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Abstract

The bilinear pairing such as Weil pairing or Tate pairing on elliptic and hyperelliptic curves
have recently been found applications in design of cryptographic protocols. In this survey, we
have tried to cover different cryptographic protocols based on bilinear pairings which possess,
to the best of our knowledge, proper security proofs in the existing security models.

1 Introduction

The concept of identity-based cryptosystem is due to Shamir [40]. Such a scheme has the property
that a user’s public key is an easily calculated function of his identity, while a user’s private key
can be calculated for him by a trusted authority, called private key generator (PKG). The ID-based
public key cryptosystem can be an alternative for certificate-based public key infrastructure (PKI),
especially when efficient key management and moderate security are required.

Earlier bilinear pairings, namely Weil pairing and Tate pairing of algebraic curves were used in
cryptography for the MOV attack [35] using Weil pairing and FR attack [22] using Tate pairing.
These attacks reduce the discrete logarithm problem on some elliptic or hyperelliptic curves to the
discrete logarithm problem in a finite field. In recent years, bilinear pairings have found positive
application in cryptography to construct new cryptographic primitives. The current work is an
attempt to survey this field.

Protocols from pairings can be broadly classified into two types:
– Construction of primitives which can not be constructed using other techniques (ex: ID-based

encryption, non-trivial aggregate signature etc).
– Construction of primitives which can be constructed using other techniques, but for which

pairings provide improved functionality (ex: Joux’s three-party key agreement, threshold scheme,
searchable public key encryption etc).

Joux [27], in 2000, showed that the Weil pairing can be used for “good” by using it in a protocol to
construct three-party one-round Diffie-Hellman key aggrement. This was one of the breakthroughs
in key agreement protocols. After this, Boneh and Franklin [11] presented in Crypto 2001 an ID-
based encryption scheme based on properties of bilinear pairings on elliptic curves which is the first
fully functional, efficient and provably secure identity-based encryption scheme. In Asiacrypt 2001,
Boneh, Lynn and Shacham proposed a basic signature scheme using pairing, the BLS [13] scheme,
that has the shortest length among signature schemes in classical cryptography. Subsequently nu-
merous cryptographic schemes based on BLS signature scheme were proposed.

Apart from the three fundamental cryptographic primitives: encryption, signature and key agree-
ment, there are protocol designs for signcryption, threshold decryption, key sharing, identification
scheme, chameleon hashes etc. We provide the following classification of the protocols:

1. Encryption: Encryption schemes are used for the purpose of achieving privacy and confiden-
tiality. In recent years, pairings made ID-based public key encryption feasible. In identity-
based public key encryption, the public key distribution problem is eliminated by making each
user’s public key derivable from some known aspect of his identity, such as his email address.
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When Alice wants to send a message to Bob, she simply encrypts her message using Bob’s
public key which she merely derives from Bob’s identifying information. Bob, on receiving
receives the encrypted message, obtains his private key from a third party called a Private
Key generator (PKG) after authenticating himself to PKG and decrypts the message. The
private key that PKG generates on Bob’s query is a function of it’s master key and Bob’s
identity.

2. Signature:
– Short Signature: These are required in environments with space and bandwidth constraints.
When a human is asked to manually key in the signature, the shortest possible signature is
needed.
– Blind Signature: Blind signatures play a central role in digital cash schemes. A user can
obtain from a bank a digital coin using a blind signature protocol. The coin is essentially a
token properly signed by the bank. The blind signature protocols enable a user to obtain a
signature from a signer so that the signer does not learn any information about the message it
signed and so that the user can not obtain more than one valid signature after one interaction
with the signer. The concept of blind signatures provides anonymity of users in applications
such as electronic voting, electronic payment systems etc.
– Multisignature: Multisignature scheme allows any subgroup of a group of users to jointly
sign a message such that a verifier is convinced that each member of the subgroup participated
in signing. The goal of multisignature is to prove that each member of the stated subgroup
signed the message and the size of this subgroup can be arbitrary. It is up to a particular
application to decide what subgroup is required to sign a message. A verifier might reject
a multisignature not because it’s invalid, but because the verifier in not satisfied with the
subgroup which signed the message. Multisignatures can be applied to provide efficient batch
verification of several signatures of the same message under different public keys.
– Aggregate Signature: Consider n users U = {1, 2, . . . , n}. Each user i ∈ U has a public-
private key pair (PKi, SKi). User i signs message Mi and outputs signature σi. A public
aggregation algorithm outputs a compressed short signature σ on input all of σ1, σ2, . . . , σn.
This aggregation of n signatures can be done by anyone. Additionally, there is an aggregate
verification algorithm that takes PK1,PK2, . . . ,PKn, M1,M2, . . . ,Mn, and σ as input and de-
cides whether the aggregate signature σ is valid. Aggregate signature scheme has use in the
secure border gateway protocol for compressing the list of signatures on distinct messages
issued by distinct parties.
– Verifiably Encryption Signature: These signatures enable user Alice to give Bob a signature
on a message M encrypted using a third party’s public key and Bob to verify offline that the
encrypted signature is valid. Bob can verify that Alice has signed the message, but can not
deduce any information about her signature. To enable fair exchange, verifiably encrypted
signatures are used in optimistic contract signing protocols.
– Ring Signature: Consider a set of n users U = {1, 2, . . . , n}. Each user i ∈ U has a public-
private key pair (PKi, SKi). A ring signature on U is a signature that is constructed using all
the public keys of the users in U , and a single private key of any user in U . A ring signature
protects the anonymity of a signer since the verifier knows that the signature is from a member
of the ring U , but does not know exactly who the signer is. There is also no way to revoke the
anonymity of the signer. Ring signatures have applications in authenticated (yet repudiable)
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communication and leaking secrets.
– Group Signature: Group signatures permits any member of a group to sign on behalf of
the group. Anyone can verify the signature with a group public key while no one can know
the identity of the signer except the group manager. Group signature provides anonymity of
users with the property that group manager can identify the signer. In group signature, it
is computationally hard to decide whether two different signatures were issued by the same
member.
– Proxy Signature: A proxy signature allows an entity, called the delegator to delegate its
signing rights to another entity, called a proxy signer. The proxy signer signs messages on
behalf of the delegator, in case of say, temporal absence, lack of time or computational power,
etc. Proxy signatures have found numerous practical applications where delegation of rights
is quite common, particularly in distributed systems, Grid Computing, mobile agent applica-
tions, distributed shared object systems and mobile communications [7].
– Unique Signature: Unique signature schemes are secure signature schemes where the sig-
nature is hard-to-compute function of the public key and the message. Unique signature
schemes, also known as invariant signature schemes, are desirable in cryptography and have
an important application to construct verifiable random functions (VRFs). VRFs are objects
that combine the properties of pseudorandom functions with the verifiability property and
can be viewed as a commitment to an arbitrary number of bits.

3. Key Agreement: Key agreement is required in situations where two or more parties want to
communicate securely among themeselves. The situation where three or more parties share
a secret key is often called conference keying. In this situation, the parties can securely send
and receive message from each other. An adversary not having access to the secret key will
not be able to decrypt the message.

4. Threshold: Threshold cryptography approach is useful to remove single point failure. When
the centralization of the power is a concern, threshold decryption can be used in particular.
In the (t, n)-threshold scheme, t ≤ n, there are n users. A secret information is distributed
among these n-users. Any subset of more than t users are allowed to reconstruct the secret.
The computation is performed preserving security even in the presence of an active adversary
that can corrupt up to t users.

5. Miscellaneous:
– Chameleon Hash: Chameleon hashing is basically non-interactive commitment scheme. A
chameleon hash function is associated with a pair of public-private keys. Anyone who knows
the public key, can compute the associated hash function. Without the knowledge of asso-
ciated trapdoor, the chameleon hash function is collision resistant. However, the trapdoor
information holder can easily find collisions for every given input. Chameleon hashes have
applications in constructing chameleon signatures. The recipient can verify that the signature
of a certain message m is valid, but can not prove others that the signer actually signed m
and not another message. These are closely related to undeniable signature [17].
– Signcryption: A signcryption scheme is a scheme that provides private and authenticated
delivery of messages between two parties in a more efficient manner than a straightforward
composition of an encryption scheme with a signature scheme. It combines the functionality
of signature and encryption. The idea of signcryption scheme is to perform encryption and
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signature in a single logical step in order to obtain confidentiality, integrity, authentication
and non-repudiation more efficiently than the sign-then-encrypt approach.
– Identification: Identification scheme is another important and useful cryptographic tool
where a prover P interacts with a verifier V to convince him of his identity. Only P knows the
secret value corresponding to his public one, and this secret information permits to convince
V of his identity.

In this paper, we have tried to survey different cryptographic primitives and include only those
schemes which have, to the best of our knowledge, concrete security proofs in the existing adversarial
models. Barretto’s pairing based crypto lounge [4] is an excellent compilation of existing work
on pairing based cryptography. This survey does not consider algebraic theory of pairings nor
algorithms to compute them. The rest of our paper is organized as follows: Section 2 briefly explains
the cryptographic bilinear map and some versions of DH problems. The ID-based encryption
schemes are discussed in Section 3. We describe various pairing based signature schemes in Section
4. Section 5 consists of key agreement schemes and Section 6 discusses threshold schemes using
bilinear map. In Section 7, miscellaneous applications are described. Finally we conclude in Section
8.

2 Preliminaries

Let G1, G2 be two groups of the same prime order q. We view G1 as an additive group and G2

as a multiplicative group. Let P be an arbitrary generator of G1. (aP denotes P added to itself
a times). Assume that discrete logarithm problem (DLP) is hard in both G1 and G2. A mapping
e : G2

1 → G2 satisfying the following properties is called a cryptographic bilinear map.

– Bilinearity : e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1 and a, b ∈ Z∗
q . This can be restated in the

following way. For P,Q,R ∈ G1, e(P +Q,R) = e(P,R) e(Q,R) and e(P,Q+R) = e(P,Q) e(P,R).
– Non-degeneracy : If P is a generator of G1, then e(P, P ) is a generator of G2. In other words,
e(P, P ) 6= 1.
– Computable : There exists an efficient algorithm to compute e(P,Q) for all P,Q ∈ G1.

Modified Weil Pairing [11] and Tate Pairing [5], [24] are examples of cryptographic bilinear maps.
Currently, active research is being carried out to obtain efficient algorithms to compute pairings.
Our survey excludes this area.

Now we specify some versions of Diffie-Hellman problems. Each problem comes in two flavours :
computational followed by decisional. We define the following two terms.

– advantage : When adversary has to distinguish between two probability distribution.
– success probability : When adversary has to find an object of interest.

For a set S, by a∈RS, we mean that a is randomly chosen from S. A function f(m) is said to be
negligible if it is less than 1

ml for every fixed l > 0 and sufficiently large integer m.
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Unless otherwise stated, we assume that the messages are arbitrary length finite binary strings and
the above setup holds for the cryptographic protocols throughout the paper.

In the subsequent discussion, we formalize advantage of DDH and success probability of CDH
problems and describe the corresponding assumptions. For each of the other problems, there is a
corresponding assumption which can be formalized in a way similar to the DDH and CDH prob-
lems.The following classification of the problems is provided.

2.1 Diffie-Hellman Problems

1. Computational Diffie-Hellman (CDH) problem in G1 :
Instance : (P, aP, bP ) for some a, b ∈ Z∗

q .
Output : abP .

The success probability of any probabilistic, polynomial-time, 0/1-valued algorithm A in
solving CDH problem in G1 is defined to be :

SuccCDH
A,G1

= Prob[A(P, aP, bP, abP ) = 1 : a, b∈RZ
∗
q ].

CDH assumption : For every probabilistic, polynomial-time, 0/1-valued algorithm A, SuccCDH
A,G1

is negligible.
(See sections 4.9, 4.12).

