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PATRED COMPARISONS FOR MULTIPLE CHARACTERISTICS:
AN ANOCOVA APPROACH

by
PRANAB KUMAR SEN
University of North Carolina, Chapel Hill

Abstract. An analysis of covariance model is developed for paired comparisons to situations in
which responses (on a preference order) to paired comparisons are obtained on some primary as
well as concomitant traits. Along with the gemeral rationmality of the proposed test, its

asymptotic properties are studied.

1. Introduction

The method of paired comparisons as originally developed by psychologists relates to a
number of objects which are presented in pairs to a set of judges who verdict (independently) a
relative preference of one over the other within each pair. This dichotomous response allows
subjective judgement to a greater extent than in the so called method of m—ranking where each
judge has to rank simultaneously all the objects. Paired comparisons designs are thus
incomplete block designs with blocks of two plots and the dichotomous response relate to the
ordering of the intra—block plot yields. As such, in paired comparisons designs circular triads
may arise in a natural way, and this may lead to intrasitiveness of statistical procedures in a
decision theoretic formulation. This intransitiveness is also shared by the Pitman (1937)
measure of closeness (PMC) where competing estimators belonging to a class are only compared
- by pairs at a time. While the plausible intransitiveness may concern some decision theorists, in
many real life problems this may crop up in a natural way, and therefore there is a genuine

need to incorporate such a phenomenon as a vital component of the basic problem. Such
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MLE; PARE; PMC; PMLE; parametric orthogonality; robustness; transitiveness.



examples abound in paired comparisons models and elsewhere [viz., Keating, Mason and Sen
(1993)], and David (1988) addressing this issue in a superb manner commented in a different
perspective: "It is a valuable feature of the method of paired comparisons that allows such
contradictions to show themselves..." Nevertheless, in paired comparisons designs, suitable
models have been considered by a host of workers which take into account such intransitivenss
in an appropriate manner.

Paired comparisons for multiple characteristics have received due attention in the past
[viz., Sen and David (1968), Davidson and Bradley (1969, 1970) and David (1988), among
others]. The basic point is that with respect to p (> 1) characteristics or traits, for each pair of
objects, the outcome response is a p—vector § = (sl,...,sp)’ where each sj is either < or >
(ordering), so that there are 2P possible realizations. [If ties are admissible, this number may
jump to 3P.] Therefore with t objects forming (;) pairs, the totality of response vectors in
2p(;), so that intransitivenss may crop up even more noticably when p is > 1. This puts an
additional constraint on multivariate paired comparisons procedures. Yet most of these
procedures developed in the spirit of multi—variate analysis of variance (MANOVA) models
address this intransitiveness issue in a rational way. Often, some of the characteristics may
conveniently be regarded as primary traits while the others as concomitant ones. Analysis of
covariance (ANOCOVA) models are therefore relevant to such paired comparisons models and
will be studied here.

In Section 2, this ANOCOVA paired comparisons model is illustrated for the simplest
bivariate case, with motivations from Chatterjee (1966) and Sen and David (1968). A basic
assumption needed in this context is clarified; this also applies to the work of Davidson and
Bradley (1969, 1970). A representation of probability laws for p (> 1) dichotomous attributes,
similar to Bahadur (1961), is exploited in Section 3 to stress this fundamental assumption
needed for multivariate paired comparisons. Section 4 deals with general MANOCOVA paired

comparisons models. Some general remarks are appended in the concluding section.



2. ANOCOVA paired comparisons for paired characteristics

Consider t (> 2) objects which are considered in pairs (i,j), 1 ¢ i < j < t, and judged with
respect to two characteristics, say 1 and 2. Thus, for the pair (i,j), the response X (X(l)
X( )) is a stochastic vector where X(f) takes on the value +1 or —1 according as the ith object
is Judged better (or not) than the jth one on the 4h trait, for £=1,2; 1 <i < j<t. Let r_s_:_-]),
r_&_ij), w_(__i*_j) and w(_i_j) be respectively the probability that )§ij is (+1, +1)’, (+1, -1)’,
(-1, +1)’ and (—1,-1)’. This leads to a 2x2 table

L13) 1)) £1J)
Tt -+ -+
i iJ) ,r(_ i j) A1) 4 (2.1)
TN
where
A0 = g _,,(11) and 71U =1 - (13) (2.2)

As in Chatterjee (1966), we introduce an association parameter

6= 1) @)A1y, 1cicjen (2.3)

