  c i r c u i t  
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parameters for  t h e  capal;itive and Langmuir probes used i n  t h i s  inves t i -  

gat ion &re l is ted i n  Table 11. 

of t h e  shielded and unshielded Langmuir probes was approximately 8 pF. 

The d i f ference i n  the  capacitance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACl 

The simple-to-sample var ia t ion of t h e  probe capacitances was no more 

than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt10 percent i n  t h i s  invest igat ion.  On Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 i s  p lo t ted  the  

theo re t i ca l  frequency response, from Eqs. (I) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2), f o r  the parameters 

shown i n  Table TI and fo r  several source res is tances.  The s o l i d  l i n e  is  

t h e  response curve f o r  the shielded Langmuir probe, and the dotted l i n e  

i s  t he  response curve of t he  capaci t ive probe. 

Rs, 

Langmuir probe. It w a s  f o r  t h i s  reason t h a t  t h e  capaci t ive probe was 

chosen as a standard of ccmpazison. 

For a given value of  

t h e  capaci t ive probe w i l l  roll o f f  at higher fYequencies than the 

PROBE ~ ~ ~ ~ ~ A T ~ O ~  

On Fig. 4 i s  a block diagram of the probe instrumentation used i n  

t h i s  invest igat ion 

long separat ion between the  probes and the  cathode followers. 

The experimental apparatus necess i ta ted a 166-~m 

The 

cathode fol lowers shown had a nominal input impedance of  40 megohms 

shunted by 4 pF. The Tektronix U 5  ampl i f ier  had an essen t ia l l y  f l a t  

frequency response up to 15 MHz, and was not used i n  the  d i f f e r e n t i a l  

mode f o r  t h i s  invest igat ion,  

one of two spectrum analyzers, which covered t h e  ranges 0-1 MHz and 

1-10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM H Z .  

The output of' t h e  ampli f ier was fed i n t o  

On Fig. 5 is shown a drawing of t h e  forked probe mount located i n  

the  ca l ib ra t ion  cup. The inner p l a t e  of  th is  cup was fed with a con- 
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stant.ampl i tude sinusoidal  s igna l  from a var iab le frequency o s c i l l a t o r  

which spanned the range 150 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHz t o  10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANHz. The provisions for grounding 

t h e  probe mount and t h e  associated c i r cu i t r y  were re f ined u n t i l  a f lat  

frequency response was obtained, free of  resonances and absorption. 

Fig. 6 is  t he  i n  s i t u  ca l ib ra t ion  of both probes 5n t h e  vacuum tank, 

with a l l  components of t he  measuring system shown on Fig, 4 except t h e  

high-pass f i l ter ,  I n  the i n  s i t u  ca l ibrat ion,  t he  frequency response 

of  both the capaci t ive and Langmuir probes was essen t ia l l y  f lat  over 

the range of i n t e r e s t .  Any relative roll-off of t h e  Langmuir probe 

could therefore be ascr ibed to the e f f e c t s  of t he  probe-plasma in te r -  

act ion.  

The frequency response of  t h e  e n t i r e  probe system wsts measured 

before and after each series of  runs by i n jec t i ng  a constant amplitude 

s igna l  on the  inner p l a t e  of t he  ca l ib ra t ion  cup fo r  twenty frequencies 

spanning the  range of  each spectrum analyzer. 

a l l  f luc tuat ion spect ra p lo t ted  below on log-log sca les  have been 

Unless otherwise noted, 

corrected f o r  t he  nonl inear i t ies  of the spectrum analyzers and of  the 

recording system. 