2. Decisional Diffie-Hellman (DDH) problem in G1 :
Instance : (P, aP, bP, cP ) for some a, b, c ∈ Z∗

q .
Output : yes if c = ab mod q and output no otherwise.
Comments : DDH problem in G1 is easy. DDH problem in G1 can be solved in polynomial
time by verifying e(aP, bP ) = e(P, cP ). This is the well known MOV reduction [11] : The
DLP in G1 is no harder than the DLP in G2.

The advantage of any probabilistic, polynomial-time, 0/1-valued algorithm A in solving DDH
problem in G1 is defined to be :

AdvDDH
A,G1

= |Prob[A(P, aP, bP, cP ) = 1]− Prob[A(P, aP, bP, abP ) = 1] : a, b, c∈RZ
∗
q |.

DDH assumption : For every probabilistic, polynomial-time, 0/1-valued algorithm A, AdvDDH
A,G2

is negligible.

Gap Diffie-Hellman (GDH) group : A prime order group G1 is a GDH group if there exists
an efficient polynomial-time algorithm which solves the DDH problem in G1 and there is no
probabilistic polynomial-time algorithm which solves the CDH problem with non-negligible
probability of success. The domains of bilinear pairings provide examples of GDH groups. The
MOV reduction provides a method to solve DDH in G1, whereas there is no known efficient
algorithm for CDH in G1. (See sections 4.1, 4.3, 4.11, 7.4).

3. Weak Diffie-Hellman (W-DH) problem in a group G1 :
Instance : (P,Q, sP ) for P,Q ∈ G1 and for some s ∈ Z∗

q .
Output : sQ.
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Comments : W-DH problem is no harder than CDH problem.
(See section 4.10).

4. Reversion of CDH (RCDH) problem in G1 :
Instance : (P, aP, rP ) for some a, r ∈ Z∗

q .
Output : bP, b ∈ Z∗

q satisfying a = rb mod q.
Comments : RCDH problem is equivalent to CDH problem in G1 [18].

5. (k + 1)-exponent problem ((k + 1)-EP) in G1:
Instance : (P, yP, y2P, . . . , ykP )for a random y ∈ Z∗

q .
Output : yk+1P .
Comments : (k + 1)-EP is no harder than the CDH problem.
(See section 4.7).

6. k-Diffie-Hellman Inversion (k-DHI) problem in G1 :
Instance : (P, yP, y2P, . . . , ykP ) for a random y ∈ Z∗

q .
Output : 1

y
P .

Comments : k-DHI problem is polynomially equivalent to (k + 1)-EP.

7. k-Strong Diffie-Hellman (k-SDH) problem in G1 :
Instance : (P, yP, y2P, . . . , ykP ) for a random y ∈ Z∗

q .
Output : (c, 1

y+c
P ) where c ∈ Z∗

q .
Comments : k-SDH problem is a stronger version of k-DHI problem. When c is pre-specified,
k-SDH problem is polynomially equivalent to k-DHI. k-SDH problem has a simple random
self reduction in G1.
(See section 4.13).

8. Collusion Attack Algorithm with k-traitors (k-CAA) :
Instance : (P, yP, h1, . . . , hk ∈ Z∗

q ,
1

h1+y
P, . . . , 1

hk+y
P ) for a random y ∈ Z∗

q .

Output : 1
h+y

P for some h /∈ {h1, . . . , hk}.
Comments : k-CAA is polynomially equivalent to (k − 1)-DHI problem.

9. l- Many Diffie-Hellman problem in G1:
Oracle : OP,ỹ(J) = (

∏
j∈J yj)P ∈ G1 where vector ỹ = (y1, y2, . . . , yl)∈R(Z∗

q )l and J is any
strict subset of {1, 2, . . . , l}.
Instance : (P,OP,ỹ, J) for any vector ỹ = (y1, y2, . . . , yl)∈R(Z∗

q )l and for all J ⊂ {1, 2, . . . , l}.
Output: (

∏l
j=1 yj)P .

Comments : (l − 1)-DHI assumption implies l-Many-DH assumption. This reduction is also
valid for the decision version of DHI and Many-DH problems. l-DHI assumption is easier to
state than l-Many-DH assumption since there is no need for an oracle.
(See section 4.11).

10. Chosen-target CDH problem in G1 :
Let s be a random element of Z∗

q and Q = sP .
Oracles : 1) A target oracle TG1 that returns a random element Ui ∈ G1. 2) A helper oracle
s(·) that returns sU on a randomly chosen input U ∈ G1.
Instance : (q, P,Q,H1) where H1 : {0, 1}∗ → G∗

1 is a cryptographic hash function and access
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to the target and helper oracles with at most qT and qH queries respectively.
Output : A set V of, say l pairs ((V1, j1), (V2, j2), . . . , (Vl, jl)), where for all i, 1 ≤ i ≤ l, there
exists ji, 1 ≤ ji ≤ qT such that Vi = sUji

where all Vi are distinct and qH < qT , l.
(See section 4.1).

11. Chosen-target Inverse CDH problem in G1 :
Let s be a random element of Z∗

q and Q = sP .
Oracles : 1) A target oracle TG1 that returns a random element Ui ∈ G1. 2) A helper oracle
Inv − cdh− s(·) that computes s−1U for a randomly chosen input U ∈ G1.
Instance : (q, P,Q,H1) where H1 : {0, 1}∗ → G∗

1 is a cryptographic hash function and access
to the target and helper oracles with at most qT and qH queries respectively.
Output : A set V of, say l pairs ((V1, j1), (V2, j2), . . . , (Vl, jl)), where for all i, 1 ≤ i ≤ l, there
exists ji, 1 ≤ ji ≤ qT such that Vi = s−1Uji

where all Vi are distinct and qH < qT , l.

2.2 Bilinear Diffie-Hellman Problems

1. Bilinear Diffie-Hellman (BDH) problem in (G1, G2, e) :
Instance : (P, aP, bP, cP ) for some a, b, c ∈ Z∗

q .
Output : e(P, P )abc.
(See sections 3.1, 3.2, 3.3, 3.4, 5.1, 6.2, 6.3, 7.1, 7.3.1).

2. Decisional Bilinear Diffie-Hellman (DBDH) problem in (G1, G2, e) :
Instance : (P, aP, bP, cP, r) for some a, b, c∈RZ

∗
q , r∈RG2.

Output : yes if r = e(P, P )abc and output no otherwise.
(See sections 3.6, 7.3.2).

3. Decisional Hash Bilinear Diffie-Hellman (DHBDH) problem in (G1, G2, e) :
Instance : (P, aP, bP, cP, r) for some a, b, c, r ∈ Z∗

q and a one way hash function H : G2 → Z∗
q .

Output : yes if r = H(e(P, P )abc) mod q and output no otherwise.
Comments : The DHBDH problem in (G1, G2, e) is a hash version of the decisional BDH
problem in (G1, G2, e) .
(See section 5.2).

4. k-Bilinear Diffie-Hellman Inversion (k-BDHI) problem in (G1, G2, e) :
Instance : (P, yP, y2P, . . . , ykP ) for some y ∈ Z∗

q .

Output : e(P, P )
1
y ∈ G2.

Comments : 1-BDHI assumption is polynomially equivalent to the standard BDH assumption.
It is not known if the k-BDHI assumption, for k > 1, is polynomially equivalent to BDH.

5. k-Decisional Bilinear Diffie-Hellman Inversion (k-DBDHI) problem in (G1, G2, e) :
Instance : (P, yP, y2P, . . . , ykP, r) for some y ∈ Z∗

q , r∈RG2.

Output : yes if r = e(P, P )
1
y ∈ G2 and output no otherwise.

(See section 3.5).
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2.3 Miscellaneous Problems

1. ROS problem : (Schnorr)
Oracle : A random function F : Z l

q → Zq.
Instance : A system of t equations in l unknowns c1, c2, . . . , cl over Z∗

q : ak,1c1 + · · ·+ ak,lcl =
F (ak,1, . . . , ak,l) for k = 1, 2, . . . , t, t ≥ l + 1.
Output : Co-efficients ak,i ∈ Z∗

q and a solvable subsystem of l + 1 equations in the unknowns
c1, c2, . . . , cl.
(See section 4.8).

2. Co-Gap Diffie-Hellman (Co-GDH) group : Consider a cryptographic bilinear map in the follow-
ing setup :
a) G1, G2 are two additive groups and GT is a multiplicative group of prime order q;
b) P1 is a generator of G1 and P2 is a generator of G2;
c) ψ is a computable isomorphism from G1 to G2, with ψ(P1) = P2; and
d) e is an efficiently computable bilinear map e : G1 × G2 → GT satisfying the following
properties :
– Bilinearity : For all Q1 ∈ G1, Q2 ∈ G2 and a, b ∈ Z∗

q , e(aQ1, bQ2) = e(Q1, Q2)
ab.

– Non-degeneracy : e(P1, P2) 6= 1.

These properties imply one more : for any Q1, Q2 ∈ G1, e(Q1, ψ(Q2)) = e(Q2, ψ(Q1)). (Such
bilinear maps can be derived from Weil pairing and Tate pairing; for simplicity the reader
may assume G1 = G2). We refer this setup as the Co-GDH setup. With this setup, we obtain
natural generalizations of the CDH and DDH problems :

Computational Co-Diffie-Hellman (Co-CDH) problem :
Instance : (P1, P2, aP1, bP2) for some a, b ∈ Z∗

q .
Output : abP2 ∈ G2.

Decisional Co-Diffie-Hellman (Co-DDH) problem :
Instance : (P1, P2, aP1, bP2, cP2) for some a, b, c ∈ Z∗

q .
Output : yes if c = ab mod q and output no otherwise.

When G1 = G2 and P1 = P2, these problems reduced to the standard CDH and DDH prob-
lems respectively.

Groups G1, G2 are said to be Co-GDH groups if there exists an efficient algorithm to solve
the Co-DDH problem and there is no polynomial-time (in |q|) algorithm to solve the Co-CDH
problem. The existence of a cryptographic bilinear map ensures the existence of Co-GDH
groups. (See sections 4.4, 4.5, 4.6).
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3 Encryption Schemes

In identity-based public key encryption, the public key distribution problem is eliminated by making
each user’s public key derivable from some known aspect of his identity, such as his email address.
When Alice wants to send a message to Bob, she simply encrypts her message using Bob’s public key
which she derives from Bob’s identifying information. Bob, after receiving the encrypted message,
obtains his private key from a third party called a Private Key generator (PKG) after authenticating
himself to PKG and can then decrypt the message. The private key that PKG generates on Bob’s
query is a function of it’s master key and Bob’s identity.
Shamir [40] introduced this concept of identity-based cryptosystem. The first ID-based encryption
was proposed by Boneh and Franklin [11] in 2001 that uses bilinear pairing.
The advantage of ID-based encryption are compelling. It makes maintaining authenticated public
key directories unnecessary. Instead, a directory for authenticated public parameters of PKG’s is
required which is less burdensome than maintaining a public key directory since there are substan-
tially fewer PKGs than total users. In particular, if everyone uses a single PKG, then everyone in
the system can communicate securely and users need not perform online lookup of public keys or
public parameters.
Some disadvantages of ID-based system are : (1) the PKG knows Bob’s private key, i.e. key escrow
is inherent in the system which for some applications may be a serious problem, (2) Bob has to
authenticate himself to it’s PKG in the same way as he would authenticate himself to a certifying
authority (CA), (3) Bob’s PKG requires a secure channel to send Bob his private key, (4) Bob has
to publish his PKG’s public parameters and Alice must obtain these parameters before sending an
encrypted message to Bob.

3.1 ID-Based Encryption Scheme

(Boneh, Franklin, [11], 2001)

• Protocol Description :
– Setup : Choose s∈RZ

∗
q and set Ppub = sP . Choose cryptographic hash functionsH1 : {0, 1}∗ → G∗

1

and H2 : G2 → {0, 1}n, n is the bit length of messages. The master key is s and the global public
key is Ppub.