Then, we may rewrite the 1r( ij) equivalently as

(1.]) — 7,-(]]) (IJ) + (* + *)0 7,-(1-]) (1-]) (24)

for1<i< j<t,andfor j<i, w(ij) = r(ji) can be represented in a similar way. Note that for

ij) (lJ) (1.1) (11) (i3) ,(iJ)
+ H ) as (1r+. ’ T.+ ’
6..). In this manner, for the W_E__‘]) (or wg +J)) we may use the univariate paired comparisons

each (i,j), we reparameterize the vector 7r( ij) (7r(

models, while the association parameter 0i j is a nuisance parameter. Let us formulate the two

null hypotheses relating to the marginals as

H(()l) : wﬁfj) =1/2, V1<i<j<t, (2.5)

5D 2l) 219, v 1¢i <y, (2.6)



and note that under Hy = Hgl) n ng) we may not still have the homogeneity of the (;) tables

in (2.1). This brings us to the following (fundamental assumption):
[A] 0ij=0, Vici<j<t. (2.7)

In Sen and David (1968), (2.7) was explicitly formulated through the Chatterjee (1966)
characterization, while in Davidson and Bradley (1969), it was made without any explanation.
With paired characteristics, a distribution—free (even conditionally) test rests on the
homogeneity of the Zr(ij), 1<i< j<t, and hence, if one wants to test for HO’ pertaining to the
marginals, [A] is a vital presumption. Since the Zr(ij) do not conform to a location—scale model,
in general, the homogeneity of the Hi j may not directly follow from the marginal homogenity of
the w_('_fJ) or WS_:_J) .

Granted [A] in (2.7), for testing (2.5) and (2.6), we may readily appeal to the classical

paired comparisons model with single characteristics, and hence, as in the Bradley—Terry

(1952) model, we may set

(i) - % (i) _ P o
L —ai+aj’7r'+ _m’ 1<i<j<t, (2.8)
where the o and ﬂi are nonnegative quantities and
1 1 _wt
Y _a=1= Ej:l ﬂj. (2.9)

Note that under [A], the number of free parameters appearing in (2.4) (for 1 <i < j< t)is 2(;)
+ 1, where the modeling in (2.8)—(2.9) reduces it to 2(t—1)+1 = 2t—1. This reduction of the
parameter space was made in Sen and David (1968) through a permutation (sign—invariance)
argument of Chatterjee (1966), while Davidson and Bradley (1969) motivated this primarily
through the classical likelihood ratio test (in .a parametric setup), and thereby their test is
essentially a large sample one.

In a conventional linear ANOCOVA model, the basic assumptions are the following [see

Scheffé (1959)]:

(i) The concomitant vector Z has a distribution unaffected by plausible treatment

differences,



(i) The regression of the primary variate (Y) on Z is linear with a conditional variance

032{-_ 7 independent of Z (the homoscedasticity condition), and

(iii) treatment effects are additive, and the errors are normally distributed.
Therefore conditionally on Z = z, Y has a linear regression function depending on z by a

term 7’z and the design variables, its conditional variance, given Z = z, a%.z is < a%, its

marginal variance, and the equality sign holds only when the multiple correlation of Y on Z is
equal to 0. Thus, in an ANOCOVA model, one ends up with a smaller mean square due to
errors, albeit the degrees of freedom (DF) due to error is smaller than in the ANOVA model;
the reduction of DF is equal to rank (7). This reduction of the error mean square in
ANOCOVA accounts for its greater efficacy than ANOVA (unless the error DF is sufficiently
small to compensate this gain).

Our formulation of ANOCOVA paired comparisons model is adapted from Sen and
David (1968). The conventional linear ANOCOVA model is not useful in the current context
mainly because (i) the primary as well as concomitant response variables are binary, and (ii)
due to possible intransitiveness, other constraints on the model may be necessary. Borrowing
the first assumption in the linear .ANOCOVA model, we may assume that for the ANOCOVA
paired comparisons model

-1

where the ﬂj are defined by (2.8). We may also assume that the T_E_ij) satisfy (2.8) with

nonnegative a,...,q E} =1 %= 1. The third assumption in the linear ANOCOVA model is

not tenable for paired comparisons, while to justify the homoscedasticity condition (in (ii)), we

may note that by (2.4), (2.7) and (2.8),

(lJ)/,r(IJ) - ,,(IJ) 1+ 0),
(lJ)/,r(lJ) - ,r( i) (1-0), 1<i<j<t, (2.11)

so that under Hgl) in (2.5), riij)/wgij) = w(_i_j)/wgij) = % (1 + 6) and W_E_i_j)/,rgj) =

ng_j)/ wgij) = % (1-6), and the homoscedasticity condition holds (as the common variance is
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equal to % (1—-6'2).) On the other hand, if [A] in (2.7) may not hold or if H(()l) does not hold
this homoscedasticity may not be true. This explains the basic role of [A] in (2.7) for
formulating an ANOCOVA paired comparisons model, and also suggests that a somewhat
different approach is needed here.

