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One of the outstanding questions in the study of twisted bilayer graphene — from both experi-
mental and theoretical points of view — is the nature of its superconducting phase. In this work
we perform a comprehensive synthesis of existing experiments, and argue that experimental con-
straints are strong enough to allow the structure of the superconducting order parameter to be nearly
uniquely determined. In particular, we argue that the order parameter is nodal, and is formed from
an admixture of spin-singlet and spin-triplet Cooper pairs. This argument is made on phenomeno-
logical grounds, without committing to any particular microscopic model of the superconductor.
Existing data is insufficient to determine the orbital parity of the order parameter, which could be
either p-wave or d-wave. We propose a way in which the measurement of Andreev edge states can
be used to distinguish between the two.

I. INTRODUCTION

The discovery of strong correlation physics in magic-
angle twisted bilayer graphene (TBG) [1, 2] and related
systems [3–18] has raised a number of fascinating ques-
tions. How should we think about the myriad correlated
insulating states seen in these systems? What is the na-
ture and mechanism of the superconductivity in TBG?
What is the relationship, if any, between the supercon-
ductivity and the proximate correlated insulator? What
is the physics of the strange metallic normal state ob-
served in the vicinity of the correlated insulators in TBG?

In this paper we focus on the pairing symmetry of
the prominent superconductivity seen in TBG at electron
densities corresponding to a Moire superlattice filling ν
between −2 and −3. Why address the specific question
of pairing symmetry? First, this question has a clear-
cut answer unlike, say, the question of the mechanism of
superconductivity, which may require a detailed under-
standing of the normal state and its instability. Second,
as we argue below, as of fairly recently, the amount of
accumulated experimental data has become diverse and
high-quality enough so as to allow the structure of the
pairing in TBG to be very strongly constrained (see ta-
ble I for an overview). It is thus an opportune moment
to discuss the pairing symmetry at a phenomenological
level. Since the present state of microscopic theory is
very much in flux — with a theoretical proposal exist-
ing for essentially every imaginable pairing symmetry —
we view this experimentally-focused approach, with some
minimal theoretical input, as a safer way to proceed. In
this paper we will therefore synthesize a variety of ex-
perimental observations in an attempt to pin down the
pairing symmetry in TBG, without committing to any
detailed theory of the microscopic origin of the super-
conducting state.

Our analysis leads us to a rather unusual pairing sym-
metry. In particular, we will argue that the paired state
features strong spontaneously generated spin-orbit cou-
pling, where each of the graphene valleys contain only
a single electron spin polarization, and with opposite
valleys carrying opposite spins. Since in this scenario

independent SU(2) spin rotational symmetry is broken,
the pairing — which occurs between electrons in oppo-
site valleys — is neither spin singlet nor spin triplet, but
an admixture of the two. As far as spin and valley are
concerned, the pairing is thus similar to the ‘Ising su-
perconductivity’ which occurs in certain transition metal
dichalcogenides (TMDs) [19–21], in which the spin-valley
locking is induced by strong spin-orbit coupling. One can
thus say that TBG is in some sense a ‘spontaneous TMD’.

We will also argue that several distinct experimental
factors point towards the order parameter being nodal.
The first indication comes from recent STM experiments
[22, 23], which provide strong evidence of a nodal gap.
We will corroborate this conclusion through a simple
Ginzburg-Landau analysis showing that the independent
observation of nematicity in the superconducting state
[14, 24] also implies a nodal gap. The orbital compo-
nent of the order parameter can have either odd orbital
parity (p-wave) or even orbital parity (d-wave). While
existing experimental data does not seem to be suffi-
cient to unambiguously distinguish between the two, we
propose a concrete way of resolving this issue in fu-
ture experiments by looking for Andreev bound states at
normal-superconductor interfaces, or by performing a c-
axis Josephson experiment between two rotated copies of
TBG (see section IV). We also point out that forming a c-
axis Josephson junction between TBG and a conventional
s-wave SC can provide an easy consistency check on our
proposal: if TBG is nodal as suggested, the Josephson
current in such a junction should be heavily suppressed
(and will receive contributions only from 4e tunneling
events).

We note that superconductivity in TBG occurs at a va-
riety of filling ranges punctuated by correlated insulators
at integer ν. In addition, evidence for superconductivity
has been reported in some situations in which the cor-
related insulator is absent, either due to the twist angle
being significantly less than the magic angle, or due to the
effects of a proximate screening gate [25–27]. Our anal-
ysis will have little to say about these other situations
which are not as well studied experimentally (although
some further comments are provided in sec. IV D). Thus
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Pairing Constraint Experimental Evidence

Spins locked to valleys Landau fan degeneracy [1, 3],
Dirac revivals [9, 32], isospin or-
dering quenched by B‖ [10, 15]

Not pure spin singlet Anisotropic Bc,‖ [14], strong Pauli
violation in TTG [23, 33, 34]

Not pure |↑↑〉 / |↓↓〉 triplet Tc, Ic decrease monotonically with
B [2], large Ic [29]

Not |↑↓〉 + |↓↑〉 triplet Incompatible with spin-valley
locking, SC enhanced by SOC
[35], positive intervalley Hunds
coupling JH > 0 [36]

Nodal gap STM studies [22, 23], anisotropic
Bc,‖ [14]

TABLE I: A summary of select experimental
observations and their role in constraining the pairing
symmetry for the SC near ν = −2.

we focus exclusively on the commonly observed promi-
nent superconductor at fillings −3 < ν < −2 in devices
where a well-developed correlated insulator is present at
ν = −2. In such devices the measured carrier density
(as extracted through either Hall effect or Shubnikov-
deHaas experiments) is determined by the deviation of ν
from −2. The superconductivity then descends from a
normal state with this small carrier density. All indica-
tions [23, 28, 29] are that this SC is fairly strongly cou-
pled near ν = −2, and becomes relatively weakly coupled
when hole-doped to near ν = −3 (both due to coherence-
length measurements and due to the well-defined quan-
tum oscillations that occur near ν = −3).

We will freely draw on experiments on both TBG and
magic-angle twisted trilayer graphene (TTG) (as well as
four- and higher-layer devices [24, 30]). These systems
are very closely related [31] and almost certainly possess
the same pairing symmetry, meaning that (for the most
part) we will not separate them in our analysis.

The remainder of this paper is structured as follows. In
section II we discuss experimental constraints on the in-
ternal (spin and valley) structure of the pairing; it is here
that we argue for the aforementioned spin-valley lock-
ing. In section III we discuss the orbital structure of the
pairing, and give several arguments for the existence of a
nodal gap. Section IV is devoted to a discussion of future
experiments that could bolster or refute our proposal for
the pairing, and we conclude in V.

II. INTERNAL STRUCTURE: SPIN AND
VALLEY

We will write the order parameter matrix of the SC as

[∆̂k]αβ , where the indices α, β run over spin and valley,

and where ∆̂T
−k = −∆̂k by Fermi statistics. We will

argue that the combination of several key observations

from experiment allow the matrix structure of ∆̂k to be

uniquely determined.

Early observations of a critical in-plane field Bc, ‖
in TBG approximately equal to its Pauli-limiting value
[2] naturally suggested spin singlet pairing. However,
strong evidence against this assumption has subsequently
emerged. Bc, ‖ is actually strongly angle-dependent [14].
Such an anisotropic critical field cannot be produced by
Zeeman effects of the in-plane field alone, as spin-orbit
coupling is negligible in TBG. In fact, an in-plane field
also has a significant orbital coupling in TBG owing to
the large moire lattice constant (so that the magnetic
flux through an inter-layer unit cell is not small). In-
deed a simple estimate [14] shows that the strength of
this orbital coupling is comparable to the Zeeman cou-
pling. Furthermore, this orbital effect is pair-breaking,
as it leads to a difference in dispersion between single
particle states related by time reversal. Thus the value
of Bc, ‖ in TBG does not offer a clear-cut probe of the
spin structure of the pairing.

Crucial input comes from comparing with a differ-
ent system, namely alternately twisted trilayer graphene
(TTG) near its magic angle, which has also been shown to
have robust superconductivity for −3 < ν < −2 [28, 29].
The essential physics of the flat bands of TBG and TTG
can reasonably be expected to be similar, however, TTG
has a mirror symmetry which simplifies some aspects of
its physics [31]. The band structure of TTG consists of
a mirror-even flat band sector which is essentially the
same as in TBG, and a mirror-odd sector with a dispers-
ing Dirac cone (for each valley) that is essentially the
same as that in familiar monolayer graphene. Thus we
may say that TTG = TBG + MLG at the band structure
level. These two sectors will be coupled together by the
interactions, and by perturbations that break the mirror
symmetry. Nevertheless we may hope to obtain impor-
tant clues into the physics of TBG by studying TTG. In
contrast to TBG, in TTG, the mirror symmetry ensures
that in the presence of the in-plane field, the flat band
dispersions of time reversal related single particle states
are degenerate. Thus the orbital depairing effects of an
in-plane field are expected to be strongly suppressed, so
that the main effects of such a field occur through Zee-
man coupling [37, 38]. Remarkably, the SC in TTG was
shown [33] to strongly violate the Pauli limit in the entire
range of doping between ν = −2 and ν = −3. Crucially,
this violation was seen even near ν = −3, where the SC
is weakly coupled [28, 29, 33] (since the Pauli-limit vi-
olation is calculated assuming a BCS relation between
Tc and the gap, this violation is significant only in the
weak coupling regime). This observation has been con-
firmed in subsequent studies on TTG [23, 34], and strong
Pauli-limit violation has also been demonstrated in magic
angle quadruple- and quintuple-layer devices, for which
the story is similar to that of TTG [24, 39]. On the face
of the above evidence, we are thus lead to the conclu-
sion that the superconductivity in TBG — despite first
appearances — is actually not spin singlet.

Given this, the natural next step is to examine or-
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der parameters with spin triplet pairing. First consider
Sz 6= 0 triplet pairing (|↑↑〉 or |↓↓〉), in which the Cooper
pairs have nonzero magnetization. We claim that this
type of pairing is in conflict with several different exper-
imental observations. First, the finite magnetization of
the Cooper pairs would mean that Tc and the critical
current Ic would increase in a small applied magnetic
field (either in-plane or out of plane). Indeed, since the
Cooper pair magnetization couples to the field via a term

proportional B·Tr[∆̂†s∆̂], the gain in Tc and Ic from this
coupling is linear in B, which at small B will always win
out over the suppression of Tc, Ic due to orbital effects
(which enter at order B2). This is in direct tension with
the fact that both Tc and Ic have been observed to de-
crease monotonically with small applied fields in every
existing experiment.

A second factor supporting this claim comes from Ref.
[40], where it was pointed out that in zero field, the criti-
cal current density Jc of a Sz 6= 0 triplet superconductor
is bounded from above by the current density induced by
a 4π phase winding across the sample: Jc ≤ 8πeρs/~Lx,
where ρs is the superconducting phase stiffness and Lx is
the linear size of the sample in the direction along which
the current is measured (this fact is due to the topology
of the order parameter manifold being so as to not admit
any well-defined vortices). This gives a critical current
bounded from above by

Ic ≤ I4π = 8πeρsα/~ ≈ 530× α ρs
1 K

nA, (1)

where α = Ly/Lx is the aspect ratio. As in [40], let
us estimate ρs by way of ρs ≈ 2TBKT /π, so that I4π ≈
330 × TBKT /(1 K). If we take TBKT = 2K and α ≈ 1/6
to reflect the measurement in [29], this gives a critical
current of I4π ≈ 100 nA, which is about a factor of 7
smaller than the current observed in [29].1

For these reasons, we will regard Sz 6= 0 triplet pairing
as being ruled out by experiment. At the very least, any
theories proposing such a pairing channel [38] will need
to explain how to resolve the existing tension with the
measurements of Tc and Ic.

Further input into the nature of the superconductor is
provided by considering the normal state from which it is
born. As already mentioned, at filling −3 < ν < −2, this
normal state has a carrier density ν + 2 per unit cell, i.e,
only the excess doped holes of the correlated insulator
state are mobile [1]. Crucially it has long been observed
that the Landau fan that emanates from ν = −2 in the
hole doped side has a 2-fold degeneracy [1, 3], in contrast
to the natural 4-fold degeneracy expected due to the pres-
ence of 4 flavor degrees of freedom (2 spin and 2 valley).

