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ABSTRACT

Motivation: Next-generation sequencing technologies have
facilitated the study of organisms on a genome-wide scale. A recent
method called restriction site associated DNA sequencing (RAD-
seq) allows to sample sequence information at reduced complexity
across a target genome using the Illumina platform. Single-end
RAD-seq has proven to provide a large number of informative
genetic markers in reference as well as non-reference organisms.
Results: Here, we present a method for de novo assembly of paired-
end RAD-seq data in order to produce extended contigs flanking a
restriction site. We were able to reconstruct one-tenth of the guppy
genome represented by 200–500 bp contigs associated to EcoRI
recognition sites. In addition, these contigs were used as reference
allowing the detection of thousands of new polymorphic markers
that are informative for mapping and population genetic studies in
the guppy.
Availability: A perl and C++ implementation of the method
demonstrated in this article is available under http://guppy
.weigelworld.org/weigeldatabases/radMarkers/ as package RApiD.
Contact: christine.dreyer@tuebingen.mpg.de
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
The availability of increasing amounts of DNA sequence
information has greatly facilitated studying of many biological
questions, especially in the context of genome evolution, natural
variation and adaptive processes and association mapping. Next-
generation sequencing (NGS) technologies have revolutionized
the field of genome research, at first by allowing cheap re-
sequencing projects for organisms with an already existing reference
genome. Recently, more and more methods have been developed
incorporating NGS to analyze also non-reference organisms, taking
advantage of improvements such as longer read lengths and paired-
end (PE) reads. However, de novo assemblies of large genomes from
very short reads remain difficult, in spite of recent improvements in
assembly algorithms (Gnerre et al., 2011). Yet, for a large number
of interesting questions a high number of genetic markers equally
distributed over the genome would already be very informative,
even without a complete genome sequence. Baird et al. (2008)
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developed a protocol for high-throughput sequencing of restriction
site-associated DNA (RAD) tags using the Illumina platform (RAD-
seq). It has the advantage that only a reduced representation of
the genome is sequenced leading to deep sequence coverage of
fragments near a specific type of restriction site. They showed that
single end (SE) sequencing of RAD tags could be used for rapid
marker development in Stickleback for which a reference genome
is available. Since then, SE RAD-seq has become a popular tool
in next-generation population genetics (Davey and Blaxter, 2010;
Emerson et al., 2010; Hohenlohe et al., 2011; Pfender et al., 2011).
In addition, Illumina PE sequencing could extend the sequence
information on each side of the restriction sites (Baird et al., 2008;
Davey and Blaxter, 2010; Etter et al., 2011). Because each RAD can
provide a unique genomic sequence tag that can be characterized
without its immediate genomic context, the first reads may be
aligned to each other, building subsets that are associated to one
restriction site each. As a strategy for obtaining longer sequence
tags, we exploited the fact that random mechanical shearing leads to
a family of staggered second reads that can be assembled to longer
subsets associated to the RE site defined by the first read cluster.
This strategy subdivides the assembly problem into a high number
of less complex local assemblies. In this study, we analyze PE
RAD-seq data from two very diverged guppy populations, namely
Quare and Cumana, which have been previously used to generate
a genetic linkage map (Tripathi et al., 2009). The guppy (Poecilia
retitculata) is an important model organism in ecological genetics,
and adaptation to contrasting habitats has been extensively studied in
field experiments (Magurran, 2005; Reznick et al., 2001). However,
due to the lack of a sufficient number of genetic markers the
molecular background is still unknown. We show that our approach
can generate de novo 283 842 RAD tags that are 200–400 bp
long and cover ∼10% of the guppy genome. Furthermore, these
tags can be used as reference to design thousands of new
polymorphic markers useful for population genetic and mapping
studies. All tools developed for the analysis can be downloaded
from http://guppy.weigelworld.org/weigeldatabases/radMarkers/ as
package RApiD.