Note that under (2.7), (2.8) and (2.10), for the ANOCOVA model, we have in all ¢
parameters (al,. a, : Ej =1 %= 1, 6), where under H(()l), 6 is the only unknown parameter.
Hence, for the ANOCOVA model, a test for H(()l) should relate to t—1 DF (in some sense). For
the MANOVA model, the test proposed by Sen and David (1968) corresponds to 2(t—1)DF.
Thus, we need to eliminate the component due to the concomitant trait and get a test statistic
having a comparable t—1 DF. For this we proceed as follows.

By virtue of [A] in (2.7), the null hypothesis H,, may be rephrased as

Hy:n ( lJ) - 7r(lJ) _ (1 +0), ( ij) = ,,(IJ) (1_9) (2.12)
for every 1 <i < j < t; so that #is a nuisance parameter. Let n, i be the number of independent
responses on the (i,j) pair and denote the cell frequencies for the four cells (%, ) by n+';, n+ ij’

:;' ; J ; respectively, for 1 < i < j <'t. Conventionally, for j < i, we let n, ij= J . and n':";'
i P e att
_]1’ 1] Jl nIJ Jla,ndnJ Jl Further let
- D..=n..-C.. )
ij 1J+nJ and i = Bij Cu J+nJ (2.13)

be the number of concordant and discordant responses for the pair (i), 1 <i< j<t. Then,

under H,, the likelihood function (for ) is

(10! (140 1 (o)
1 4 ij} (2.14)

1<<jct { (n ++)' (n+') ! (n'+)' (0] 5)!
The maximum likelihood estimator (MLE) of ¢ derived from (2.14) is therefore given by
=<t (Cij—Dyy)/m
= lC-1, (2.15)

where n = 21 ci<i<t and C = 21 i<t C.. i is the total number of concordant responses.



We also let
+ -+ c
ij= 1J+nl‘] andnJ 1J+nl‘] 1<i<jst, (2.16)

4o ekt
and for j < i, letnlJ DB By = By I Let then

(1) _ gt
Tnl zj =1,# 13 (2n 1j)’
2 .
Tl(lz B s et on), 1¢ice (2.17)

The MANOVA paired comparisons test proposed by Sen and David (1968) is based on the

statistic
t

,%=t—1(1—15121)"1.21{(T1(112)2+(Tl(l2g) —25 T(D) (2)} (2.18)

n n,1 n,i

For small sample sizes {ni 7 1<i< j<t}, under HO’ conditional on the Ci 7 the nﬁ have the
product binomial law:

n AU, (219)
1<i<j<t ln i nf]

so that the (conditional) distribution of % under H, (given the Cij’ 1<i<jg<t)can be
obtained by using (2.19). This task becomes prohibitively laborious as the Dy increases.
Nevertheless, if we assume that as n - o,

nij/n-»p 10< pis <1’21<.l i =1, (2.20)

then under [A] in (2.7) and Hy,

%2 x%(t—l),o (2.21)
where X;2>, 5 stands for a random variable having noncentral chi square distribution with p DF
and noncentrality parameter § (> 0); for § = 0, this reduces to a central chi square distribution.
Thus, corresponding to a given significance level € : 0 < € < 1, the critical level of .% may be
closely approximated by Xg(t—n,o(‘)’ the upper 100¢% point of Xg(t—l),ﬂ’ We refer to Sen
and David (1968) for details.

Next, if we ignore totally the concomitant trait (2), then for the primary trait (1), the

model reduces to the classical single characteristic paired comparisons model, for which an



appropriate (ANOVA) test statistic is

t
_ - 12 .
$1=" 2 (Tl(l,i) : (2.22)
1
4 2, Xf-1,o under H((] ). (2.23)

Side by side, ignoring the primary trait (1) and solely based on the concomitant trait

(2), we construct an (ANOVA) paired comparisons test for ng) based on the test statistic

t
| (2)52
.2;1’2_t 21 (Tn,i . (2.24)

.