The superconducting magnet f a c i l i t y  i n  which t h i s  experiment was 

conducted has been described It consis ts  of a p a i r  of 18- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
em I D  superconducting c o i l s  shown on Fig. 7, w i t h  an ins ide  diameter of  

17 an i n  a magnetic b o t t l e  configuration, The maximum magnetic f ie ld 

st rength on t h e  axis occurred at t he  magnetic mirrors and was 1.0 T f o r  

t h i s  experiment. The co i l s  were arranged with a mirror r a t i o  
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/B zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,38. The steady-state, modified Penning dischargex8 was Bmin m a x  

used i n  the  present series of experiments zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto produce a hot-ion plasma, 

the  range of parameters of which are shown i n  Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A cut-away top v i e w  of t h e  vacuum tank i s  shown i n  Fig. 7. The 

forked probe mount used t o  compare the  probes i n  question was posit ioned 

so t h a t  a 180-degree ro ta t ion  about i ts  axis would interchange the  two 

probe t i p s  so t h a t  they could a l te rna te ly  sample the  same volume of 

plasma. It i s  estimated t h a t  the  probe t i p s ,  after ro ta t i on  by 180 

degrees, were within the  same cubical volume 2 mm on a s ide.  

probe was 2.48 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcm from the  magnetic axis of the plasma, and p a r a l l e l  t o  

it. 

max imum axial magnetic f i e l d  gradient,  9,4 cm from the midplane. 

magnetic f i e l d  at  t he  probe t i p s  was 0.65 21, t he  radial magnetic f ie ld 

gradient 2.35 T/m, and t h e  axial magnetic f ie ld  gradient 6.0 T/m. 

These magnetic f ie lds and magnetic f i e l d  gradients are uncertain by 5 

percent. 

were on the  order of hundreds o f  vo l t s  at the probe t i p .  

Each 

The axial posi t ion of the  probes was chosen at the  pos i t ion of 

The 

The absolute value of the peak-to-peak osc i l l a t i ons  i n  po ten t ia l  

The k i n e t i c  temperature and r e l a t i v e  number densi ty of t he  ions 

escaping through the magnetic mirrors were measured by a re tard ing 

po ten t i a l  energy analyzer. l9 Precautions were taken t o  maintain the 

plasma proper t ies constant during the course of a paired comparison run. 

Absolute values of the elect ron number densi ty and k ine t i c  temperature 

were measured by taking conventional Langmuir probe t races  at t he  loca- 

t i o n  wi th in the plasma at which the  pai red comp ison tests were performed, 

The plasma as a whole was a strong r ,  f ,  rad ia to r  i n  the  range in-  

vest igated. Some of th&s rad iat ion was picked up by t he  instrumentation 



9 

and contr ibuted t o  the system background noise i n  s p i t e  of  shielding 

precautions. The t o t a l  system noise was determined by grounding the  

input zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto t he  lA5 amplif ier. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s j g n a l  detected by the  probe at  a given frequency. 

This noise was subtracted from the  t o t a l  

The probe s igna l  

became comparable t o  the  system noise only at t h e  lowest turbulent 

amplitudes ana/or plasma energy dens i t ies  invest igated. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PAIRED COMPARTSON TESTS 

The operating conditions were fixed at  the beginning of each ex- 

perimental run, and t he  plasma allowed t o  stabil ize f o r  at  least 5 

minutes before data were taken. 

po ten t i a l  curve was taken t o  determine the ion anergy. 

spect ra were taken from both probes. 

are shown i n  Pig. 8 f o r  the frequency range 0.2 t o  LO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMHz. 

When the  plasma s tab i l i zed ,  a retarding- 

Turbulence 

Typical spect ra from both probes 

These da ta  

were tabulated, corrected for the non l inear i t ies  i n  the observing 

system, and converted t o  a logarithmic base. 

data f o r  both probes shown i n  Fig. 8 is p lo t ted  i n  Fig. 9. 

frequency response of both probes was the same within experimental 

e r ro r  below about 4 MHz. 

studied. 

Langmuir probe out of th is  frequency implies that the  e f fec t i ve  source 

res is tance of t h e  plasma f luctuat ions i s  equivalent t o  a pure res is tance 

of no more than about 400 ohms. 

at the probe t i p  was 5 MHz i n  t he  present experiment. 