2 MATERIAL AND METHODS

2.1 Creation and sequencing of the RAD library
The genomic RAD libraries were created as described by Baird et al. (2008).
Briefly, genomic DNA pooled from six individuals each was digested with
EcoRI (NEW ENGLAND BioLabs). Pools represented Cumaná and Quare
males and females and technical replicates of Quare males and Cumaná
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Table 1. Sequence information and read counts for each 12 bp MID

MID Sequence Sample Million reads

1 ATGTGTCGCCAA 6 Quare malesa 4.6
2 TCTGAGCGTACA 6 Quare malesa 3.4
3 GATCTGAAGCTC 6 Quare females 0.015
4 CGACGATACTTG 6 Cumaná males 5.1
5 CTAGATGCTGAC 6 Cumaná femalesa 4.4
6 GACACCGTATGT 6 Cumaná femalesa 5.4

aTechnical replicates.

females were included (Table 1). Illumina P1 adaptors including a unique
12 bp multiplex identifier (MID) preceding the EcoRI site were added by
ligation. All MIDs differed by at least seven bases and were therefore
tolerant to up to three errors. After ligation of the P1 adaptors containing
the different MIDs, the six DNA samples were pooled in proportionate
amounts before shearing (Covaris) and addition of the P2 adaptor. A
single library with an insert size range of 200–400 bp was prepared and
sequenced from both ends with 100 bp read lengths in one lane of an
Illumina GAIIX sequencer (Fig. 1A). Sequence reads can be downloaded
from http://guppy.weigelworld.org/weigeldatabases/radMarkers/.

2.2 De novo assembly of RAD tags
For quality control, all first reads were checked for presence of the partial 5 bp
EcoRI motif (AATTC) following the 12 bp MID. Second, all reads containing
uncalled nucleotides were removed from the dataset. After removal of the
MID and restriction site sequence, the remaining first reads were grouped
into pools representing the same RAD tag, using vmatch (www.vmatch.de)
(Fig. 1B). We allowed a maximal hamming distance of three within the same
cluster. After clustering the first reads, the second reads could be sorted into
groups accordingly that were assembled separately (Fig. 1B). Ideally, the
local assembly of second reads in a cluster results in one contig indicating
that they indeed originate from the same RAD tag. Mixed clusters of first
reads could be caused by RE sites in repetitive regions. Such clusters might
be resolved if the second reads were in a region outside the repeat and could
be assembled into unique sequences. In such cases, the assembly of the
second reads resulted in more than one contig and allowed resolution of the
mixed first reads accordingly. Every single cluster for each tag could have
a different set of optimal assembly parameters, because of different repeat
content and number of reads per cluster. For example, if the coverage of a tag
is low, a smaller overlap length should be used for the assembly. We used the
assembler LOCAS (http://ab.inf.uni-tuebingen.de/software/locas/) that uses
an Overlap-Layout-Consensus approach to keep track of the overlaps among
reads and is especially developed for low coverage data. LOCASopt is a
wrapper that calls the assembler LOCAS with a different set of parameters
in order to assemble the reads in a cluster several times under different
conditions. Parameters that can be optimized are overlap length, percent
of mismatches allowed in overlap and seed size (see LOCAS Manual).
LOCASopt keeps track of all the assemblies in order to choose the optimal
one. We defined the optimal assembly as the one resulting in the smallest
number of contigs and incorporating the largest fraction of available reads
in a cluster. In order to test if optimizing each local assembly leads to
better results, we assembled our data once with LOCASopt iterating over a
large set of different parameter combinations, namely overlap = 21, 23, … 67,
k-mer = 13, 15, 17 and mismatch rate = 0.05, 0.07, 0.09. Additionally, we
assembled the same set of clusters a second time with the parameters fixed
at the values mostly used in the previous assembly (see Section 3).

After assembling, the second read contigs are joined with the consensus
of the corresponding first reads (Fig. 1B). In order to generate a high-quality
reference, we performed an additional quality control by mapping back all
read pairs to the assembled tags and calling the majority consensus (see

Section 2.3) for each tag requiring a minimal quality of 20 (corresponding to
a 0.01% chance that a base was wrongly called) and a minimal coverage of
two per base. After that, uncalled nucleotides at the ends of the second read
contigs were removed. If there were uncalled nucleotides in the middle of a
second read contig, the contig was split up at these positions and the longest
resulting substring remained as representative of this contig. Depending on
the insert size of the library, the first read consensus and second read contig
can be overlapping or non-overlapping (Fig. 1B). Therefore, we checked for
an overlap between the two parts requiring a minimal overlap length of 10 bp
and a maximal mismatch rate of 5%.