1 Further tests can be performed by investigating the dependence
of Ic on system size. If the critical current is set by I4π , which
depends only on the aspect ratio α, Ic should not scale with
system size. In a more conventional scenario where the critical
current density is size-independent, Ic ∝ L.

This observation is naturally explained if there is flavor
polarization already in the normal state such that the
number of available electron flavors is reduced compared
to charge neutrality by a factor of 2. This observation
is also suggested by the series of ‘resets’ in the chemical
potential seen at integer fillings [9, 32], indicating fla-
vor polarization which survives up to large temperatures
Tpol ≈ 25K � Tc. Theoretically zero-momentum fla-
vor ordering (flavor ferromagnetism) occurs naturally in
strong coupling treatments of TBG [41–43] and related
flat band systems [44–48], and is encouraged by the band
topology present in many of these systems. Such zero
momentum ordering may also characterize the correlated
insulator states of TBG, in contrast with the antiferro-
magnetism typical of Mott-Hubbard models of correlated
insulators in systems with trivial band topology.

Thus we will assume that the normal metallic state
from which the superconductivity descends has zero mo-
mentum flavor ordering that is responsible for the reduc-
tion of the flavor degeneracy to 2. The precise direction
of flavor ordering may be sensitive to details of different
systems. Indeed we will not need to assume that the
direction of any flavor ordering in the correlated insula-
tor is necessarily the same as in the doped metallic state
that obtains for −3 < ν < −2. We note also that there
is direct experimental support for flavor ferromagnetism
in TBG aligned with a hexagonal Boron Nitride (hBN)
substrate at ν = 3 [6, 8].2 In that system the experiments
support valley polarization (so that one valley is occupied
preferentially relative to other), leading to spontaneous
breaking of time reversal symmetry. For TBG unaligned
with hBN, which is the situation we are concerned with
in this paper, we will discard the possibility of this kind
of flavor ordering: time reversal breaking would have lead
to hysteresis at a non-zero temperature, which is not seen
(furthermore, such valley polarization is not easily com-
patible with superconductivity, which generally involves
pairing of time-reversal related single particle states).

Thus we are lead to consider pairing that takes place
in a flavor-polarized state, in which the number of avail-
able electrons is reduced by half from the 4 degenerate
flavors (2 spin, 2 valley) present near ν = 0. The SC can-
not involve any additional flavor polarization on top of
this, as additional polarization is ruled out by the STM
measurements of [22], which find a zero-bias conductance
dI/dV (0) less than 50% of the normal-state value at weak
tunneling strengths (where dI/dV probes the SC DOS),
and a dI/dV (0) of more than 150% of the normal-state
value at strong tunneling strenghts (where dI/dV is dom-
inated by Andreev reflection processes).3 Letting P de-

2 Flavor polarization — in the specific form of valley polarization
— is also seen in ABC trilayer graphene aligned with a hBN
substrate [7], and leads to time reversal breaking ferromagnetic
order.

3 This observation alone is not quite enough to rule out Sz 6= 0
triplet pairing; see Sec. IV C.
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note the projector onto the polarized subspace, the pair-
ing function must then satisfy

P∆̂k = ∆̂kPT = ∆̂k, (2)

with rank [P] = 2. In the following we will write P in
terms of valley-space Pauli matrices τµ and spin-space
Pauli matrices sµ.

One constraint which we view as being rather safe
(both theoretically and experimentally) is that the pair-
ing occurs between electronic states related by time rever-
sal: thus we assume that the pairing is intervalley, and
occurs at zero center-of-mass momentum. As already
mentioned, this assumption rules out valley polarization
(i.e. P = (1± τz)/2). This leaves us with the options of
either polarizing spin, or else polarizing a linear combi-
nation of K and K ′ valleys (by taking P = |v〉〈v|, with
|v〉 the +1 eigenvector of the matrix cos(θ)τx+sin(θ)τy).
Distinguishing between these possibilities requires a few
more pieces of experimental information.

Given that the pairing cannot be spin singlet, suppose
first that the polarized degree of freedom is a linear com-
bination of valleys, but that spin remains unpolarized.

In this case, the matrix structure of ∆̂ can be written as

∆̂ ∝ |v∗〉〈v|d · s isy (3)

for some vector |v〉 in valley space and some complex
vector d. Since SU(2) spin symmetry is unbroken in this
scenario, we can choose d = ẑ without loss of generality,

giving ∆̂ ∝ |v∗〉〈v|sx, so that the spins pair in the Sz = 0
component of the triplet. We claim however that such
an order parameter is rather unlikely, for a variety of
reasons.

One reason comes from the experiment of [35], which
studied superconductivity in TBG placed on top of a
layer of WSe2. The presence of WSe2 serves to in-
duce SOC in TBG, both of Ising (λIτ

zsz) and Rashba
(λR(τzσxsy−σysx)) type. While the strengths of λI , λR
are unknown, best estimates place both parameters at
the level of a few mev and positive [35], which should be
large enough to have an appreciable effect on the pairing.
In particular, the Ising term acts to favor anti-parallel

spin-valley locking, and would suppress the ∆̂ ∝ |v∗〉〈v|sx
state currently under discussion as then [P, τzsz] 6= 0.
However, [35] found that the SC at ν = −2 − δ was
not suppressed in the presence of SOC, and indeed was
even made more robust, surviving down to lower twist
angles than in devices without the WSe2 layer.4 An-
other piece of evidence comes from [10, 15], which ob-
served a large entropy present at most fillings away from
charge neutrality, which was attributed to (soft) fluctua-
tions in isospin order. This entropy was seen to be fairly

4 This includes devices with twist angles low enough such that the
correlated insulator at ν = −2 was absent.

strongly quenched by the application of an in-plane mag-
netic field, pointing to the isospin ordering as occurring
in spin (rather than valley) space. Finally, while our aim
in this work is to draw solely on existing experimental
data, there is also a theoretical reason for disfavoring
Sz = 0 triplet pairing. This comes from the strong cou-
pling analysis of TBG [41], where it can be shown that
Coulomb interactions favor that the flavor polarized at
the highest energy scales be spin (either as a simple spin
ferromagnet or anti-aligned in opposite valleys).

We are then led to consider polarizations involving
spin. In this scenario, the low-energy electrons in each
valley possess only a single spin flavor, and we may write
the projector P as

P = (1 + τz)|η〉〈η|+ (1− τz)|η′〉〈η′|, (4)

where |η〉 (|η′〉) is the direction in which the spin is po-
larized in the K (K ′) valley. Since we are in a situation
with spin-valley locking (SVL), the SC forms in an envi-
ronment in which SU(2) spin symmetry has been broken,
and therefore it not need be either triplet or singlet. To
make this explicit, we may write (2) as

∆̂k =
∆k√

2
(i(τ+ − pτ−)d · s + (τ+ + pτ−)d0)isy, (5)

where p denotes the orbital parity (defined by ∆k =
p∆−k), and the 4-vector dµ = (d0,d) is defined by

dµ ≡ 〈η′∗|isysµ|η〉/
√

2. In the following we will take
|η〉 , |η′〉 to be real, as their phases can simply be ab-
sorbed into that of ∆k.

The magnitudes |d|2 and |d0|2 respectively determine

the amount of triplet and singlet pairing present in ∆̂k,
and are given in terms of |η〉 , |η′〉 as

|d|2 =
1

4
(3 + η · η′), |d0|2 =

1

4
(1− η · η′), (6)

where η = 〈η|s|η〉 (and likewise for η′). Unless the spins
in the two valleys are ferromagnetically aligned (in which
case the pairing is pure triplet), both singlet and triplet
components are present.

Microscopically, the relative orientation of the spins in
the two valleys is determined by a term JHη·η′, where JH
is a parameter known as the intervalley Hunds coupling.
Determining the sign of JH from first principles is diffi-
cult, as effects from phonons and Coulomb interactions
push JH in opposite directions. We note however a recent
electron spin resonance experiment [36] which observed
an anti-ferromagnetic JH > 0. This favors anti-parallel
alignment, and is consistent with the above arguments
based on the phenomenology of the SC [37, 49].

With parallel alignment ruled out, we conclude that
the spins must be aligned in anti-parallel directions in the
two valleys, as advocated for in [37] on the basis of ex-
periments in TTG (and suggested as a possibility in [50]
and examined earlier in [51]). In an in-plane magnetic
field, |η〉 , |η′〉 slowly cant to point along the field direc-
tion, which they do without inducing any pair-breaking
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effects (for details see e.g. [37, 51]). This allows the SC to
survive in in-plane fields well in excess of the Pauli limit,
explaining the observed Pauli limit violation [33, 34] in a
manner similar to the (stronger) violation seen in mono-
layer TMD superconductors [19–21]. Anti-parallel align-
ment is also suggested by the aforementioned experiment
[35] showing that the SC was made more robust in the
presence of a sizable Ising SOC term λIs

zτz, which favors
anti-parallel SVL (by time reversal symmetry, Rashba
SOC also favors anti-parallel alignment).

III. ORBITAL COMPONENT AND NODAL
SUPERCONDUCTIVITY

Having settled the matrix structure of ∆̂k, we now turn
to constraining its k dependence.

One set of experiments which have immediate rele-
vance for the form of ∆k are the STM studies performed
on TBG [22] and TTG [23]. These studies have shown
strong spectroscopic evidence of a nodal (‘V’-shaped) gap
over most of the doping range in which the SC occurs,
although there is evidence of a flatter ‘U’-shaped gap
near ν = −2 in TTG (where the SC is most strongly
coupled). Tunneling spectra have also been obtained us-
ing gate-defined tunneling junctions in a single TBG de-
vice [52, 53], but these experiments were unable to un-
ambiguously distinguish between a V-shaped gap and a
U-shaped gap that had been ‘smeared’ by finite T and
nonzero quasiparticle broadening effects.5

Before discussing the nodal character of ∆k further,
we should note that [22, 23] found evidence for a very
large optimal-doping single-particle gap of order ∆sp ∼ 1
meV in TBG and 1.6 meV in TTG — which persists
well into the normal state — and [22] a comparatively
smaller SC gap (as measured by Andreev reflection) of
∆sc ∼ 0.3 meV. There are various ways to interpret the
large separation between ∆sp and ∆sc. The point of view
we will adopt in most of this paper (although it is not
essential in much of our analysis) is that ∆sp is due to the
flavor polarization which we have argued must exist in
the normal state. Indeed, in the vicinity of ν = −2, and
in the context of a simple Hartree-Fock treatment, flavor
polarization can fix the chemical potential to be near the
charge neutrality point of the Dirac cones present in the
flavor-polarized subspace, therefore enabling a Dirac-like
density of states to persist up to the scale of the flavor
ordering, which we consequently take to be ∆sp.

Returning to the orbital character of the pairing, a
further experiment which we will argue constrains ∆k is
that of [14], in which it was found that the SC phase is

5 A devil’s advocate might try to explain the V-shaped gap in STM
in the same way, although doing so requires unphysically large
quasiparticle broadening Γ [22]. Additionally, the fact that the
spectra in TTG appear to be more V-shaped at weaker coupling
[23] suggests that an s-wave gap with large Γ is rather unlikely.

robustly nematic, with the in-plane critical field B ‖ ,c =
B ‖ ,c(cos θB , sin θB) having a strong 2-fold anisotropy as
a function of θB (with this finding appearing again in
Ref. [24]). The results of [14] strongly suggest that the
nematic director is weakly pinned by strain, and that in
the absence of strain the system has an appreciable ne-
matic susceptibility. Indeed, the nematic director varies
continuously as a function of doping. This is expected
if the nematic director is pinned by a combination of
strain and a large nematic susceptibility, but is hard to
understand in the absence of strain (as then there would
only be 3 inequivalent choices for the director). Further-
more, the direction of nematicity in [14] is also changed
upon heating and re-cooling the sample, indicating that
the strain plays the role of selecting out (i.e. pinning)
a domain of the order parameter, rather than being the
sole driving force behind the anisotropy. In the following
we will argue that these observations are only consistent
with a nodal order parameter (and not simply a |∆k|
which is an anisotropic, but everywhere nonzero, func-

tion of k̂). This lets us argue for the presence of nodes
independently of STM, bolstering the case for their exis-
tence.

To explore the consequences of nematicity in detail, we
will perform a Ginzburg-Landau analysis of the SC in the
presence of applied strain and in-plane magnetic fields
(see the supplementary of [14] for a similar treatment).