– Extract : Given a public identity ID ∈ {0, 1}∗, compute the public key QID = H1(ID) ∈ G1 and
the private key SID = sQID. The computation QID = H1(ID) maps an arbitrary string to a point
of the group G1. This operation is called Map-to-point and is more expensive than computation of
usual message digest.

– Encrypt : Choose a random r ∈ Z∗
q , set the ciphertext for the message M to be

C = 〈rP,M ⊕H2(g
r
ID)〉,

where gID = e(QID, Ppub)

– Decrypt : Given C = 〈U, V 〉, compute

V ⊕H2(e(SID, U)).
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• Assumption :
BDH problem is hard.

•Security :
This is the basic scheme. Security against adaptive chosen ciphertext attack in the random oracle
model under the BDH assumption is obtained after the Fujisaki-Okamoto [23] transformation.

• Efficiency :
– Setup : 1 scalar multiplication in G1.
– Extract : 1 Map-to-point hash operation; 1 scalar multiplication in G1.
– Encrypt : 1 Map-to-point hash operation; 1 scalar multiplication in G1; 1 hash function (H2)
evaluation; 1 XOR operation; 1 pairing computation; 1 group exponent in G2.
– Decrypt : 1 hash function (H2) evaluation; 1 XOR operation; 1 pairing computation.

3.2 Searchable Public Key Encryption

(Boneh, Crescenzo, Ostrovsky, Persiano, [10], 2003)

Suppose Alice wishes to read her email on a number of devices : laptop, desktop, pager, etc. Alice’s
mail gateway is supposed to route email to the appropriate device based on the keywords in the
email. Suppose Bob sends an email with keyword “urgent”. The gateway routes the email to Alice’s
pager, after testing whether the email contains this keyword “urgent” without learning anything
else about the mail. This mechanism is referred to as Searchable Public Key Encryption (SPKE).

To send a message M with keywords W1, . . . ,Wn, Bob sends

EApub
(M)||SPKE(Apub,W1)|| . . . ||SPKE(Apub,Wn)

where EApub
(M) is the encryption of M using Alice’s public key Apub. The point of searchable

encryption is that given SPKE(Apub,W
′) and a certain trapdoor TW (that is given to the gateway

by Alice), the gateway can test whether W = W ′. If W 6= W ′ the gateway learns nothing more
about W ′.

A SPKE scheme using bilinear map :

• Protocol Description :
– KeyGen : Choose s∈RZ

∗
q and set Ppub = sP . The secret key is s and the public key is Ppub. Let

K be the set of all keywords and H1 : K → G1, H2 : G2 → Z∗
q be two hash functions.

– SPKE : Given a keyword W and the public key Ppub, choose a random r ∈ Z∗
q and output

〈rP,H2(e(H1(W ), Ppub)
r)〉.

– Trapdoor : Given a keyword W and the secret key s, output TW = sH1(W ).
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– Test : Given Trapdoor TW , a SPKE S = 〈U, V 〉 and the public key Ppub, test if V = H2(e(TW , U)).
If true, output yes, else output no.

• Assumption :
BDH problem is hard.

• Security :
Semantically secure against a chosen keyword attack in the random oracle model assuming BDH
problem is intractable.

• Efficiency :
– KeyGen : 1 scalar multiplication in G1.
– SPKE : 1 Map-to-point hash operation; 1 scalar multiplication in G1; 1 hash function (H2)
evaluation; 1 pairing computation; 1 group exponent in G2.
– Trapdoor : 1 scalar multiplication in G1.
– Test : 1 pairing computation; 1 hash function (H2) evaluation.

3.3 Hierarchical ID-Based Encryption (HIDE) Scheme

(Gentry, Silverberg, [25], 2002)

Although having a single private key generator (PKG) would completely eliminate online lookup,
it is undesirable for a large network because the PKG has a burdensome job. Not only is private
key generation computationally expensive, but also the PKG must verify proofs of identity and
must establish secure channels to transmit private keys. HIDE allows a root PKG to distribute the
workload by delegating private key generation and identity authentication to lower-level PKGs. In
a HIDE scheme, a root PKG need only generate private keys for domain-level PKGs, who in turn
generate private keys for users in their domains in the next level. Authentication and private key
transmission can be done locally. To encrypt a message to Bob, Alice only needs to obtain the pub-
lic parameters of Bob’s parent PKG (and Bob’s identifying information); there are no “lower-level
parameters”. HIDE has the advantage of damage control : disclosure of a domain PKG’s secret
does not compromise the secrets of higher-level PKGs.

• Protocol Description : BasicHIDE :
The entities in the tree (other than the root) are the users of the tree. Let Leveli be the set of
entities at level i, where Level0 = {Root PKG}.

– Root Setup : The root PKG chooses an arbitrary generator P0 ∈ G1, picks a random s0 ∈ Z∗
q and

sets Q0 = s0P0. Let H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}n be two cryptographic hash functions.
The message space isM = {0, 1}n. The ciphertext space is C = Gt

1×{0, 1}n where t is the level of
the recipient.
The root PKG’s secret is s0 ∈ Z∗

q and global public key is (P0, Q0).

– Lower-level Setup : Entity Et ∈ Levelt picks a random st ∈ Z∗
q which it keeps secret.
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– Extract : Let Et be an entity in Levelt with ID-tuple (ID1, . . . , IDt), where (ID1, . . . , IDi) for
1 ≤ i ≤ t is the ID-tuple of Et’s ancestor at Leveli. Set S0 to be the identity element of G1.
Then Et’s (t ≥ 1) parent :
1. computes Pt = H1(ID1, . . . , IDt) ∈ G1,
2. sets Et’s secret point St to be St−1 + st−1Pt =

∑t
i=1 si−1Pi,

3. also gives Et the values Qi = siP0 for 1 ≤ i ≤ t− 1.

– Encrypt : To encrypt M ∈M with the ID-tuple (ID1, . . . , IDt), do the following :
1. compute Pi = H1(ID1, . . . , IDi) ∈ G1 for 1 ≤ i ≤ t,
2. choose a random r ∈ Z∗

q ,
3. set the ciphertext to be

C = 〈rP0, rP2, . . . , rPt,M ⊕H2(g
r)〉

where g = e(Q0, P1) ∈ G2.

– Decrypt : Let C = 〈U0, U2, . . . , Ut, V 〉 ∈ C be the ciphertext encrypted using the ID-tuple
(ID1, . . . , IDt). To decrypt C, Et computes :

V ⊕H2

(
e(U0, St)∏t

i=2 e(Qi−1, Ui)

)
= M.

Note : The scheme is derived from Boneh-Franklin [11] scheme. An interesting fact is that lower-
level PKGs need not always use the same st for each private key extraction. Rather, st could
be generated randomly for each of the PKG’s children. Another fact is that H1 can be chosen
to be an iterated hash function, for example, Pi may be computed as H1(Pi−1, IDi) rather than
H1(ID1, . . . , IDi).

• Assumption :
BDH problem is hard.

• Security :
Chosen ciphertext security of this basic scheme is obtained by using Fujisaki-Okamoto [23] padding
in the random oracle model under the assumption that BDH problem is hard.

• Efficiency :
– Setup : 1 scalar multiplication in G1.
– Extract : 1 Map-to-point hash operation; 2 scalar multiplications in G1; 1 addition in G1.
– Encrypt : For an identity at level t, t scalar multiplications in G1; 1 Map-to-point hash operation;
1 hash function (H2) evaluation; 1 group exponent in G2; 1 XOR operation; 1 pairing computation.
– Decrypt : For an identity at level t, t pairing computations; 1 hash function (H2) evaluation; 1
XOR operation.
The bit-length of the ciphertext and the complexity of decryption grow linearly with the level of
the message recipient.
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3.4 Dual-HIDE : Dual-Hierarchical-Identity-Based Encryption

(Gentry, Silverberg [25], 2002)

• Protocol Description :
Suppose two users, Alice and Bob, have the ID-tuples (IDy1 , . . . , IDyl

, . . . , IDym) and (IDz1 , . . . , IDzl
, . . . , IDzn)

respectively, where (IDy1 , . . . , IDyl
) = (IDz1 , . . . , IDzl

).
In other words, Alice is in Levelm, Bob is in Leveln and their common ancestor upto Levell are same.
Alice may use Dual-HIDE to encrypt a message to Bob as follows :

– Encrypt : To encrypt M ∈M, Alice :
1. computes Pzi

= H1(IDz1 , . . . , IDzi
) ∈ G1 for l + 1 ≤ i ≤ n,

2. chooses a random r ∈ Z∗
q ,

3. sets the ciphertext to be

C = 〈rP0, rPzl+1
, . . . , rPzn ,M ⊕H2(g

r
yl
)〉

where

gyl
=

e(P0, Sy)∏m
i=l+1 e(Qy(i−1)

, Pyi
)

= e(P0, Syl
).

Sy is Alice’s secret point, Syl
is the secret point of Alice’s and Bob’s common ancestor at level l and

Qyi
= syi

P0 where syi
is the secret number chosen by Alice’s ancestor at level i.

– Decrypt : Let C = 〈U0, Ul+1, . . . , Un, V 〉 be the ciphertext. To decrypt C, Bob computes :

V ⊕H2

(
e(U0, Sz)∏n

i=l+1 e(Qz(i−1)
, Ui)

)
= M.

• Assumption :
BDH problem is hard.

• Security :
Secure in the random oracle model assuming the hardness of BDH problem.

• Efficiency :
– Encrypt : 1 Map-to-point hash operation; (n− l+1) scalar multiplications in G1; 1 hash function
(H2) evaluation; 1 XOR operation; (m− l + 1) pairing computation; 1 group exponent in G2.
– Decrypt : (n− l + 1) pairing computation; 1 hash function (H2) evaluation; 1 XOR operation.
If Alice and Bob have a common ancestor below the root PKG, then the ciphertext is shorter than
for normal HIDE. Further, using Dual HIDE, the encrypter Alice computes (m − l + 1) pairings
while the decrypter Bob computes (n− l+1) pairings. In the non-dual HIDE scheme, the encrypter
computes one pairing while the decrypter computes n pairings. Thus when m < (2l − 1), the total
work is less with Dual-HIDE than with non-dual HIDE. Dual-HIDE also makes domain-specific
broadcast encryption possible. Furthermore, one can restrict key escrow using Dual-HIDE.
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3.5 ID-Based Encryption Scheme Without Random Oracle

(Boneh, Boyen [9], 2004)

• Protocol Description :
– Setup : The public keys (ID) are assumed to be elements of Z∗

q and messages are elements of G2.
Select random elements x, y ∈ Z∗

q and set U = xP, V = yP . The public parameters are (U, V ) and
the master key is (x, y).

– Extract : Given a public key ID ∈ Z∗
q , choose a random r ∈ Z∗

q and compute K = 1
ID+x+ry

P ∈ G1.

Output the private key SID = (r,K).

– Encrypt : To encrypt a message M ∈ G1 under public key ID ∈ Z∗
q , pick a random s ∈ Z∗

q and
output the ciphertext

C = 〈s(ID)P + sU, sV, e(P, P )s M〉.

– Decrypt : To decrypt a ciphertext C = 〈X, Y, Z〉 using the private key SID = (r,K), output
Z/e(X + rY,K).

• Assumption :
q-DBDHI problem is hard.

• Security :
Secure against selective-ID adaptive chosen ciphertext attack without random oracles under q-
DBDHI assumption.

• Efficiency :
– Setup : 2 scalar multiplications.
– Extract : 1 inversion in Z∗

q ; 1 scalar multiplication in G1.
– Encrypt : 4 scalar multiplications in G1; 1 group exponent in G1; 1 multiplication in G2.
Note that e(P, P ) can be precomputed once and for all so that encryption requires no pairing
computation.
– Decrypt : 1 scalar multiplication in G1; 1 addition in G1; 1 inversion in G2.