The r a t i o  of the corrected 

The relative 

This r e s u l t  held t r u e  f o r  a l l  plasma conditions 

The f l a tness  of t he  r e l a t i v e  frequency response of t he  shielded 

The ion cyclotron resonance frequency 

Under the con- 

d i t i ons  studied a d ip  i n  the turbulence spectrum, such as t h a t  reported 

by Batten et  a1.l was not observed a t  t h i s  frequency. 
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A total of 44 pai red comparisons were made of t h e  shielded Lang- 

muir probe wi th  t h e  ceramic covered capaci t ive probe i n  t h e  present 

invest igat ion.  

of  t h e  four categor ies i l l u s t r a t e d  schematically- i n  Fig. 10, or  i n to  a 

f i f%h category which included a l l  other  types of relative frequency 

response. 

probe s i g n a  fal ls o f f  relative to t he  capaci t ive probe, but no noise 

The spect ra from these runs were c lass i f i ed  i n t o  one 

Figure 10( a) i l l u s t r a t e s  the s i tua t i on  i n  which the Langmuir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L 

i s  observed from t h e  former near the  upper frequency l i m i t .  

t h i s  ty-pe were observed at  intermediate o r  low turbulent  amplitudes 

Data of 

and/or plasma energy densikies. 

type. 

probe s ignal ,  but  wi th  a “spurious” s igna l  detected by it at  higher 

frequencies. 

served at intermediate or high turbulent mnplitudes and/or plasma 

energy dens i t ies  i n  the  range studied. 

s i t ua t i on  i n  which t h e  Langmuir probe t r a c e  disappeared i n t o  the  system 

45.5 percent of t he  runs were of t h i s  

Figure JO(b) i l l u s t r a t e s  t h e  relative f a l l - o f f  of  t he  Langmuir 

34 percent of  t h e  runs were of  t h i s  type, and were ob- 

Figure lO(c) i l l u s t r a t e s  the 

noise before the  relative f a l l - o f f  could be observed, but  t he  “spurious” 

s igna l  at  high frequencies was above t h e  noise. 4,6 percent of the 

runs were o f t h i s  type, and were observed at intermediate turbulent  

amplitudes and/or plasma energy dens i t ies  i n  the range studied. 

lO(d) i s  t he  case i n  which the spectrum of one or both probes dis- 

appeared i n  the  system noise below a frequency of 10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMHz, and nei ther  

the relative f a l l - o f f  nor the. noise at higher frequencies could be ob- 

served. 13.6 percent of t h e  runs were of t h i s  type, and were observed 

at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe lowest turbulent  amplitudes and/or plasma energy dens i t ies  i n  the 

Figure 
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range studied. 

osc i l l a t i on  peaks, although t h e  simultaneous appearance of such peaks 

i n  both spect ra were of ten observed. The absolute number and percentage 

o f  t h e  44 pai red comparisons t h a t  f e l l  i n t o  these categor ies is  shown i n  

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111. 

pick-up of t h e  Langmuir probe was not observed, t h i s  may w e l l  have been 

because they were below the system noise threshold, and masked by it. 

There were no clear-cut  cases observed i n  which the  probe s igna l  was 

w e l l  above the  noise, and these features were absent. 

The spect ra shown schematically i n  Fig. 10 are without 

When e i t h e r  the r e l a t i v e  f a l l - o f f  or t he  spurious noise 

A total of 13 addi t ional  runs were made comparing the  ceramic with 

t he  pyrex covered capaci t ive probes. 

types of probes was i den t i ca l  wi th in experimental error over t h e  *e- 

quency range studied. 

pared with an unshielded Langmuir probe. 

essen t ia l l y  the same behavior as that  observed with t h e  shielded Lang- 

muir probe comparisons. 

shielded and unshielded Langmuir probe response, 

The relative response of these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo  

The ceramic covered capaci t ive probe was com- 

A t o t a l  of  16 runs showed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A t o t a l  of 17 runs were taken t o  compare the  

The relative response 

of these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtwo probes was e s s e n t i d l y  the  same, except fo r  a higher 

spurious noise s igna l  f o r  the unshielded Langmuir probe at frequencies 

from 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt o  10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMHz. 