We first remind the reader of the spatial symmetries
present in the low-energy theory of TBG (see e.g. [54]).
The point group we will focus our attention on is D6.
6 This group is generated by a sixfold rotation C3C2

and a reflection C2y. These generators are convention-
ally taken to act on the band annihilation operators
ck as C3 : ck 7→ cR2π/3k, C2 : ck 7→ τxc−k, and
C2y : ck 7→ c(kx,−ky). However, since we are considering
superconductors that form in an environment with SVL,
the above forms of C2, C2y are not symmetries in gen-
eral.7 Instead, the actions of C2, C2y must be combined
with spin rotations (due to the aforementioned sponta-
neously generated spin-orbit coupling) . For example, if
we let |η〉 = |↑〉 , |η′〉 = |↓〉, then C2, C2y are modified by
an addition action of sx.

We will assume that the normal state of the system is
not nematic, and preserves the full D6 rotational sym-
metry of the BM model. This is motivated in part by
the fact that across the range of twist angles where SC
is observed, only the SC (and not the normal state) was
found to be robustly nematic [14], suggesting that the
analysis of the superconductor can be safely carried out
in the setting of a D6-symmetric normal state. Further
comments to this effect will be given at the end of this
subsection.

6 D6 is isomorphic to C6v indicated in [54].
7 Unless |η〉 ∝ |η′〉 so that the pairing is an Sz 6= 0 triplet — but

we have already suggested that such a situation is unlikely.
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Assuming then that the normal state preserves D6,
the orbital part of the order parameter ∆k can be char-
acterized in terms of the irreps of D6. Each of these
irreps in principle contain order parameters transform-
ing as linear combinations of an infinite number of an-
gular momentum channels l. All told there are six ir-
reps: the one-dimensional A1, A2 (l = 0 mod 6) and
B1, B2 (l = 3 mod 6) irreps, and the two-dimensional
E1 (l = 1, 5 mod 6) and E2 (l = 2, 4 mod 6) irreps.
Here A2 (B1) differs from A1 (B2) by the action of C2y

differing by a factor of −1, while C2y is represented as a
nontrivial matrix for E1 and E2).

Since only one superconducting transition is observed,
we will only consider pairing involving a single irrep. We
will also only consider order parameters that contain only
the single lowest angular momentum l harmonic in their
respective irrep (e.g. only l = 1 for the E1 representa-
tion). We will thus refer to the the A1/2, B1/2, E1, E2

irreps as s±, f±, p, d pairing channels respectively, where
the ± subscripts on s, f refer to C2y eigenvalues. Keeping
only the lowest harmonic simplifies things to some extent,
and is also experimentally motivated: order parameters
that combine more than one value of l generically have
a density of states which is non-analytic at multiple dif-
ferent nonzero frequencies, in contrast to the relatively
distinct V-shaped gaps seen experimentally.

For pairing in the p and d wave irreps, we can decom-
pose the function ∆k into chiral components as

∆k = ∆+
k + ∆−k , (7)

where ∆±k are parametrized in terms of a complex num-
ber ∆ and two angles ψ,ϕ:

∆+
k = cos(ψ)∆eil(θk+ϕ) ∆−k = sin(ψ)∆e−il(θk+ϕ)

(8)
Note that for these irreps, ∆k has nodes iff cos(ψ) =
± sin(ψ); for all other choices of ψ, ∆k is fully gapped
(the magnitude of the gap is uniform in momentum space
iff ψ ∈ π

2Z). Under the action of the generating elements
of D6, rotation by an angle δ about the ẑ-axis and the
C2y reflection act respectively as

Rδ : ϕ 7→ ϕ+ δ

C2y : ψ 7→ ψ + π/2, ϕ 7→ −ϕ+ π/2l, ∆ 7→ i∆.
(9)

From a symmetry perspective, it is straightforward to
enumerate the ways in which heterostrain and the ap-
plied in-plane field enter into the Landau-Ginzburg free
energy at leading order. For the s± and f± irreps, one
only has the trivial couplings |∆|2B2 and |∆|2(εxx+εyy),
where εxx + εyy is the bulk-area expansion of the two-
dimensional crystal. This follows simply from the fact
that these irreps are one-dimensional. The fact that the
s±, f± irreps have no nematic couplings to the field and
strain at leading order means that they are likely not
compatible with the experimentally observed nematicity;
hence we will focus on the p and d wave irreps in what
follows.

For the p and d irreps, the form of the coupling follows
from the tensor product E1,2 ⊗ E1,2 = A1 ⊕ E2. The
produced product of A1 is the isotropic coupling to the
magnetic field and the bulk-area expansion strain tensor,
just as with the s±, f± irreps. The produced product of
E2 permits a coupling to the magnetic field and strain.
Defining the vectors

DB ≡ (B2
x −B2

y , 2BxBy) ≡ B2(cos(2θB), sin(2θB))

Dε ≡ (εxx − εyy, 2εxy) ≡ ε(cos(2θε), sin(2θε)),
(10)

the gauge-invariant couplings between the external fields
and the order parameter are, to quadratic order in ∆,

1

2
|∆|2 sin(2ψ)DB/ε · (cos(2lϕ),−p sin(2lϕ)), (11)

where again p = (−1)l is the orbital parity. These terms
are invariant under all SO(2) rotations in the p-wave
case, but only under C6 rotations in the d-wave case.
Thus in the d-wave case, any nematicity in the in-plane
critical field owes its existence entirely to the fact that the
rotational symmetry group of the SC is discrete, instead
of continuous.

Equipped with this symmetry knowledge, to sixth or-
der in ∆ and lowest order in the strain and magnetic
fields, the Landau-Ginzburg free energy F for the gap
function may be written as (see also [14])

F =
K

2
|∆|2(∇φ)2 + r|∆|2

+
1

2
|∆|2 sin(2ψ)

(
ε cos(2θε + 2lpϕ) +B2 cos(2θB + 2lpϕ)

)
+
g

4
|∆|4 sin2(2ψ) +

u

2
|∆|4

+
w

8
sin3(2ψ)|∆|6 cos(6lϕ) + v(cos6(ψ) + sin6(ψ))|∆|6,

(12)
where ∆ = |∆|eiφ, and r is a function of B2 and εxx+εyy
which is negative at B = 0. Note that here we have kept
only gradients in φ, since |∆|, ψ, ϕ will all be made mas-
sive by the quadratic and quartic couplings. The term
proportional to g favors either a nodal order parameter
(| sin(2ψ)| = 1) if g < 0, or a chiral uniformly gapped
order parameter (sin(2ψ) = 0) if g > 0. Minimizing over
ψ at small |∆|, where the sextic terms can be neglected,
gives

sin(2ψ) =


|r̃|

g|∆|2
if 0 <

|r̃|
g|∆|2

< 1

±1 else

(13)

where we have defined the field contribution to r as

r̃ ≡ ε cos(2θε + 2lpϕ) +B2 cos(2θB + 2lpϕ), (14)

with ϕ always able to be chosen such that r̃ < 0.
Note that a nodal order parameter (| sin(2ψ)| = 1) is

always preferred if g < 0, while it is preferred even if
g > 0, provided |r̃|/(2g|∆|2) > 1 (which will always be
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satisfied close enough to Tc). On the other hand, if the
order parameter is fully gapped (| sin(2ψ)| 6= 1), we must
have sin(2ψ) = |r̃|/g|∆|2. Upon inserting this into F , we
find that in this case, the dependence of F on r̃, which
contains the dependence of F on θε, θB , is entirely con-
tained in the term −|r̃|2/2g, which is in fact independent
of ∆. This means that provided the order parameter
is fully gapped, the critical current and in-plane critical
fields computed within Landau-Ginzburg will not be sen-
sitive to θε, θB , since the value of ∆ which minimizes F
will be independent of these quantities. Since the criti-
cal current and field do experimentally show dependence
on at least θB , we conclude that the order parameter
is very likely to be nodal, independently of information
from STM studies.

This still leaves open the question of whether the pair-
ing is p-wave or d-wave, which is more subtle to address
and cannot be determined from the existence of nematic-
ity alone within the above framework. We will have more
to say about distinguishing p and d in section IV.

We now briefly come back to our assumption that the
order parameter transforms in an irrep of D6. In the
experiments of [14], nematicity in the normal state was
found only for devices very close to the magic angle, while
nematicity in the SC was found over a wider range of
twist angles. Furthermore, even in the devices with a
nematic normal state, the nematicity was observed to be
strongest only over a narrow doping range near ν = −2.
As in [14], we interpret this as indicating that the normal
state breaks C2 in the absence of strain only for a cer-
tain narrow range of twist angles and doping, that strain
merely weakly selects out a nematic direction and does
not enter as a significant C2-breaking field, and that the
normal-state nematic order parameter is not directly re-
lated to the sin(2ψ)(cos(2lϕ),−p sin(2lϕ)) nematic order
parameter of the SC.

Finally, we should mention that several STM studies
have observed nematicity in the normal state [55–57].
These works found evidence of a large electronic nematic-
ity susceptibility near ν = 0, near ν = ±1 in Ref. [56],
and near the correlated insulators in Ref. [57]. This
is consistent with the transport measurements of [14],
where nematicity in the ν < 0 normal state — when
it exists — is strongest near ν = −2, and weak / ab-
sent near ν = −3. Since by all accounts there is only
one superconducting phase for −3 < ν < −2, we view a
treatment which uses unbroken D6 symmetry to classify
the order parameter as being legitimate, with nematic-
ity in the normal state not playing an essential role in
determining the pairing symmetry.

IV. FUTURE EXPERIMENTS

In this section we will discuss ways in which our pro-
posal for the pairing symmetry can be investigated in
future experiments, possible ways to distinguish p-wave
from d-wave, and some more general features of the su-

FIG. 1: A schematic of the Andreev bound state
measurement needed to distinguish between p and
d-wave pairing. The grey region marked N is a normal
metal, while the green bars Ii (i = 1, 2, 3) denote
different interfaces at which the zero-bias tunneling
conductance G0,i is measured. A comparison of the
values of G0,i can distinguish between p-wave pairing
(where all of the G0,i are distinct) and d-wave pairing
(where G0,1 = G0,3). For the orientation of the nodes as
shown, the d-wave order parameter would exhibit large
zero bias peaks at I1 and I3 and no peak at I2, while
the p-wave order parameter would exhibit no peak at
I1, a medium peak at I2, and a large peak at I3.

perconducting phase diagram. Most of this discussion
will be couched in the language of BCS theory, and as
such is perhaps not a priori directly applicable for fillings
close to ν = −2, where the superconductor is strongly
coupled. In appendix A 2 we will discuss an alternate
approach which does not rely on BCS theory and which
is more well-suited for the strong-coupling regime. In any
case, assuming that the structure of the pairing (which is
what we are interested in) is unchanged between ν = −2
and ν = −3, a weak-coupling analysis valid only near
ν = −3 is sufficient. Given the discussion of the previous
section, we will assume throughout that ∆k as a function
of angle θ on the Fermi surface takes the form

∆θ = ∆eiφ cos(l[θ + γ]), (15)

with l = 1, 2 (p-wave or d-wave), ∆ real, and γ some
angular offset picked out by strain.

A. Andreev bound states

Andreev bound states, which occur at the edges of a
superconductor, are a manifestation of the quantum in-
terference effects of electron and hole quasiparticles scat-
tering off the superconducting order parameter. These
bound states manifest themselves through the appear-
ance of a sharp peak in the zero-bias conductance G0, as
measured e.g. by the tunneling current between the su-
perconductor and an adjacent normal metal. Crucially,
for nodal gaps, the size of the peak in G0 depends sensi-
tively on the relative orientation between the nodes and
the edge unit normal. This consequently allows a mea-
surement of G0 to distinguish between different orbital
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pairing symmetries [58], a phenomenon which has been
studied very extensively in the context of d-wave pair-
ing in the cuprates [59]. In the present setting, a careful
study of G0 for various different edge geometries is able
to distinguish between p and d-wave pairing.

To understand this, consider a sample of superconduct-
ing TBG which is adjacent to a region of normal metal, as
depicted in Fig. 1. In the illustration of Fig. 1, the super-
conducting and normal regions are drawn as being part
of the same TBG device, with the boundary between the
two being defined using electrostatic gates (as in the ex-
periments of Refs. [52, 53]). Note that in order to clearly
resolve the features of the zero-bias conductance, it may
be desirable to separate the superconducting and normal
regions by thin insulating barriers, so that the current at
the interface is in the tunneling regime. Another possi-
bility is to simply terminate the superconducting region
of the sample with vacuum, and to measure G0 at the
interface using STM.