1

Here also, under H(()2), ..2?1 9 is distribution—free and as n increases,
g 2 2
,2;’1,2 = Xi-1,00 under H(() ), (2.25)

To propose the ANOCOVA test for HO’ we first note that

0 _
4= 44

: =Bt s (105,13 e

, n,i n n,i

for i=1,...,t. This shows that under HO, given the Cij’ 1<i<jgt, .2;0 is conditionally
distribution—free, and its null (conditional) distribution can be enumerated by using (2.19).
Since .%0 is nonnegative and a quadratic form in the TI(IQ, {=1,2,1¢<i<t, proceeding as in
Section 4 of Sen and David (1968) and using an asymptotic version of the celebrated Cochran
Theorem on quadratic forms [viz., Sen and Singer (1993, p. 137)], we conclude that under Hy,
(2.7) and (2.20),

2°Z, X%—I,O . (2.28)

Thus, for both the ANOVA test statistic .2;’1’1 and the ANOCOVA test statistic .Zl’lo, an
asymptotic e—level critical value is x%___l,o(e). Further note that in ,%,1, the information on
the concomitant trait has been totally ignored, while for .%0, the residuals in (2.27)
incorporate the same to a certain extent. Since the variance—covariance matrix of the residuals
in (2.27) under the conditional law in (2.19) is (1—2’121){5 — ¢ 11/}, while under H((Jl), the
dispersion matrix of the Tr(ig is I — =

the scalar factor (1 — 2121)_1 .

11’, we have adjusted for this difference in (2.26) by



Let us now compare .2;1’1 and ,2;’10 in the light of the Pitman asymptotic relative
efficiency (PARE) measure as has been adapted for paired comparisons model in Sen and David
(1968) and elsewhere. Note that under H(()l) and (2.10), we have g = ¢ 1 = g, while the
ANOCOVA alternatives relate only to departures of a from 1 1, but §is allowed to be equal

tot 1 1. Hence, we conceive of a sequence {Kl(ll)} of alternative hypotheses:

1 -1 -1 t
KI(I):g=t }‘+n—*§,g=t 1, el (2.29)

and, we set {’1 = 0. Let then

b= 23:1,#i pr 51/(51 + fj)a 1<igt; (2.30)
A =t7a-6%)7 '§1 W, By = A(1-62). (2.31)
i=

Proceeding as in Section 4 of Sen and David (1968), we obtain that under {Kl(ll)} in
(2.29), (2.7) and (2.20),

P 2 P 2
7 Xy(i-1),40 H1 T Xi-1,A, (2:32)
P 2
,21’1’2 = xt—l,O (2.33)

Therefore, by (2.26), (2.32) and (2.23), we conclude that under {Kl(ll)}’ (2.7) and (2.20),
0g 2
,2;1 = Xt—l,A . (2.34)
From (2.32) and (2.34), we obtain that
0y = =
PARE(Z, || £°) = Ay/A = 162

<1, V0, (2.35)
where the equality sign holds only when # = 0, i.e., the primary and concomitant traits are
independent. This establishes the (asymptotic) superiority of the ANOCOVA test ,2;0 to the
ANOVA test ;. Finally, we may remark that under {K{")}, both £ and £° have the
same noncentrality parameter A, while DF(.%£) = 2(t—1) = 2 - DF( .zgo). Hence, .2;’10 is more
efficient than the MANOVA test £, when, in fact, the ANOCOVA alternative {K{)} holds.

This provides the justification for the ANOCOVA paired comparisons procedures (instead of
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either the MANOVA or ANOVA procedures) when the trait 2 satisfies the conditions of a

concomitant trait as have been laid down earlier.

3. Probability laws for multiple dichotomous attributes
Consider p (> 1) dichotomores attributes and let
§ = (ippiip)’ where i;=0,1;1<j<p. (3.1)
There are thus in all 2P realizations of i,andlet X = (Xl,...,Xp)’ be a random p—vector, such
that
P{X=i}=n(i), i€ 4 (3.2)
where # stands for the set of all possible i in (3.1). The probability law (i) is defined on a
2p—-simplex
)20, Vie s B n() =1, (3.3)
so that there are 2P—1 linearly independent parameters. Keeping in mind the multivariate

paired comparisons models (as well as the case of p = 2, treated in Section 2), we consider the

following modification of the Bahadur (1961) basic result. Let
) = P{X; =i}, i =03 1¢j¢p. (3.4)
Also, forevery £:2< €< p; 1¢ i1 < -0 <i (<D define a pth order association parameter

6. ...;, where there are (IZ) such parameters. (3.5)
1Y

Let then

@ ={0i1"'i . ].Sil < e-- <i£$ p; l=2,-..,p} (3-6)