3.6 Hierarchical ID-Based Encryption (HIBE) Scheme Without Ran-
dom Oracle

(Boneh, Boyen [9], 2004)

• Protocol Description :
– Setup : The public keys (ID) of depth l are assumed to be vectors of elements in Z l

q. The j-th
component for an identity ID = (ID1, . . . , IDl) ∈ Z l

q corresponds to the identity at level j.
The system parameters for an HIBE of maximum depth l is generated as follows :
Choose a random α ∈ Z∗

q and set P1 = αP ∈ G1.
Choose random elements h1, . . . hl ∈ G1 and another generator P2 ∈ G∗

1. The public parameters are
(P, P1, P2, h1, . . . , hl) and master key is αP2.
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For j = 1, . . . , l, define Fj(x) = xP1 + hj.
The messages are assumed to be elements of G2.

– Extract : For an identity ID = (ID1, . . . , IDj) ∈ Zj
q of depth j ≤ l, pick random r1, . . . , rj ∈ Zq and

set the private key

SID = (αP2 +
j∑

k=1

rkFk(IDk), r1P, . . . , rjP ).

Note that, if at depth (j − 1), the private key for identity ID|j−1 = (ID1, . . . , IDj−1) ∈ Zj−1
q is

SID|j−1 = (d0, . . . , dj−1) , then the private key SID for ID is generated by choosing randomly rj ∈ Zq

and setting SID = (d0 + rjFj(IDj), d1, . . . , dj−1, rjP ).

– Encrypt : To encrypt a message M ∈ G2 under the public key ID = (ID1, . . . , IDj) ∈ Zj
q , pick

randomly s ∈ Z∗
q and output

C = 〈e(P1, P2)
s M, sP, sF1(ID1), . . . , sFj(IDj)〉.

– Decrypt : Consider an identity ID = (ID1, . . . , IDj). To decrypt a ciphertext C = 〈A,B,C1, . . . , Cj〉
using the private key SID = (d0, d1, . . . , dj), output

A
j∏

k=1

e(Cj, dj)/e(B, d0) = M.

• Assumption :
DBDH problem is hard.

• Security :
Secure against selective-ID adaptive chosen ciphertext attack without random oracles under DBDH
assumption.

• Efficiency :
– Setup : 2 scalar multiplications in G1.
– Extract : For an identity at depth j, (2j+1) scalar multiplications in G1; (j+1) additions in G1.
– Encrypt : 1 group exponent in G2; 1 multiplications in G2; (j − 1) scalar multiplications in G1.
Note that encryption does not require any pairing computation as e(P1, P2) can be precomputed
once and included in the system parameters.
– Decrypt : For an identity at depth j, j multiplications in G2; j pairing computations; 1 inversion
in G2.

4 Signature Schemes

Digital signatures are one of the most important cryptographic primitives. In traditional public key
signature algorithms, the binding between the public key and the identity of the signer is obtained
via a digital certificate. Shamir [40] first noticed that it would be more efficient if there was no need
for such bindings, in that case given the user’s identity, the public key could be easily derived using
some public deterministic algorithm. This makes efficient ID-based signature schemes desirable. In
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ID-based signature schemes, verification function is easily obtained from the identity, possibly the
same key and the same underlying computation primitives can be used. Boneh, Lynn, Shacham [13]
proposed a pairing based short signature scheme in 2001. This was followed by a large number of
pairing based signature schemes for different applications.

4.1 BLS Short Signature Scheme

(Boneh, Lynn, Shacham, [13], 2001)

Short signatures are needed in environments with space and bandwidth constraints. For example,
when a human is asked to type in a digital signature the shortest possible signatures are desired.
Two most frequently used signature schemes are RSA and DSA. If one uses 1024 bit modulus, RSA
signatures are 1024 bit long and standard DSA or ECDSA (elliptic curve DSA) signatures are 320
bit long. These signatures are too long to be keyed. The following signature scheme provides short
signature of length approximately 160 bits with a level of security similar to 320 bit DSA signatures.

• Protocol Description :
– KeyGen : Let H : {0, 1}∗ → G1 be a Map-to-point hash function. The secret key is x∈RZ

∗
q and

the public key is Ppub = xP for a signer.

– Sign : Given secret key x and a message m ∈ {0, 1}∗, compute the signature σ = xH(m).

– Verify : Given public key Ppub = xP , a messagem and a signature σ, verify e(P, σ) = e(Ppub, H(m)).

• Assumption :
Existence of GDH group.

• Security :
Secure against existential forgery under adaptive chosen message attack in the random oracle model
assuming CDH problem is hard in G1.

• Efficiency :
– KeyGen : 1 scalar multiplication in G1.
– Sign : 1 Map-to-point hash operation; 1 scalar multiplication in G1.
– Verify : 1 Map-to-point hash operation; 2 pairing computations.

4.2 Blind Signature Scheme

(Boldyreva [6], 2003)

Blind signatures are the basic tools of digital cash schemes. The goal of a blind signature protocol is
to enable a user to obtain a signature from a signer so that the signer does not learn any information
about the message it signed and so that the user can not obtain more than one valid signature after
one interaction with the signer.
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• Protocol Description :
– KeyGen : Let H : {0, 1}∗ → G1 be a Map-to-point hash function. The secret key is x∈RZ

∗
q and

the public key is Ppub = xP for a signer.

– Blind Signature Issuing Protocol : Given secret key x and a message m ∈ {0, 1}∗,

– (Blinding) The user chooses randomly r ∈ Z∗
q , computes M ′ = rH(m) and sends M ′ to signer.

– (Signing) The signer computes σ′ = xM ′ and sends back σ′ to the user.

– (Unblinding) The user then computes the signature σ = r−1σ′ and outputs (m,σ).

– Verify : Given public key Ppub, a message m and a signature σ, verify e(Ppub, H(m)) = e(P, σ).

• Assumption :
Chosen-target CDH problem is hard.

• Security :
Secure against one more forgery under chosen message attack assuming the hardness of chosen-
target CDH problem.

• Efficiency :
– KeyGen : 1 scalar multiplication in G1.
– Blind Signature Issuing Protocol : 1 Map-to-point hash operation; 3 scalar multiplications in G1.
– Verify : 2 pairing computations; 1 Map-to-point hash operation.

4.3 Multisignature Scheme

(Boldyreva, [6], 2003)

A multisignature scheme allows any subgroup of a group of users to jointly sign a document such
that a verifier is convinced that each member of the subgroup participated in signing.

• Protocol Description :
– KeyGen : Let H; {0, 1}∗ → G1 be a Map-to-point hash function. Consider a set U of n users.
The secret key is xi∈RZ

∗
q and the public key is Ppubi

= xiP, for user ui ∈ U, 1 ≤ i ≤ n.

– Multisignature Creation : Any user ui ∈ U with secret key xi that wishes to participate in signing
a message m ∈ {0, 1}∗, computes σi = xiH(m) and sends it to a designated signer D (which can be
implemented by any user). Let L = {ui1 , . . . uil} ⊆ U be a subset of users contributed to the signing.
After getting all the σj for j ∈ J = {i1, . . . , il}, D computes the multisignature σ =

∑
j∈J σj and

outputs (m,L, σ).

– Multisignature Verification : Given T = (m,L, σ) and the list of public keys of the users in L :
Ppubj

= xjP, j ∈ J = {i1, . . . , il}, the verifier computes PpubL
=
∑

j∈J Ppubj
=
∑

j∈J xjP and verifies
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e(P, σ) = e(PpubL
, H(m)).

• Assumption :
Existence of GDH group.

• Security :
Secure against existential forgery under chosen message attack in the random oracle model under
the assumption that the CDH problem is hard in G1.

• Efficiency :
– KeyGen : n scalar multiplications in G1.
– Multisignature Creation : If l ≤ n users are participating in signing, then 1 Map-to-point hash
operation; l scalar multiplications in G1; (l − 1) additions in G1.
– Multisignature Verification : If number of users in the list L is l, then (l − 1) additions in G1; 2
pairing computations.

4.4 Aggregate Signature

(Boneh, Gentry, Lynn, Shacham [12], 2003)

An aggregate signature scheme is a digital signature that supports aggregation : Given n signa-
tures on n distinct messages mi from n distinct users i, 1 ≤ i ≤ n, it is possible to aggregate all
these signatures into a single short signature. This single signature and the n original messages
mi, 1 ≤ i ≤ n will convince the verifier that user i indeed signed message mi , 1 ≤ i ≤ n.

• Protocol Description :
– KeyGen : Consider the Co-GDH setup. Let U be a set of n users and H : {0, 1}∗ → G2 be a
Map-to-point hash function. The secret key is xi∈RZ

∗
q and the public key is Ppubi

= xiP1 for user
ui ∈ U, 1 ≤ i ≤ n.

– Aggregation : User ui ∈ U signs messagemi ∈ {0, 1}∗ to generate BLS signature σi = xiH(mi), 1 ≤
i ≤ n. The messagesmi must be all distinct. The aggregate signature is σ = (σ1+σ2+· · ·+σn) ∈ G2.

– Aggregate verification : Given public keys Ppubi
, distinct messages mi, 1 ≤ i ≤ n and an aggregate

signature σ, verify e(P1, σ) =
∏n

i=1 e(Ppubi
, H(mi)).

• Assumption :
Existence of Co-GDH group and a bilinear map.

• Security :
Secure against existential forgery in the aggregate chosen key model assuming that the Co-CDH
problem is hard in (G1, G2).

• Efficiency :
– KeyGen : n scalar multiplications in G1.
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– Aggregation : n Map-to-point hash operations; n scalar multiplications in G2; (n − 1) additions
in G2.
– Aggregate verification : n Map-to-point hash operations; (n+ 1) pairing computations.

4.5 The Bilinear Verifiably Encrypted Signature

(Boneh, Gentry, Lynn, Shacham [12], 2003)

When Alice wants to sign a message for Bob but does not want Bob to possess her signature on
the message immediately, Alice encrypts her signature using the public key of a trusted third party
(adjudicator), and sending the result to Bob along with a proof that she has given him a valid
encryption of her signature. Bob can verify that Alice has signed the message but can not deduce
any information about her signature. Later in the protocol, Bob can either obtain the signature
from Alice or resort to the adjudicator who can reveal Alice’s signature.

• Protocol Description :
– KeyGen : Consider the Co-GDH setup. Let H : {0, 1}∗ → G2 be a Map-to-point hash function.
Choose x, x′∈RZ

∗
q and set Ppub = xP1, P

′
pub = x′P1. The private/public key pair for signer is (x, Ppub)

and that of the adjudicator is (x′, P ′
pub).

– Sign, Verify : For a message m ∈ {0, 1}∗, the signature of a signer with private key x is
σ = xH(m) ∈ G2 and the verification is e(P1, σ) = e(Ppub, H(m)).

– Verifiably Encrypted Signature Creation : Given a secret key x ∈ Z∗
q , a message m ∈ {0, 1}∗ and

an adjudicator’s public key P ′
pub ∈ G1, compute h = H(m) ∈ G2 and σ = xh. Select a random

r ∈ Z∗
q and set µ = rψ(P1) and σ′ = rψ(P ′

pub). Aggregate σ, σ′ as w = (σ + σ′) ∈ G2 and output
the pair (w, µ).

– Verifiably Encrypted Signature Verification : Given a public key Ppub, a message m, an ad-
judicator’s public key P ′

pub and a verifiably encrypted signature (w, µ), set h = H(m); accept if
e(P1, w) = e(Ppub, h) e(P

′
pub, µ) holds.