We will assume that the boundary between the SC
and normal metal is broken into multiple well-defined in-
terfaces Ii (I1,2,3 in Fig. 1), with distinct unit normal
vectors ni at each interface. We require that each in-
terface be relatively smooth at the Moire scale, so that
to a good approximation, electron tunneling at Ii con-
serves momentum in the direction orthogonal to ni. The
tunneling current at a given interface Ii can be analyzed
by an application of an extended version of the Blon-
der–Tinkham–Klapwijk tunneling theory [60]. Adapting
the approach proposed in Ref. [61] and choosing co-
ordinates such that ni = x̂, electrons with momentum
(kx, ky) are either: (i) normal reflected as electrons with
momentum (−kx, ky), (ii) Andreev reflected as a hole
with momentum (kx, ky), (iii) transmitted into the super-
conductor as an electron-quasiparticle with momentum
(kx, ky), or (iv) transmitted into the superconductor as a
hole-quasiparticle with momentum (−kx, ky). Since the
electron and hole quasiparticles in the SC live at different
momenta, they experience different pairing order param-
eters ∆+ = ∆(kx, ky) and ∆− = ∆(−kx, ky), respec-
tively. For an s-wave order parameter, these potentials
are identical. For a nodal order parameter however, ∆+

need not equal ∆−, and depending on the scattering ge-
ometry the two potentials may even have opposite signs.
If indeed sgn(∆+) = −sgn(∆−), quasiparticles scattering
at the interface experience a π phase shift, which results
in the formation of edge-localized bound states; this in
turn produces a peak in the zero-bias conductance G0

[60]. More details are provided in appendix B.

Let the angle between the first node and the interface
normal ni be denoted as ϑi. Both p and d-wave order
parameters can produce peaks in G0 for certain ranges
of ϑi. The key to distinguishing the two cases comes from
the fact that G0 is π/2-periodic in ϑi in the d-wave case,
while it is only π-periodic in the p-wave case (as can
be seen by finding the angles ϑi for which sgn(∆+) =
−sgn(∆−)). This can be summarized by saying that as

a function of ϑi, we have

G0(ϑi) ∝ cos(2lϑi). (16)

Since the alignment of the nodes in TBG is presumably
controlled by non-universal aspects like strain, there is no
way to know a priori the value of ϑi (this is in contrast to
e.g. the cuprates, where the orientation of the nodes is
determined by the lattice). However, by measuring G0 at
multiple interfaces possessing different orientations ni, it
is possible to sample a range of ϑi values, and to thereby
distinguish between p and d-wave pairing by examining
the dependence of G0 on interface angle. As an example,
consider the setup in Fig. 1, where three different inter-
faces are formed at values of ϑi differing by π/2. For the
interface I1 and the orientations of the nodes as shown
in the figure, the d-wave gap will display a strong peak
in G0, while the p-wave gap will display no peak. For
interface I2 the d-wave gap will display no peak, while
the p-wave gap will display a small peak. Finally, for in-
terface I3, both the p and d-wave gaps will display strong
peaks. While these statements were made referencing the
particular orientation of nodes drawn in Fig. 1, the exact
orientation is unimportant: the important thing is only
to sample a number of interface orientations ni which is
large enough to allow one to measure the periodicity of
G0 with respect to the interface angle. Wtih this infor-
mation, the angular momentum of the order parameter
can then be read off from (16).

B. Josephson experiments

Josephson experiments are a standard way of revealing
phase-sensitive information about the pairing symmetry.
It turns out however that SVL and the extremely tiny
size of the Moire BZ lead to complications that frustrate
many attempts to use such experiments to distinguish
between p and d-wave gaps.

First consider a single Josephson junction formed by
placing TBG and a conventional s-wave SC side-by-side.
In other contexts, the properties of such Josephson junc-
tions have been investigated in exhaustive detail in the
literature [62], but in the present setting the presence of
valley degrees of freedom and SVL provides a few novel-
ties.

Let φS and φL denote the phases of the TBG SC and
s-wave lead, respectively. For a junction with no appre-
ciable intrinsic SOC and whose interface has unit normal
an angle θn from the x̂ axis, we show in appendix C that
the free energy associated with 2e tunneling events at the
junction takes the form

FJ ∝ cos(φS − φL) cos(2θn − (−1)llγ). (17)

Note that the Josepshon current I2e is nonzero for both
p and d-wave pairing; this is made possible by the fact
that the pairing is an admixture of both spin-singlet and
spin-triplet. Furthermore, the dependence of I2e on θn
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FIG. 2: A schematic of a squid experiment one might
imagine using to distinguish different orbital pairing
channels. The green and purple lines represent
conventional s-wave superconducting leads. A SQUID
experiment using the green loop will be able to
distinguish s from d or p (but cannot differentiate p
from d), while one along the purple loop will generically
fail to distinguish between any of s, p, and d.

is the same for both pairing symmetries (although in the
p-wave case, I2e vanishes in the limit of a circular Fermi
surface, where the dispersions in the K and K ′ valleys
are identical).

The dependence of FJ on θn allows a SQUID-type ex-
periment to provide further evidence against s-wave pair-
ing. In such an experiment, one connects loops of con-
ventional s-wave lead to the TBG device, forming two
Josephson junctions with unit normals θn,1, θn,2 (see the
purple and green curves in Fig. 2). For θn,1−θn,2 = π/2,
the critical current as a function of a magnetic flux Φ
threaded through the junction will exhibit a maximum
at Φ = 0 if TBG has s-wave pairing, and a maximum at
Φ = ±π if the pairing is either p or d-wave.8 since the θn
dependence of F lJ is the same for both p and d-wave, such
an experiment cannot generically be used to distinguish
the two.

Finally, we point out that such Josephson experiments
have the ability to provide further evidence against pure
triplet pairing. Indeed, an observed nonzero 2e Joseph-
son current into an s-wave lead would rule out pure
triplet pairing, with the Josephson current in that case
being proportional to d · Tr[s] = 0.

A different (and more difficult) phase-sensitive exper-
iment for probing the orbital nature of the pairing is
Josephson scanning tunneling microscopy [63, 64]. In
such an experiment one measures the Josephson effect in
a superconducting STM tip brought close to the super-
conducting sample. Since the Josephson current is sensi-

8 Of course given the 2d nature of the problem, it will not be
possible to restrict the threaded flux to the junction region. This
is not an issue however, as for the present purposes it is enough
simply to determine whether or not the current is maximal at
Φ = 0.

tive to the angular momenta of both the tip and sample
order parameters, performing this experiment with both
s-wave and d-wave tips (using e.g. BSCCO for the latter
[64]) offers the potential to distinguish between pairing
channels in different angular momenta.

Unfortunately this technique is unlikely to be able to
distinguish p and d-wave pairing in TBG. To see this,
note that after averaging over the tip and sample Fermi
surfaces, a nonzero tunneling current I2e is only possible
if the angular momenta ltip, lsample of the tip and sample
SCs are equal. As realistically we will have either ltip = 0
or ltip = 2, we will definitely have I2e = 0 if TBG has p-
wave pairing. However, we claim that I2e will vanish even
in the case where TBG has d-wave pairing, and a d-wave
STM tip is used. Indeed, due to the huge difference in the
sizes of the tip and TBG Brillouin zones, TBG electrons
tunneling into the tip will only tunnel into small regions
near the projections of the monolayer K,K ′ points. This
means the tunneling current is in fact not sensitive to the
full d-wave nature of the tip, with the tip effectively be-
having as an s-wave gap. Therefore in all of the scenarios
we have considered, I2e = 0. An observation of a sizable
I2e 6= 0 in such a tunneling experiment would then point
to an s-wave order parameter, and force us to re-examine
our priors about the gap being nodal.

Lastly, one (rather ambitious) Josephson experiment
which could unambiguously distinguish between p and
d-wave pairing would be to assemble a heterostructure
consisting of two vertically-stacked TBG superconduc-
tors, with the top SC being able to be rotated relative to
the bottom SC by an arbitrary angle ϕ. In this case, the
Josephson contribution to the free energy is

F lJ(ϕ) ∝ ∆t∆b cos(φt − φb) cos(l[γt − γb + ϕ]) (18)

where the order parameters on the top / bottom TBG

layers are ∆
t/b
θ = ∆t/beiφ

t/b

cos(l[θ + γt/b ± ϕ/2]). For
d-wave pairing, I2e(ϕ) would therefore vanish at four lo-
cations as ϕ is varied from 0 to 2π, while for p-wave pair-
ing I2e(ϕ) would only vanish twice. Note that the ability
to continuously rotate the relative angle between the two
SCs is necessary, as γt, γb are fixed by non-universal de-
tails, and as such the relative orientation between the
nodes on the two layers is not known a priori.

C. STM experiments

One possible extension of the existing STM experi-
ments [22, 23] — which one might imagine would be capa-
ble of distinguishing p and d-wave pairing — is to perform
STM in the presence of an in-plane magnetic field B ‖ ,
and to examine the dependence of the tunneling signal
on the orientation of B ‖ . Interestingly however, in ap-
pendix D we calculate the tunneling conductance dI/dV
using Keldysh techniques and show that such information
actually does not generically suffice to distinguish p and
d-wave pairing, both in the weak and strong (Andreev)
tunneling regimes.
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Our calculation of dI/dV is done both in the limit
where the tunneling conserves momentum in the TBG
Brillouin zone, and in the limit where the tunneling ma-
trix element is completely independent of momentum. In
the latter limit—which models the STM tip as a quantum
dot—we find that the zero-bias conductance dI/dV (0)
in the strong-tunneling limit (appropriate for analyzing
point-contact spectroscopy experiments) goes as

dI

dV
(0) ∝ |

∫
dθ

2π
mθ sgn(∆θ)|2, (19)

where we have taken ∆θ ∈ R without loss of generality,
and where mθ is the effective mass in the K valley, with
C3 symmetry imposing mθ = mθ+2π/3. For nodal gaps
where ∆θ changes sign around the Fermi surface, the
angular integral thus leads to a significant suppression
of dI/dV (0). Such a suppression is not present in the
momentum-conserving limit, which yields results similar
to those obtained within the BTK analysis of Ref. [22].

This suppression could very well be an explanation for
the dips in dI/dV (0) seen in some of the devices stud-
ied in Ref. [22]. However, Ref. [22] observes at least
one device that exhibits a strong peak in dI/dV (0) in
the strong-tunneling limit. Whether this says something
about the nature of the gap or is simply due to the tunnel-
ing being approximately momentum-conserving in that
device is unclear at present.

While we are unable to distinguish p from d using
STM, STM experiments can still provide further insight
into the internal (spin and valley) structure of the or-
der parameter. For example, a further experimental test
to rule out Sz 6= 0 triplet pairing would be to perform
spin-polarized STM: in such an experiment Sz 6= 0 pair-
ing would produce a nonzero Andreev conductance, while
our proposed anti-parallel spin-valley locked state would
not. Note that Ref. [22] argued that the observation
of a sample with G0/GN ≈ 1.6 (with GN the normal
state conductance) already rules out Sz 6= 0 triplet pair-
ing, since this ratio is impossible to achieve in a setting
where the SC has a larger degree of flavor polarization
than the normal state. While the latter statement is cor-
rect, it cannot in general be used to argue against Sz 6= 0
pairing, since it is possible for the normal state to itself
be spin polarized.

D. Tuning correlations and the evolution from a
small to large Fermi surface

So far we have mostly been focused on the physics of
isolated TBG close to the magic angle. In this setting the
Coulomb interactions between electrons are very strong,
and much of the physics is controlled by the competition
between these interactions and electron kinetic energy. It
is then interesting to ask what would happen if one were
able to gradually reduce the strength of interactions. In
particular, it is natural to wonder about what happens
to the SC as this occurs, given that the SC is formed

out of an interaction-driven flavor-polarized state. Does
the SVL nature of the pairing change as the interactions
are weakened? Could there a phase transition as a func-
tion of interaction strength, where the orbital character
of the pairing changes? What is the dependence of Tc
on the interaction strength? Understanding the answers
to these kinds of questions could help us understand at
a more fundamental level why the pairing symmetry in
TBG is what it is, in a way which goes beyond the phe-
nomenological analysis we have focused on in this paper.