{
and, conventionally, for p = 2, we let @ = 6. Then noting that 7r£€())) + wﬁg%) =1,VYV1<j<p,
we conclude that there p unknown parameters in (3.4) and in (3.6), there are in all (12)) + .- +
(g) = 2P—p—1 unknown parameters, so that in all there are 2P—1 unknown parameters. We

write 1y = (7&%())), “en ,7r£?())))’, and consider the reparameterization:

{7"(2,): }, € }} - {Z,r*7 §}7 (3'7)
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where we set for every i € £,

P 1] (3;) »
(i) = I wgg.)+ (! 24, 1 w*(o) I £?2)
=1 W 1gg <ot Jyg =1
#J 1 7.]2
i, +i, +i.
iy ig i 3 (i;) p
1¢j, < jo<igsp J13ol3 r=1 s=1 s
#Jl’ J 9od3
i 4ee et
1
+ (1) P i(o) (3.8)
For p = 2, (3.8) reduces to (2.4). Moreover, (3.8) implies, for example, that
w(il,...,ip_l,ip) + w(il,...,ip_l, 1—ip)
= w(il,...,ip_l;*) = P{(xl,...,xp__l) = (il,...,ip_l)},
for every (il”"’ip)' (3.9)

A similar consistency result holds for any lower dimensional joint probability for (X X, [)

1<£<p,1¢i; < -+ <i,<p,and (3.8) can be established by induction from (2.4). This
representation underlies the multivariate paired comparisons procedure in Sen and David
(1968), and in the next section we examine its role in general MANOCOV A paired comparisons

procedure.

4. MANOCOVA paired comparisons models and analyses
As in Section 2, we consider t objects, forming (;) possible pairs, and for the pair (i,j) :
1 <i< j<t, we denote the response vector by X (X( ). Xglj))’ (where we have p
dichotomous attributes). The probability law of )§i ; over the 2p—simplex is denoted by
= {m (1) i€ f}, for1<i<jgt.
As a first step, we consider the same reparameterization in (3.7) and write

{NIJ( )’ ,L € /} {W*ij) GIJ}’ (41)

for 1 <i < j<t. Then, parallel to (2.7), the fundamental assumption here is the following:
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[A] 0..=0, V1ci<j<st. (4.2)
Also, note that in (4.1), we have
_ (1) P) v/ ..
Zar*ij = (ﬂiij(O)""’ Wiij(O)) , 141 <j<, (4.3)
so that parallel to (2.8), we may set
wilgy = ol + o, 18 <<t 1¢x¢p, (4.49)
where for each r (=1,...,p), the a,; are nonnegative and

1Y
¥i=1 %;

=1, forr=1,..,p. (4.5)

Thus, there are in all p(t—1) linearly independent parameters in the set (4.3). The multivariate
ANOVA as well as ANOCOVA paired comparisons models relate 10 the @, 1<i<t,1<r<p,
under [A] in (4.2) and treating © as a nuisance parameter vector. In this formulation, unlike
190 "0p—1p’
0)’. In Sen and David (1968), we also did not require the above restriction on ©, and we shall

the case of Davidson and Bradley (1969), we do not need to assume that © = (@

make this point clear at a later stage. First, we introduce the component null hypotheses:

H((Jr) . arl = s = arp = t—l) fOI' Ir= 1,---)p) (4’6)

so that in a MANOVA model we have the over all null hypothesis H, given by
Hy= n H). (4.7)
In a MANOCOVA model, we let p = P; + Py P; 2 1,1 = 1,2, and set the last Py traits as

concomitant ones, while the first p; as the primary ones. Note that the discussion made in

Section 2 on the concomitant trait pertains to this general case of Py 2 1 as well. We rewrite

_ - () = (1)
H0 = H01 N Hy, where H01 = anpl H0 and H02 = np1<rSp2 H0 . Then the
MANOCOVA null hypothesis is framed as
* _ =
H0 = HOIH02 = H01|H02. (4.8)

L .=0,¥£23,1¢
1"

j1 < e L jt < p, and then incorporated the usual likelihood function (of the o - 1<i<tand

For the MANOVA model, Davidson and Bradley (1969) assumed that 0j
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0i 7 1<i < j< p) for deriving the MLE of these parameters. They have correctly noted that for
p > 2 and/or t > 2, an explicit solution to the likelihood equations can not be found, and thus
considerations must be given to solving the equations iteratively for the MLE. In fact, they
have elaborated such an iteration procedure. We like to pressure a point of distinction here,
and by an appeal to a conditional argument similar to that in Sen and David (1968), we may as
well use some partial MLE (PMLE) of these parameters to comstruct a conditionally
distribution—free test for Hj in (4.7). This test (mentioned in Sen and David (1968)) has the
same asymptotic properties as the large sample test proposed by Davidson and Bradley (1969),
and moreover, for small sample sizes, it is conditionally distribution—{ree whereas the other test
does not have this property.