2.3 Consensus and SNP calling
After generating a comprehensive high-quality reference, reads were sorted
according to their MIDs and separately mapped back to the reference
(Fig. 1C). We used genomemapper (Schneeberger et al., 2009) to map the
reads back to the reference allowing up to five mismatches and no gaps.
A mapped read pair has to pass several quality controls to be considered
for consensus or SNP calling (Fig. 1B). Both reads in a pair have to map
to the same contig in the right direction, with the start of the first read at
the first position in a tag. A pair is only considered if at least one member
uniquely maps to one contig in the reference. Furthermore, read pair clones
are removed in order to prevent false positive SNP calls that were caused
by errors occurring during the amplification of the library. A read pair was
considered to be a clone, if the second read maps to the same position in a
reference tag as another second read in a previous pair. After mapping the
reads back, the consensus base for each position in the reference was called by
determining the major base at that position in the reads that could be mapped
back. We used only bases with a minimal quality of 20 for consensus calling.
Each consensus base got a quality value that was the average over the quality
values of the bases used for consensus calling. If a position in the assembled
reference was not covered during the consensus calling, it was marked with
a ‘N’ as uncalled nucleotide.

The search for polymorphic sites was done in a similar way as
the consensus calling. A given site was considered polymorphic if the
polymorphism occurred in at least a certain number of reads and if the site
had a minimal coverage above threshold. In order to call a homozygous
SNP, all reads must contain the same nucleotide that must be different from
the reference. As in the consensus calling, only bases were considered that
reached a certain quality threshold. The quality of a SNP is the average of
the qualities of the single bases at the SNP position.

3 RESULTS AND DISCUSSION

3.1 PE sequencing
In order to generate a dense set of RAD markers, we chose the
restrictions enzyme EcoRI, which recognizes the palindromic 6 bp
sequence G′AATT,C. The guppy genome size is nearly 1 Gb as
estimated by flow cytometry (M.Schartl, personal communication).
Based on sequenced BAC ends from a genomic library of the
Cumaná guppy, we predicted the guppy genome to be relatively
AT rich (60%), close to the AT content of the EcoRI recognition
site. For simplicity, we will assume that EcoRI sites occur close to
the expected frequency of 1/4096 bp, and that we have therefore
an expected number of 500 000 RAD tags. To test the sequencing
depth required as well as reproducibility of the results, we pooled
six independently digested bulks of DNA from six individuals each,
representing males and females of two different populations and
technical replicates (Table 1). PE sequencing with 101 bp read length
of this pool on a single lane of an Illumina flowcell resulted in 23.4
million read pairs, of which 97% (22.6 million) contained the correct
restriction site pattern (AATTC) at the beginning of the first read
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Fig. 1. (A) RAD-seq output. Fragments are sheared randomly. By PE sequencing of fragments between 200 and 400 bp, the obtained second reads are
staggered and cover a range of 100–300 bp, whereas the first reads contain the MID and the restriction site and therefore start always at the same genomic
position. (B) After removing the MID and the restriction site, the first reads can be aligned to each other (clustering). According to these clusters, the second
reads can also be sorted and assembled separately to a contig, which is then linked to the first read majority consensus. The tag pairs then serve as a reference
to which all reads are mapped back and a majority consensus is called using only high-quality bases from read pairs that mapped to the assembly fulfilling
certain constrains (read pairs below red dashed line are discarded). After this step, all remaining tag pairs are checked whether they overlap. (C) All reads can
be sorted according to their MIDs, and sample-specific consensus sequences and SNPs can be called by mapping the sorted reads back to the reference.
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Fig. 2. Base distribution and quality scores along the reads. (A) The number of bases per position in each read was determined. For read1, positions 1–12
contain the sample specific MID and at position 13–17 is the restriction site (clearly seen in the base counts at these position). Read2 is completely composed
of genomic bases. The base distribution at positions containing solely genomic regions reflects the expected distribution of ∼60% AT. (B) Quality values were
counted along the reads. As expected, quality values decrease to the end of the reads.