There have already been attempts to partially ad-
dress these questions experimentally, where the effective
Coulomb interaction in TBG is reduced by way of prox-
imitizing TBG with various metallic states [25, 26, 65].
Consider first the weak-screening limit, where the nor-
mal state is still flavor-polarized. In this limit the SC
still forms out of a small flavor-polarized Fermi surface,
whose area A is determined by hole doping away from
−2: at ν = −2− δ, Aweak ∝ δ. The normal state in this
limit furthermore exhibits T -linear resistivity [66, 67] and
hints of a Hall angle varying as cot θH ∼ T 2 [68], just as in
the strange metal phase of the cuprates. In [65], a small
amount of screening was added, which had the effect of
(very) slightly boosting Tc. While this measurement in-
dicates that the properties of the SC carry a nontrivial
dependence on ε, the limitation on the strength of screen-
ing means that only a very small range of ε was able to
be explored.

On the other hand, in [25, 26] it was suggested that a
‘large’ amount of screening was added (large ε); in this
case the SC was found to survive, while the normal state
was argued to have been transformed into a conventional
flavor-unpolarized Fermi liquid. It is still unclear to what
extent these experiments provide a completely accurate
picture of the strongly screened limit. However, it is
nevertheless in principle possible to consider tuning to
a regime in which the SC forms out of a ‘large’ Fermi
surface, whose area Alarge ∝ 2 + δ is set by the doping
away from charge neutrality.

In this picture then, the system therefore evolves with
increasing ε from a ‘small Fermi surface’ SC formed out of
a strange metal, to a ‘large Fermi surface’ SC formed out
of a Fermi liquid – see figure 3 for an illustration. This
again immediately brings to mind comparisons with (cer-
tain classes of) cuprates, where as a function of doping
p a small Fermi surface SC (with area p) evolves into a
large Fermi surface SC (with area 1+p). We find it fasci-
nating that certain cuprate compounds and TBG seem to
be so qualitatively similar in this sense, given that micro-
scopically the two materials could not be more different.

While in the cuprates the SC happens to evolve
smoothly with p, in TBG there is no a priori reason
why the superconductors in the two limits should have
the same pairing symmetry. Indeed, if superconductivity
in the strong-screening limit is driven by a conventional
phonon-based mechanism, it would seem rather unlikely
for the strongly-screened SC to possess a nodal gap, as
we have argued is likely the case for the weakly-screened
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FIG. 3: A schematic depiction of the evolution of the
SC at filling ν = −2− δ as a function of the dielectric
constant ε. In the unscreened pure system the SC is
formed out of a density of doped holes x ≈ δ, while for
strong screening the SC it is x ≈ 2 + δ. How this
evolution takes place at intermediate ε, and whether or
not Tc remains nonzero at intermediate ε (the regions
marked with ?s), is an interesting question we leave to
the future.

SC. We therefore believe that it would be interesting for
future experiments to study the evolution of the SC with
screening in more detail, and in particular to examine
what happens in the intermediate-screening regime.

Finally, note that this experiment does not necessarily
have to be done by adding a screening metallic layer; it
should also be possible to use the twist angle θ as a proxy
for interaction strength, with the evolution between the
strongly- and weakly-correlated SCs happening as θ is
reduced from the magic angle. Indeed, there are already
preliminary hints [27] of an interesting evolution of Tc
with decreasing θ.

V. DISCUSSION

In this paper we have taken a phenomenological ap-
proach to understanding the pairing symmetry in twisted
bilayer graphene. We have shown that by drawing on
various pieces of evidence in the existing experimental
literature — and taking minimal input from theory —
we are led inexorably to a rather exotic scenario, wherein
spontaneous spin-orbit coupling leads to an order param-
eter consisting of an admixture of spin singlet and spin
triplet. While we argue the pairing is likely to be nodal,
current experiments are unable to unambiguously distin-
guish between even (d-wave) and odd (p-wave) orbital
parity. We have suggested studying interfacial Andreev
bound states as a way of resolving this remaining issue.
We have also argued that TBG will not display an appre-

ciable c-axis Josephson current when proximitized with a
conventional s-wave superconductor, a claim which can
readily be tested in future experiments.

We should point out that our discussion has focused on
the properties of the SC at ν = −2− δ, and we have de-
liberately avoided directing much attention to the prop-
erties of the correlated insulator at ν = −2. Assuming
that the flavor polarization leading to anti-parallel SVL is
present in the insulator does not uniquely fix the nature
of the insulating gap, and there are various candidate or-
ders whose competition is decided by comparatively del-
icate effects [41, 69] (it is even possible in some samples
to obtain an insulating state with a ±2e2/h quantized
anomalous Hall effect at ν = −2 [70]). While it is nat-
ural to assume that the SC is obtained by doping holes
into the correlated insulator (with this scenario appar-
ently being born out in the STM study of [23]), this does
not necessarily always need to be the case, and it is possi-
ble that different types of correlated insulators (likely all
with the same type of flavor polarization) are present in
different samples that superconduct at ν = −2− δ. This
possibility is suggested by the fact that in [22] the gap was
seen to possibly close between the SC and insulator, and
by the Josephson study of [71], which found indications of
a correlated insulator that strongly breaks time reversal
being present in a device which also superconducts. All
of this discussion goes to show that flavor polarization —
rather than the existence of a correlated insulator — is
the more fundamental phenomenon to take into account
when trying to address the nature of the SC, and indeed
only flavor polarization has played a role in shaping some
aspects of our phenomenological analysis. This means
that our conclusions about the order parameter should
apply equally well in samples that exhibit superconduc-
tivity and flavor polarization, but possess no correlated
insulator (of course, whether or not it is possible to create
such a sample is a separate question).
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Appendix A: Modeling the superconductor

In this appendix we collect some formulae relevant for the discussions about pairing in the main text. We first
frame our discussion within standard weak-coupling BCS theory, and then discuss how things can be treated within
an approach better suited for a strongly coupled nodal superconductor.

1. Weak coupling

The approach we will take in this appendix will be to focus on the weak-coupling regime near ν = −3, where
TBG presumably possesses a well-defined Fermi surface out of which the SC forms. Our treatment will only describe
electrons within the partially-filled active flat band, whose electrons are labeled by spin and valley indices. In this
treatment the physics of the transformation between the sublattice and band bases — as well as the nontrivial fragile
topology of the flat bands [72] — will be completely swept under the rug, and we will simply work directly with
operators that create electrons in the active band. Ignoring the nontrivial fragile topology of the Bloch wavefunctions
is allowed for the present purposes, as all of the action will take place at the Fermi surface, and we may always fix a
gauge in which any singularities in the Bloch functions are pushed out to regions far away the Fermi surface. With
this discussion in mind then, the Bogoliubov Hamiltonian projected into the flavor-polarized subspace is

Hk =

(
ΞτzkP ∆̂k

∆̂†k −Ξ−τzkPT

)
, (A1)

where the function Ξk is

Ξk = ξk + τzδk (A2)

with ξk the K-valley dispersion and with δk the depairing energy induced by the in-plane field. While δk can be
computed within e.g. the BM model as

δk =
c0
2
B ‖ · 〈uKk|(−σx, σy)µz|uKk〉 (A3)
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(here uKk are the Bloch functions of the valence band in valley K and σa, µa are Pauli matrices in sublattice and
layer space, respectively), the bands of the state that the SC arises from will generically be modified significantly by
the flavor polarization, and hence more work is required to obtain a good unbiased estimate for δk. For now we will
simply content ourselves with using the C3 symmetry of the K valley dispersion to write δk at a given angle θ on the
Fermi surface as

δθ = B ‖ (δ0 cos(θ − θB) + δ3 cos(2θ + θB)) , (A4)

where we have kept only the two lowest harmonics in the angle θ (the subscripts on the constants δ0, δ3 denote the
angular momentum channel).

The quasiparticle Green’s function projected into HSV L is defined as the matrix Gω,k satisfying

(P ⊕ PTω −Hk)Gω,k = P ⊕ PT . (A5)

Using Ξτzk∆̂k = ∆̂kτ
xΞτzkτ

x, we find

Gω,k =

(
(ω + τxΞ−τzkτ

x)P −∆̂k

−∆̂†k (ω − τxΞτzkτ
x)PT

)
[(ω − λzτzδλzτzk)2 − E2

λzτzk]−1, (A6)

where λµ are Pauli matrices in Nambu space, and we have made the usual definition

Ek ≡
√
ξ2
k + |∆k|2. (A7)

2. Strong coupling regime

In this section we describe how the traditional weak-coupling analysis of the rest of the paper can be modified to
reflect a strong coupling situation not describable within the purview of standard BCS theory. By a ‘strong coupling
situation’, we mean one in which electrons in the superconductor are very tightly bound in Cooper pairs, with the
Cooper pair condensate and fermionic quasiparticles treated independently, rather than linked together through some
mean-field treatment. In this approach the magnitude of the gap is fixed, and the variation of the properties of the
SC with T,B ‖ are controlled solely by how these parameters affect the nodal quasiparticles, which are modeled as
massless Dirac fermions.

Our motivation for considering this description is based on several factors. One is that as discussed, TBG is likely
in a regime of fairly strong coupling close to ν = −2. Relatedly — although we prefer flavor polarization as an
explanation for the ‘pseudogap’ observed above Tc in STM — it is possible that some of this gap is coming from
Cooper pair binding energy. Finally, experimentally one observes a fairly large (factor of ∼ 2) separation between
TMF (defined as e.g. the temperature where the resistance is 50% of its extrapolated normal-state value) and TBKT .
These facts mean the suppression of the SC with T and B ‖ may be due in part to loss of phase coherence, rather
than just Cooper pair unbinding (particularly near ν = −2).

In the following we will briefly examine the response of the SC to B ‖ , assuming that ∆ is fixed and that we can get
away with restricting our attention to the nodal quasiparticles right near the nodes. The appropriate Hamiltonian to
employ in this scenario is [73]

H =
ρ0

2
(∇φ)2 +

∑
n

(
Ψ†nH

qp
n Ψn +

1

2
∇φ ·Ψ†nλzτzvF,λzτznΨn

)
, (A8)

where φ is the phase of the condensate, Ψn = (ψn, ψ
†
−n) destroys a quasiparticle with current along the θ̂n direction

with −n denoting the node at angle θn+π, ρ0 is the T = 0 phase stiffness, and where Ψ†nvF,nΨn is the current carried
by the Ψn quasiparticles. The quasiparticle Hamiltonian has the Dirac form

Hqp
n = λz(P ⊕ PT )(vF,λzτznk ‖ + τzδθλzτzn) + (λ+ − pλ−)Mηv∆,nk⊥ (A9)

where v∆,n is as in (D5), vF,n is the K-valley Fermi velocity (always positive), k ‖ (k⊥) are the momentum components
along (normal to) the node direction, and where for convenience we have defined the matrix

Mη = −pτ+|η〉〈η′|+ τ−|η′〉〈η|, (A10)
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which satisfies M†η = −pMη. This yields the Green’s function

Gω,k,n =
(
ω − αzδαzn + k ‖ λ

zvF,αzn − (λ+Mη − pλ−Mη)v∆,nk⊥
) 1

(ω − αzδαzn)2 − (k2
‖ v

2
F,αzn + k2

⊥v
2
∆,n)

, (A11)

from which one can calculate a DOS of the same form as the ω � ∆ limit of (D1).
Both T and B ‖ have the effect of making a finite density of nodal quasiparticles present in the ground state.

Since the quasiparticles carry a definite current, they can then provide a ‘counterflow’ mechanism for reducing the
supercurrent and superfluid stiffness, thereby giving a way of suppressing the SC even with |∆| held fixed (as in this
section). A calculation along the lines of that done in [74] gives the superfluid stiffness (in the clean limit)

ρij = ρ0δ
ij − 2T

∑
n

vF,n
v∆,n

θinθ
j
n ln[2 cosh(δθn/2T )]. (A12)

Again following [74], the supercurrent density J in the presence of a uniform applied vector potential A is obtained
as

J = 4ρ0A−
∑

n,s=±1

sθ̂n
v∆,n

∫ ∞
0

dν f(ν − s(δθn + A · vF,n))ν, (A13)

where f is the Fermi function (note that our conventions are such that (δJ i/δAj)|A=0 = 4ρij). To find the critical
current along a particular direction, we simply maximize the above expression with respect to A.