We may partition £ into oP—1 buckets, such that within each bucket, we have a
product binomial law as in (2.14), so that taking the product over such gP~1 buckets, we get
the following (conditional) likelihood function of the c() C(l) SES, #S = P71,

1],8’ 71),8’
0) (1)
0) , 1), 9 4 cll
0o 2_(Cij,s + Cij,s) ij,s ij,s (49)
I<i<j<t s€S ng)s ’

which would characterize the conditional distribution—freeness of the proposed tests. If we
consider the bivariate marginal probabilities, say, for example, w(il,iz,*,*, -+ +¥), then

019 = 7(0,0,%,- - ,*)/7r£%())) Wﬁ%(),) -1, (4.10)
and a similar expression holds for each other 0rs’ 1 <{r <s<p. Thus, considering the bivariate
joint distribution of the (r,s)th trait responses for each of the (;) pairs, we may obtain a
likelihood function as in (2.14), and the PMLE of §_, denoted by brs’ is then obtained as in
(2.15), for every 1 <r < s < p. We let bsr =0 fors< 1, and consider the following p x p

s’
matrix.

Lo = (1)) = ((6,)); 6, =1,1<r<p. (4.11)
As in (2.16), we then define for each pair (i,j)

i 1 s ..
ngl(lr) =z§=1, i1 Eis=0 ni(i), 1¢i<jct, (4.12)
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and r = 1,...,p, and as in (2.17) we define
(r) _ ¢t I
i) =5t it l(o .2(1)} (4.13)
fori=1,.,t,r=1,.,p. Here also for j < i, we define the n( 2(1 ) etc., as in Section 2, by
ngﬁl(l—ir) etc. Let then

T = (T(l) (P)) (4.14)

n,i’
As in Sen and David (1968), we consider then the MANOVA test for H in (4.7) based on the
statistic

_ =1t ; p~l
é{l—'t 2:i-— Inlgn In,i (4.15)

Again under [A] in (4.2), the null hypothesis distribution of %, given the (Cfg) st CS)S)
s €85,1<i < j<t, can be enumerated by using (4.9), and as n - m,

g 2
& = Xp(t=1),0° under H. (4.16)

In a similar manner, to test for H01 alone, we may ignore the last Py traits, and contracted to
the first pq traits, we have ’5‘1(112 as the sub—vector of In i consisting only of the first P,
? ¥

elements in (4.14), i.e.,

o= (1) (@) 52
Tai=(Tod Do b i=lot (4.17)

Similarly, we partition

A

~ (0T .
[ o= |~ om2le b s poxp, (4.18)
N r L ~m) 1l
~n2l ~n22
ij=12.
Then, the test statistic for testing Hy, is
—ily (1)y, p=1 (p(1)
°21)11 =t (l\n 1) rI:nll(In,i)’ (4.19)
and parallel to (4.16), we have
g 2
L= xpl(t—l),O’ under H,,. (4.20)

Finally, to pose the MANOCOVA test for H*, we let
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A Al

* (1)_ - (2) i
Tai=Tn i Tniolaoa Tn i 18158, (4.21)

~

A _ A A_l A
Ln11-2= Tn11 — Fni2 Tn22 Faon (4.22)
Then we have the proposed test statistic
t
* __
r =t (T [otr. (T2 i) (4.23)

Under Hj, and the law (4.9), the (conditiona.l) distribution of % * can be enumerated by using
(4.9). For large n, under [A] in (4.2) and H},

,2,.92

22 (100 (4.24)

We are in a position to compare the MANOVA test ,2;1 and the MANOCOVA test .%* for
1

local Pitman type alternatives pertaining to the set of Pq primary traits. Such alternatives can

be formulated as in (2.29) for each g(r), r=1,.p; and the u,gr) can then be defined as in

(p )
(2.30). We denote these p,—vectors by g. = (u(l) A 1 ),i=1,.,t. Also,letT = ((7ij)) =

(¢ j))i j=1,....p be defined as in (4.11) and partition [ into [
-1
r

L11.2 =F11 —T12 Dog Doy 2nd

~TS? I, s = 1,2, as in (4.18) Let

=T
—_ —1 t 7 _1
A=t 2i=1 I 211.2 & > (4.25)