– Adjudication : Given an adjudicator’s public key P ′
pub and corresponding private key x′∈RZ

∗
q , a

public key Ppub and a verifiably encrypted signature (w, µ) on some message m, ensure the verifiably
encrypted signature is valid; then compute σ = w − x′µ.
(Before giving the signature, the adjudicator must perform the validity test to prevent a malicious
user from tricking him into signing arbitrary messages under his adjudication key).
No involvement of adjudicator during generation of encrypted signature or its verification. Adjudi-
cator involves only during signature revelation phase.

• Assumption :
Existence of Co-GDH group and a bilinear map.

• Security :
Secure against existential forgery and aggregate extraction assuming that Co-GDH [13] signature
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scheme is secure against existential forgery and extraction respectively. Co-GDH signature scheme
is infact the BLS signature scheme in Co-GDH setup.

• Efficiency :
– KeyGen : 2 scalar multiplications in G1.
– Sign : 1 Map-to-point hash operation; 1 scalar multiplication in G2.
– Verify : 1 Map-to-point hash operation; 2 pairing computations.
– Verifiably Encrypted Signature Creation : 1 Map-to-point hash operation; 3 scalar multiplications
in G2; 1 addition in G2;
– Verifiably Encrypted Signature Verification : 1 Map-to-point hash operation; 3 pairing computa-
tions; 1 multiplication in GT .
– Adjudication : 1 scalar multiplication in G2 + 1 inversion in G2.

4.6 Bilinear Ring Signature

(Boneh, Gentry, Lynn, Shacham [12], 2003)

Consider a set U of n users each having a public/private key pair. Ring signature on U is a sig-
nature that is constructed using all these public keys of the users in U , and a single private key of
any user in U . A ring signature has the property of signer-ambiguity : a verifier is convinced that
the signature was produced using one of the private keys of U , but is not able to determine which one.

• Protocol Description :
– KeyGen : Consider the Co-GDH setup. Let H : {0, 1}∗ → G2 be a Map-to-point hash function.
The secret key is xi∈RZ

∗
q and the public key is Ppubi

= xiP1 for user ui ∈ U .

– Ring Signing : Given public keys Ppub1 , . . . , Ppubn
∈ G1, a message m ∈ {0, 1}∗, and a private key

xs for a certain s, 1 ≤ s ≤ n, choose ai∈RZq for all i 6= s, compute h = H(m) ∈ G2 and set

σs =
1

xs

(h− ψ(
∑
i6=s

aiPpubi
)).

For all i 6= s, let σi = aiP2. Output the ring signature σ = (σ1, . . . , σn) ∈ Gn
2 .

– Ring Verification : Given public keys Ppub1 , . . . , Ppubn
∈ G1, a message m ∈ {0, 1}∗, and a ring

signature σ, compute h = H(m) and verify e(P1, h) =
∏n

i=1 e(Ppubi
, σi).

• Assumption :
Existence of Co-GDH group and a bilinear map.

• Security :
The identity of the signer is unconditionally protected and the scheme is resistant to forgery in the
random oracle model assuming that the Co-CDH problem is hard in (G1, G2).

• Efficiency :
– KeyGen : n scalar multiplications in G1.
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– Ring Signing : 1 inversion in Z∗
q ; 1 Map-to-point hash operation; (n− 1) scalar multiplications in

G2; (n− 1) scalar multiplications in G1; 1 inversion in G2.
– Ring Verification : 1 Map-to-point hash operation; (n+ 1) pairing computations.

4.7 ZSS Short Signature Scheme

(Zhang, Safavi-Naini, Susilo, [42], 2004)

• Protocol Description :
– KeyGen : Let H : {0, 1}∗ → Z∗

q be a hash function. The secret key is x∈RZ
∗
q and the public key

is Ppub = xP for a signer.

– Sign : Given a secret key x and a message m ∈ {0, 1}∗, compute signature S = 1
H(m)+x

P.

– Verify : Given a public key Ppub, a message m and a signature S, verify e(H(m)P + Ppub, S) =
e(P, P ).

• Assumption :
(k + 1)-exponent problem is hard.

• Security :
Existentially unforgeable under an adaptive chosen message attack in the random oracle model
assuming that (k + 1)-exponent problem is hard.

• Efficiency :
– KeyGen : 1 scalar multiplication in G1.
– Sign : 1 inversion in Z∗

q ; 1 hash function (H) evaluation; 1 scalar multiplication in G1.
– Verify : 2 pairing computation (one of which, e(P, P ) can be precomputed); 1 scalar multiplication
in G1; 1 hash function (H) evaluation; 1 addition in G1.
This scheme is more efficient than BLS scheme as it requires less pairing computation and no com-
putation of the expensive special hash function Map-to-point that encodes finite strings to elements
of group G1.

4.8 ID-Based Blind Signature Scheme (Schnorr type)

(Zhang, Kim [41], 2002)

• Protocol Description :
– Setup : Let H : {0, 1}∗ → G1 be a Map-to-point hash function. Consider another hash function
H1 : {0, 1}∗ × G2 → Zq. Choose s∈RZ

∗
q and set Ppub = sP . The master key is s and the global

public key is Ppub.

– Extract : Given signer’s public identity ID ∈ {0, 1}∗, compute the public key QID = H1(ID) and
the private key SID = sQID.
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– Blind Signature Issuing Protocol : Given a signer’s private key SID and a message m ∈ {0, 1}∗,

–(Initialization) The signer randomly chooses a number r ∈ Zq, computes R = rP and sends R
to the user as a commitment.

–(Blinding) The user randomly chooses a, b ∈ Z∗
q as blinding factors, computes c = H(m, e(bQID+

R + aP, Ppub)) + b and sends c to the signer.

–(Signing) The signer sends back S, where S = cSID + rPpub.

–(Unblinding) The user computes S ′ = S + aPpub and c′ = c − b and outputs (m,S ′, c′). Then
(S ′, c′) is the blind signature of the message m.

– Verification : Accept if and only if c′ = H(m, e(S ′, P )e(QID, Ppub)
−c′).

• Assumption :
ROS-problem is hard.

• Security :
Secure against one more forgery in the random oracle model under the assumption that ROS prob-
lem is hard.

• Efficiency :
– Setup : 1 scalar multiplication in G1.
– Extract : 1 Map-to-point hash operation; 1 scalar multiplication in G1.
– Blind Signature Issuing Protocol : 6 scalar multiplications in G1; 1 pairing computation; 1 hash
function (H) evaluation; 1 addition in Zq; 4 additions in G1; 1 inversion in Zq.
– Verification : 1 hash (H) function evaluation; 2 pairing computations; 1 exponentiation in G2.

4.9 ID-Based Ring Signature

(Zhang, Kim [41], 2002)

• Protocol Description :
– Setup : Let H1 : {0, 1}∗ → G1 be a Map-to-point hash function and H : {0, 1}∗ → Z∗

q be another
hash function. Choose s∈RZ

∗
q and set Ppub = sP . The master key is s and the global public key is

Ppub.

– Extract : Given public identity ID ∈ {0, 1}∗, compute the public key QID = H1(ID) and the secret
key SID = sQID.
Let IDi be a user’s identity and SIDi

be the private key associated with IDi for i = 1, . . . , n. Let
L = {IDi : 1 ≤ i ≤ n} be the set of identities. The real signer’s identity IDk is listed in L.
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– Signing : Given signer’s private key SIDk
and a message m ∈ {0, 1}∗,

–(Initialization) : Choose randomly an element A ∈ G1 and compute ck+1 = H(L||m||e(A,P )).

–(Generate forward ring sequence) : For i = k + 1, . . . n − 1, 0, 1, . . . , k − 1, choose randomly
Ti ∈ G1 and compute ci+1 = H(L||m||e(Ti, P )e(ciH1(IDi), Ppub)).

–(Forming the ring) : Compute Tk = A− ckSIDk
.

–(Output the ring signature) : The resulting signature for m and L is the (n + 1)-tuple :
(c0, T0, T1, . . . , Tn−1).

– Verification : Given (c0, T0, T1, . . . , Tn−1), m and L, compute
ci+1 = H(L||m||e(Ti, P )e(ciH1(IDi), Ppub)) for i = 0, 1, . . . n− 1. Accept if cn = c0 and reject other-
wise.

• Assumption :
CDH problem is hard.

• Security :
The scheme is unconditionally signer-ambiguous and non-forgeable in the random oracle model un-
der the assumption that CDH problem is hard.

• Efficiency :
– Setup : 1 scalar multiplication in G1.
– Extract : 1 Map-to-point hash operation; 1 scalar multiplication in G1.
– Signing : n hash function (H) evaluation; (2n− 1) pairing computations.
– Verification : 2n pairing computations; n hash function (H) evaluation.

4.10 ID-Based Signature from Pairing

(Hess, [26], 2002)

• Protocol Description :
– Setup : Choose s∈RZ

∗
q and set Ppub = sP . The master key is s and the global public key is Ppub.

Let H1 : {0, 1}∗ → G1 be a Map-to-point hash function and H : {0, 1}∗×G2 → Z∗
q be another hash

function.

– Extract : Given a public identity ID ∈ {0, 1}∗, compute the public identity QID = H1(ID) and the
secret key SID = sQID.

– Sign : Given a secret key SID and a message m ∈ {0, 1}∗, the signer chooses an arbitrary P1 ∈ G∗
1

and a random k ∈ Z∗
q and computes

1. r = e(P1, P )k,
2. v = H(m, r),
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3. u = vSID + kP1.
The signature is then the pair (u, v) ∈ G× Z∗

q .

– Verify : Given a public key QID, a message m and a signature (u, v) the verifier computes :
1. r = e(u, P )e(QID,−Ppub)

v

2. Accept the signature if and only if v = H(m, r).

• Assumption :
Weak-DH problem is hard.

• Security :
Secure against existential forgery under adaptive chosen message attack in the random oracle model
assuming Weak-DH problem is hard.

• Efficiency :
– Setup : 1 scalar multiplication in G1.
– Extract : 1 Map-to-point hash operation; 1 scalar multiplication in G1.
– Sign : The signing operation can be optimized by the signer pre-computing e(P1, P ) for P1 of
his choice, for example P1 = P , and storing this value with the signing key. This means that the
signing operation involves one exponentiation in the group G2, one hash function (H) evaluation
and one simultaneous multiplication in the group G1.

– Verify : The verification operation requires one exponentiation in G2, one hash function (H)
evaluation and two evaluations of the pairing. One of the pairing evaluation can be eliminated,
if a large number of verifications are to be performed for the same identity, by pre-computing
e(QID,−Ppub).
This scheme is very efficient in terms of communication requirements. One needs to transmit one
element of the group G1 and one element of Z∗

q .

4.11 Unique Signature Scheme Without Random Oracle

(Lysyanskaya [33], 2002)

Unique signature schemes, also known as invariant signature schemes, are secure signature schemes
where the signature is a hard-to-compute function of the public key and the message. One must
verify a signature again even if it has been accepted before. Because this time the signature may
come from an unauthorized party. If a signature scheme allows the signer to easily generate many
signatures on the same message, then it simply leads to denial-of-service attack on a verifier who
is forced to verify many signatures on the same message. This illustrates that intutively unique
signatures are desirable. Boneh and Silverberg [15] proposed a unique signature scheme based on
the existence of multi-linear maps. Currently, no such suitable maps are known and the existence
of such maps is presently a research problem [15]. Lysyanskaya proposed a unique signature scheme
based on this idea while making use of bilinear pairing. This scheme is proved to be secure in the
standard model under Many-DH assumption.
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• Protocol Description :
– KeyGen : Choose n pairs of random elements in Z∗

q : (a1,0, a1,1), (a2,0, a2,1), . . . , (an,0, an,1). This
is the secret key for a signer. Compute Ai,b = ai,bP, 1 ≤ i ≤ n, b ∈ {0, 1}. The public key for the
signer is Ppub = {Ai,0, Ai,1|1 ≤ i ≤ n}.