First consider the p-wave case. At zero field, increasing T has the effect of suppressing ρyy (for ∆θ = ∆ cos(θ)) by
an amount linear in T ; in this situation a BKT transition would occur when

√
ρxxρyy = 2T/π. The critical current

Jc obtained from (A13) has a strong nematic dependence on the current direction and on θB , and in fact when J
is normal to the nodes and T = 0, B ‖ = 0, the critical current is formally infinite within this model (since the

quasiparticles only provide a backflow current along the directions θ̂n). Now consider the d-wave case. At zero field,
both ρxx and ρyy are suppressed by an amount linear in T . The dependence of the critical current on θB is much less
anisotropic.

The extent to which the loss of phase coherence induced by quasiparticle backflow can explain the nematicity
observed in [14] (as well as the possibility of using this effect to help distinguish p from d-wave pairing) depends on
whether or not the primary effect of the in-plane field is to decrease the SC gap, or to increase the number of excited
quasiparticles present in the ground state. If the latter effect were dominant, the observed nematicity would then
be an indication that the gap is p-wave, rather than d-wave. However, since the nematicity is observed even in the
weak-coupling regime (where we expect gap suppression to be the dominant effect of the field), having the nematicity
originate from this quasiparticle backflow mechanism seems fairly unlikely.

Appendix B: Andreev bound states at SN interfaces

Andreev bound states, which occur at superconductor-normal metal (SN) interfaces and at vacuum-terminated
edges of superconductors, are a manifestation of the quantum interference effects of electron and hole quasiparticles
scattering off the superconducting order parameter. The existence of these bound states are evident from the ap-
pearance of a sharp conductance peak occurring at zero energy (i.e. the zero-bias conductance, ZBC) and can be
probed either by lateral tunneling into the edge from a normal metal, or by using STM. These bound states shine
remarkable insight into the nodal nature of the superconducting order parameter, and as such can potentially be
used to distinguish between different orbital characters [75]. We focus on the geometrical setup of TBG gated such
that a normal and superconducting region are adjacent (being separated by a narrow insulating interface) to each
other in the x-y plane, as depicted in Fig. 1. Such a setup permits an application of the (extension of [60]) Blon-
der–Tinkham–Klapwijk (BTK) tunneling theory, where unlike the c-axis STM tunneling discussed in Sec. IV C, the
quantum-mechanical boundary-value problem approach of BTK theory is valid for in-plane (i.e. two-dimensional)
tunneling phenomena.

Adapting the approach proposed in Ref. [61], electrons incident on a SN interface aligned along the [100] axis with
momentum (kx, ky) are either: (i) normal reflected as electrons with momentum (−kx, ky), (ii) Andreev reflected as a
hole with momentum (kx, ky), (iii) transmitted into the superconductor as an electron-quasiparticle with momentum
(kx, ky), or (iv) transmitted into the superconductor as a hole-quasiparticle with momentum (−kx, ky). We note that
the interface preserves translation symmetry along the y-direction. We present in Fig. 4 a schematic of the transmission
and reflection of an incident electron. Due to the electron and hole quasiparticles in the superconductors being realized



17

N SC

(kx ,ky)

(kx ,ky)(-kx ,ky)

(-kx ,ky)(kx ,ky)

x

y

− +

−+
−

+
−

+

−
+

−
+

FIG. 4: Schematic of tunneling and reflection of electron on a normal metal (N) and superconductor (SC) interface
[100], with the electron and hole velocities depicted by solid and dashed lines, respectively (adapted from [60]). The
incident electron (solid black arrow) can be normal reflected as an electron (solid pink arrow), or Andreev reflected
as a hole (dashed orange arrow), or transmitted as an electron quasi-particle (EQP) in the SC (solid blue arrow) or
transmitted as a hole quasi-particle (HQP) in the SC (dashed green arrow). The corresponding momenta for the
electrons and holes are presented beside each arrow, where for electrons (holes) the velocity and momenta are
(anti-)parallel. The momenta parallel to the interface (y-direction) is conserved. Due to the differing momenta for
the EQP and HQP, they experience differing superconducting pairing potentials (depicted for strain selected
orientation ϑn = 0) of this interface.

at different momenta, they experience pairing order parameters/potentials ∆+ = ∆(kx, ky) and ∆− = ∆(−kx, ky),
respectively. For the simple s-wave order parameter, these potentials are identical.

The unnormalized tunneling conductance is given by σS =
∫
φ

∑
α CασS,α, where α denotes the spin-valley flavor of

the electrons in TBG (e.g. K ↑ and K ′ ↓ in the case of anti-parallel SVL), Cα denotes the fraction of the electrons
with flavor α contributing to the tunneling conductance, and an integral over the azimuthal angle (φ) is explicitly

written. Using the normal (bµα)and Andreev (aµα) coefficients between flavors µ, α, the conductance (in units of e2

h )
from a single flavour conductance can be recast into,

σS,α = 1 +
∑
µ

(
|aµ,α|2 − |bµ,α|2

)
, (B1)

where µ runs over the aforementioned SVL subspace degrees of freedom (e.g. over K ↑ and K ′ ↓ in the case
of anti-parallel SVL). Indeed, within the framework of BTK theory (in particular the quasi-classical approximated
Bogoliubov-de-Gennes equations), the tunneling between different electron (α) and hole (µ) quasiparticles is permitted

in the presence of a non-vanishing order parameter, (∆̂k)αµ i.e. pairs of fermion flavors inter-linked via the associated
pairing order parameter. Each contribution to the conductance of a single flavor α is of the form [60, 61],

σS,α = σN
1 + σN |Γµα+ |2 + (σN − 1)|Γµα+ Γµα− |2

|1 + (σN − 1)Γµα+ Γµα− ei(ϕ−−ϕ+)|2
, (B2)

where ∆µα
k,± = |∆µα

k,±|eiϕ± denotes the paring potential experienced by electrons (+) and holes (−), Γµα± =
(eV )−Ωµα±
|∆µα

k,±|
,

Ωµα± =
√

(eV )2 − |∆µα
k,±|2, V is the applied bias on the normal metal-superconductor interface, and σN = σ(λ, Z) is

the normal state conductance. Here λ = kFS
kFN

cos θS
cos θN

is the ratio of the Fermi wavevector kFN in the normal metal

(kFS in the superconductor) and θN (θS) is the angle of incidence (transmission) of the incident electron (electron
quasiparticle). The BTK parameter Z is proportional to the barrier height i.e. Z � 1 for a highly transparent interface
(low barrier), and Z � 1 for a weakly transparent interface (high barrier). We note that for a given incoming α SVL
state, we have the corresponding pairing function ∆µα

k,± that relates to the transmitted/reflected SVL state µ. In the
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limit of low transmission (i.e. a high barrier interface, σN → 0), the conductance contribution acquires an appreciable
contribution in the zero energy limit (E → 0) only when ϕ−−ϕ+ = −1, i.e. when the pairing potential is of opposite
sign for the electron and hole-quasiparticles. We note that due to tunneling conductance dependence on the amount
of singlet and triplet pairings as well as the contribution of each fermion flavor, to generically obtain a ZBC it is
sufficient for such a pole in any of the α, µ combinations. As alluded to above, for isotropic s- wave order parameters,
φ− = φ+ and as such s-wave superconductors do not exhibit an appreciable ZBC.

For the d- and p-wave order parameters considered here, the requirement to obtain an appreciable ZBC requires
the associated strain angle γ to be ±π4 and (0,±π) for d- and p-waves respectively; and a vanishing ZBC occurs for
(0,±π2 ) and ±π2 for d- and p-waves respectively. Indeed varying the angular strain offset is equivalent to varying the
interface orientation, and as such performing a zero bias-conductance measurement with varying interface orientations
(for instance from [100] to [100]) would indicate a d-wave (p-wave) superconductor with the observance of two (one)
sharp peaks over the range of interface orientations (i.e. rotated over a range of 180 degrees).

Appendix C: Josephson experiments

In this appendix we will discuss various types of Josephson experiments, which are a standard way of revealing
phase-sensitive information about the pairing symmetry.

1. In-plane junctions

Focusing on a single lead whose junction has unit normal vector n = (cos(θn), sin(θn)), the tunneling Hamiltonian
is

Htun =
∑
Gn

∫
k,k′

c†S;k,τ,σTn,k,k′;τ,τ ′;s,s′(n)cT ;Kτ′+Gn+k′,s′ , (C1)

where cS (cT ) destroys electrons in the TBG sample (s-wave lead), and all repeated valley and spin indices are
summed. Here k,k′ run over the TBG BZ, while the sum over Gn is over (monolayer graphene and moire) reciprocal
lattice vectors, with K± the momenta of the monolayer graphene K (K ′) points. To account for SVL, the tunneling
matrix T is taken to conserve spin, and is proportional to the projector P.

The tunneling matrix must be invariant under rotations, invariant under time reversal, and be proportional to the
projector P. We will ignore the dependence of the tunneling matrix on the momentum of the s-wave lead (due to the
rotation invariance of the s-wave gap), and will assume that any induced SOC at the junction is negligible. We then
parametrize the tunneling matrix as

Tk = (t0 + t2(k · n)2)P + · · · , (C2)

where · · · are higher order in k ·n. In the following we will assume that the momentum non-conserving n-independent
part of Tk is largest, and will work to linear order in t2/t0. The free energy of the Josephson junction coming from
2e tunneling events is then

FJ = Re
∑
ω

∫
k

Tr[FSω,k(FLω )∗](t0 + t2k
2 cos(θk − θn))2, (C3)

where FS/L are the anomalous Green’s functions of the TBG sample and s-wave lead, respectively. FSω,k is (see

appendix A)

FSω,k = eiφ
S

∆S
k

(
τ−
|η′〉〈η|
D−k

− pτ+ |η〉〈η′|
Dk

)
, (C4)

where ∆S
k is real and Dk ≡ ω2−(ξ2

k+ |∆S
k |2), with ξk the dispersion in the K valley as before. FL on the other hand is

simply proportional to isy and the gap ∆Leiφ
L

of the s-wave lead, and carries no important momentum dependence.
We then have

FJ = Re
∑
ω

∫
k,k′

ei(φ
S−φL)∆L∆S

kD
p
k(t0 + t2k

2 cos(θk − θn))2, (C5)
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where we have defined the functions

Dpk ≡ D
−1
−k + pD−1

k . (C6)

Consider first the d-wave case, where the orbital parity is p = 1. Since D+
k is invariant under C6 rotations, and as

the gap is ∆S
k = ∆S cos(2θk − γ) which contains only angular momentum l = ±2 harmonics, the integration over θk

produces (to leading order in t2/t0)

F l=2
J = t0t2B2 cos(φS − φL) cos(2θn − 2γ), (C7)

where B2 is an unimportant constant proportional to ∆S∆L and the zeroth angular harmonic of D+
k (the next leading

harmonic is the sixth, which produces a subleading term proportional to t22 cos(4θn − γ)).
Now consider the p-wave case, so that p = −1. The lowest nonzero harmonic of D−k has angular momentum 3, and

so with ∆S
k = ∆S cos(θk − γ) we obtain

F l=1
J = t0t2B1 cos(φS − φL) cos(2θn + γ), (C8)

where B1 is yet another unimportant constant proportional to ∆S∆L and the third angular momentum of D−k . Note
that the Josepshon current I2e is generically nonzero for both p and d-wave pairing.

Now consider a setup where a loop of a conventional s-wave SC is attached to TBG at two leads, with normal

vectors na, a = 1, 2. Let the lead order parameter at the two junctions be ∆Leiφ
L
a . The combined free energy for

both Josephson junctions is then

F lJ = t0t2Bl
∑
a=1,2

cos(φS − φLa ) cos(2θna − plγ). (C9)

The important thing to note here is that the dependence on θna is the same for both l = 1 and l = 2 — therefore
within the context of the approximations made above, we cannot use these types of phase-sensitive experiments to
distinguish p from d-wave gaps. Note however that in the p-wave case, the nonvanishing of I2e owes its existence
entirely to the fact that D−k 6= 0, i.e. to the difference in the dispersions in the K, K ′ valleys (in a conventional SC
without valley indices this effect would not arise, and the p-wave case would yield I2e = 0 in the absence of SOC).
Intuitively, the C3 anisotropy of the K-valley dispersion and the fact that C3 only possesses a single 2d irrep combine
to prevent this and similar experiments from distinguishing p and d pairing. We can however use SQUID experiments
to distinguish p and d from s: in the usual corner SQUID geometry, where θn1

= θn2
+ π/2, an s-wave gap has a

minimum in the free energy for φL1 − φL2 ∈ 2πZ, while p and d-wave gaps have minima for φL1 − φL2 ∈ π + 2πZ.