[ . |
Ag=t "% _;p T & (4.26)

Then as in (2.32)—(2.34), we obtain that under such a sequence {Kr(xl)} of local alternatives,

asn - m,
g 2 g 2 .
AT (-1),80 T X (1-1),A (4.27)
D .2
,%* —) pl(t_l),A. (4.28)
Next, by an application of the Courant Theorem [see Sen & Singer (1993, p. 28)]
. Pty
inf{A/AG: (gpsop) ER T}

= chn{lys Bias 1o}
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B -1 11
= ch in{T = T19 Log Doy T17) 7}

~1 -1,\—1
= (Paxdl = L1a Loz To1 L11})
>1 (4.29)
here the strict equality sign holds when the positive semidefinite matrix [73 I'., Io3 T, 7}
WheTe he strict equatitly sig P 11 %12 822 ~21 »1i
(= T'*, say) has a null minimum eigen value. On the other hand, if at least one of the eigen
values of ['* is strictly positive, it follows from (4.29) and a more structured version of the
Courant Theorem that A/A is > 1, for some part of parameter space (under the alternative).
From (4.27), (4.28) and (4.29) we conclude that (i) under {Kl(ll)}, 4 * is asymptotically more
powerful than 4 (asp > pl), and (ii) .z;’l is asymptotically at least as powerful as J{ll, and at

least one a part of the alternative hypothesis parameter space, .z;’l* is more powerful than .2;11.

Thus, for the MANOCOVA paired comparisons model, .2;* is a better choice.

5. Concluding remarks

The main thrust of the current study is on the development of the analysis of covariance
approach to the classical paired comparisons model through a multivariate approach, mainly
adapted from Sen and David (1968).  The relevance of the same (conditional)
distribution—freeness as in Sen and David (1968) has been established, and the ANOCOVA test
statistic .ig* has also been singled out as a better alternative than the other. In this context,
there are certain issues that need some discussion and are presented below:

(i) In principle, the Davidson and Bradley (1969) procedure (for MANOVA paired
comparisons) may as well be extended to the MANOCOVA problem. For this setup,

assumption {A] in (4.2) remains in tact, with the additional assumption that the 0j oo for £>
1777
3 are all null. This latter condition is not needed in the current approach. Secondly, with

respect to (4.3)—(4.4), in the MANOCOVA model, we have Ag(o) =1/2,for £ = p; + 1,...p,
p,1<i<j<t, so that a; = t"l, for every r = py+1L,...,p and i = 1,...,t. Therefore in the
Davidson—Bradley (1969) likelihood function, we will have only the set of parameters a 18T

$Pppp 1 €1<t and the (sz, 1 <j< £<p. This would lead to a computationally simpler
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likelihood equation. Nevertheless, an iterative solution is generally needed to solve for the
MLE of these a; and 0)’ p 35 would be needed for their proposed likelihood ratio test. Because
here we allow the 0j1_ -if {2 3 to be arbitrary, model wise we have a less restricted model and
hence, the proposed procedure is more model-robust. This conclusion also applies to the
MANOVA paired comparisons test of Sen and David (1968) in relation to the parallel one due
to Davidson and Bradley (1969) which has purely a large sample flavor.

(ii) There is a rational interpretation of the proposed testing procedure in the light of
the classical Mantel-Haenszel (1959) procedure as studied in a general multi—dimensional case
by Sen (1988). We may remark that for the (;) pairs (i,j), 1 <i < j < t, the total number of
independent cell probabilities (1, j) is equal to (;)(21)—1). A test of homogeneity of these (;)
multi—dichotomous tables could have been made (with a DF [(;) —1][2P-1]). For t > 2 and/or
p > 2, this DF is large compared to p(t—1), in the Davidson—Bradley (1969) or Sen—David
(1968) procedures. Whereas the ingenuity of the Davidson—Bradley approach was to
incorporate (4.4), and impose the restraints that the 0j1' . je’ £ > 3 are all 0, to reduce the
number of free parameters to p(t—1) + (12)), and through the likelihood principle justify their
procedure as being at least asymptotically optimal, there remains the question of
model-robustness. In particular, the likelihood ratio test is generally non—robust even in
simpler models [Huber (1965)] and with the increase in the number of parameters under testing
as well as the nuisance parameters, the degree of non-robustness may accelerate. The
Mantel-Haenszel (1959) technique offers a more robust alternative. It simply relates to the
choice of a specific number of contrasts in the cell probabilities which are directly relevant to
the hypotheses under testing and exploits a suitable conditional argument to render
distribution—freeness for finite sample sizes. The Chatterjee (1966) concordance—discordance
conditionality argument is an extension of the Mantel-Haenszel principle to the
multidimensional contingency tables, and following Sen (1988), we may characterize the
proposed testing procedure as a further extension of the Mantel-Haenszel conditional procedure
to multidimensional dichotomores tables arising in MANOCOVA paired comparisons models.