CONCLUSLONS 

The pai red comparison runs performed i n  t h i s  study appear t o  j u s t i e  

t h e  following conclusions: 
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1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOver the range of plasma parameters covered i n  t h i s  study, 

and l isted i n  Table I, the relative f'requency response of  capaci t ive and 

f loa t ing ,  shielded Langmuir probes i s  the same to w i t h i n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk20 percent 

up t o  about 4 MHz. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2. For the condit ions invest igated, the response of  the f loat ing,  

shielded Langmuir probe falls of f  relative t o  that of  the  capaci t ive 

probe at about 4 MHz. 

3. For the plasma Conditions invest igated,  the f loating, shielded 

Langmuir probe detected subs tan t ia l l y  more s igna l  between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 to LO MHz 

than did the capaci t ive probe, 

re la ted  to any natura l  frequency of osc i l l a t i on  of the plasma l i s ted i n  

Table I, and maly be associated with processes i n  the sheath surrounding 

the Langmuir probe t i p  that are not prevalent i n  the  sheath surrounding 

the  capaci t ive probe. 

This "spurious" s ignal  could not be 

4. Over the range o f  condit ions invest igated, the relative response 

or" capaci t ive probes with a pyrex and ceramic envelope were i den t i ca l  

wi th in the experimental, error, 

5. Over the range of plasma condit ions invest igated, the relative 

response of the f l oa t i ng  shielaed and unshielded Langmuir probes were 

the same, except for the greater  signa3 amplitude, from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 t o  10 MHz, of 

the unshielded probe. 

6 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA dip i n  the spectrum at the ion cyclotron frequency, reported 

by Batten et  al.: was not observed i n  the present invest igat ion,  
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7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI n  terms of physical  ruggedness and frequency response i n  

the  workbench ca l ib ra t ion  apparatus, the  capaci t ive probe is super ior  

t o  t h e  f loa t ing ,  shielded Langmuir probe f o r  measurement of the  spectrum 

of e l e c t r o s t a t i c  po ten t i a l  f luc tuat ions i n  a plasma. 
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TWM I 

PLASMA CHARACTERISTIC 

Neutral number densi ty 

Electron number densi ty 

Electron k i n e t i c  temperature 

Ion k i n e t i c  temperature 

Plasma po ten t ia l  

Electron plasma frequency 

Electron Gyro frequency 

Ion plasma frequency (D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4- 
Ion gyro frequency ( D  ) 4- 
Ion gyro frequency ( D  ) 

Debye d is tance 

Langmuir probe roll-of f' frequencj 

Low value High value 

7 3  5x10 8 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/cm 
5x10 /an 

8.3 ev 38 ev 

350.0 eV 930 ev 

+45 vo l t s  +230 vo l t s  

64 MHZ 202 MHZ 

18 GHz 

1.0 MHZ 3.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMHz 

I 

0.1 mm 6.5 mm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

2.7 MHZ 5.5 MHZ 
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TABLE IT 

Capacit ive probe 

TULE 1x1 TULE 1x1 

Response category 

Figure l o ( a )  

Figure 10(b) 

Figure lO(c) 

Figure 10(d) 

Other 

Yumber o f  run: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
20 

1 5  

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 

1 
4zi' 

Percentage of t o t a l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
% 

45.5 

34.0 

4.6 

13.6 

2*3  - 
100 
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TABLE CAPTIONS 

Table I Range of plasma sharac ter is t i cs  at  probe locat ion.  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA31 runs 

were made w i t h  deuterium gas i n  a magnetic mirror configura- 

t i on  with a mirror r a t i o  of 2.6~1, a maximum magnetic f ield 

of 1.0 T, and a magnetic f ield at  the probe t i p  of 0.65 T. 