and no uncalled positions. Consequently, assuming 500 000 tags,
each tag should be covered by ∼46 read pairs on average. Figure 2
shows the base and quality score counts per site in each read. The
base distribution over the first 17 bp in the first read nicely depicts
the MIDs and the restriction site. However, at the first position
after the restriction site G is significantly underrepresented, possibly
as a consequence of genomic CG methylation inhibiting EcoRI.
Yet after position 18, the distribution converges on the expected
values (60% AT, 40% GC), which is seen over the entire second
read. As expected, quality values of both reads decrease over their
length (Bansal et al., 2010), with a slightly faster decline in the
first read, possibly caused by the unequal base distribution in the
first 17 bp. For consensus and SNP calling, the reads were sorted
according to sample specific MIDs (Table 1). Differences between
read counts for the different samples deviated less than a factor
of 1.6 from each other, with one exception. This is within the
range previously encountered when sequencing multiplexed samples
(Craig et al., 2008). We obtained only ∼15000 reads encoded with
MID3, suggesting technical failure (Craig et al., 2008).

3.2 Clustering and de novo assembly
All-against-all alignment of reads resulted in 451 981 first-read
clusters with ∼48 reads on average (range 2–66 393). For assembly,
we considered only 297 147 (65.7%) clusters within a certain
coverage range (5–184), in order to avoid highly repetitive regions.
These clusters had an average size of 63 reads and included 18.9
million (81%) of the reads.

The second reads belonging to each first-read cluster were sorted
and assembled separately to obtain a second-read contig for each
cluster (Fig. 1B). If the assembly of a cluster resulted in more than
one contig or if not all the reads were used in the assembly, the

first reads were sorted anew, according to the assembled contigs.
We performed the assembly twice, once iterating over different
parameter settings and once fixing the parameters at the values
mostly used in the optimized assembly (overlap = 21, k-mer = 13,
mismatch rate = 0.05). The assembly with fixed parameters resulted
in 503 748 contigs with an average length of 286 bp, representing
291 149 clusters and incorporating 76.6% of the reads. On average,
28 read pairs contributed to one RAD tag (Table 2). In the optimized
assembly, 291 159 clusters were assembled resulting in 334 215
second-read contigs with an average length of 349 bp using 76.8%
of the input reads. On average, 43 read pairs contributed to one
RAD tag, which is close to the 46 read pairs expected per tag
(Table 2). Figure 3 shows that after optimizing the assembly the
increase in the number of longer contigs was marginal, but most of
the very short contigs may have been merged with longer contigs
by choosing a different set of parameters. This notion is supported
by the fact that significantly less clusters result in more than one
contig in the optimized assembly (8.7% compared with 31.0%,
Table 2). Consequently, optimizing the set of parameters for each
local assembly led to less, but on average longer second read contigs
with a higher number of reads used per contig. We therefore used
these contigs for all the following analyses.

3.3 Quality control
Following the strategy detailed in Section 2, we found 283 842
contigs fulfilling the quality requirements, corresponding to ∼57%
of the tags expected. This is comparable to the number of EcoRI
RAD tags found in stickleback (Baird et al., 2008), where short
(36 bp) reads were aligned to a reference genome. Of the assembled
guppy RAD tags, 51.4% were overlapping with their corresponding
first read consensus, over a length of 29 bp and with an average
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Table 2. Results of the optimized versus the not optimized assembly

Fixed Optimized

Clusters resulting in an assembly 291 149 291 159
Contigs 503 748 334 215
Custers resulting in >1 contig (%) 31.0 8.7
Reads used 75.6 76.8
Average contig length (bp) 286 349
Sum of all contigs (Mb) 143.8 116.6

Fig. 3. Length distribution of assembled contigs. The assembly of the
second read clusters was performed twice. Once with parameters fixed at
certain values and once trying a large set of different assembly parameter
combinations to find the optimal one for each cluster. The optimal assembly
was defined as the one resulting in the least number of contigs, but
incorporating the largest fraction of reads.

mismatch rate of 0.002%. For these tags, we obtained on average
417 bp continuous sequence corresponding to 60 Mb in total. The
second read contigs of the non-overlapping tags were on average
259 bp long. Taking the sequence information together from all
overlapping and non-overlapping tags, we obtained 108.2 Mb of
sequence, corresponding to about one-tenth of the guppy genome,
close to the expectation.