2. c-axis junctions

We now discuss situations where a Josephson junction is formed along the c-axis, with a probe SC either directly
stacked on top of the TBG sample, or embedded on a superconducting STM tip. In what follows we will assume that
the probe is a singlet SC with either s or d-wave pairing.

If the tunneling matrix T is completely independent of momentum, the contribution of 2e tunneling events to the
Josephson current will vanish as long as the TBG order parameter ∆S

θ is nodal and has a single harmonic (
∫
θ

∆S
θ = 0).

While the total current will be rendered nonzero by 4e Josephson tunneling events, this case can be distinguished by
a doubling of the Josephson frequency, dφ/dt = 4V [76] (and regardless, the current in this case is likely to be quite
small). Thus in this limit we can distinguish between s-wave and order parameters with nonzero angular momentum
l, but cannot distinguish between different values of l.

Consider then the limit in which the tunneling is momentum conserving to a good approximation, with the dominant
tunneling events being those containing a relatively small number of Umklapp scatterings. This means that we can
effectively model a TBG electron in valley τ as only coupling to electrons in the probe SC with momenta Kτ,a + k′

with k′ < Λ, where Λ� |K| is some cutoff much less than the size of the monolayer graphene BZ, and where a = 1, 2, 3
labels the locations of the monolayer graphene Kτ points when projected into the BZ of the probe SC (with the probe
Fermi surface assumed for simplicity to lie fairly close to all of the Kτ,a).

Calculations along the lines of those performed for in-plane junctions then yield

FJ = Re
∑
ω

∫
k,k′

ei(φ
S−φP )Tk,k′∆

P∆S
k

(
〈η|sy|η′〉
D−k

− p 〈η
′|sy|η〉
Dk

)
, (C10)
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where T is a function proportional the square of the bare tunneling strength and we have taken the effective probe

order parameter felt by the TBG electrons as sy∆P eiφ
P

, where the momentum-dependent quantity ∆P is an average
of the probe order parameter over the projection of the monolayer Kτ points into the probe BZ. For the Sz 6= 0 triplet
state where |η〉 ∝ |η′〉 (which we have already argued is disfavored by transport experiments) we have 〈η|sy|η′〉 = 0,
and the charge-2e Josephson current vanishes, I2e = 0.9 On the other hand, for the anti-parallel SVL state we have
advocated for, we have

FJ = Re
∑
ω

∫
k,k′

ei(φ
S−φP )Tk,k′∆

P∆S
kD

p
k, (C11)

where Dpk ≡ D−1
−k + pD−1

k . Due to the C3 symmetry of the K-valley dispersion, D+
k is invariant under C6 rotations,

while D−k is only invariant under C3 rotations. In any case, since the tunneling Tk,k′ presumably does not break C6

rotations, the integral over k will lead to I2e = 0, regardless of the orbital angular momentum of the probe and TBG
superconductors (as long as the latter is nonzero). This is essentially due to the fact that the TBG electrons tunnel
only into a small region of the tip BZ near the K,K′ points; this prevents e.g. the angular anisotropy of a d-wave gap
in the probe SC from compensating that of a d-wave gap in the TBG sample. Therefore in all of the c-axis scenarios
we have considered, I2e = 0. An observation of a sizable I2e 6= 0 in such a c-axis tunneling experiment would then
point to an s-wave order parameter, and force us to re-examine our priors about the gap being nodal.

3. Stacked bilayers

Finally, consider a heterostructure consisting of two vertically-stacked TBG superconductors, with the top SC
being able to be rotated relative to the bottom SC by an arbitrary angle ϕ. In this case, the Josephson free energy
is (assuming a tunneling matrix Tk,k′ = Tδk,k′ for simplicity)

F lJ(ϕ) ∝ T 2∆t∆b cos(φt − φb) cos(l[γt − γb + ϕ]) (C12)

where the order parameters on the top / bottom TBG layers are

∆
t/b
θ = ∆t/beiφ

t/b

cos(l[θ + γt/b ± ϕ/2]). (C13)

For d-wave pairing, I2e(ϕ) would therefore vanish at four locations as ϕ is varied from 0 to 2π, while for p-wave pairing
I2e(ϕ) would only vanish twice. Note that as in the context of the Andreev bound state experiment discussed in the
main text, the ability to sample multiple different values of ϕ using the same two TBG superconductors is necessary,
since γt, γb are fixed by non-universal details in a given device, and as such the relative orientation between the nodes
on the two layers is not known a priori.

Appendix D: Tunneling conductance

In this appendix we provide a discussion of the tunneling conductance dI/dV from a normal tip into a TBG
superconductor, both the simpler weak-tunneling limit relevant for standard STM studies, as well as the more involved
strong-tunneling limit relevant for point-contact spectroscopy.

1. Weak tunneling limit: STM current

First consider the regime in which the tunneling strength is weak. In this regime the tunneling conductance dI/dV
is simply proportional to the local DOS in the SC, which is computed from − 1

2π Im
∫
k

Tr[G(ω + i0+,k)(1 + λz)] as

ρS(ω) =
1

π

∑
s=±1

∫
dθ

2π
mθ Θ((ω + sδθ)

2 − |∆θ|2)
|ω + sδθ|√

(ω + sδθ)2 − |∆θ|2
, (D1)

9 I2e also vanishes for an Sz = 0 triplet SC whose polarization occurs in valley space, as in that case FJ ∝ Tr[sysx] = 0).
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FIG. 5: Density of states at zero frequency as a function of θB for several different values of δ3, γ, and with ζ = 0.2.
In each plot we have normalized ρS(0) by its maximum value. The red curves (l = 1) are p-wave, and the blue
curves (l = 2) are d-wave.

where mθ is the (angle-resolved) effective mass in the K valley, and δθ is the (angle-resolved) depairing energy induced
by the in-plane field. Due to the C3 symmetry of the K valley dispersion, we will parametrize mθ as

mθ = m(1 + ζ cos(3θ)), (D2)

and δθ as

δθ = B ‖ (δ0 cos(θ − θB) + δ3 cos(2θ + θB)) , (D3)

where we have kept only the two lowest harmonics in the angle θ (the subscripts on the constants δ0, δ3 denote the
angular momentum channel). x The magnitudes of δ0, δ3 are set by the scale

eB ‖ vDc0/2 ≈ 0.15(B ‖ /1T) meV, (D4)

where vD is the monolayer Dirac velocity and c0 is the interlayer separation. This has a numeric value of
≈ 0.15B ‖meV/T, similar to the depairing energies calculated in [14].

From (D1), we see that the magnetic field acts to create effective angle-dependent chemical potentials of strength
±δθ for the quasiparticles. For a nodal order parameter, this affects the DOS in two main ways: it splits the single
coherence peak at ω = ∆ into multiple sub-peaks, and fills in the DOS near zero bias.

Let us examine what happens near zero bias. We denote the locations of the nodal points as {kn} = {kF,nθn}, near
which the order parameter may be expanded as

|∆θn+θ|2 ≈ (kF,nv∆,nθ)
2 (D5)

for some nodal velocities v∆,n. At frequencies |ω ± δθn | � kF,nv∆,n, the density of states at zero bias is then

ρS(0) ≈ 1

π

∑
n

|δθn |
vF,nv∆,n

. (D6)

Since ρS(0) does not vanish at nonzero B ‖ = 0 unless δθn happens to vanish for all n, a small magnetic field will
fill in the nodes by an amount which is linear in the field strength. While the dependence of ρS(0) on θB depends on
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the set of nodal angles {θn}, it does not generically provide a robust way of distinguishing p and d-wave pairing. If
either δ3 = 0, the two cases can be distinguished: in the p-wave case ρS(0) always has one maxima and vanishes one
as θB is varied from 0 to π, while in the d-wave case ρS(0) always has two maxima and never vanishes. However when
δ3 is nonzero, the p and d-wave cases become harder to distinguish for a similar reason as in the above discussion of
SQUID experiments; this is illustrated in figure 5. While in a given experiment we may get lucky, with δ3 happening
to be small or γ happening to be close to 0, π — in which case we could (barring smearing effects from temperature
/ quasiparticle broadening) distinguish p from d — in general the situation will likely not be very clear-cut.

2. Strong tunneling limit: point-contact spectroscopy

We now discuss the limit where the tunneling strength is strong, which is relevant for describing point-contact
spectroscopy experiments such as those of Ref. [22]. The usual approach [60] for determining dI/dV in the strong
tunneling limit, which was used for the fitting analysis of [22], is to assume that the STM tip can be approximated by
a large slab of normal metal separated from the SC by a delta function barrier. One then determines the current by
solving a single-particle quantum mechanics problem, which is done by matching the wavefunctions and their normal
derivatives at the interface. To us the conceptual correctness of such an approach is not so obvious in the present
setting, where the STM tip may not a priori be well-approximated as a large slab of normal metal and where due to
the two dimensional nature of the SC, there is no way to match normal derivatives of the wavefunctions. For these
reasons we employ a more direct Keldysh approach to calculate the tunneling current. An expression for dI/dV in
this approach was in fact already stated in [77]; in the following we simply elaborate on the derivation of this formula
and generalize it in a way which allows us to easily account for both spin and valley degrees of freedom.

We model the system through the Hamiltonian

H =
∑
qτs

C†qτsλ
zεKτ+qCqτs +

∫
k

ψ†kH
qp
k ψk +

∑
qkσs′s′′ττ ′τ ′′

(C†qτsλ
ztqkττ ′ss′Pτ ′τ ′′s′s′′ψkτ ′′s′′ + h.c.), (D7)

with Hqb
k as in (A1), Cqτs = (cqτs, c

†
qτs)

T with cqτs destroying an electron on the tip at energy level εKτ+q (with Kτ

the projection of the monolayer graphene Kτ point in the BZ of the tip) and with spin s, and where contraction in
Nambu space is implied. As in the main text, P denotes the projector on to the SVL subspace.

The matrix tqkττ ′ss′ parametrizes the hopping between the tip and the superconductor, which for concreteness we
will mostly take to conserve spin, tατkss′ ∝ δss′ . We will consider two limiting regimes for the momentum dependence.
The first occurs when the tip is to be modeled as a quantum dot: this is appropriate when the presence of the STM
strongly breaks translation invariance in the plane, and when the only electrons which enter the sample are those
near the (effectively zero-dimensional) STM tip. In this case the hopping matrix is independent of momentum and
valley indices, and tqkττ ′ss′ = ts0 (where we will take t ∈ R for simplicity). The second regime occurs when the
tip is to be modeled as a (three-dimensional) Fermi liquid, with the presence of the tip not essentially breaking
translation symmetry in the plane, and with the hopping preserving in-plane momentum (for notational simplicity
we have omitted sums over the out-of-plane component of the tip momenta; we will assume the tip Fermi surface is
spherical and has a projection into the plane which encompasses the Kτ points, meaning that for all τ and q, cqτs
always destroys an electron somewhere on the tip Fermi surface). In this case tqkττ ′ss′ = ts0τ0δk,q+Kτ

.
In the following we will use the Keldysh Green’s function formalism to compute the current, which requires intro-

ducing the usual suspects

G<IJ(ω) = i〈Ψ†I(ω)ΨJ(ω)〉, GIJ(ω) = −i
∫
t

ei(ω+i0+)tΘ(t)〈{ΨI(t),Ψ
†
J(0)}〉, (D8)

where I, J are composite labels labeling the device (either tip T and sample S) and the indices conserved by the
tunneling matrix (viz. spin and Nambu indices, and possibly momentum), and where the fields ΨI are defined by

ΨTI′ = CI′ , ΨSI′ =
∑
i∈NC

ψI′,i, (D9)

where NC is the set of indices which are not conserved by the tunneling matrix (viz. valley and momentum in
the momentum non-conserving limit), and I ′ is the composite index without the device (tip / sample) part. The
device polarization implemented by P can be taken into account by conjugating all Green’s functions by P ⊕ PT ,
where the direct sum is in Nambu space. In the following we will let this projection be implicit in the notation, with
G<, G denoting the projected Green’s functions. Our notation will always be such that Green’s functions without
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superscripts denote retarded correlation functions. Advanced correlators are defined by

GAIJ(ω) = +i

∫
t

ei(ω−i0
+)Θ(−t)〈{ΨI(t),Ψ

†
J(0)}〉 = [G†]IJ . (D10)

Letting µa denote Pauli matrices in device space, and taking the hopping amplitude t to be real for simplicity, the
current (following directly from the equation of motion of the rate of change of particle number in the tip) reads

I = i
∑
I′

[
t〈Ψ†TI′(τ)ΨSI′(τ)〉 − t〈Ψ†SI′(τ)ΨTI′(τ)〉

]
=

1

2
Tr[λzµzΣG<],

where t denotes a real hopping matrix element between the tip and sample, the trace includes both a sum over all
degrees of freedom, as well as an integral over frequency, and where the self-energy matrix Σ is simply

Σ = tµxλz. (D11)

We note that the corresponding Σ< = 0 due to a real tunneling matrix element chosen between the normal tip and
superconducting sample. Note that to compute the current the lesser Green’s function G< is employed, since the
Green’s functions with both times on the same half of the contour are equivalent to equilibrium ones.