This way we allow more flexibility with respect to the vector © in (4.2).
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(i) In the simple one parameter model, a likelihood ratio test may have some
optimality properties even for small sample sizes. In the classical MANOVA (linear model)
tests, even asymptotically the likelihood ratio test may not be universally optimal. The Wald
(1943) characterization of the asymptotic optimality properties of likelihood ratio tests leaves
the door open for other procedures as well. In fact, the Lawley—Hotelling trace statistics and
the Wilks likelihood ratio test statistics are known to share such asymptotic optimality
properties for MANOVA/MANOCOVA problems. Since our proposed test is more in the spirit
of the Lawley—Hotelling trace statistics (with adaptations from the Mantel-Haenszel
procedure), it was motivating to note that this procedure should also share the same
asymptotic properties with the likelihood ratio tests proposed by Davidson and Bradley (1969).
This intuition is indeed true as may easily be verified by comparing our .2;’1* with a parallel
version as can be obtained by using the likelihood ratio principle on the Davidson—Bradley
model.

(iv) In the classical MANOCOVA model, the asymptotic power—equivalence of the
Lawley—Hotelling trace statistics and likelihood ratio statistics is largely due to the
"parametric orthogonality" of the regression parameters and the dispersion matrix. In the
current situation, we have a non-linear model, and hence this asymptotic equivalence result
(discussed in (iii)) casts more light on the model parameters. In our proposed test, we have
tactly used p(t—1) + (2P—p—1) parameters [see (4.2) and (4.4)], treating p(t—1) of them as the
ones under testing while the remaining (2P—p—1) (i.e,, @) as nuisance parameters. In the
Davidson—Bradley (1969) model too, they could have worked with their likelihood ratio
principle with all these p(t—1) + (2p——p—1) parameters. The asymptotic properties of such a
likelihood ratio test (for H;) would have been the same as their original one based on p(t—1) +
(12’) parameters, although computationally that would have been even more cumbersome; the
iteration procedure for this full parameter space model would have been highly involved and
complex. But the outcome of this asymptotic equivalence is that even the likelihood ratio test

is asymptotically insensitive to the parameters 0j i ¢ > 3 (when p > 3), ensuring an
1

asymptotic parametric orthogonality with higher order Oj sy {> 3. This is not surprising at
1
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all. Because of the asymptotic (joint) normality of the ni"}{ngz(o) =y Wii()))}’ 1<r¢p,1<i
< j<'t, only the 0j£ , 1 £ j# £< p, enter into their covariance matrix while the higher order #'s
cease to have any impact. Moreover, for the unrestricted model, the ngl(o) are asymptotically
BAN estimators, and hence, the higher order #'s, even dropped from the model, do not lead to
any asymptotic loss of information. However, from model specification and finite sample

analysis considerations, there is no need to assume that the 0j ey £> 3, are all 0.
1

We conclude this section with a note that in the literature there are other procedures
relating to paired comparisons designs where for each pair (i,j), 1 < i < j < t, quantitative
responses are available on the individual objects, or at least, on their difference. Thus, we may
assume that there are nij observations ?v(ij I k= 1,...,ni 7 for each (i,j), 1 <i < j < t, where the
Bj,

be assumed that Fij is (diagonally) symmetric about the location parameter b In the same

k are i.i.d.r. vectors with a continuous distribution function Fij’ defined on RP, and it may

spirit as in Davidson and Bradley (1969), it can be taken for granted that
Hﬁj=«§i—§j’ for1<i< j<it, (5.1)

so that the null hypothesis relates to the homogeneity of the gi‘ This relates to a
(nonparametric) linear model for which the techniques discussed in detail by Puri and Sen
(1985, Sec. 8.3) can readily be adopted to study suitable MANOCOVA tests. Therefore, there
is no need to study such tests in detail. Rather, following the general philosophy of David
(1988), we are somewhat reserved in characterizing such procedures as genuine paired
comparisons procedures, and hence, we refrain ourselves from further deliberations of such
MANOCOVA paired comparisons. More robust ANOCOVA procedures considered by Sen

(1993) are more appealing in this respect.
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