– Sign : Assume that the messages being signed are n-bit codewords of a code of distance Cn,
where 0 < C ≤ 1/2 is a constant. Given the secret key and an n-bit codeword m = m1◦m2◦. . .◦mn,
output the signature

σ = {sm,i = (
i∏

j=1

aj,mj
)P : 1 ≤ i ≤ n}.

– Verify : Let sm,0 = 1. Given the public key Ppub, verify that, for all i, 1 ≤ i ≤ n, e(P, sm,i) =
e(sm,i−1, Ai,mi

).

Graphically, we view the message space as the leaves of a balanced binary tree of depth n. Each
internal node of the tree is assigned a label, as follows : the label of the root is P . The label of a
child, denoted lc is obtained from the label of it’s parent, denoted lp as follows : if the depth of the
child is i, and it is the left child, then its label is lc = ai,0lp, while if it is the right child, its label
will be lc = ai,1lp. The signature on an n-bit message consists of all the labels on the path from the
leaf corresponding to this message all the way to the root. To verify the correctness of a signature,
the fact that Decision Diffie-Hellman is easy in G1 is used.

• Assumption :
Existence of GDH group, Many-DH problem is hard.

• Security :
Provably secure against existential forgery under adaptive chosen message attack in the standard
model assuming the underlying group is a GDH group and the hardness of Many-DH problem.

• Efficiency :
– KeyGen : 2n scalar multiplications in G1.
– Sign : n scalar multiplications in G1, (n− 1) multiplications in Z∗

q .
– Verify : 2n pairing computations.

4.12 An Authentication-Tree Based Secure Signature Scheme Without
Random Oracle

(Boneh, Mironov, Shoup [14], 2003)

In an authentication-tree based scheme, signatures are produced that represent paths connecting
messages and the root of the tree. Messages are usually placed in the very bottom level of the
tree. The authentication mechanism works inductively : the root authenticates its children, they
authenticate their children, and so on, down to the message authenticated by its parent.
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• Protocol Description :
– KeyGen : Consider a keyed family of collision resistant hash functions Hk :M→ {0, 1}s where
M is the message space. The signature scheme allows signing ln messages, where l and n are arbi-
trary positive integer, n is the branching factor of the authentication tree.

1. Pick randomly αi ∈ Z∗
q , 1 ≤ i ≤ n and Q∈RG1. Choose a random key k for the collision resistant

hash function Hk. Compute Q1 = (1/α1)Q, . . . , Qn = (1/αn)Q ∈ G1.
2. Pick randomly R ∈ G1. Compute y = e(R,Q).
3. Pick randomly β0 ∈ Zq. Compute x0 = yβ0 .
4. The public key for a signer is (k,Q,Q1, . . . , Qn, y, x0) and the corresponding private key is
(α1, α2, . . . , αn, β0, R).

– Sign : Each node in the tree is authenticated with respect to its parent; messages to be signed are
authenticated with respect to the leaves, which are selected in sequential order and never reused. To
sign i-th message m ∈M, the signer generates the i-th leaf of the authenticated tree together with
a path from the leaf to the root. Denote the path from leaf to root by (xl, il, xl−1, il−1, . . . , i1, x0) :
xj is the ij-th child of xj−1(ij ∈ {1, . . . , n}).

1. xj = yβj for some βj∈RZ
∗
q , 1 ≤ j ≤ l. The secret βj is stored for as long as node xj is an anscestor

of the current signing leaf.
2. Compute fj = αij(βj−1 +Hk(xj))R. This is the authenticated value of xj, the ij-th child of xj−1.
3. Compute f = (βl +Hk(m))R. This is the authenticated value of m.
4. The signature on m is (f, fl, il, . . . , f1, i1).

– Verify : Given a signature (f̂ , f̂l, îl, . . . , f̂1, î1) on a message m, do the followings :

1. Compute x̂l = e(f̂ , Q)y−Hk(m).
2. Compute x̂j−1 = e(f̂j, Qij)y

−Hk(x̂j) for l ≤ j ≤ 1.
3. Accept the signature if x̂0 = x0.

• Assumption :
CDH problem is hard.

• Security :
Provably secure against existential forgery against adaptive chosen message attack assuming that
the CDH problem is hard.

• Efficiency :
– KeyGen : n scalar multiplications in G1; 1 pairing computation; 1 exponentiation in G2.
– Sign : l exponentiations in G2; (l + 1) hash function (Hk) evaluations; (l + 1) additions in Z∗

q ; l
multiplications in Z∗

q , l scalar multiplications in G1.
– Verify : (l+1) pairing computations; (l+1) hash function (Hk) evaluations; (l+1) exponentiations
in G2; (l + 1) multiplications in G2.
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4.13 Short Signature Scheme Without Random Oracle

(Boneh, Boyen [8], 2004)

• Protocol Description :
– KeyGen : The secret key is (x, y)∈RZ

∗
q × Z∗

q and the public key is (P,U, V ) where U = xP and
V = yP for a signer. The messages are assumed to be elements of Z∗

q .

– Sign : Given a secret key (x, y), a message m ∈ Z∗
q , choose a random r ∈ Z∗

q and compute
σ = 1

x+m+yr
P . Here 1

x+m+yr
is computed modulo q and the unlikely event x+m+ yr = 0 is avoided

by choosing a different r. The signature is (σ, r).

– Verify : Given a public key (P,U, V ), a message m ∈ Z∗
q and a signature (σ, r), verify e(σ, U +

mP + rV ) = e(P, P ).

• Assumption :
q-SDH problem is hard.

• Security :
Secure against existential forgery under chosen message attack under SDH assumption and without
using the random oracle model.

• Efficiency :
– KeyGen : 2 scalar multiplications in G1.
– Sign : 1 inversion in Z∗

q ; 1 scalar multiplication in G1.
– Verify : 2 scalar multiplication in G1; 2 additions in G1; 2 pairing computations one of which,
e(P, P ) can be precomputed.

5 Key Agreement Schemes

Key agreement is one of the fundamental cryptographic primitives. This is required when two
or more parties want to communicate securely. In one of the breakthroughs in key agreement,
Joux [27] proposed a three party single round key agreement protocol using pairing. This was the
first positive application of bilinear pairing in cryptography. Afterwards, pairings were used widely
to get a large number of cryptographic protocols some of which have been previously mentioned.
Several key agreement protocols were proposed that prevents man-in-the-middle attack against a
passive adversary. These protocols are called unauthenticated. The protocols for authenticated
key agreement enables a group of parties within a large and completely insecure public network
to establish a common secret key and furthermore ensures that they are indeed sharing this key
with each other. Achieving authenticated key agreement are crucial for allowing symmetric-key
encryption/authentication of data among the parties. Authenticated key agreement protocols are
the basic tools for group-oriented and collaborative applications such as, distributed simulation,
multi-user games, audio or video-conferencing, and also peer-to-peer application that are likely to
involve a large number of users. These are used to construct secure channels which are the base
for desiging, analyzing and implimenting higher-level protocols in a modular approach. A formal
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model of security for group authenticated key agreement can be found in [16]. Much research work
remaines to be done in this area.

5.1 Joux’s One Round Three Party Key Agreement Protocol

(Joux [27], 2000)

• Protocol Description :
Consider three parties A,B,C with secret keys a, b, c ∈ Z∗

q respectively.

A sends aP to both B,C
B sends bP to both A,C
C sends cP to both A,B

A computes KA = e(bP, cP )a

B computes KB = e(aP, cP )b

C computes KC = e(aP, bP )c

Common agreed key of A,B,C is KABC = KA = KB = KC = e(P, P )abc.

• Assumption :
BDH problem is hard.

• Security :
Secure against passive adversary under the assumption that BDH problem is hard.

• Efficiency :
– Communication : Round required is 1; group elements (of G1) sent are 3.
– Computation : 3 scalar multiplications in G1; 3 pairing computations; 3 exponentiations in G2.

5.2 Extending Joux’s Protocol to Multi Party Key Agreement

(Barua, Dutta, Sarkar, [2], 2003)

• Protocol Description :
Let H : G2 → Z∗

q be a hash function. Consider the set of n users U = {1, 2, . . . , n}. Let p = bn
3
c

and r = n mod 3. The set U is partitioned into three user sets U1, U2, U3 with cardinality p, p, p re-
spectively if r = 0 or with cardinality p, p, p+1 respectively if r = 1 or with cardinality p, p+1, p+1
respectively if r = 2.
This top down procedure is used recursively for further partitioning. Essentially a ternary tree
structure is obtained. The lower level 0 consists of singleton users having a secret key. Key agree-
ment is done by invoking the procedure CombineTwo for user sets of two users and the procedure
CombineThree for user sets of three users in the key tree as described below. With this tree struc-
ture, CombineTwo is never invoked above level 1.
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procedure CombineThree (3-group DH protocol)
Consider three user sets U1, U2, U3 with s1, s2, s3 ∈ Z∗

q respectively as their private keys. Let Rep(Ui)
be the representative of the user set Ui.

Rep(U1) sends s1P to all members of both U2, U3;
Rep(U2) sends s2P to all members of both U1, U3;
Rep(U3) sends s3P to all members of both U1, U2;

each member of U1 computes H(e(s2P, s3P )s1);
each member of U2 computes H(e(s1P, s3P )s2);
each member of U3 computes H(e(s1P, s2P )s3);

Common agreed key of user sets U1, U2, U3 is H(e(P, P )s1s2s3);

procedure CombineTwo (2-group DH protocol)
Consider two user sets U1, U2 with s1, s2 ∈ Z∗

q respectively as their private keys and Rep(Ui) is the
representative of the user set Ui.

Rep(U1) generates s ∈ Z∗
q at random and sends sP to the rest of the users;

Rep(U1) sends s1P to all members of U2;
Rep(U2) sends s2P to all members of U1;

each member of U1 computes H(e(s2P, sP )s1);
each member of U2 computes H(e(s1P, sP )s2);

Common agreed key of user sets U1, U2 is H(e(P, P )s1s2s);

• Assumption :
DHBDH problem is hard.

• Security :
Secure against passive adversary under the assumption that DHBDH problem is hard.

• Efficiency :
– Communication : Rounds required is dlog3 ne; group elements (of G1) sent are ndlog3 ne.
– Computation : < 5

2
(n− 1) scalar multiplications in G1; ndlog3 ne pairing computations; ndlog3 ne

exponentiations in G2; ndlog3 ne hash function (H) evaluation.

6 Threshold Schemes

The idea behind the (t, n)-threshold cryptosystem approach is to distribute secret information (i.e.
the secret key) and computation (i.e. signature generation or decryption) among n parties in order
to remove single point failure. The goal is to allow a subset of more than t players to jointly
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reconstruct a secret and perform the computation while preserving security even in the presence of
an active adversary which can corrupt upto t (a threshold) parties. The secret key is distributed
among n parties with the help of a trusted dealer or without it by running an interactive protocol
among all parties.

6.1 Threshold Signature Scheme

(Boldyreva, [6], 2003)

• Protocol Description :
– KeyGen : Let H : {0, 1}∗ → G1 be a Map-to-point hash function. Suppose there are n servers
ui, 1 ≤ i ≤ n. The private key x ∈ Z∗

q is shared among these users using Shamir’s secret sharing
scheme such that any subset S of t+ 1 servers can reconstruct x using Lagrange interpolation :

x =
∑
i∈S

Lixi,

where Li =
∏

j∈S
−xj

(xi−xj)
is the Lagrange co-efficient, xi is the private key share and Ppubi

= xiP is

the public key share of user ui.

– Signature Share Generation : To sign a message m ∈ {0, 1}∗, user ui outputs σi = xiH(m).

– Signature Share Verification : Given m,σi, Ppubi
, anyone can check whether user ui is honestly

behaving in giving it’s share σi of signature by checking

e(P, σi) = e(Ppubi
, H(m)).

If σi passes through this test, call it an acceptable share.

– Signature Reconstruction : Suppose a set S of (t + 1) honest servers are found and accordingly
(t+ 1) acceptable shares σi, i ∈ S. The resulting signature on m is σ =

∑
i∈S Liσi.