To evaluate this trace, we will need to make use of the Dyson equations [78] (suppressing all device indices and
frequency dependence)

(1− gΣ)G< = g<(1 + ΣG†)

G<(1− Σg†) = (1 +GΣ)g<

G< = (1 +GΣ)g<(1 + ΣG†)

G =
1

1− gΣ
g = g

1

1− Σg
,

(D12)

where lowercase letters denote free propagators, which are

g(ω) = gT (ω)⊕ gS(ω)

g<(ω) = 2πi(ρ̂T fT (ω)⊕ ρ̂S(ω)fS(ω))

g>(ω) = g<(ω)− 2πi(ρ̂T (ω)⊕ ρ̂S(ω))

(D13)

with gα(ω) the free propagators for the tip and superconductor (which are matrices in Nambu and spin space), the
⊕ is in device space, and were the matrices ρ̂α, fα are defined as

ρ̂α(ω) ≡ − 1

2πi
(gα(ω)− gα(ω)†) (D14)

and

fT (ω) ≡ f(ω − λzV ), fS(ω) ≡ f(ω)λ0, (D15)

with f(ω) the Fermi function. By taking the device off-diagonal components of the top two lines in (D12), we find

G<ST = t(GSSλ
zg<T +G<SSλ

zg†T )

G<TS = t(gTλ
zG<SS + g<T λ

zG†SS),
(D16)

which gives the Green’s functions appearing in the expression for the current in terms of the free tip Green’s functions
and the full dressed Green’s functions of the superconductor (here and in the following, we will slightly abuse notation

by writing G†αβ for [G†]αβ). Plugging in to (D11), this yields

I =
t2

2
Tr[λzg<T (GSS −G†SS) + λz(g†T − gT )G<SS ]

=
t2

2
Tr[λz(g<T G

>
SS − g

>
T G

<
SS)],

(D17)
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where we have used the identity G<−G> = G−G† and the fact that the tip Green’s functions, having no anomalous
parts, commute with λz. The G<,>SS can be evaluated with the third line of (D12), which gives

G<SS = g<S + t2GSSg
<
T G
†
SS + t(GSTλ

zg<S + g<S λ
zG†TS) + t2GSTλ

zg<S λ
zG†TS

= g<S + t2(GSSgT g
<
S + g<S g

†
TG
†
SS +GSSg

<
T G
†
SS) + t4GSSgT g

<
S g
†
TG
†
SS ,

(D18)

where we used GST = tGSSλ
zgT , G

†
TS = tg†Tλ

zG†SS in the second line. Making use of (D13), some algebra and the
fact that [ρ̂T , fT ] = 0 (as the anomalous parts of the tip Green’s function vanish) gives

I =
(2πt)2

2
Tr
[
λz(fT − fS)

(
ρ̂T ρ̂S + t2ρ̂T (GSSgT ρ̂S + ρ̂Sg

†
TG
†
SS) + t4ρ̂TGSSgT ρ̂Sg

†
TG
†
SS

)
+ t2λz ρ̂T [fT , GSS ]ρ̂TG

†
SS

]
,

(D19)
where again the trace includes an integral over frequency. It now remains only to calculate GSS , which can be done
easily with the help of the last Dyson equation in (D12):

GSS = (g−1
SS − t

2gT )−1. (D20)

The first group of terms in (D19) vanishes when ρ̂S does; these terms are therefore responsible for normal tunneling
processes that are only active outside of the superconducting gap. The last term on the other hand does not depend
on the superconducting DOS, and can lead to a current even for biases inside the gap; this is therefore the term
responsible for the in-gap Andreev current.

The conductance is obtained by differentiating (D19) with respect to V , yielding

dI

dV
=

(2πt)2

2

∫
R
dω f ′(ω − V )Tr

[
ρ̂T ρ̂S + t2ρ̂T

(
GSSgT ρ̂S + ρ̂Sg

†
TG
†
SS

)
+ t4ρ̂TGSSgT ρ̂Sg

†
TG
†
SS + 2t2ρ̂TGSS,aρ̂TG

†
SS,a

]
(ω),

(D21)
where GSS,a is the anomalous part of GSS (viz. the part of GSS off-diagonal in Nambu indices), and where we have
now written out the frequency integral explicitly.

a. Momentum non-conserving tunneling

We first consider the limit of ‘incoherent’ tunneling, where the tunneling process does not conserve in-plane momen-
tum. Therefore the tip Green’s function is, treating the tip as being in the wide band limit with a constant density
of states ρT and remembering the projection onto the SVL subspace,

gT (ω) =

∫
R
dξ

ρT
ω + iη − λzξ

P = −πiρ̂Tλ0P (D22)

where

P ≡ P ⊕ PT , (D23)

with the ⊕ in Nambu space.
On the other hand, the free Green’s function of the SC in the incoherent limit (a matrix in spin and Nambu space)

is, reading off from (A6) (and continuing to let |η〉 , |η′〉 be real),

gS(ω) =
∑
τ,τ ′

∫
k

[
P(ω + λz(ξαzk − τzδαzk))− ∆̂θλ

+ − ∆̂†θλ
−

(ω − αzδαzk)2 − E2
αzk

]
ττ ′

= − 1

4π

∫
θ

( ∑
s=±1

1 + sλz

2

(
Υθ,s(ω − sδθs) |η〉 〈η|+ Υθ,−s(ω + sδθ−s) |η′〉 〈η′|

)
−∆θλ

+(Υθ,− |η′〉 〈η| − pΥθ,+ |η〉 〈η′|)−∆∗θλ
−(−pΥθ,+ |η′〉 〈η|+ Υθ,− |η〉 〈η′|)

)
,

(D24)

where αz ≡ λzτz and we have defined

Υθ,± ≡
mθ±√

|∆θ|2 − (ω ∓ δθ)2
, (D25)
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FIG. 6: dI/dV curves for ∆θ = ∆ cos(θ), normalized to their respective V →∞ normal-state values. Here t is the
dimensionless tunneling strength defined by t ≡ t√mπρT . In terms of BTK theory, t = 1 corresponds to the case of
a transparent barrier, Z = 0 (and t > 1 corresponds to an attractive barrier, with Z < 0).

with the notation θ+ = θ, θ− = θ + π.
We will now use (D24) to argue that either a) TBG is actually an s-wave SC (which for the reasons explained

in the main text we are inclined to disfavor) or b) the tunneling experiments of [22] are in fact rather well in the
momentum-conserving tunneling regime (which given the experimental setup is perhaps slightly surprising).

To argue this, all we need to do is note the rather strong zero-bias peak in dI/dV observed at B = 0 in [22]; we
claim that (D24) cannot generically reproduce such a peak. Indeed, setting δθ = 0 (and specializing to the case of AF
SVL), we have

gS(ω) = −
∫

dθ

2π
Υθ,+(ω + (λ+∆θ − λ−∆∗θ)is

y). (D26)

Since mθ is the mass in the K valley, C3 symmetry imposes mθ = mθ+2π/3, and so as in (D2) we parametrize

mθ = m(1 + ζ cos(3θ)), (D27)

with |ζ| < 1 controlling the extent of the angular anisotropy. Now at T = 0 the zero bias conductance only depends
on gS(0), which is (taking ∆θ ∈ R wolog)

gS(0) =

∫
dθ

2π
mθ sgn(∆θ)λ

ysy

= m

∫
dθ

2π

(
1 + p

2
+ ζ

1− p
2

cos(3θ)

)
sgn(∆θ).

(D28)

This means that the strength of the Andreev reflection signal is proportional to ζ if p = −1, and is controlled
by m

∫
dθ sgn(∆θ) if p = +1. On the other hand, the conductance in the V → ∞ limit is determined only by∫

dθmθ/2π = m. This leads to the normalized ZBC being depressed from the maximal value of 2 it takes in the
s-wave case to something smaller, with the suppression being either by an integral like ζ

∫
dθ cos(3θ)sgn(∆θ) in the

p = −1 case, or
∫
dθ sgn(∆θ) in the p = 1 case.

The net result of these effects is to produce tunneling curves that are in general significantly suppressed near zero
bias. For a p-wave order parameter ∆θ = ∆ cos(θ), the normalized conductance is shown in figure 6, for an isotropic
effective mass (ζ = 0, left) and a large C3 anisotropic mass (ζ = 0.7, right). The conductance in the two cases looks
similar, but the anisotropy ζ 6= 0 is responsible for a (very small) nonzero ZBC in the latter case.

A nonzero ZBC is obtained in the p = 1 case only by working with an order parameter for which
∫
dθ sgn(∆θ) 6= 0.

A simple example of such an order parameter is ∆θ = ∆(cos(2θ) + ς cos(4θ)), which has 4 nodes if |ς| < 1. Examples
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FIG. 7: Same as in figure 6, but with t∆θ = ∆(cos(2θ) + ς cos(4θ)). The multiple singularities are due to the fact
that the gap possesses more than one harmonic.

of the normalized conductance for ς = 0.25, 0.75 are shown in figure 7. The nonzero value of ς allows the ZBC to be
finite (though still suppressed relative to its normal state value), but the fact that ∆θ includes multiple harmonics
leads to multiple coherence peaks at larger biases, which are not observed in experiment. Even with ς = 0.75, we are
clearly a long way away from producing a peak in the ZBC.

b. Momentum conserving tunneling

Given the issues with incoherent tunneling we now consider the case of coherent tunneling, where the tunneling
between the tip and the sample conserves in-plane momentum in the TBG BZ.10 To treat this case carefully, we would
work with momentum-resolved Green’s functions, and include a single integral over momentum in the trace appearing
in (D21). We will instead do something slightly simpler: for a given point on the Fermi surface at angle θ, we will

take the tunneling to conserve momenta normal to θ̂ (along the Fermi surface), but not parallel to θ̂ (normal to the
Fermi surface). This treatment nevertheless captures the essential way in which coherence affects the conductance,
since in this treatment there is no interference between the signs of ∆θ at different angles θ.

In this framework, the appropriate Green’s function (a matrix in valley, spin, and Nambu space) to use when
computing dI/dV is

gS(ω, θ) = − 1

4π

(
Υθ,αz (ω − αzδθαz )P− λ+∆θ

(
τ−Υθ,− |η′〉 〈η| − pτ+Υθ,+ |η〉 〈η′|

)
− λ−∆∗θ

(
−pτ−Υθ,+|η′〉〈η|+ τ+Υθ,−|η〉〈η′|

) )
,

(D29)
where θ is integrated over as part of the trace in (D21). The conductance computed in this framework gives results
much more in accordance with experiment, an example of which is shown in figure 8. As an in-plane magnetic field
modifies the conductance essentially by way of it acting as a chemical potential for quasiparticles, it has the effect of
flattening out the conductance curves near zero bias, as well as splitting the coherence peak at low tunneling strength.
In the right panel of figure 8 we have taken B ‖ = 0.2T, which in the experiment of [14] is rather comfortably below
the minimum Bc, ‖ across the majority of the superconducting dome. The θB-dependence of dI/dV at low bias is
essentially the same as that of the θB-dependence of ρS(0) studied above.

10 One could also consider an intermediate case, where the tun-
neling is incoherent in the TBG BZ but diagonal in valley; this
leads to the same problems as in the valley-incoherent case as

they originate from the integral over θ, rather than the sum over
valleys.
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FIG. 8: Tunneling conductance in the coherent tunneling model for a p-wave gap (d-wave is essentially the same),
normalized to its normal-state value. The mass anisotropy parameter is fixed as ζ = 1/4, and t = t

√
mπρT is the

dimensionless tunneling strength as in figure 6. Left: zero magnetic field. Right: Field of magnitude B ‖ = 0.2T and
θB = π/4, γ = 0, and with the parameters in (D3) fixed at δ0 = 4δ3 = 0.15meV/T.
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