In order to assess the quality of the de novo assembled reference,
we predicted RAD markers of ≥150 bp length by digesting 6165
sequenced Cumaná BAC ends with EcoRI in silico. These were used
as queries in a Blastn search against our high-quality reference. Of
1112 predicted RAD markers, 862 (77.5%) matched (≤1e-100) our
assembled reference (Supplementary Table S1). Of these 862 hits,
798 (92.6%) covered >90% of the query or the subject sequence and
included the restriction site at one end (Supplementary Table S1).
These results show that our strategy led to a high-quality reference
of de novo assembled RAD markers that can be further used for
sample-specific consensus and SNP calling.

3.4 Sample-specific consensus calling
After assembly and quality control, we sorted the reads according
to their MIDs and mapped each batch on the reference in order to
call sample-specific consensus sequences. Baird et al. (2008) used
the presence or absence of a tag to identify it as polymorphic. The
absence of a RAD tag in one sample is probably most often caused by
a polymorphism in the associated restriction site. However, random

Table 3. Pairwise comparison of missing RAD tags between the five sample
pools using different coverage thresholds

MID Minimum 1 2 4 5 6
coverage

1× 218 946 2.88 19.49 19.89 19.35
1 6× 174 735 0.26 16.81 17.07 16.75

10× 137 679 0.04 15.11 15.31 15.06
1× 1.89 216 720 19.53 19.93 19.37

2 6× 0.06 153 463 16.02 16.28 15.98
10× 0.01 103 495 14.03 14.26 14.06
1× 25.11 25.91 235 368 3.54 2.86

4 6× 20.70 21.17 185 295 0.73 0.60
10× 18.13 18.46 148 954 0.34 0.32
1× 25.17 25.97 3.15 234 404 1.80

5 6× 20.14 20.57 0.39 178 107 0.05
10× 17.25 17.53 0.10 137 078 0.01
1× 25.30 26.07 3.28 2.62 236 381

6 6× 20.97 21.47 0.50 0.15 190 100
10× 18.27 18.60 0.12 0.02 155 298

Diagonal contains the total number of tags in the sample with the required coverage.
Remaining entries give the percentage of RAD tags that can be found in sample i (rows)
but are missing in sample j (columns).

sampling in the sequencing process can cause false positives.
Therefore, Baird et al. (2008) scored only such markers as absent
that were represented by at least eight reads in one sample and by
none in the other sample. We tested whether this strategy also works
with de novo RAD tags by comparing the intersections between the
different samples using different coverage cutoffs (1×, 6×, 10×) to
assign a marker as polymorphic. The technical replicates provided
the opportunity to estimate the false positive rate at the different
coverage cutoffs. Table 3 shows how many tags we found per
sample at different coverage cutoffs (diagonal) and the percentage
of markers that could not be found in the intersection between the
different samples and would therefore be scored as polymorphic. The
false positive rate declines from >1% with a minimum coverage of
1× to <0.3% and 0.04% with minimum coverage of 6× and 10×,
respectively. We see from Table 3 that the percentage of absent
markers between the samples from the two different populations
is much higher (>14% at all coverage thresholds) than the highest
false positive rate. We infer that a significant number of polymorphic
markers is caused by sequence variation that changes restriction
enzyme sites. At 10× coverage, <0.3% of these markers are false
positives.