The correctness of the scheme is easy to verify since

e(P, σ) = e(H(m), xP ).

• Assumption :
Existence of GDH group.

• Security :
Secure in the random oracle model against an adversary which is allowed to corrupt any t < n/2
players under the assumption that the underlying group is GDH.

• Efficiency :
– KeyGen : n scalar multiplications in G1.
– Signature Share Generation : For each user, 1 Map-to-point hash operation; 1 scalar multiplication
in G1.
– Signature Share Verification : 2 pairing computations; 1 Map-to-point hash operation.
– Signature Reconstruction : (t+1) scalar multiplications in G1; t additions in G1; (t+1) Lagrange
co-efficient (Li) computations.
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6.2 Pairing Based (t, n)-Threshold Decryption

(Libert, Quisquater [31], 2003)

The following scheme is a threshold adaption of the Boneh-Franklin IBE scheme where a fixed PKG
plays the role of a trusted dealer.

• Protocol Description:
– KeyGen : Choose a (t − 1)-degree polynomial f(x) = s + a1x + · · · + at−1x

t−1 for random

a1, . . . , at−1 ∈ Z∗
q . For i = 1, 2, . . . , n, compute P

(i)
pub = f(i)P ∈ G1 and Ppub = sP .

Let H1 : {0, 1}∗ → G1 be a Map-to-point hash function and H2 : G2 → {0, 1}l be another hash
function.
Before requesting his private share, each player can check that

∑
i∈S LiP

(i)
pub = Ppub for any subset

S ⊂ {1, . . . , n} such that |S| = t where Li denotes the appropriate Lagrange co-efficient explicitely
given by the formula

Li =
∏
j∈S

−xj

(xi − xj)
.

Given a user’s identity ID ∈ {0, 1}∗, the PKG playes the role of the trusted dealer. For i = 1, . . . , n,
it delivers dIDi

= f(i)QID ∈ G1 to player i. After receiving dIDi
, player i checks

e(P
(i)
pub, QID) = e(P, dIDi

).

If verification fails, he complains to the PKG which then issues a new share.

– Encrypt : Given message m ∈ {0, 1}l and identity ID, compute QID = H1(ID). Choose a random
r ∈ Z∗

q and set the ciphertext to be C = 〈rP,m⊕H2(e(Ppub, QID)r)〉.

– Decryption Share Generation : When receiving 〈U, V 〉, player i computes his decryption share
e(U, dIDi

) and gives it to the recombiner who may be a designated player.

– Recombination : The recombiner selects a set S ⊂ {1, . . . , n} of t acceptable share e(U, dIDi
) and

computes
g =

∏
i∈S

e(U, dIDi
)Li .

Once he has g, he recovers the plaintext m = V ⊕H2(g).

Correctness of the scheme is easy to verify since g = e(rP,
∑

i∈S LidIDi
) = e(rP, sQID) = e(Ppub, QID)r.

To check publicly whether the share of a player is acceptable or not, do the following :
Each player chooses a random R ∈ G1 and computes w1 = e(P,R), w2 = e(U,R) and h =
H(e(U, dIDi

), e(Ppub, QID), w1, w2). Next, player i computes V = R + hdIDi
∈ G1 and joins the tuple

(w1, w2, h, V ) to it’s share. The other players can check that

e(P, V ) = e(P,R)e(P
(i)
pub, QID)h

e(U, V ) = e(U,R)e(U, dIDi
)h.
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If this test fails, player i is a dishonest player.

• Assumption :
BDH problem is hard.

• Security :
This threshold IBE scheme is provably secure against chosen plaintext attacks in the ID-based set-
ting under the BDH assumption.

• Efficiency :
– KeyGen : n function (f) evaluation; (2n+1) scalar multiplications in G1; 2n pairing computations.
– Encrypt : 1 Map-to-point hash operation; 1 hash function (H2) evaluation; 1 XOR operation; 1
exponentiation in G2; 1 scalar multiplication in G1.
– Decryption Share Generation : For each share holder, 1 pairing computation.
– Recombination : |S| pairing computations; (|S|−1) multiplications in G2; |S| Lagrange co-efficient
computations.

6.3 ID-based (t, n)-Threshold Decryption

(Baek, Zheng [1], 2003)

Consider the following scenario : Alice wishes to send a confidential message to a committee in an
organization. She can first encrypt the message using the identity of the committee and then send
over the ciphertext. Suppose Bob who is the committee’s president has created the identity and
has obtained a matching private decryption key from the PKG. Preparing for the time when Bob is
away, he can share his private key out among a member of decryption server in such a way that any
committee member can successfully decrypt the ciphertext if and only if the committee member
obtains a certain number of decryption shares from the decryption servers. i.e. Bob himself plays
the role of a trusted dealer.

The following scheme provides the feature that a user who obtained a private key from the PKG can
share the key among decryption servers at will. After key generation, the PKG can be closed. Also
this protocol achieves chosen ciphertext security under BDH assumption in random oracle model.

• Protocol Description :
– KeyGen : PKG chooses x∈RZ

∗
q and computes Ppub = xP . The master key of PKG is x and the

public key is Ppub. Consider four hash functions : H1 : G2 → {0, 1}l, H2 : G1 × {0, 1}l → G1,
H3 : {0, 1}∗ → G1, H4 : G3

2 → Z∗
q . H3 is a Map-to-point hash function.

– Extract : Given an identity ID ∈ {0, 1}∗, compute QID = H3(ID), DID = xQID and returns DID.

– Private Key Distribution : Given a private key DID, n decryption shares and a threshold
parameter t ≤ n, pick randomly R1, R2, . . . , Rt−1 ∈ G∗

1 and compute

F (u) = DID + uR1 + u2R2 + . . .+ ut−1Rt−1

34



for u ∈ {0} ∪ N . Compute Si = F (i), yi = e(Si, P ), 1 ≤ i ≤ n and sends (Si, yi) secretly to server
Γi, 1 ≤ i ≤ n. Γi then keeps Si as secret while it publishes yi.

– Encrypt : Given a plaintext m ∈ {0, 1}l, identity ID ∈ {0, 1}∗, choose r ∈ Z∗
q at random and set

U = rP . Compute QID = H3(ID), d = e(QID, Ppub), κ = dr, V = H1(κ) ⊕m, W = rH2(U, V ) and
set the ciphertext to be C = (U, V,W ).

– Decryption Share Generation : Given a ciphertext C = (U, V,W ), decryption server Γi with secret
key Si computes H2 = H2(U, V ) and checks if e(P,W ) = e(U,H2).
If the test holds then compute

κi = e(Si, U), κ̃i = e(Qi, U), ỹi = e(Qi, P ), λi = H4(κi, κ̃i, ỹi), Li = Qi + λiSi,

where Qi is chosen randomly from G1. Output δi = (i, κi, κ̃i, ỹi, Li).

– Decryption Share Verification : Given a ciphertext C = (U, V,W ) and a decryption share δi =
(i, κi, κ̃i, ỹi, Li), compute λi = H4(κi, κ̃i, ỹi). Check if

e(Li, U)

κλi
i

= κ̃i,
e(Li, P )

yλi
i

= ỹi.

If the above test holds, then share δi of server Γi is an acceptable share. Given acceptable shares
Sj, j ∈ S ⊆ {1, . . . , n} where |S| ≥ t, DID can be recovered as follows :

DID = F (0) =
∑
j∈S

cojSj,

c0j are appropriate Lagrange co-efficients.

– Share Combining : Given a ciphertext C = (U, V,W ) and a set of decryption shares {δj}j∈S⊆{1,2,...,n}
where |S| ≥ t, compute H2 = H2(U, V ), check if e(P,W ) = e(U,H2). If C passes this test (i.e. C
is a valid ciphertext), compute κ =

∏
j∈S κ

c0j

j and m = H1(κ)⊕ V . Output m.

The correctness of the scheme is easy to verify since∏
j∈S

κ
c0j

j =
∏
j∈S

e(Sj, U)c0j = e(
∑
j∈S

c0jSj, U) = e(
∑
j∈S

c0jSj, rP ) = e(DID, P )r.

• Assumption :
BDH problem is hard.

• Security :
This protocol achieves chosen ciphertext security in the random oracle model under BDH assump-
tion.

• Efficiency :
– KeyGen : 1 scalar multiplication.
– Extract : 1 Map-to-point hash operation; 1 scalar multiplication in G1.
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– Private Key Distribution : For each share holder, (t − 1) scalar multiplications in G1; (t − 1)
additions in G1; 1 pairing computation.
– Encrypt : 1 scalar multiplication; 1 Map-to-point hash operation; 1 pairing computation; 1 expo-
nentiation in G2.
– Decryption Share Generation : For each share holder, 1 hash function H2 evaluation, 5 pairing
computations; 1 hash function H4 evaluation; 1 scalar multiplication in G1; 1 addition in G1.
– Decryption Share Verification : 1 hash function H4 evaluation; 2 pairing computations; 2 expo-
nentiations in G2.
– Share Combining : 1 hash functionH2 evaluation; 2 pairing computations; |S| Lagrange co-efficient
computations; (|S| − 1) multiplications in G2; 1 hash function H1 evaluation; 1 XOR operation.

7 Miscellaneous Applications

7.1 Key Sharing Scheme :

(Sakai, Ohgishi, Kasahara [38], 2000)

• Protocol Description :
Let H:{0, 1}∗ be a Map-to-point hash function.
The idea of Key Sharing Scheme is quite simple : Suppose a PKG has a master key s, and it issues
private keys to users of the form sPy, where Py = H1(IDy) and IDy ∈ {0, 1}∗ is the identity of user
y. Then users y and z have a shared secret that only they (and the PKG) may compute, namely

e(sPy, Pz) = e(Py, Pz)
s = e(Py, sPz).

They may use this shared secret to encrypt their communications. This key sharing scheme is non-
interactive and can be viewed as a type of “dual-identity-based encryption”, where the word “dual”
indicates that the identities of both the sender and the recipient (rather than just the recipient) are
required as input into the encryption and decryption algorithm.

• Assumption :
BDH problem is hard.

• Efficiency :
For each party, 1 pairing computation for key sharing; 1 scalar multiplication in G1; 1 Map-to-point
hash operation for private key extraction.

7.2 ID-Based Chameleon Hashes from Bilinear Pairings :

(Zhang, Safavi- Naini, Susilo [45], 2003)

A chameleon hash function is a trapdoor one-way hash function : without knowledge of the as-
sociated trapdoor, the chameleon hash function is resistant to the computation of pre-images and
collisions. However, with the knowledge of the trapdoor, collisions are efficiently computable.
Applications : ID-based chameleon hash functions can be used to construct ID-based chameleon
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signature schemes which achieves the goal of ID-based undeniable signature and is non-interactive.
An ID-based chameleon signature scheme is an ID-based signature computed over the ID-based
chameleon hash of m under the identity of the intended recipient. The recipient can verify that the
signature of a certain message m is valid, but can not prove to others that the signer actually signed
m and not another message. Indeed, the recipient can find collisions of the chameleon hash func-
tion, thus finding a message different from m which would pass the signature verification procedure.

Scheme 1 :

• Protocol Description :
– Setup : PKG chooses a random number s ∈ Z∗

q and sets Ppub = sP . The master key of PKG is s
and the public key is Ppub. Consider a Map-to-point hash function H0 : {0, 1}∗ → G1 and another
hash function H1 : {0, 1}l → Z∗

q .

– Extract : A user submits his identity ID ∈ {0, 1}∗ to PKG which computes the public key as
QID = H0(ID) and returns SID = sQID to the user as his private key.

– Hash : Given a message m ∈ {0, 1}l, choose a random element R from G1, define the hash as

Hash(ID,m,R) = e(R,P )e(H1(m)H0(ID), Ppub).