Measured equivalent c i r c u i t  parameters of the probes inves t i -  

gated. 

Table 111 The number of rung i n  each of f i ve  response categories 

i l l u s t r a t e d  i n  Fig. 10. 

probe response r e l a t i v e  to that of the  capacit ive probe, 

while sampling the same volume of plasma 

Table 11 

These show the nature of the Langmuir 
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FIGURE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACAI?TIONS 

(1) Cross sec t iona l  drawing of two of the four types of  probes used 

(a )  Shielded Langmuir probe. i n  this invest igat ion.  

probe wire i s  coaxial ly shielded t o  within 6 mm of the end. 

Note that the inner  

The un- 

shielded Langmuir probe is i den t ica l ,  but  without the coaxial  shield f o r  

a d is tance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA44 mm from the probe t i p .  

probe. 

but had a pyrex envelope instead of the c e r w c  one shown i n  the i l l u s -  

t ra t i on .  

(b )  Ceramic covered capaci t ive 

The pyrex covered capaci t ive probe was i den t i ca l  i n  a l l  respects, 

(2) Equivalent c i r c u i t s  o f  both probes. Typical values are shown i n  

Table 11. The cable capacitance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC2 f o r  both probes was high due t o  the 

unavoidably long separat ion of the probes from the cathode fol lowers. 

capacitance Cl is the capacitance from the probe t i p  t o  ground, and C 

from the capaci t ive probe t i p  t o  the plasma. 

res is tance of the plasma. (a )  Shielded Langmuir probe. (b )  Capacitive 

probe. 

The 

3 
Rs i s  the e f fec t i ve  source 

(3) Theoret ical  frequency response for  both probes. Note that  

ord inate is  r a t i o  of amplitudes, not dB. The sol id  l i n e  i s  that of the 

f l oa t i ng  shielded Langmuir probe, from Eq. (1) , given for  several values 

of the source res is tance.  

of the capaci t ive probe, as given by Eq, (2), f o r  severa l  values of the 

source res is tance.  

(b) The dot ted l i n e  i s  the frequency response 

(4) Schematic d i a g r w  of instrumentation used fo r  probes. The 

d i f f e r e n t i a l  amplifier shown was not used i n  the d i f f e r e n t i a l  mode for 

th is  invest igat ion.  !Phe high pass f i l ter  was set at  150 kHz t o  avoid 
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overloading t h e  spectrum analyzers. 

frequency range 0.1 t o  1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMHz, and the  lL10 uni t  over t h e  range 1.0 t o  

10.0 MHZ. 

The Tektronix l L 5  was used over the  

(5) Schematic of i n  s i t u  ca l ib ra t ion  i n  vacuum tank wi th  ca l ib ra t ion  

cup. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe inner p l a t e  of  t h e  ca l ib ra t ion  cup was driven with a constant 

amplitude s igna l  Prom a var iab le frequency osc i l l a to r .  

(6) Measured frequency response of capaci t ive and shielded Langrnuir 

probes, using e n t i r e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsystem without high-pass f i l ter  t o  cut o f f  t he  large 

amplitude s igna l  below 150 kHz. Note that ,  in the absence of plasma, the  

two probes had an essen t ia l l y  f la t  response over the frequency range from 

0.2 t o  10 MHz. (1) Capacitive probe. (2)  Shielded Z m p u i r  pro%-e. 

(7) Top view of experimen"c1 apparatuux. The two probes under t e s t  

are p a r a l l e l  and separated by 44 rm. The probe assembly is  so mounted 

that a 180 degree ro ta t ion  w i l l  interchange t o  the posi t ion of the two 

probes. 