In guppies, sex is genetically determined and sex-linked
inheritance and sex chromosome evolution are topics of general
interest in this species (Lindholm and Breden, 2002). Sex is
determined by male heterogamety (XY), but the master sex
determining locus, which appears to be located at the distal end of the
Y chromosome, has not yet been precisely mapped due to a lack of
markers (Tripathi et al., 2009). We inspected our de novo assembled
RAD tags for sex-specific markers. At 10× coverage, there were
at least 2.5-fold more markers polymorphic (0.1%/0.12% and
0.34%/0.32%, Table 3) in the Cumaná female/male (4 compared to 5
and 6, Table 3) contrasts, compared with the Cumaná female/female
(0.02 and 0.01%, 5 and 6, Table 3) or Quare male/male (0.04 and
0.01%, 1 and 2, Table 3) constrasts, corresponding to ∼149 female-
specific tags and ∼477 male-specific tags. Because 40% of these
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Fig. 4. Distribution of polymorphic sites in assembled tags. All read pairs
were mapped back to the tag pairs in order to calculate the total coverage
and the total number of polymorphisms per site as a function of the quality
cutoff and read length used.

markers are expected to be false positives at 10× coverage, a higher
coverage threshold should be used.

3.5 Distribution and fidelity of polymorphic sites
The distribution of polymorphic sites along the assembled RAD
tags was analyzed by mapping all reads back to the assembled
reference. A site was regarded as polymorphic if the polymorphism
was covered by at least two reads and the coverage was at least
six-fold. SNPs were called with quality thresholds of either 20 or
30. Figure 4 shows that the coverage decreases significantly toward
the end of the first read, with declining quality scores, as is typical
for the end of the reads (Bansal et al., 2010). Over the first 69 bp,
SNPs are found with equal frequency at each position in the first
read, but the number of SNPs significantly increases to the end of
the first read even when using a quality threshold of 30. However,
this might not only be caused by decreasing quality values at the
end of the reads, but also might be due to more misalignments at the
end of the reads. When we do not use the last 15 bp of each mapped
read for SNP calling, we reduce the number of SNPs mainly at the
proximal end of the second read part of the tag (red curve in Fig. 4).

Figure 4 also illustrates that the second read contigs have their
maximal coverage around position ∼270 bp and that the coverage
decreases as expected toward both ends of the contigs. Furthermore,
the likelihood to detect a SNP at a certain position in the second read
part of a tag is positively correlated to the coverage. However, on
average above a coverage of ∼15 fold SNP detection does not seem
to increase further, suggesting that such coverage is sufficient to
detect the majority of alleles.

To determine the number of SNPs that could be confirmed
in the intersection of technical replicates, we analyzed each
sample separately. Based on the observations described above, we
performed the sample-specific SNP calling disregarding the last
15 bp of each read and considering only those positions in the
reference having a coverage at least equal to a certain cutoff in
all samples. For the Quare male replicates, we used the Cumana
consensus as reference and for the Cumana female replicates the
Quare consensus as reference, in order to compare high fidelity rates
for heterozygous as well as homozygous SNPs. At 6× coverage,
84% of the heterozygous SNPs within the Quare replicates, and

86% of heterozygous SNPs within the Cumana replicates, could
be found in the intersection. At 10× coverage, these numbers
increased as expected slightly to 89 and 90%, respectively. In
order to determine whether this applies to both parts of a tag,
we examined the intersections of the first and second read part
separately. We found that 87–91% of the SNPs detected in the
first read lie in the intersection between the technical replicates,
but only 78–80% of the heterozygous SNPs in the second read.
Apart from the higher coverage in the first read, this could also
be partly due to position-dependent systematic errors in the base
calling that are equally likely in each sample. Since the first reads in a
RAD tag are completely overlapping, position-dependent systematic
errors can lead to false positive heterozygous SNPs that are shared
among different multiplexed samples. The position-dependent effect
cannot occur in the second part of a tag because we did not
consider read pair clones. However, homozygous SNPs differ from
the heterozygous SNPs in their fidelity. At 6× coverage, we find
>97.1% of the SNPs in the intersection of the technical replicates,
and this increases only to >97.7% at 10× coverage. Moreover, the
intersections between the first and the second part differ by <1%.
This indicates that the detection of homozygous SNPs between
populations is highly reproducible with this method. Nevertheless,
our approach also allows the detection of a high number of high
fidelity heterozygous SNPs within populations at a specificity rate of
>78% at comparatively low coverage. We have scored polymorphic
sites using a newly developed approach, because the first read
and error models developed for SNP calling in whole-genome
sequencing data do not apply to RAD-seq data. As the first read
of a specific tag starts at an invariant position, a SNP within the first
read will always be at the same position. This is severely punished
by some error models used for SNP calling, because sequencing
errors at the same site are correlated (Li et al., 2008). In addition,
we do not expect a large number of insertions and deletions causing
misalignments, because the reference is assembled with the reads
that are also used for SNP calling. Moreover, repetitive sequences are
removed by removing large first read clusters. These properties make
the alignment problem fairly easy and eliminate the main sources
of false positive SNPs in genomic data (Li et al., 2008; Malhis and
Jones, 2010). While our approach supports the use of other SNP
calling algorithms using the assembled consensus tags as reference,
we would advise to filter the mapping file used as input, following
the criteria for informative reads defined in this study (Sections 2
and 2.3).