– Forge :
Forge(ID, SID,m,R,m

′) = R′ = (H1(m)−H1(m
′))SID +R.

The forgery is correct because

Hash(ID,m′, R′) = e(R′, P ) e(H1(m
′)H0(ID), Ppub)

= e((H1(m)−H1(m
′))SID +R,P ) e(H1(m

′)H0(ID), Ppub)

= e((H1(m)−H1(m
′))SID, P ) e(R,P ) e(H1(m

′)H0(ID), Ppub)

= e((H1(m)−H1(m
′))H0(ID), Ppub) e(R,P ) e(H1(m

′)H0(ID), Ppub)

= e(R,P ) e(H1(m)H0(ID), Ppub)

= Hash(ID,m,R)

• Assumption :
BLS signature scheme is secure.

• Security :
Semantically secure and resistant to collision forgery under active attacks provided BLS signature
scheme is secure.

• Efficiency :
– Setup : 1 scalar multipication.
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– Extract : 1 Map-to-point hash operation; 1 scalar multiplication in G1.
– Hash : 2 pairing computations; 1 scalar multiplication in G1; 1 Map-to-point hash operation; 1
hash function H1 evaluation. Using precomputation for a = e(P, P ) and b = e(H0(ID), Ppub), to
compute the chameleon hash of a message m, the sender requires only 1 EC scalar multiplication
of G1 + 2 group exponentiation in G2. i.e. R = rP,Hash(ID,m,R) = arbH1(m).
– Forge : 2 hash function H1 evaluation; 1 scalar multiplication in G1; 1 subtraction in Z∗

q ; 1 addi-
tion in G1.

Scheme 2 :

• Protocol Description:
– Setup : PKG chooses a random number s ∈ Z∗

q and sets Ppub = sP . The master key of PKG
is s and the public key is Ppub. Consider two hash functionsH0 : {0, 1}∗ → Z∗

q andH1 : {0, 1}l → Z∗
q .

– Extract : Given an identity ID ∈ {0, 1}∗, compute SID = 1
s+H0(ID)

P . SID is the private key corre-
sponding to the public identity ID.

– Hash : Given a message m ∈ {0, 1}l, an identity ID ∈ {0, 1}∗ and a random element R ∈ G1,
define

Hash(ID,m,R) = e(P, P )H1(m)e(H0(ID) + Ppub, R)H1(m)

– Forge :

Forge(ID, SID,m,R,m
′) = R′ = H1(m

′)−1((H1(m)−H1(m
′))SID +H1(m)R).

The forgery is correct because

Hash(ID,m′, R′) = e(P, P )H1(m′) e(H0(ID) + Ppub, R
′)H1(m′)

= e(P,H1(m
′)P ) e(H0(ID) + Ppub, H1(m

′)H1(m
′)−1((H1(m)−H1(m

′))SID +H1(m)R))

= e(P,H1(m
′)P ) e(H0(ID) + Ppub, (H1(m)−H1(m

′))SID)e(H0(ID) + Ppub, H1(m)R)

= e(P,H1(m
′)P ) e(P, (H1(m)−H1(m

′))P ) e(H1(ID) + Ppub, H1(m)R))

= e(P, P )H1(m) e(H1(ID) + Ppub, R)H1(m)

= Hash(ID,m,R).

• Assumption :
ZSS signature scheme is secure.

• Security :
Semantically secure and resistant to collision forgery under active attacks, provided ZSS signature
scheme is secure.
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• Efficiency :
– Setup : 1 scalar multiplication in G1.
– Extract : 1 hash function H0 evaluation; 1 addition in Z∗

q ; 1 multiplicative inverse in Z∗
q ; 1 scalar

multiplication in G1.
– Hash : 2 pairing computations; 1 hash function H0 evaluation; 2 exponentiations in G2; 1 addition
in G1. Precomputing a = e(P, P ), to compute the chameleon hash of a message m, the sender
only needs to compute 1 EC scalar multiplication of G1 + 1 group exponentiation in G2. i.e.
R = rSID,Hash(ID,m,R) = a(r+1)H1(m).
– Forge : 2 hash function H1 evaluations; 2 scalar multiplications in G1; 1 subtraction in Z∗

q ; 1
multiplicative inverse in Z∗

q .

7.3 Signcryption Schemes

The idea of this primitive is to perform encryption and signature in a single logical step in order to
obtain confidentiality, integrity, authentication and non-repudiation more efficiently than the sign-
then-encrypt approach. The drawback of this latter situation is to expand the final ciphertext size
and increase the sender and receiver’s computing time which may be impractical for low bandwidth
network. Malone-Lee [34] defines extended security notions for ID-based signcryption schemes.

7.3.1 Identity-Based Signcryption

(Malone-Lee [34], 2003)

• Protocol Description
– Setup : Choose s ←R Z∗

q and set PPub = sP . The master key generated by the trusted party is
s and the public key is Ppub. Consider three hash functions : H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → Z∗

q

and H3 : G2 → {0, 1}l.

– Extract(ID) : Compute QID = H1(ID), SID = sQID. The secret key corresponding to identity
ID ∈ {0, 1}∗ is SID and the public key is QID.

– Signcrypt(SIDa , IDb,m) : For a message m ∈ {0, 1, }l, compute QIDb
= H1(IDb). Choose x←R Z∗

q

and set U = xP . Compute r = H2(U ||m), W = xPpub, V = rSIDa +W , y = e(W,QIDb
), κ = H3(y),

c = κ⊕m. Send σ = (c, U, V )

– Unsigncrypt (IDa, SIDb
, σ) : Compute QIDa = H1(IDa). Parse σ as (c, U, V ). Compute y =

e(SIDb
, U), κ = H3(y),m = κ⊕c, r = H2(U ||m). Returnm if and only if e(V, P ) = e(QIDa , Ppub)

r e(U, Ppub).

Consistency constraint : if σ = Signcrypt(SIDa , IDb,m), then m = Unsigncrypt(IDa, SIDb
, σ).

This scheme is the result of a combination of the simplified version of Boneh and Franklin’s IBE
cryptosystem with a varient of Hess’s identity based signature.

• Assumption :
BDH problem is hard.
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• Security :
This protocol achieves the security IND-ISC-CCA (indistinguishability of identity-based signcryp-
tions under chosen ciphertext attack) and also the security EF-ISC-ACMA (existentially unforge-
ability of identity-based signcryptions under adaptive chosen message attack) in the random oracle
model assuming BDH problem is hard.

• Efficiency :
– Setup : 1 scalar multiplication in G1.
– Extract : 1 Map-to-point hash operation; 1 scalar multiplication in G1.
– Signcrypt : 1 Map-to-point hash operation; 3 scalar multiplications in G1; 1 hash function H2

evaluation; 1 pairing computation; 1 hash function H3 evaluation; 1 XOR operation, 1 addition in
G1.
– Unsigncrypt : 1 Map-to-point hash operation; 4 pairing computations; 1 hash function H3 evalu-
ation; 1 XOR operation; 1 hash function H2 evaluation; 1 exponentiation in G2.
The size of the cryptogram is n+ 2|G1| when a message of n-bit is sent.

7.3.2 A New Identity-Based Signcryption :

(Libert, Quisquater [32], 2003 )

• Protocol Description :
– Setup : Choose s ←R Z∗

q and set Ppub ← sP . The secret key is s and the public key is Ppub.
Choose a secure symmetric cipher (E,D) with keyspace Ks and ciphertext space Cs. Also consider
three hash functions : H1 : {0, 1}∗ → G1, H2 : G2 → Ks and H3 : Cs × G2 → Z∗

q . H1 is a
Map-to-point hash function.

– Extract(ID) : Compute QID = H1(ID), SID = sQID. The secret key corresponding to the identity
ID ∈ {0, 1}∗ is SID and the public key is QID.

– Signcrypt(SIDa , IDb,m) : For a message m ∈ {0, 1}l, compute QIDb
= H1(IDb). Choose x ←R Z∗

q

and set κ1 = e(P, Ppub)
x, κ2 = H2(e(Ppub, QIDb

)x). Compute c = Eκ2(m), r = H3(c, κ1), S =
xPpub − rSIDa . Send σ = (c, r, S).

– Unsigncrypt(IDa, SIDb
, σ) : ComputeQIDa = H1(IDa). Parse σ as (c, r, S) and set κ1 = e(P, S) e(Ppub, QIDa)

r,
τ = e(S,QIDb

) e(QIDa , SIDb
)r, κ2 = H2(τ), m = Dκ2(c). Accept if and only if r = H3(c, κ1).

• Assumption :
DBDH problem is hard.

• Security :
This protocol achieves IND-ISC-CCA security for confidentiality and also EF-ISC-ACMA security
for unforgeability in the random oracle model assuming DBDH problem is hard.

• Efficiency :
– Setup : 1 scalar multiplication in G1.
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– Extract : 1 Map-to-point hash operation; 1 scalar multiplication in G1.
– Signcrypt : 1 Map-to-point hash operation; 2 pairing computations; 1 hash function H2 evalua-
tion; 1 exponentiation in G2; 1 symmetric key encryption; 1 hash function H3 evaluation; 2 scalar
multiplications in G1; 1 inversion in G1.
– Unsigncrypt : 1 Map-to-point hash operation; 4 pairing computations; 2 exponentiations in G2;
1 hash function H2 evaluation; 1 symmetric key decryption; 1 hash function H3 evaluation.

7.4 Identification Scheme based on GDH

(Kim, Kim, [29], 2002 )

Identification scheme is a very important and useful cryptographic tool. It is an interactive proto-
col where a prover P , tries to convince a verifier V , of his identity. Only P knows the secret value
corresponding to his public one, and the secret value allows to convince V of his identity.

• Protocol Description :
– KeyGen : Choose randomly a, b, c ∈ Z∗

q and compute aP , bP , cP , v = e(P, P )abc. The secret key
is (a, b, c) and make aP , bP , cP , v public.

– Protocol actions between P and V : This scheme consists of several rounds, each of which is
performed as follows :
1. P chooses randomly r1, r2, r3 ∈ Z∗

q and computes x = e(P, P )r1r2r3 , Q1 = r1P , Q2 = r2P and
Q3 = r3P and sends 〈x,Q1, Q2, Q3〉 to V .
2. V pickd w ∈ Z∗

q at random and sends w to P .
3. P computes y = e(wP, P )abc e(P, P )r1r2r3 and sends to V ; V accepts if y = vw x and rejects
otherwise.

• Assumption :
Existence of GDH group.

• Security :
Secure against active attacks assuming that the underlying group is a GDH group.

• Efficiency :
– KeyGen : 3 scalar multiplications in G1; 1 pairing computations.
– Protocol actions between P and V : 3 pairing computations and 4 scalar multiplications in G1 for
P ; 1 exponentiation in G2 and 1 multiplication in G2 for V .

7.5 Other Signature Schemes

There are a large number of cryptographic protocols that uses pairings. Discussing every prototocol
is beyond the scope of the paper. This subsection includes a list of few other interesting signature
schemes that have various cryptographic applications in digital world. For details, see the refer-
ences [3].
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1. Optimistic Fair Exchange [21].
2. Non-Interactive Deniable Ring Authentication [44].
3. A New Varifiably Encrypted Signature Scheme [43].
4. Partially Blind Signature Scheme [43].
5. ID-Based Group Signature Scheme [18].
6. Delegation-By-Certificate Proxy Signature Scheme [7].
7. Hierarchical ID-Based Signatures (HIDS) Scheme [25].

8 Conclusion

Several cryptographic primitives using pairings have been described in this survey. Some others
have been left out, mainly due to the non-availability of proper security proofs. The area is still
growing and almost each conference proceedings include some new proposals. On the other hand,
we have covered the basic schemes which will continue to be referred in the future. Thus we believe
that our survey will provide both an introduction to the area as well as serve as a ready reference
to the area in the next few years.
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