(8) Typical spect ra measured by the two probes, corrected f o r  small 

non l inear i t ies  of the measuring system, aiid nornalized to the amplitude 

at 1.0 MHz. System noise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas subtracted off' before p lo t t ing.  

capaci t ive probe. 

(b )  Shielded Langmuir probe. Note rap id  f a l l - o f f  above 4 MHz, and noise 

picked up at high frequencies that  i s  more in tense than t h a t  detected by 

the capaci t ive probe. 

(a) Ceramic 

Note absence of  s igna l  a t  frequencies near  10 MHz. 

(9) Rat io  of response detected by shielded LEzngmuir probe t o  t h a t  

of capaci t ive probe, normalized t o  uni ty  at  1,O mz. 

i n  t h i s  r a t i o  was approximately zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA220%. 

Experimental e r ro r  

Note r e l a t i v e  f a l l - o f f  of shielded 
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Langmuir probe response above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMHz, and the presence of more noise 

detected by the Langmuir probe at frequencies from 7.0 t o  10.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMHz, 

than was detected by the capaci t ive probe. 

(10) Four types of r e l a t i v e  probe charac ter is t i cs  most fYequently 

observed when comparing the ceramic covered capaci t ive probe with the 

shielded Langmuir probe. (a )  Fall-off of the Langmuir probe r e l a t i v e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
to the capaci t ive probe at about 4 MHz, without Langrauir probe noise at 

i n  the v i c i n i t y  of 8.0 MHa. 

t o  the capaci t ive probe at about 4 MHz, w i t h  presence of Langmuir probe 

noise at  i n  the, v i c in i t y  of  8.0 MHz. ( e )  Relat ive fa l l - o f f  of Langmuir 

probe not apparent ( a t  least i n  par t  because the s igna l  of  one or both 

probes disappeared i n  the noise below 4 MHz), but  Lanpu i r  probe noise 

was observed. 

frequencies so low that  nei ther  the relative f a l l - o f f  of  the Langmuir 

probe nor the Langmuir probe noise at higher frequencies could be 

ob served. 

(b )  Fal l -o f f  of  the Langmuir probe r e l a t i v e  

( a )  The s igna l  of both probes disappeared i n  the noise at 



Figure 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

GRFF PANEL RECEPTACLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAli- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

35 MM 

I 
~ 

CD-10903-14 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(-5- 7L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 3 =I 



(A) LANGMUIR PROBE. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

RS, 
ELDED LANGMUlR PROBE 

ohms 
--__--- 

1.0 

.8  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.6 

.4 

. 2  
1 kHz 10 kHz 100 kHz 1MHz 10MHz 100MHz 

FREQUENCY 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 



PLASMA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5- 

TEKTRONIX 
1L5 
lLlO 

SPECTRUM 
ANALYZER 

HP 3400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

0 

e *  k l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-A 
RAMP 
GENERATOR X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4 

TEKTRONIX 127 HP 3 4 0 0 ~  
TEKTRONIX @-@ 1A5: 

' VOLTAGE PICK-OFF "T" ',- CALIBRATION CUP 

Figure 5 

----- CAPACITIVE PRGEE 
SHIELDED LAf lShlUlE PROBE 

. 2  LL- 
1 ti0 103 I G ~  105 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI G ~  107 

FREQUENCY, Hz 

Figurc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 



VACUUM TANK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 

a SHIRDED LANGMUIR PROBE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACAPACITIVE PROBE 

t 

.001 I_ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. 1  

REGION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOF LANGMUIR 
PROBE FALL-OFF 

REGION OF LANGMUIR 
PROBE SPURIOUS NOISE 

REGION OF LANGMUIR 
PROBE FALL-OFF 

REGION OF LANGMUIR 
PROBE SPURIOUS NOISE 

L-.lJdL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA d  J I I I I I 
1 10 

FREGUEiGCY, v, MHz 

Figure 8 
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