3.6 Polymorphic markers within and between Quare
and Cumaná populations

To determine the number of polymorphic markers within and
between Quare and Cumaná specimens, we pooled the technical
replicates to increase the coverage. At a minimum coverage of 6×,
we found that 28.9% of the assembled 283 842 RAD markers are
polymorphic between the two populations due to a polymorphism
affecting the enzyme recognition site.

Including only those positions in the reference with at least
6× coverage in each population sample, we scored 302 693
polymorphic sites, of which 148 770 (49.1%) were homozygous
SNPs differentiating the two populations, and 153 923 (50.9)
sites contained SNPs that were heterozygous in at least one
population. We found 116 861 (41.2%) tags containing at least
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one polymorphism of which 81 405 (28.7%) contained at least one
homozygous SNP and 73 199 (25.9%) at least one heterozygous
SNP, indicating that some tags can be either scored for a homozygous
or heterozygous SNP.

Genetic studies on wild populations addressing questions about
population structure and adaptation to different habitats are of great
interest in guppies. Using the complete set of 302 693 SNPs, we
estimated two important population parameters namely expected
heterozygosity (He) (Excoffier, 2007) within each population and
genetic differentiation measured by FST (Reich et al., 2009) between
the two population samples. We found He =0.078 and He =0.138
within Quare and Cumaná samples, respectively. These values are
similar to a previous study using genome-wide SNP markers for
population structure analysis (Willing et al., 2010). However, the
estimated FST of 0.71 is somewhat lower, perhaps due to the
less biased choice of markers compared with the previous work,
which used markers designed for mapping crosses, with fixed SNPs
between the two populations being preferred over segregating ones,
inflating the estimation of genetic differentiation between the two
populations (Willing et al., 2010). Consequently, our approach
cannot only be used to identify SNPs for generating a high-
density genetic map, but it will also produce a high number of
unbiased informative SNPs that are ideal for population genetic
analyses.

4 CONCLUSIONS
In this article, we have demonstrated a method for the de novo
assembly and analysis of PE RAD-seq data. We were able to
assemble ∼10% of the guppy genome represented by 283 842
RAD tags of which ∼50% were overlapping. This ratio could
be significantly increased either by reducing the insert size of
the library or by sequencing with longer read length. About 29%
of the tags were polymorphic between the Quare and Cumana
populations due to a disruption in the EcoRI recognition site
and about 41% of the tags contained at least one SNP site.
Estimated population parameters using these SNPs are similar to
those previously reported, further confirming the veracity of our
approach. We found that 81 405 of the tags contain homozygous
SNP between Cumaná and Quare populations. These would be
potentially useful in generating a dense genetic map that would
greatly aid a whole genome assembly. Furthermore, the PE RAD-
seq contigs could be used as artificial long reads in a whole genome
assembly, to overcome the problems of assembling an entire genome
from short reads only. Moreover, one could use different restriction
enzymes to generate an overlapping set of RAD-seq contigs. By
counting the restriction sites of 10 additional six-cutter enzymes
in our assembled data (unpublished data of EMW), we saw that
167 848 tags contain at least 1 of 10 other restriction enzyme sites
analyzed. Similar sequence complexity reduction approaches for
aiding genome assemblies have been advocated before [e.g. Hyten
et al. (2010)].
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